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ABSTRACT

The closed loop dynamic response of a V/STOL airplane, pilot, and
autostabilization system was studied with the purpose of demonsirating
which airplane parameters are most important in determining the air-
plane's low speed flight characteristics. The influence of the stability
augmentation system was found to be so great that the other parameters
are small by comparison, The most important stability and control
parameter in low speed, V/STOL aircraft flight, therefore, is control
power,

iii



AEDC-TR-66.205

CONTENTS
Page
ABSTRACT . . . . . . o 0 v o v v e v e e e e e iii
NOMENCLATURE . . . . . . . . . . . . . . . . ... v
I, INTRODUCTION. . . . . . . . . . « . . « . 1
II. DISCUSSION. . . . . . v v v v v e e e e e e e e e 1
II. CONCLUSION . . . . . . . . « « ¢ v o v v e v v v 4
REFERENCES. 5
ILLUSTRATIONS
Figure
1. RyanXV-BA. . . . . . . . . . o 00 e e e e e 7
2. Simulated Control System and Nomenclature . . ., , , . 8
3. Typical Time Histories of Simulated Flights Showing
Variationof My . . . . . . . . . . . o ... .. 12
4, Schematic Shewing Aerodynamic Properties . . . . . . 16
APPENDIXES
I. Aircraft Equations of Motion . . . . . . . . . . . . . 17
II.  Discussion of the Aircraft Contrel System . . . ., . . . 20
NOMENCLATURE
G Gyro
g Gravitational constant
1 Moment of inertia
Kp Computer constant, pitch rate gain
KRr Computer constant, roll rate gain
Ky Computer constant, horizontal velocity, deg/ft
Ky Computer constant, vertical velocity, deg/ft



AEDC-TR-66-205

<

vi

Computer constant, yaw rate gain
Transfer function constant
Moment around x axis
Moment around y axis

1M

m cu

Mass

Mass flow rate
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SECTION |
INTRODUCTION

During recent years, increasing interest has been shown in Vertical
and Short Takeoff and Landing (V/STOL) aircraft. The continuing trend
toward larger, faster airplanes requiring increasingly lengthy runways,
together with the congestion presently associated with their use, has
pointed out the usefulness of a craft possessing both the high cruise speed
of the fixed wing airplane and the vertical takeoff ability of the helicopter.

Several of these V/STOL airplanes have been built and test flown.
One of the primary concerns in their development was the availability of
reliable aerodynamic data, particularly in transition and hover modes of
flight. This motivated the design of various highly specialized test
facilities: whirling crane rigs, tracks, and unique wind tunnels. Be-
cause of the broad spectrum of flight requiring development testing,
some effort should be made to categorize the aerodynamic flight param-
eters in levels of their relative importance to V/STOL aircraft flight.

SECTION I
DISCUSSION

Comparison of various sources of V/STOL aerodynamic character-
istics has shown a significant lack of correlation. The resulting uncer-
tainty in the measured coefficients has stimulated the design of specialized
V/STOL test facilities. In such facilities it may be necessary to compro-
mise the capability of determining certain characteristics to a high degree
of accuracy in order to obtain high accuracy for some other parameter.
Some effort should be made to determine what parameters need to be
tested. It would be pointless, and indeed wasteful, to include the capa-
bility of testing scme characteristic whose variation causes little or no
change in the airplane's overall performance.

Previous studies have shown that the dynamic characteristics of a
V/STOL show varying sensitivity to different airplane parameters (Ref. 1).
For example, the XC-142, X-22, X-22A, and X-19 were all found to be
highly sensitive o a variation in the derivative My, or the rate of change
of the pitching moment with respect to change in the forward velocity,
around hover conditions. These studies considered only the open loop
characteristics response of the airplane. The V/STOL aircraft have
such unstable characteristics {which are detrimental to safe control in
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hover and low speed flight) that a high degree of stability augmentation
is needed to make the airplane flyable. This results from the lack of
stabilizing forces, combined with relatively low aerodynamic damping,
permitting instability caused by coupling. These problems are most
severe in hover flight.

The question was asked whether or not a stability augmentation sys-
tem powerful enough to cope with this instability would also be powerful
enough to accommodate considerable variation in the airplane parameters
without changing the airplane's dynamic characteristics. The stability
augmentation, together with the pilot's adaptability, was thought to be
sufficient to completely overshadow the low speed characteristics of the
airplane.

