
I 

I 
}}$$(%$ 

••,■.•;■. 

'•t**V»tWV.%**i 

il9m0F%1iC1if| 

4 « ^=«=^   Q- 

HYDROMECHANICS   f^ 

n §0 

POIS FEDERAL SCiläNTIFIÖ ANt) 
TECHNICAI^FORMATION 

"Microflohe 

PBT^ 

ARCHNE KW 
A STUDY OF THE BULK CAVITATION 

CAUSED BY UNDERWATER EXPLOSIONS 

,«." 

AERODYNAMICS    -ffT 
by 

R.   R.  Walker and J.   D.  Gordon -.-.' 

STRUCTURAL 
MECHANICS 

Distribution of this document is unlimited. ÜÜ 

uO^Ol 

1« >L1J 
: i 

Ü 

A^- 

APPLIED 
MATHEMATICS STRUCTURAL MECHANICS LABORATORY 

UNDERWATER EXPLOSIONS RESEARCH DIVISION 
PORTSMOUTH, ViRGINIA 

RESEARCH DEVELOPMENT REPORT 

ACOUSTICS AND 
VIBRATION s<r 

i-w 

September 1966 Report      1896 

PRNC-TMB-648 (Rev 1-64) 

y 



A STUDY OF THE BULK CAVITATION 
CAUSED BY UNDERWATER EXPLOSIONS 

by 

R.  R.  Walker and J.  D.  Gordon 

September 1966 Report       1896 
DASA Web No. 14.055 

Distribution of this document is unlimited. 

• I 

* 



<*> 

TABLE OF CONTENTS 

Page 
ABSTRACT  1 

ADMINISTRATIVE INFORMATION  1 

INTRODUCTION ,  1 

THE EXPERIMENTAL PROCEDURE  2 
TEST CONFIGURATION     2 
INSTRUMENTATION  6 
DATA OBTAINED  9 

DATA ANALYSIS  10 
BOUNDARIES OF THE CAVITATED REGION  10 
Theoretically Derived Kavitation Boundaries  10 
Experimentally Derived Cavitation Boundaries . . .'  13 
CLOSURE OF THE CAVITATION  15 

SUMMARY AND COMMENTS ,. 23 

ACKNOWLEDGMENTS ,  24 

REFERENCES  24 

APPENDIX A ,  25 

INITIAL DISTRIBUTION   93 

DD FORM 1473   95 

LIST OF TABLES 

Table 1 - Test Geometries ,  3 
Table 2 - Pressure Gauge and Signal Charge Locations  7 
Table 3 - Signal Charge Data  8 
Table 4 - Surface Motion Gauge Locations  9 

VI 



LIST OF FIGURES 

Page 
Figure 1    - Schematic of Test Array  . 2 
Figure 2    - Light Wooden Float Within Work Platform  3 
Figure 3    - The EC-2 Model ,  4 
Figure 4    - View of Test Array from UEB-1  4 
Figure 5    - Plume of 50-Ft Burst  5 
Figure 6    - Plume of 100-Ft Burst  6 
Figure 7    - Subsurface Unit  8 
Figure 8    - An Instrumented Float in the Test Array  9 
Figure 9    - Hypothetical Pressure History  10 
Figure 10 - Nomenclature of Surface Reflections  11 
Figure 11 - Theoretical Bulk Cavitation Boundaries,  50-Ft Burst  11 
Figure 12 - Theoretical Bulk Cavitation Boundaries,   100-Ft Burst  12 
Figure 13 - Bulk Cavitation Boundaries Determined from Experimental Data, 

50-Ft BurBt  14 
Figure 14 - Bulk Cavitation Boundaries Determined from Experimental Data, 

100-Ft Burst ,  14 
Figure 15 - Simplified Theoretical Water Particle Displacement Histories as 

a Function of Depth  16 
Figure 16 - Estimation of Cavitation Closure Depth and Closure Time for 

Plane Shock Wave  19 
Figure 17 - Closure Depths versus Range,   50-Ft Burst  20 
Figure 18 - Cloaure Depths versus Range,   100-Ft Burst  21 
Figure 19 - Closure Times versus Range,   50-Ft Burst  22 
Figure 20 - Closure Times versus Range,   100-Ft Burst  22 

* 

in 

fa 

s 



- 

ABSTRACT 

Other findings derived ho« (he experimental test (Uta are: (1) for the closer mien extending even beyond the ring of first impact, 6B 
bubble explosion dusts lbs water below the closure depth to rise and thus «uses closure to occur it e mich earlier tine, stow ft? ii^nwes 
not hive to fall to its original position; (2) when the draft of a floating structure is smell Cflqnred tc tte lie**** or rfce water layer, the 
bodily notions of that structure are essentially the sane as the water layer, and the» raotiats are reiativety mäepenäent c4 8K cross 
sectional shape of the structure; and (3) neptive reflections froan I» bottosi strong enough to produce cutoff are quite possible «van wife 
relatively large pressure taplitudes, and are capable of considerably modifying 1» region of cavitation. 

