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ABSTRACT: The stability theory uf laminar boundary layers in
response to infinitesimal disturbances is re-examined for the case
of a binary mixture with foreign gas injection. Because of the
inherent limitations of the asymptotic stability calculation pro-
cedures, an approach was taken which utilizes the complete equation
system. Such an approach is described herein and the resulting
system of equations is presented in a manner suitable for numerical
evaluation.
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Formulation of the Complete Equations of Boundary Layer Stability
with Mass Transfer

The present analysis extends the methods of direct solution of the
boundary layer disturbance equations to account for the effects of
foreign gas injection on the laminar boundary layer stability. The
method is based on the work of W. B, Brown and L. M. Mack, with the
differences coming from the addition of a species continuity equation,
diffusive flux terms in the energy equation, a modification of the
form of the equation of state, and a difference in the dependency of
the transport properties on the state variables.

The present report covers only the formulation of the equation system
to a point where solutions may be sought by numerical methods.
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SYMBOLS

factor in the general solution of equation (98) defined in
equation (129), and given by equations (130) through (137)

complex coefficients defined by equation (€60)

factor defined in equation (114) and given by equations (123)
through (128)

complex coefficients which are combinations of the a5 given
by equations (103) through (113) J

specific heat

specific heat ratio defined in equation (23)
mass concentraiion

coefficients defined by equation (129)
imaginary component of disturbance velocity
real component of disturbance velocity
binary diffusior ccefficient

molecular diameter

strain tensor

function defined by equation (12)

m-~de function for u’

quantity defined in equation (34)

enthalpy
gquantity defined by equation (83)

length scale used in non-dimensionalizing the equation
x

system, = T
°x
molecular weight

mode functions for the variables given in page 8,
n=1,2,3, 4, 5, and 6

Prandtl number
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SYMBOLS (Cont'd)
pressure
general designation for a quantity
gas constant
mode function for p’
Reynolds number
Schmidt number
temperature
velocity parallel to plate

general designation for velocity in the ith (or jth)
direction

set of dependent variables defined in page 19,
n=1, 2, 3, and 4

velocity .normal to plate

dimensionless velocity ratio, defined in page 8

Cartesian coordinate in the itD

direction
coordinate normal to the plate

set of dependent variables defined in equation (59),
n=1,2, 3, 4, 5, 6, 7, and 8

wave number of the disturbance

quantity defined in egquation (34)

ratio of specific heats

Kroenicker delta

Blasius®' similarity ?ariable,‘% /FE;

quantities defined in equatioas (§5) through (58),
n=1 2 3, and 4

mode function for h’

viscosity coefficients
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SYMBOLS (Cecnt'd)

exponents in the particular solutions (Eq. (114)) given
by equations (119) through (122)

coefficient of bulk viscosity
coefficient of kinematic viscosity
mode function for Cb'

mode function for p'

density

time scale used in non-dimensionalizing equation systen,
4

u
-
stress tensor

mode function for v’

refers to mean flow gas
refers to injected gas

refers to boundary layer thickness
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INTRODUCTION

The effect of foreign gas injection on the stability of the
laminar boundary layer was first analyzed by Shen, reference (1),
ir 1957 using asymptotic procedures. He developed the "inviscid
solutions"” in power series of the square of the wave numbers, a2,
and then demonstrated how the 'viscous solutions" cculd be obtained
by an asymptotic expansion in the inverse square root of the product

of the wave number and the Reynolds number, (a Reé)‘b. By further
manipulation he was able to show that the influence of foreign gsas
injection was evident primarily through the mean boundary layer
profiles and through 2 simple correction factor in the well-known
Dunn and Lin seculay equation, reference (2). In addition, Shen
developed an "inviscid criterion" for the stability of injection
profiles and by applying this criterion bhe was cble to demonstrate
that the injection of a heavy molecular weight gas as a coolant
might lead to bouncdary layer with improved stability characteristics.