To test this, an analog simulation of a V/STOL airplane, complete
with control system, stability augmentation system (SAS), and pilot in-
fluence, was accomplished. The airplane chosen was the Ryan XV-5A
(Fig. 1). The near-hover case was examined. However, it is this case
which is most critical with regard to aircraft dynamics. Increasing
forward speed results in increased stability, i. e., greater damping and
restoring forces.

The equations presented for simulation were the 6-degrees-of-
freedom, rigid bedy equations of motion in the body-fixed coordinate
system. The equations assume symmetry in the x-y and y-z planes and
that the angular deflections are small. Analysis shows that the gyro-
scopic effect of rotating engine components is negligible (Ref. 2).

i1=rv~qw+gt9+2—§-]-
. Y
V=pw -+ g+ I

ﬁr=qu—pv+g+2—r%-

p = :“ (¢ + pq) - (—-——l’”‘; I”) g+ 25
x

xx X

t4

I -
q = :xz [rz - pZ) - ( xxI lzz) rp + }:
Yy Yy

I L, -1, N
P = — (p - qr) - XY ipqg + 2
1 1, I

22 zZ

After examining the moments of inertia and estimated maximum angular
rates of the airplane (Appendix 1), the following terms were discarded:
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1, I
, 22 term in the g equation, the ZZ term
Iyy Iz2
in the r equation, and pq term in the r equation. The summation terms
represent forces and moments attributable to the engines: thrust and

ram drag. A detailed explanation of these may be found in Appendix I.

the pg term in the p equation

A block diagram of the simulated system is shown in Fig. 2. The
transfer function for each of the system components is shown in the
figure. The second-order roots of the servodrive network and the rate
gyro were found to be of such a high frequency that their effect was
negligible. They were disregarded for simulation purposes.

The display consisted of a line shown on a cathode ray tube. Tilting
of the line represented rolling of the aircraft; horizontal translation,
yaw; and vertical translation, pitch. A conventicnal aircraft stick-and-
rudder pedal control was built and provided pilot inputs into the com-
puter. Because of display limitations and the requirement to prevent
amplifier saturation, it was necessary to provide automatic control over
vertical and forward velocity. This system was left fairly loose in order
to retain the coupling between rotational and longitudinal velocities.

Gains on the SAS were adjusted to give the simulated airplane pleasant
handling characteristics. No further attempt was made to optimize SAS
gains, While the pilot controlled the system, an oscillograph recorded
aircraft orientation, control surface deflection, and stick deflection.
Typical time histories are shown in Fig. 3.

In the oscillographs the following parameters are shown. Tracks 1
and 2 show airplane orientation, pitch angle, and roll angle, respectively.
Tracks 3 through 6 record several control surface deflections. Tracks 7
and 8 represent the pilot inputs of pitch-stick deflections and roll-stick
deflections, respectively.

During successive 'flights' the values of the derivatives were varied
to the limits of computer capability. Incidentally, the resulting range of
values was many times greater than the uncertainty in even a theoretical
analysis of the airplane. The time histories shown in Fig. 3 follow a
change in the derivative My, which was found to be the most sensitive
derivative in previous studies (Ref. 3). A given set of maneuvers was
carried out at each value. This included roll at constant pitch angle and
pitch at zero roll angle.

Note the very high frequency associated with the roll control system
response. It is difficult, if not impossible, for a pilot to centrol this
mode unaided. A similar condition exists for the pitch mode although it
is not quite so gsevere.
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The pilot's input is characterized by square pulses, whereas the
control system output is characterized by spikes., This results from
the much shorter reaction time associated with the stability augmenta-
tion system. It should be recognized that the airplane's natural frequency
and damping characteristics are functions of the various SAS gains, and
the designer has the capability to vary them almost at will.

The performance of the airplane may be derived from the roll and
pitch traces. For example, such things as the ability to hold a given
roll angle while performing a pitching maneuver and the amount of pilot
work in carrying out a maneuver are among the phenomena to be con-
sidered. This performance did not change significantly when the value
of the derivative was changed. In fact, it is impossible to distinguish roll
and pitch angle traces for different values of any derivative, as can be seen
in Fig. 3. Further discussion of the time histories shown in Fig. 3 is
found in Appendix II,

While the XV-5A was the only airplane studied, analysis of the equa-
tions of motion shows the program to be relatively insensitive to aircraft
configuration. The moments of inertia are representative to all airplanes
of size and weight similar to the XV-5A. The various aircraft derivatives
are small with respect to SAS terms, and they were varied to such an
extent that any VTOL in the small fighter-observation class was essen-
tially represented,.