ADMINISTRATIVE INFORMATION 
V \ 

The work described in this report was sponsored under DASA Web No. 14.055. The detailed theoretical »ode!» of bulk cavitation 
derived in studies conducted by the Enginesring-Physics Company, Rockville, Maryland, for the office of Naval Restorer) under Contracts 
NONR-3389(00) and NONR-370S(00) nnC bulk cavitation data obtained from tests conducted by David Taylor Model Basin under Subproject 
S-F013 04 03, Task 1755, are used It develop simple calculations for predicting bulk cavitation ftmmm. 

INTRODUCTION 

When the shock wave produced by an underwater explosion impinges upon a 
boundary,  such as the top surface, having a lower specific acoustic impedance than 
the characteristic impedance of the water, tensile reflections are generated which 
can lead to rupture of the water throughout a very large volume.    This process of 
rupture is referred to as bulk cavitation of ihs water.    The response of surface ships 
to underwater explosions of large charges is greatly influenced by the bulk cavitation 
occurring under the water surface. A complete understanding of the shock motions 
experienced by a surface ship under such attacks requires a knowledge of the phenomena 
involved in the bulk cavitation. 

To advance the knowledge concerning these phenomena, the Underwater Explo- 
sions Research Division of the David Taylor Model Basin conducted a series of explo- 
sions tests in the Chesapeake Bay during June, 1962. Concurrent with the planning for 
this testseries a theoretical study of the bulk cavitation phenomena was also conducted.1'2 

Prior to these two studies, one primarily experimental and the other theoretical, 
little emphasis had been placed on the understanding of these particular phenomena. 

This report describes the experimental investigation and presents an analysis 
of the data obtained from the tests based on the theoretical model which was evolved 
from the theoretical study.  The theoretical study provides a comprehensive description 
of the formation and collapse of the cavitated regions.  The mathematical treatments 
comprised in the analysis of this report have, as a foundation, the concepts presented 
in the theoretical study but contain modifications and simplifications where the ex- 
perimental results indicate that such modifications and simplifications are justified. 
With these approximate mathematical models, estimations for other explosive weights 
and test geometries canbe made of the boundaries, depths, and durations of cavitation as 
well as of the motion of the water surface without resorting to the use of a computer. 
A procedure not requiring a computer is particularly desirable for field work where 
such calculations and estimations must be made at the test site. 

T~ : 

references are lister* on page 24. 

The detailed theoretical models of bulk cavitation derived in studies conducted by the Engineering-Physics Coaptny of Rockvilie, 
Maryland, under contract of the Office o? Naval Research and bulk cavitation data obtained from tests conducted by the David Taylor Model 
Basin are used to develoa simple calculations for predicting bulk cavitation phenomena. Several reasonable aathsaaticel apprexirntions 
describing these phenomena are derived. The mathematical treatments have, as a foundation, concepts derived in the theoretical slurry; how- 
ever they are modified and simplified in this sturJytohere experimental results indicate that such modifications and simplifications are justified. 
With these approximate mathematical models, estimations can be Mas of the boundaries, depths and durations of cavitation as well as the 
motion of the water surface for a wide variety of conations without employing a computer. 
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THE EXPERIMENTAL PROCEDURE 

TEST CONFIGURATION 

M 

1 

The bulk c*vs.tÄtio& series comprised sight explosion test«.    The principal 
charge deton&ted during «sack of thee« tests was 10,000 lb of HBX-1 in a cylindrical 
centals« r having a height to diameter ratio of one. Four of these charges were deto- 
n*Uä it a. ispth of $6 ft, three at s depth of 100 feet, One, because of a premature 
failure of its supporting float, was fired while on the bottom; the data from this test 
were not «considered in the analysis and therefore no further reference is made to it. 

These charges were fired against an anchored test array attached to the star- 
board bow of the UEB-1, a floating ttst facility of the David Taylor Model Basin. 
This array, shown schematically in Figure 1, was composed primarily of eight in- 
strumented stations at 100-ft intervals on the water surface in a direct line between 
the charge and the UEB-1. The burst depths and horizontal ranges of the principal 
charge from its nearest instrumented station (Station 1) are given for each test in 
Table 1. These were the primary parameters varied through the test series. 
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TABLE  1 
Test Geometries 

IJERD Shot Test Burst Depth Horizontal Standoff 
No. No. (»B> to Station 1  (R) 

(ft) (ft) 

5440 1 50 400 
5446 2 50 1200 
5449 3 100 400 
5451 4 50 600 
5452 5 100 1200 
5455 6 50 200 
5457 7 100 200 

Work platforms which also supported the instrumentation cables were located 
at each of the instrumented stations.    These platforr.is v/ere constructed so as to 
provide no contact with the water surface except on the two sides parallel to the 
test array.    Thus the water surface motions near the center of the platforms were 
not significantly influenced by the platforms themselves.    The interiors of these 
platforms were therefore suitable for mooring instrumented targets. 