The possibllity of improving the stability characteristics
of boundary layers by injection of heavy molecular weight gases
stimulated the research of Powers, Heiche, and Shen, re“erence (3),
who aade a qualitative investigation of this phenomenon. They
reformulated the asymptotic procedures of reference (i) to facili-
tate numericel solution of the stvability equations and made 2
systematic investigation of the elffects of varying the molecular
welight and diameter of the injected gas. It was shown that, in
terms of minimum critical Reypolds number, the injection of s smali-
diameter iight-weight gas could decrease the stability by as much
as an order of magnitude. 1Ia contrast, the injection of a2 large-
diameter heavy gas could actually improve the stability of the
boundary layer. Those results were for zero Mach number thermal
boundary layers; however, the findings were found to apply up to
low supersonic Mach numbers in a later investigation, reference (4).

Attempts to extend the results to Mach numbers higher than about
1.3 by the asymptotic approach were not possible because of an
inherent limitation in the procedure. This limitation is believed
to be assoclated with the apparent singularity in the “"inviscid”
equation. The singularity occurs when the velocity of the distur-
bance relative to the wall becomes supersonic and as a result one
of the coafficients of the differential equations changes sign. This,
in turn, violates one of the conditions of the Sturm-Liocuville,
theorem which guasranteses the existence of eigensolutions only under
certain conditions. It has been possible to obtain soclutions at
high Mach numbers by changing dependent variables in s manner suggested
by Lees and Lin, reference (5). Such solutions were obtained by

1
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Reshotkc, reference (6), but thsy were not unique eigensolutions.
L. Mack, reference (7), demonstrated in fact that the =ultiplicity
of solutions increased as the Hach number increased.

The use of asymptotic procedures at high Mach numbers would
require the inclusion of many terms which had previously besn
neglected and as a result the numerical program would become vary
complex., Under these circumstances it was considered desirable
to investigate the high Mach number effects of mass transfer on the
boundary layer stability by developing a method of directly solving
the complete linearized disturbance equations by numerical methods.
The feasibility of the direct solution method has already been
established by the exceilant pioneering work of Drs. W. Byrom Brown,
refsrence (8), and L. Mack, reference (8). Both of these investi-
gations have been well documented and may be considersd as the
foundational work upon which the present development 1is based. It
is, thereforg tke objective of the present study to extend these
previous methods to accommodate the efiecis of foreign gas injection
on tke laminar boundary layer stability. The present investigation
is a formilation of the equation system, and methods of obtaining
numerical solutions are indicated. Numerical solutions are nof
included in the present report since it was considered desirable to
expedite the dissemination of the formulation before complete solu-
tions were obtained.,

ANALYSIS

General Equations

The general equations of motion for a binary gas system in
Cartesian tensor notation are used as the basic egquations for the
present analysis. These equations are the equations of motion,
global continuity, species continuity, and energy, In the dimen-
sionsl form they are the follcwing:

1 Qs - o
Motion: ﬁi: f-ﬂ‘/' /)a‘ _ L k g (1)
ot ox; [ IX;
Global C ti'it:?_ﬁ -2 Y = (2)
oba’ Continuity 3¢ ?"2}(. (/pﬂ‘,)-—O
%,, % 9C
Species Continuity: ‘Qf 5; Lf/ 9)( (f Qaé g—;j > (3)
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I
Energy: E{ae ‘f"u-i axle'éft-.‘f J’a)( C'L-QJ Q i o (4)

2 + £ (- ‘)uﬁ-ha?’%%}

N

In these eguations all quantities take their conventional definitions
as defined in the list of symbols. The terms which result from the
inclusiocus of mass injection are related to the quartities: Cy, the
nass concentration of the injection gas; 831, the binary diffusion
coefficient for the diffusion of gas "b" into gas "a2"; Sc, (u/p8),

the Schmidt number; and, hy or hy, the enthalpies of the componenrts
species, The stress and rate-of-strain tensors take their usual form:

G:-j :’éﬂeﬁ. f/;"-()%) e -PJ 5{; (5

and éﬁ/ = /9 Z&f (6)

where the viscosity coefficient, 1, is equal to three halves of the
bulk viscosity coefficient.