SECTION (I
CONCLUSION

The dynamics of a representative V/STOL aircraft were studied in
the near-hover flight mode. It appears that near-hover flight is accom-
panied by instability to such an extent that an attempt at direct manual
control is impractical. A stability augmentation system sufficiently
powerful to make the aircraft flyable appears to be powerful enough to
accommodate a rather large change in the derivatives without significantly
altering handling qualities. In addition, the stabilizing characteristics of
the human pilot are such that the actual performance of the system is in-
variant with respect to the stability derivatives.

The most important parameter to be tested, therefore, is control
system power. It must be known whether the control system can in fact
deliver its design performance. Low speed V/STOL testing should be
concerned primarily with this and secondly with the various stability
derivatives.
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a. Simulated Contrel System

Fig. 2 Simulated Contrel System and Nomenclature
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b. Simulated Control Equations
Fig. 2 Continued
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Fig. 4 Schematic Showing Aerodynamic Properties
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APPENDIX |
AIRCRAFT EQUATIONS OF MOTION

The estimated maximum angular rates for the XV-5A (Ref. 1) are
0.4, 0.3, and 1 radians/sec in roll, pitch, and yaw, respectively. The
estimated maximum acceleration is 1 radian/sec in each degree of free-
dom. The moments of inertia are: Ixx = 4200 slug ft2, Iyy = 15,140 slug ft2,
Iz = 17,420 slug ft2, and Ixz = 920 slug ft2. Substituting the above values
into the equations of motion

2L
I

I -1
(+ + pq) - “I A

Xx XX

le

xX

1 - 9220 ¢y , o.12) - 2280 (g3) ;"3L

4200 4200 x
: I T, -1 M
§ = 7200 - pf) - 2222 (pr) + :

Y¥ yY Yy

920 (1) - 4200 - 17,420 (0.4) + =M

—
|

15,140 15,140 Iyy
1 L, - I, IN
= ——(p = qr) ~ % (pq) +
IZZ IZZ 2z
_ _ %20 _ _ lo,060 ZN
1 = 17.420 (1 03) —m (0.12) + ]

2z

The following terms are at least an order of magnitude smaller than
the left-hand side of the corresponding equation:

pq term in the p equation,

Ixz . : .
—— term in the g equation,
Lyy

Ixz . . .
-~ term in the r equation, and
72

pq term in the r equation.
These terms were thus not included in the analog simulation.
Finally, the engine contribution to the vehicle dynamics may be

broken into two parts: thrust and momentum drag. The magnitudes of
these elements may be calculated as follows.

17
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THRUST

With reference to Fig. 4, the pressure relationship between "0"
and '1" is

2

pu

83 |~

Pw=Pl+

and between "'2" and '3",
p. = P

oo

With these, the lift fan thrust may be calculated by

2

2
Thrust = T = (p, —= p,) _7142 - ‘1?_ pu? n'4D
MOMENTUM DRAG
The momentum drag may be given by
Drag = D = 4 { mv)
dt
D = lim mv|‘+Al_mvt
At- o Av

Next, the following are assumed to apply.
1. The velocity of airplane is a constant = w,
2. The propulsive jet is uniform and has a constant velocity, u, and
3. The mass of the airplane is a constant, M.

If constant values of jet area, A, and air density, p, are assumed,
the drag is then given by

v+ Ay 1
Mw+ w [ puAde — M, + w | puAdt
D = lim ikl b Sl ]
Also Au
1+ A 4

=k G _dr
D = hmﬁu_‘0 pqu[ A
D = wih, where rn is the mass flow rate of the jet.

The momentum drag force is parallel to the direction of w, regard-
less of the relation between w and u.