Two types of targets were used within the platforms.    One type consisted of 
ballasted wooden modele of ship sections; the other type was a very light wooden 
float having a draft of ;iiiy Z or 3 inches.    One of the light wooden floats within a 
work platform is shown in Figure 2; it is being hoisted for placement in the water. 

e 

i 

Figure 2 - Light Wooden Float Within Work Platform 



f 
Ons of the ship models was of an EC-2 type hull in way of the engine room.    This 
model,  of course,   had an essentially rectangular cross section as can be seen in 
Figure 3.    The other model corresponded to a section very far forward on a CGN 
hull,   and had a very definite V-shaped cross section.    Both models were about 6 ft 
long and the wooden float was about 6 ft square.    Thus all targets had very nearly 
the same surface area,  although they differed greatly in cross section. All targets 
were held in place within the platforms during the tests only with very light elastic 
cords so that they might move freely and independently of the platforms. 

Figure 3 - The EC-2 Model 

The entire array in position,   as seen from the LEB-1,   is shown in Figure 4. 
The plumes resulting from two of the tests are shown in Figures 3 and 6. 

Figure 4 - View of Test Array from UEB-1 
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Figure 5 ■ - Plume of 50-Ft Burst 
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Figure 6 - Plume of 100-Ft Burst 

INSTRUMENTATION 

In this test eeriea emphasis was placed on the measurement of underwater 
pressure.    At each of the test stations,   supported by the work platform,   a heavily 
weighted cable was extended almost to the bottom.    From 2 to 10 pressure gauges 
(PE) were distributed along each of these 8 cables to provide a total of 48 pressure 
measurements for each test. 



The pressure measuren-'er.ts were designed to perform a dual purpose.    In 
addition to providing pressure versus time histories at each location which resulted 
from the principal charge,   they also indicated the pulses resulting from firing small 
signal changes during each test.    A signal charge capable of being detonated at a 
precise delay interval after the detonation of the principal charge was located near 
the end of the cable from each even-numbered station.    These signal charges, which 
had weights ranging from 10 lb   to 2 oz,were aelected to produce at the gauges of 
interest peak pressures about 10 percent of that produced by the principal charge. 
Each signal charge was used only with the pressure gauges at the adjacent 
lower-numbered station and was timed to provide a pressure pulse at that station 
at the time cavitation was presumed to be most severe.    The concept behind the use 
of the signal charges was that since  the  propagation velocity should be different in 
the cavitated region,   the arrival time of the signal at each of the pressure gauges, 
if indeed the signal penet. Ated that far,   should indicate the presence or absence of 
cavitation in that region. 

The locations of each of the pressure gauges and signal charges are given in 
Table 2.    The weights of the signal charges and the time delays between the deto- 
nation of the principal charge and that of each of the signal charges are given in 
Table 3. 

Test 1 
Depth* Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 

2 PE-i re-ii PE-2! PE-31 
i PE-2 PE-12 PE-22 PE-32 
5 PI-9 PE-U PE-19 PE-43 PE-29 PE-39 
e PI-3 PS-13 PE-23 PE-33 

10 PE-45 PE-47 
15 Fl-i. PE-U PE-ii PE-34 
30 PS- 5 PE-15 PE-2 5 PE-35 
40 FE-10 PE-42 PE-20 PE-30 PE-40 
45 PE-U 
50 PE-46 PE-48 
60 PE-6 PE-16 PE-26 PE-36 
90 PE-7 PE-17 PE-27 PE-37 

120 PE-8 Signal 
Charge #1 

PE-18 PE-28 PS-38 

130 Signal 
Charge #2 

Signal 
Charge #3 

Signal 
Charge #4, 

Test« 2 - 7 

Depth' Station 1 Station 2 Station 3 Station A Station 5 Station 6 Station 7 Station 8 

U PE-2 PE-12 PE-22 PE-32 

15 PE-i PE-U PE-24 PE-34 
30 PE-5 PE-15 PE-2 5 PE-35 

45 PE-10 PE-U PE-20 PE-43 PE-30 PE-i 5 FE-iO PE-i7 
60 PE-6 PE-16 PE-26 PE-36 

75 PE-9 PE-19 PE-29 PE-39 
90 PE-7 PE-/.2 ?t-\i PE-U PS-27 PE-46 PE-37 PE-/.8 

105 Pl-1 PE-11 PE-21 PE-31 

120 PE-8 PE-1G PE-28 PE-?8 

130 PE-3 Signal 
Charge #1 

PE-13 Signal 
Charge »2 

PE-23 Signal 
Charge #3 

PE-33 Signal 
Charge #.. 