In addition to equations (1) through (4) we must add to the
basic set a form of the egquation of state which is compatible with
our application to the binary system. This is accomplished by using
the conventional relation:

) = 70/7' @

waere for the binary mixture the assumption is =ade that the gas
constant and the mean specific heat are functions only of the species
concentrations., Thls lesds to the relations:

K=K, +G(5-£)
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<E7 = v (o
2= CGur C(Cpy- Gy
and - ¢>/ (10)
7= Y,
By using equations (8), (9), and (10) in equation (7) and forming
the logarithmic derivative the squation of state takes the form:
7 /é? Zf/ 62/
% = k2 ey a

where L - )
Fee) ,ﬁ;,az;‘(]iﬂAZ) 4;bu #Cy (ZV%'~<QQ)

In equation (11) the prime is used o indicate the fluctuation or

disturbance part of a quantity which, when added to the time inde-
pendent basic flow (indicated as barred), yields the instantaneous

value of the quantity. This is written as:

(13)

§ (r,e) = (1) +Q (k ¢)

Later the primes will be used to indicate derivatives with
‘fhis notational change 1s for

(Note:
respect to the independent variable.

convenience and wiil be noted when it occurs.)
Introducing the instantaneous form of the variables equation (13),

into equations (1) through (4), subtracting the mean flow equations,

and neglecting quadratic terms in the disturbance quantities resuits

ir the gemneral form of the disturbance equations us follows:

- / o/
_ 94, . 1 9q. _ ou') OT.
. . —— u. ¢ . -__‘ : :L
Motion: i(’u,l v rP valt ) ——-%J i 3 2___4)(:). (24)

— ~—— g~ o «
. - - PP
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% 2

Global Continuity: >t +aﬂ\j (Fu.}l + ?’ ‘I\;): O (15)

(o]
[y
f
}—-l
o
-~

_{o¢c, _ ! 3 o Gy
Species Continuity: () {-_—é- + U. acb + bl'.' BC!: + P w- —
ot T ox ) ox

81\4 Ot N axd J BK} dt
o v’ G2 0l s 8+
+ u‘} gﬁé J —% + 'C‘. LJ “J /

'3}%' 5) 2% f 2}5{' +3/§ Je
Ch-Cay ], % ol (7 ;,'a—-c-::- ]
x[(c)haxd*(*c,))(h‘aﬁ'i' bxd) T
/..u_—- fc ‘6'6/’94, ./ %j }
AEAGE NG I

Two Dimensional Parsllel Flow

The only simplifying assumptions sre now made; namely, that the
mean flow is parallel and that the disturbances and the mean flow are
two dimensional. The first of these assumptions implies that v << 1
and that derivatives of mean flow quantities with respect to x may

be neglected, ( i.e., -g% << %%). The second assumption eliminates
the coordinate dependence from the problem. These assumptions are

5
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cenventional in boundary layer stability and no attempt is made hers
to evaluate their significance since this has been the subject of
previous investigations. (See, for example, reference (2).) As a
result of these assumptions, equations (14) through (17) can be
written as follows:

(L oE
x-momentum: Fl&t‘ +V ;D—-a— + I 2K }—— - 3/(/{02

ézzé 2 v’ VoY %ii 2v’ ’ 29
aﬂp, ij%(,&;/k)(_g)( 5;—’2—7—-)/ L, ou' Ik

2 9/ 9/» a/. FJ

O , ! / e
3¢ 83 r%)

/

. o’ J) L%
y-momentum//atvhézaxj_ f}ﬂ .Z/» .;2;’; +—

Y Q(/)/'?} 9/)”“-‘9—“ ca

A5

Globzl Continuity:

0 )L I "‘9 —
ggr’,fé)gfffgiv&}ﬂsjfug)(:@ (20)

—_ e - X = -
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(23)