18
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Thus the resulting dynamics equations which included the effects of
thr'ust vectoring and momentum drag are

S\ - (A (Bbl.'r N Bbl:'r) N 75 (ﬁvl.’l N BV}:']')_ K.
a3, 2 B, 2

-

L4
—
|

= = hiy — by Yy e

S/ o= 1.4 9 (BSI-'I‘+BS!lT) . Bzz (B"lxrz ﬁ"'n'r’)

935 2 a8y 2
i S 3 - -

i - Mmw — M AN d
35, n NF MWE

]
]

%2L [5/35 (ﬁSLlr - ﬁsnl) " 3gz’ (B;""‘ ) Bzvm)]

. — - daL
= MF YMP Pg Ynr +t gy v

1 _ 51 dz 2 s - E_.
M i |38 (BSLT + 35HT) aﬁ 2 (ﬁv 3\'”) + typ Sypq - W)§ XMF

e

166

Bn + g Goyp ‘1—“’35 YNF T %“

n u

N = 51 dx o'x ,
- 1? [535 (ﬁsl T —ﬁsm) - a_ﬁ; (‘8"” - BV,,T>:| ~ My ‘mr’5 YMF

- T-U.NF (;NF\T + V) -)ENF*

These are the complete dynamics equations to be presented for simu-
lation.

19
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APPENDIX I
DISCUSSION OF THE AIRCRAFT CONTROL SYSTEM

The purpose of this simulation was to investigate the importance of
the control and stability augmentation system with respect toc aircraft
dynamics. It was not intended as a rigorous duplication of the General
Electric-Ryan simulation effort nor was it a test bed for extensive flight
studies. However, much was learned concerning the pilot-SAS-airframe
interaction by observing the time histories. .

Before continuing, the reader should thoroughly familiarize himself
with the simulated control system schematic shown in Fig. 2 and the per-
formance plots shown in Fig, 3. Track 1 of the performance plots is the
pitch angle (6), and Track 2 is the roll angle (¢) of the simulated airplane.
Tracks 3 through 6 are control surface deflections; Tracks 3 and 4, the
stagger angle on the left (8Sy 1) and right wing-fan louvers (3SRT), respec-
tively (Fig. 2); Track 5, the vector angle on the left wing-fan louvers
(BVLT); and Track 6, the nose deflector door angle (6n). The vector
angle of the right wing-fan louvers is not shown because of lack of data
recording capacity. Tracks 7 and 8 show pilot inputs; Track 7 is the
pitch-stick deflection (ég), and Track 8 is the roll-stick deflection {6¢).

The chart speed was such that each vertical division represents 1 sec
of time. Every time history has a mark in the upper left-hand corner on
top of one vertical division. This is defined to be time zero.

The stagger angle controls the normal {z-component) force exerted
by its respective wing, thus providing roll and altitude control. When
both stagger angles change in the same sense, the control system is
correcting the vertical velocity or position of the airplane. When the
stagger angles change in the opposite sense, a rolling moment is gener-
ated. For example, in Fig. 3a, at time 1 sec, Tracks 3 and 4 show
an equal but opposite spike. This indicates a rolling moment applied to
the airplane. The large amplitude low frequency oscillations starting
approximately at time 20 sec are in phase; they represent variations in
the airplane's gross lift. A trace of vertical position would show a
corresponding oscillation in altitude.

The vector angle performs in a similar manner, except that the
force is in the longitudinal direction. It is not clear from the single
track of data presented whether the vector angle variations are con-
trolling the horizontal (x) translation.

The deflector-door angle determines the normal force from the nose

fan. This is used primarily for pitch control. The geometry is such
that a downward pitching moment is available,

20
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P

Comparison of pilot stick movement, airplane orientation, and the
control surface deflection illustrates the pilot-airframe-stability aug-
mentation system interaction. The most striking feature is the frequency
of the control surface movement, especially in roll control. The pilot
would be unable to accurately produce control stick deflections of this
frequency.

The nature of the V/STOL is such that the control surface motion
required to perform a maneuver is very unconventional. For example,
consider the portion of Fig. 3¢ which is emphasized. The pilot wishes
to develop a constant pitch rate over a short period of time. To do this,
he makes a stick deflection and helds it constant for that length of time.
The control surface deflection which causes this maneuver is a spike,
followed by a ramp, followed by an inverse spike. The complexity of
such a signal further illustrates the importance of the stability augmenta-
tion system, not only to make the airplane flyable, but to greatly simplify
the task of stabilizing the airplane, thus leaving the pilot free to make
higher order decisions.
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