'"•Rifl —" 



TABLE 3 
Signal Charge Data 

Signal Gharga Mo. X 2 3 4 
GOD Shot ?Mt Might Dtljgr* Waight Delay» Wftight Dalajr« Weight Delay« 

So« Mo. (lb) (w«) (lb) (A awe) (lb) <ß»*>) (lb) (msec) 

5440 1 i;o 87.78 1.0 89.38 0.125 151.4 0.125 186.7 
5446 2 0.125 223.5 0.125 264.8 0.125 305.4 0.125 344.5 
5449 3 10.0 66.12 1.0 106.4 1.0 145.1 1.0 186.1 
5451 4 1.0 105.8 1.0 144.5 1.0 18S.9 0.125 225.6 

5452 5 0.125 226.4 0.125 265.8 0.125 305.5 0.125 344.8 
5455 6 10.0 30.41 10.0 64.42 1.0 103.1 1.0 142.0 

5457 7 10,0 30.31 10.0 64.79 1.0 103.4   1.0 142.7 

•Tine delay between detonation of principal charge and signal charge. 

Figure 7 - Subimrface Unit 

In addition to the pressure instrumen- 
tation at each station, each of the models and 
floats contained instrumentation designed to 
measure its motions. Each of these targets 
contained a velocity meter (VM) and a seis- 
mic displacement gauge (SD) for measuring 
the absolute bodily velocity and displacement 
histories respectively.  Also, durirg some 
tests, in an effort to determine layer motions 
below the surface, a reinforced flat plate was 
suspended at certain stations about 12 ft be- 
low the surface from a pipe elastic ally sup- 
portedfrom the float above.  This subsurface 
unit, shown in Figure 7, had the same area as 
the wooden float and was fairly light in weight. 
This unit had a relative displacement gauge 
(MDj to measure the relative displacement 
between the surface float and the subsur- 
face unit and also a velocity meter for 
measuring the absolute vertical velocity 
of the subsurface unit. 

A completely instrumented float is 
shown in position for testing in Figure 3. 
All surface motion gauge locations are 
given in Table 4. 

All the transducers were electro- 
mechanical in nature and produced elec- 
trical signals as outputs.    These signals 
wer* transmitted by means of electrical 
cables back to the recording centers lo- 
cated aboard the UEB-1.    All gauges with 
the exception of 16 pressure gauges were 
recorded on magnetic tape; these were re- 
corded on 35mm film by drum cameras 
photographing cathode ray oscilloscopes. 



DATA OBTAINED 

The measurement effort was successful; satisfactory records were obtained 
for nearly all of the instruments used ih each test.   The interest of the study of this report 
is fairly specific.   However, the experimental data represent avery comprehensive 
documentation of the prebsure field and surface phenomena for the geometries studied 
and since they have not been published elsewhere, the majority of them are presented 
in the appendix of this report. 

► 

Figure 8 - An Instrumented Float in the Test Array 

TABLE 4 
Surface Motion Gauge Locations 

► 

Gauge Designation Station Location 

VM-1 2 Float 1 
VM-Ä 3 Float 2 

VM-3 
VM-4 
VM-5 
VM-6 

6 

7 
1 

Float 3 
Float A 

Flrat 5 
SC-2 Modal 

VM-7 
VM-16 

VM-17 

5 
1 

5 

CGN Model 
SC-2 Model 
CGN Model 

SD-1 2 Float 1 

3D-2 3 Float 2 

SD-3 
SD-4 

SD-5 
SD-6 

U 
6 
7 
L 

Float 3 

Float k 
Float 5 
SC-2 Model 

SD-7 5 CGN Model 

MD-1 2 Float 1 

MD-2 3 Float 2 

MD-3 
|    MD-A 
|    MD-5 

U 
6 
7 

Float 3 
Float U 
Float 5 

I! 

s J 



DATA ANALYSIS 

For the purpose of analysis,   the data from all shot» of the same burst depth 
but varying rangen were treated at if they had come from a single explosion with a 
longer array and more gauges.   Agreement evidenced among the various test data 
obtained at comparable locations validates this approach. 

BOUNDARIES OF THE CAVITATED REGION 

Examination of the pressure histories for both the 50-ft and 100-ft bursts 
i-.hows that in all cases the bottom reflections were negative.    This unexpected be- 
havior was due to the particular bottom consistency which probably was somewhat 
gaseous as a result of the decomposition of organic matter trapped in the mud. 
Thus cutoff resulted from the bottom as well as from the top surface.    This fact 
presents an additional complication to the analysis in that this bottom reflection 
can also cause cavitscion.    With two possible sources for cavitation,  the effects of 
each must be isolated and attributed to the proper source wherever possible. 
Therefore, before attempting any further interpretation of the pressure histories, 
the theoretic *.\ extent of cavitation for the charge size and test geometries used in 
the actual testy is discussed,  considering a negative reflection from the bottom as 
well as the surface.    Linear shock-wave propagation theory and surface cutoff time 
derived from the plane-wave approximation are used in the mathematical analysis. 