The Mode Function Equations

It is next desirable to express the equations (11) and (18)
throug,. {22) in dimensionless form. This is accomplished by_intro-
ducing the length scale, £ = x//Rex , the time scale, r = ¢/4_ , and
by scaling the other variables with respect to their values at the
edge of the boundary layer. The concentration of the injectant is
an exception to this gcaling since it is already dimensionless. We
note that scaling results in the use of the Blasius variable,

n=- % /Rex , to represent the y coordinate. It is further desirable

to represent all of the fluctuations as harmonic functions whose
amplitude is determined by a "mod€' function of n. Using these con-
siderations, the mean flow and fluctuation quantities are expressed
as in the following table:

TABLE 1
Mean Flow Variable Fluctuation Quantity
—_ - - rd (x-C¢)
W= 4,(0(‘7) fc/:”wfff)e ¢
' 7 ) -¢ct

y

7= ra /D P= 1o #(y) /% 70

S o P /0/:;0 ﬂ-cy)é/&’(Cth)
%= T Al)) K=y B(y) 0“1
Cs= Gy = Flp)e " %7

A= g ) s _Aad (e
j—:/@ 4/7) ) ,:/% gﬁl/ﬂem(x—c&)
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TABLE I Cont'd,

(s-Co _ Co cn 1 cof (K- CE)
G C’ﬁ(/) (_./%/i’t); 7)€

A :(/2/;;2;0 /%-’7) )= o 777,[/)0,‘."'[”'“/

%% %) - (%) 40) e 4 = R pe“’"“’

% =<Hl Ho) %)= (B g)e X

Using the definitions given in Table I, introducing the Reynolds

number, R = %Fﬁ - ey s and using the global continuity equation

in the energy equation gives the desired form of the mode function

equation. (Note: For the following pages the primes will be used
to indicate derivatives with respect toc the variable 1.)

x~-momentum: F{/'(‘d_c}?ﬁ,;. aoyj = "';3:—2 ,Ljfé-ff‘/; a}?,«fy izf)}
(24)

» % (_.4__.03 (/?‘//)f'cm///?‘h/ + N W-r&(fﬁo(?’)]

y-momer.tum: /)[ [‘U“C)/f d’% p(,( 0?79,4[,, .(//’f
,.f-i—;f fc/) /77“/1‘ ;Z(A 4)(f9:f-
- z:'f)]




Global Continuity:

i (w-0) "*f;"f* ﬁOU'f +;¢9’) =0 (26)

Specles Continuity:

f{{(w-c)f r Cb'cf} = g;,q

/if'){f- (m, G*) " o(}Oj (27)

b’-/

Energy: P{,’(w_c)gf;?ﬂj"f“-: ’}: i (w-Q7 - /(50£)[&*F59)

) t‘f%}} (J:ol)'” {//)tl/ (2“,‘,(}3 +'a{7)} Rd/ﬁ {(/g) (28)
/%‘0{2'9"'(%’/%, ;/—(f“/}%)@/o{f’]f‘/gf—//%)% f@’]f

[E--»)&ﬂ ] (/4 /)(o{fc‘,’Of)+(fin )x,,)(luuj)]

Equation of State:

6 , f
A

FIG,) (29

i

f>+
Before equations (24) through (29) can be developed further it is
necessary to establish the form to be used for the thermodynamic and

trangport properties of the mixture.

Thermodyrnamic and Transport Properties

One of the major differences of the pressnt development and the
previous developments of Brown and Mack, references (8) and (9), is
the manner in which the thermodynamic and transport properties eater
the equation system. In the previous works, these properties are
considered to be thcse of a single species and hence are »2nly functions
of temperature fc given pressure. In the present inwestigation,
since we are dealing with the injection of a foreign gas into &
boundary layer, these properties are necessarily functions of both
temperature and concentration. Since enthalpy is used herein in place

10
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of temperature, the fluctuations of these properties and thelr n
derivatives will be related respectively to the enthalpy and concen-
tration fluctuations and to the enthalpy and concentration profiles,
In the mode function equations, the properties appear both as n
derivatives, %%, and as their fluctuation mode functions, mi(n).

Because of the dual dependence these expressions are written as:
Ag) - Ay Ay ¢& a6
= * (30)
Ay a Ay " A, é/’

and: 7”‘(7): 777‘4 2+ %‘fb f (31)

where subscripts h and Cp, indicate derivatives with respect to those
gquantities.

Further development of these expressions is dependent on the
choice of thermodynamic and transport property relations. To
achieve a reduction in complexity, the forms used by Korobkin,
reference (10), are used. These mixture properties only appear as
dimensionless ratios, with the exception of the P.andtl number and
the ratio of specific heats at the edge of the boundary layer. These
two then become the pure air values. The dimensionless ratios of
the mixture properties are developed in terms of the temperature
ratio, T, concentration, Cp, molecular weight, myg or m,, and molecular
diameter, dy or dp, to be the following:

s 7 / ),
/7‘%@( //éécl ~Cs

4
/- C
/ /fx/é%a (T /f>AZl (5§%;

, /,
where /3‘ - (drda )Z Z_},j_ [ 771 )77! / (34)
J =rh ZZ 52;%J

11
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9 - 7 (35)

In addition we write for convenience:

/€2 - Aszf
7T A& "'Cé(fé”-'(:z,)

(36)

Using these expressions in Tthe proper combinations, the required
relations ia equations (3Q) and (31) become:

%/4 = ;?L T (37)
%/44 = ';/7%3— (38)
U, = ‘Q:A' +JL, (39)
7, - LCGgu-an)-U,
Mg, = ?Lf{t (41)
Q{JC = 'C}”ﬁ?’ (42)
A, = dep’ )

My - 77 CF)
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%ﬁa: “/;/: (/}%
%y, = '%Z 6/0(/7’4:)7"*/23
My - 369 G- NI,

;bz7at = izyyidég;c:"

(}2 f?}m /7 /
/gaa*u/‘}(’] [»LG

&

‘72
/)Q/ f

(45)

(46)

(47)

(48}

(49)

(50)

{51)

(52)

(53)

(54)
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Aa
ﬂ o GL /770 )( 7 (/?9.4‘/) /Z (56)
2" G A w A6l [ 170G 7

/ ? [ df/ﬂio ‘o -] :
/ Z _ (57)
3 cf N e +(/ /4,6)(_ /* %zs 1), ]

ﬂ J%—‘} (/’/364)] ¢ B _{fao'/) ;
vi sz [-/ ba + (- 54:%5] [l"%a“/)c

Reduction to Normal Form

(58)

The equation system, eguations {24) through (29}, is reduced to
normal form by the introduction of a new set of variables defined as
follows:

77

Z,=F ; 2=t S 2y four =l o9
/ /
Z,=0. Z;’fo/zlg"f

In this form we have a system of eight first order differsntial
equations.

8
Z = Z Gy Z; (624...8) (60)
/i =/

The coefficients, ajy, are made up of combinations of the mean
velocity, enthalpy, éensity, and concentration profiles, the thermo-
dynamic and transport properties, and the four basic paraumeters of
the problem; namely, the wave number, a, the Reynolds number, R, the
real component of the wave velocity, cy, and the imaginary component
of the wave velocity, ci. Of the 64 possible compley coefficients,
aij» only 36 are nonzero and they are the foilowing:

14
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Ad,, =/ (61}
Ay = cfo(/'ify'd’) o (62)
(= % %» .g./_’)(;’s/ (63)
Az = o/(;é fh /fio{‘)r&zzz * j ;—f’—i(/" l/;,!—)} (64)
Ly, = iz,e e EZ-C{LCW‘C)(’*‘? ERN (65
Lo = ?‘_”{i (w-c)(7# OZ/;/‘J'-) —-;‘;‘{' ;yi',,/{ga - i‘,’ J; {66)
Ly = ~ j % (67)
Raz = U,y * o—;(;y-c)(m 2 /i) (CoprG-7)
Ly = W/(fzﬁ - /él-'\ (52)
L3 = -¢ (70)
Az = —/p//p (71)
A3y = -;°6);//[:(w,c) (72)
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Uo = f/%j (w-c) (73)