Theoretically Derived Cavitation Boundaries 

Figure 9 shows a hypothetical pressure history at the borderline depth (x) 
between cavitated water  and uncavitated water.     At this  depth surface  cutoff 

Absolut« 
Pressure 

TN 
i 
\ 

1 
Tim 

PsaK Shock-Save Pressure 
Decay Cur.stint of Shock Wate 
Tist beteten Shock-Save Arrival 
and Ssrfac) Cutoff 
Shock-*ave Propif ation Velocity 
Density of Water 
Atmospheric Pressure 
Acceleration eve to Gravity 

Hydrostatic plus Atmospheric Pressurs 

Figure 9 - Hypothetical Pressure History 

must drop the pressure to essentially zero (vapor pressure) if the water is consid- 
ered to be unable to support tension.    This   nathematically stated for reflection 
from the top surface is: 

%   - %   exp(-T/6)= pgx + Pa. 

For a plane wave making an angle ß with the surface as in Figure 10, 

Zx cos ß 

10 



Therefore 

A   [l-exp,-xA.]  =  x3 
Pg 

where 

ce 
2 cos ß 

The values for P0 and 6 were obtained from a nomogram for HBX-1, J and 
Fb/(pg) and k were calculated at various standoffs for each of the two bursts.    The 
equations were then solved for (x) at each standoff.    The boundaries thus derived 
are shovtn in Figures 11 and 12 for the 50-ft and 100-ft bursts respectively. 

Wafer 
Surfoei 

Figure 10 - Nomenclature of 
Surface Reflections 

i  I 

1 Charge Imogi for Top Reflection 

Surtoee Distance From Charge-ft 
800 1200 1600 

-»- 

100 

Bottom 

Boundary of Cavltatijn 
Resulting from Surface 
Alone 

, Boundary of Cavitatic« 
Resuming from Bottom 
Alone 

Charge Image for Bottom Reflection 

Figure 11 - Theoretical Bulk Cavitation Boundaries,   50-Ft Eurst 
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Figure 12 - Theoretical Bulk Cavitar.ion Boundaries,   100-Ft Burst 

The theoretical cavitationboundary which would result from the negative bottom 
reflection alone is obtained if (x) is measured from the bottom,  which is 150-ft 
deep,   and ß is considered to be the angle the plane wave makes with the bottom. 
dwis the water depth, the equation previously derived now becomes 

If 

—■ [l - exp( -x/k)] = 
PS 

+ dw - x 

provided we assume full amplitude reflection from the bottom.    The boundaries 
derived from this equation using the same procedures as before are aiso plotted 
in Figures 11 and 12. 

Figures 11 and 12,   therefore,   are graphs of theoretical cavitationboundaries 
from surface cutoff and from bottom cutoff for each of the two experimental burst 
depths.    The dotted line? in the two figures are drawn halfway between the two 
image charges for each burst depth and represent lines of demarcation of influence. 
Above these lines,   cutoff occurs first from the surface; below the lines,   cutoff 
occurs first from the bottom.    Along the lines,   the reflected waves from the 
surface and bottom arrive simultaneously. 

Consider first the behavior of a column of water in the region between the 
charge and the intersection of the two boundary curves.  As the reflected wave from 
the surface moves down the water column,   the water is cavitated and the water 
particles are kicked off in the upward direction in the region above the demarca- 
tion lines.    Conversely,   the water below the line is being kicked downward by the 
negative reflection from the bottom.    When the reflected wave fronts arrive simul- 
taneously at the demarcation line, each can propagate no further since each has 
reached water atreaay in cavuauuii.    ^tut.* -.Uv  ..-Lor p-rticlc: on ?ith»^ °iHs> of 
the dotted line are moving away from those on the other side,   cavitation along the 
line should be quite pronounced.    Thus in the region between the charge and the 
intersection of the two curves,   little interaction would be expected between the 
cavitation resulting from the surface reflection and that from the bottom reflection. 
In this region then,   cavitation effects on or near the top surface would not be 
significantly influenced by the fact that the bottom reflections are negative. 

12 



Consider now the behavior of a water column at ranges beyond the intersection 
of the two curves.    As the surface reflection moves down the water column and the 
bottom reflection moves up the water column no cavitation results because of their 
respective cutoffs until the simu'taneous arrival of both reflections at the demarca- 
tion line.    Since at this time the water on neither side of the line is cavitated,   the 
two reflected wave fronts propagate through each other causing two cutoffs,   one 
from the surface and one from the bottom.    The two cutofft    einforce each other 
and thus extend considerably the area in which cavitation can exist. 