Asp = C(Cepr 8) w-) (74)
o?o

Ay, - [*‘ (a?+ )( /&>+duj (75)

dyg_ = _-L./L. (78)

(80)

- ¢ A
Ay = 5, [ [J*J Iy~ IC 5+ epr6)
rler 695"} ]-7 "{”f

(81)

o
g = (Cpre) (& -—-)/M &) (52)

16
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where:
s :éf. £ . 2{"4(3- A
(= G # 56 oM (252006 ()
Asg = Z (84)
Vg 8 T~ /_’% 7
(»/(4:.: '"0?"% {\?a]/oo“/)/g{;o///!" (./, )é:»’ (85)

(87)

aé"( e —oll 2@ M 0{% (a/ /) = (W——'C,)

N . — z
s - 2 Ji B aRGw-[f E2]-R e

Iz/ﬂ...’ 1 - / ; /
g d ARG el
(88)

br

A /..‘i 7,7 =
G E G TN R A

+ﬁ@maci~2@@v

- 6 f3c,o £ (N O )f

Az = /f" [‘ Foo AR - c)[ 2 (G0ts)- /”e/:{} P (1)
. (90)
M W C;/ZI“ (%i' ) /7 (7i,d+ 1};),.4; Z{j!}? +

(89)

17
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{Eq. (90) continued)

>

o V]
L

F ol v L (o 4)E e A ep( fcp-

JC/ﬂ3+/)+(/27fjc/0ﬂ ;l—._C:L,C}gZG—-..

::7>J ]*C/ l[e/of"j,J 3{667%3}

f",éé’/o (A "+ g_/“a *%';{;L) +-’;§L: (%zg;’/‘ A7)+
Cp (% 6,02-55/23w%{”),‘ﬂ‘#gc,o’-[g%-

%) ]
o 2 {06 A Ll 21 4 T
# fgf[jf’-;@ &' %/ o
Q}ﬁ = 2 (92)
Ugs = /{Ef/imﬂ(’b/ (93)

ys = ;7—7{ f@ [ %/ @ L/f"’é)]“ Cb”§ (94)
(:/‘Zgé = = QZ?L (95)

Cze;-eﬁmﬂf(w{) fﬁ/,»(f%)(c”% Z
Ce (3}?@/’ f—G(’/ﬂro?é'z)

13
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Ugg = LC (Y +6) - a4 (97)

dethod of Solution

While the present report does not go beyond a formulation of the
equation system it is possible to draw upon the work of Brown and
Mack, references (8) and (9), and to develop a suggested method of
solving the equation system, (60). In both of these references the
authors constructed linearly independent solutions which were inte-
grated across the boundary layer and were then combined to yield
a general solution satisfying the boundary conditions. The two
methods differed in the direction of integration and in the search
procedure used to vary the initial guesses until a proper set of
elgenvalues was obtained. The present suggested procedure follows
more closely the method of Mack, reference (9).

Initially, we look for four linearly independent solutions

which are applicable at n > Ns+ These solutions are found by
solving the equation system:

ZQ‘ 2 (o=1..8) (98)

J =/

where the superscript asterisk on the ajy coefficients means that
they take on their constant value at n 3> ng. To facilitate the
derivation of these solutions the dependent variables are changed
by the substitutions: Vl =7 Vz - 24; V3 = Zs; and V4 - Z7. This

changes the eight first order equations into four second order equa-
tions which are:

\/;“: b] v,‘f’ blz VZ_ + b,3 V3 + b,\.‘ \/q (99)
VZ = bzz Vo + by \/3 + by V{ (100)

18] . \
Vi = by, Vo + b3 Vi + bs, V¢ (101)

W= by V4 (102)

where the bij's are the following combinations of the aij's:

19




t>u = C1T: C?::

b = Q. aly

bi; = Qi Ol

b = Qe dig

bz, = G:z Cl;: + Qus Qg Gy Ay
b,; = a:» az’:" + Q:: as? "’a:b CI«.’}-
bz~4= C{:L a:} + 0:3 03; 4—45.45“;
br = G duy