Expe rimer tally Derived Cavitation Boundaries 

The pressure histories obtained for each of the two bursts depths are given in 
Appendix A.    Although these histories indicate that the pressure at surface cutoff 
sometimes gees slightly below absolute zero,   the accuracy of the measurement does 
not allow the conclusion to be drawn that the water may withstand tension.    A judg- 
ment of the existence or nonexistence of cavitation at border depths is made by con- 
sidering the flatness of the pressure history immediately after cutoff as well as the 
zero absolute pressure condition; flatness is an indication that no disturbance is 
being transmitted to the gauge and therefore that cavitation does exist.    The cavita- 
tion boundaries determined in this manner are presented for each of the burst depths 
in Figures 13 and 14.    The experimental data are shown as vertical lines on these 
plots to indicate the uncertainty within which the boundary could be determined from 
the pressure records. 

In the theoretical study,  cavitation from the bottom and top are treated sepa- 
rately; thus the superposition of both cavitation sources are not taken into considera- 
tion.    Consequently.   predictions are valid only in the regions where interaction does 
not occur.    Since the interaction is observed at 800 ft for the bursts at the 50-ftdepth 
and 1000 ft for the bursts at the 100-ft depth, the predictions based on the models 
apply up to these ranges.    Beyond these ranges,  bottom effects become influential 
and introduce noticeable deviations. 

At ranges beyond 800 ft for bursts at the 50-ft depth and 1000 ft for burtits at 
the 100-ft depth,   the two cutoffs predicted in the preceding section are evident on 
the pressure records.    Reinforcement of the two cutoffs opens the boundary curves 
and extends the range of cavitation considerably beyond the last range at which data 
are available.    At closer ranges than these only the one cutoff from the surface or 
bottom can be found,   and the border i^pth separating surface and bottom cavitation 
occurs at about the predicted depth.   FurtJ/Vv m  re;  in most case a the pressure» 
from the signal charges propagate through the cavitated water and are seen on the 
pressure histories except at about 100 ft deep  md 50 ft deep for the 50-ft and 100-ft 
bursts depths respectively. 

Figures 13 and 14 indicate that if reinforcement of the two cutoffs did not begin 
to take effect,   the upper and lower boundaries would apparently meet at about 900 ft 
fmm the 50-ft bursts and 1100 ft from the 100-ft bursts.   These ranges are consider- 
ably lesd than predicted 

The discrepancy between the theoretically predicted cavitation boundaries and 
those obtained from the pressure histories can be attributed to several effects, each 
of which tends to indicate smaller extents than would be predicted.   First, the depths 
experimentally determined are those at which cavitation almost certainly exists, 
since it would be very difficult to determine that an area is just within a cavitated 

13 



region.    By the time cavitation can be recognized as such on a pressure record,   it 
probably would be well within the region actually cavitated.    Also the theoretical 
predictions are based on the premise that the sea water can support no tension.   Ai.y 
tensile strength the water possesses would tend to reduce the extent of the cavitated 
region to less than that predicted.    Other factors ignored in the theoretical treat- 
ment are the possibilities of incomplete reflection from the surfaces and the attenu- 
ation of the reflected wave due to the greater distance traveled,  each of which 
would also tend to reduce the actual extent of cavitation. 

The experimental data,  therefore,  support the conclusion that in the case of 
the bursts 50 ft deep,  cavitation phenomena occurring at depths less than 100 ft 
and at ranges less than 800 ft are adequately described by considering reflections 
only from the top surface.    Similarly,  in the case of the bursts 100 ft deep,  phe- 
nomena occurring at depths lees than 50 ft and at ranges less than 1000 ft are 
adequately described by considering reflections only from the top surface.   Outside 
these regions, bottom reflections are quite influential and can cause appreciable 
deviations. 
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CLOSURE OF THE CAVITATION 

The records of the velocity meters and displacement gauges on the wooden 
floats give surface velocity and surface displacement histories for various ranges 
for both burst depths.  A comparison of the velocity and displacement records from 
the CGN and EC2 models with each other and with those from the floats show that 
the bodily surface effects from cavitation are essentially alike for all; therefore, 
the analysis treats model data on an equal basis with float data. 

In the theoretical study.1 it was shown that a solid water laver is kicked off above 
the cavitated region.    The resultant motion of this water layer is characterized by 
a high initial deceleration,  which drops off rapidly and approaches a constant value 
as the wat-ir layer increases in thickness from below.    Eventually,  the velocity of 
this uncavitated water layer is decreased to zero by the force of atmospheric pres- 
sure and gravity:    the water layer falls until the time of the closure,* which then 
imparts a positive change in velocity to the water. 

This theoretical model is confirmed by the measurements.    Inspection of the 
surface velocity histories at various ranges from the charge reveals that except for 
the initial portion of the histories immediately after shock-wave arrival,  a fairly 
constant negative acceleration exists to the time of cavitation closure on practically 
all the records. 