é,z_; = qu d:r‘

b3y = Q;‘Z d:f

éw g d:s dsj

The system of equations (99) through (102) has particular
solutions which may be writtea:

G E) LA (Y ]
\/ = 8‘: 2 4 7 o L=ty
¢ J': ... g
‘thu

Putting the "J particular solution into the equations yield
the following equations:

’ ) ) W)
Cbu- A B+ b B, + b By + by B, =0

2 ) ) ']
(bzz‘)v;) 829 bz 83 + bzq BVU =0
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(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)




dj S (4) ()
b32 Bl + (,b_g_g - ");) 53 + b.i’\l E‘} =0 (117)

¢ W]
(b yy - Jo' ) ’B\* =0 (118)

The characteristic determinant yields four negative roots and
four positive roots. The positive roots are discarded since they
would give solutions increasing exponentially in n. The negative
roots are:

i
/
A = - (by) = (119)
v
t 2 1%
Az‘ “{3(511*533)“"[’:} Cbar - b33) +bzsbs=] j (120)
S ’L 7)_,.
/\3 = '"[',i Chartbss) - [Jig Cbgz.‘ b.n) f'b:; 53;] j (121)
y
/\xf = - quq) = (122)
Row by selection of a specific magnitude for one of the Bj(_j)'s

in each of the four j groups of fundamental solutions the equa-~
tions (115) vo (118) can bz solved to yield the following velues:

For j = 1:

(123)
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For j = 2 or 3:

g(wf) - bin C by - "f_) — b3 by
I

/\d‘z’ - bH
() —
BZ = 533 - A‘,‘ (124)
G
Bg = ’1731-
y ]
’B’{“ = O
For j = 4:

B!{J)‘: [yb“f [(bh-' b‘H )<b33" -‘/ﬁq)- b23 531]"}) 12 [b}.q (b‘“"

b3 )+ bu b3‘f + bis [ by Cbll - bw J)- bl'} bsz]:s‘ \;( b,,-b‘“)
-1

[( bzz‘ bqq) ( b}g‘ bqq) "’613 baz..] ] {125)

&(‘”: {(534)( bzs) - b 2y U?s‘z’ Avv)};(hl'h"!)(bﬂ'b"g -1

- 523 b3 Lj {126)
(4) -

B, - {bz\g by~ by (5u‘5w)3 5(527,-5“) (by;- byy)- 53595(127)

Bhg = f (128)

Next, it 1is possible to write a general solution of equation (98) as:

< (i ,\( -
%. = ZCQ' A'V.UQ ‘ 7 5> (C=1,..8) (129}

{ -

J=!

22




NOLTR 66-187

where we have used the fact that the four expornentially growing
i)
fundamental solutions are discarded. The A(g”s of equation (129)

(J),

are now related to the B s as follows:

A W B ") (130)

| i

A, W )J- 5 .(131)
ASW LJ § m‘ d;M;Q-C) Bz + (1-¢) B + -Fi::; B v (132)
A *h.) = B, ) (133)
/35-“.) = B; V) (134)
Aém - AJ BS W') (135)
A= B a36)
,;gm = /ld- By “ (137)

The four j vaiues now yield four fundamental solutions which
may be numerically integrated from n = ng tco the wall, n = 0., At
the wall the fundameantal solutions are combined to give the general
solutions which satisfy the remazining boundary condttions for kigh
frequency rluctuations; namely.

2;:t3:2y :27_20 (138)
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CONCLUDING REMARKS

The present anslysis extends the methods of direct solution of
the boundary layer disturbances equations to account for the effects
of foreign gas injection on the laminar boundary layer stability.
The similarities between the preseant method and the methods of
Brown and Mack, refereuces (8) and (9), are obvious and do not
require further comment. The major differences in the present
metaod which result from the inclusion of mass transfer come from
the addition of the species continuity equation, the diffusive flux
terms in the energy equation, a modification of the form of the
equation of state, and a difference in the dependence of the trans-
port properties on the state variables. The present report covers
only the formulation of the equation system, however, the analysis
has been carried to a point where solutions may be sought by numerical
methods.
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