The thickness of the water layer at the time of cavitation closure (depth of 
closure) may be calculated from the negative acceleration of the water layer at the 
time of closure.    Consider a column of uncavitated water having density (p), sec- 
tional area(S), and depth (d) with cavitation existing beneath.    The force on the water 
column due to atmospheric pressure (Pa) and gravity (g) is 

PaS + pSdg. 

This force must equal the mass of the water multiplied by its downward 
acceleration,   a; therefore 

P.S + pSdg = pSda 

or 

d = 
p(a - g) 

The acceleration of the water layer may be obtained from the negative slope of the 
velocity history at the time just prior to closure. 

The falling water layer must first hit in a ring at some specific distance from 
the charge and this closure must then propagate inward and outward from there. 
The nearest instrumented point to this initial closure would show cavitation closure 

•Closure, as used in this report, refers to »e fins! impact in a firm column of an Hncwitated watedaytr upon Ik* aratac below It, which by 
that «nie has also become uncavitated. 
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disturbance in the shortest time.    The time at which cavitation closure occurs at 
locations to either side of this point of first closure would increase with the distance 
from the point of first closure. 

The rapidity with which the wafer surface approaches a constant deceleration 
suggest« that the majority of the growth of the water layar thickness is completed 
shortly after shock-wave arrival.    Therefore a good approximation of the layer 
motion is obtained if the water layer is considered to move with its final thickness 
for the entire time between shock-wave arrival and closure.    These conclusions, 
reached from an examination of the surface velocity histories,  allow relatively 
simple mathematical relationships to be derived which yield approximate theoreti- 
cal surface velocity and displacement histories and approximate theorstical cavita- 
tion closure depths and times, all of which may be compared with those experimentally 
measured. 

Figure 15 illustrates the approach for obtaining the water column cavitation 
approximation.    To obtain approximate relationships of cavitation from the surface, 
all water particles in the column are considered to receive an initial velocity at the 
time of shock-wave arrival at the surface of the column.    The magnitude of this 
velocity is determined by the change in pressure at cutoff at the given particle's 
depth.    Atmospheric pressure is considered to instantly form an uncavitated water 
layer of depth d,   so that the uncavitated water layer is kicked off with an initial 
momentum equal to the sum of the momenta of the individual particles within it. 
The entire uncavitated water layer then moves as a single body with a constant 
negative acceleration resulting from atmospheric pressure and gravity.    The indi- 
vidual cavitated particles beneath the uncavitated water layer fall with the accelera- 
tion of gravity to their original position and thus end their cavitated state.    The 
deeper water particles have smaller initial velocities than the shallower particles 
and fail back sooner.    Consequently,  an uncavitated region builds up from the 
bottom of the water column.    Finally,  the uncavitated water built up from the bottom 
is struck by the falling surface uncavitated water layer an'  closure occurs. 
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Figure 15 - Simplified Theoretical Water Particle Displacement Histories 
as a Function of Depth 
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For the mathematical analysis let: 

v        -   Initial surface water layer kickoff velocity 

U(x)  =   Individual cavitated water particle velocity at depth x due to the 
shock-wave pressure at the time of surface cutoff. 

p        -  Density of water,  and 

d       =  Thickness of surface water layer or depth of cavitation closure. 

Then by equating surface water layer momentum with the sum of the individual 
momenta of the particles contained therein we obtain 

dpv {pU U(x)dx or 
u 

l   r —  I   U(xjdx. 
d   k (1) 

Also let: 

Pa     =   Pressure of the atmosphere 

t        =   Time after shock-wave arrival at the surface of the water 
column 

g       =  Acceleration due to gravity 

V(t)   -  Velocity of water layer any time after kickoff,  and 

Tc     =   Time between shock-wave arrival and cavitation closure. 

Then the velocity history of the water layer can be described as follows 

V(t,= v-   (g+£). 

If such effects as bubble expansion are ignored,  at cavitation closure 

t =   Tc and V(TC) ■ - v; 

therefore 

- v = v U) 
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Combining Equations (1) and (2),   we obtain the following: 

(3) K4 *>*■■(«♦ |) x. 

where 

k . --SL. (6) 
2 cos ß 

Figure 16 provides a quick solution to these equations. 

If we let V|(t) s Velocity after shock-wave arrival of the cavitated water particles 
at a depth A directly ander the unc&vitated surface water layer,  the velocity history 
of this uppermost cavitated water particle is Vt(t) ■ U(d) - gt,  and at cavitation 
closarc t» Tfi aiidV^^) * -U(d). 

1 
Therefore 

- U(d) = 0(d) - gTc 

or 

2U(d) « gTc. (4) 

Equations (3) and (4) solved simultaneously yield the depth and time of closure. 

Fof a plane wave of velocity c,   peak \     «sure PQ  and exponential time con- 
stant 9 making an angle ß with the surface,   t ange in pressure at cutoff at a 
depth x from the surface is approximately P0  exp i(-2x COB ß)/(c6)] when hydro- 
static plus atmospharic pressure is small compared to the shock-wave pressure 
just prior to cutoff.    The cavitated particle kickoff velocity at a depth x from the 
surface then becomes 

2 % ccsß /   2xcosß\ 
ÜU) = _—. exP ^—^—;. 

Using this particle kickoff velocity,   and solving Equations (3) and {4} simultaneously, 
we obtain 

1 
exp «0c) =  1 ♦£♦ ^    anC   % = ■„, (k\\ t ^ (5) 

c6 //; . 
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After Tc,   the time of flight of the water layer,   and v,   the initial kickoff veloc- 
ity of the uncavilated surface water layer,   have been calculated,   comparisons may 
be made between the theoretical velocity histories of the water layer and the actual 
histories experimentally measured.    In addition,   h(t),   the vertical displacement of 
the water layer  jnytime after kickoff,   can be calculated from the expression 

h(t) =  vt-i(l +   ™) 
2 \        pgd / gt' 

These calculations,   of course,   can also be compared with the experimentally 
measured displacement hi&tories. 
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Plots of all the vertical velocity and displacement histories measured on the 
surface at the various ranges for both burst depths are given in Appendix A.    The 
theoretical velocity and displacement histories calculated using the approach just 
described are also indicated by means of dashed lines on each corresponding mea- 
surement for «.11 ranges up to 1000 feet.    The calculated initial surface particle kick- 
off velocity U(o) =  (2 P0 cos j3/(pc) is also indicated (by a small dot at the primary 
shock wave) on those same velocity records.    It is evident that the predicted uncavi- 
tated surface water layer histories are in good agreement with the measured velocity 
histories. 

The theoretical curves plotted on the measured surface displacement histories 
give reasonable estimations of surface displacement prior to closure but tend to be 
small since they do not take into account the high initial velocity of the surface. 

Graphs of closure depths versus range illustrating both the theoretical and the 
experimental data are presented in Figures 17 and 18.    For each of the burst depths, 
the experimental closure depths determined from the pressure histories and from 
the slopes of the velocity histories are clustered together without much scatter out 
to the range at which interaction of bottom and surface cutoffs are first observed. 
Since the theoretical closure depth curve is derived for cavitation from the top sur- 
face cutoff only,   it only apr ies when it gives closure depths above the line of simul- 
taneous reflected wave arr» als and at ranges shorter than the ne        st range at 
which reflected wave interaction is seen.    Dashed lines therefore c.     used in the 
graphs for the theoretical curves beyond these regions. 

Since the bottom reflection for this particular test series causes a component 
of particle velocity toward the bottom,   the surface velocity decreases at ranges 
where  interaction occurs   after  the bottom  reflection  reaches  the  surface.      The 
resulting  surface  velocity histories   at those   ranges,   therefore,   have  a  steeper 
negative acceleration which is not indicative of closure depth. 
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Figure 17 - Closure Depths versus Range,   50-Ft Burst 
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The times at which the closure pulse reached the surface at each of the stations 
are plotted versus range for each burst depth in Figures 1° and 20.    The range at 
which the minimum time occurs is the range at which clo jurt is first initiated.  For 
the bursts  at !>U-ft aeptn,   the  experimental data indicate  that the  initial impact 
occurred at a  range of about 300 feet.     Similarly,   the  first impact for  the burst 
at   100-ft depth occurred at a range of about 40o ieet.    A study of the slope of the 
closure pulse arrival time curve for each of the burst depths show; uiat after the 
initial closure,  closure propagates outward away from the charge with a supersonic 
velocity becoming asymptotic to the speed of sound in water at large standoffs. 
After the initial closure,   closure propagates inward toward the charge super sonic ally 
at first but then becomes subsonic at standoffs close to the charge.    Aldo plotted in 
Figures 19 and 20 are the theoretical closure times derived from the mathematical 
analysis assuming that closure occurs when the surface water layer returns to its 
original position.    These theoretical closure time curves of course,   do not apply 
beyond the ranges of application of the theoretical closure depth curves.    The dis- 
crepancy between the calculated closure time    and closure pulse arrival at the sur- 
face at short ranges from the charge is largely due to bubble expansion effects. 
Examination of the displacement records indicates that at close standoffs the water 
layer does not fall back to its original position prior to closure as assumed in the 
mathematical analysis.    The bubble expanding and pushing the water up under the 
water layer causes the impact to occur sooner than it would if the water layer had 
fallen back all the way to its original position.    This upward motion of the water 
below the surface layer has a relatively large effect on the closure time and on the 
range at which closure is initiated. 
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SUMMARY AND COMMENTS 

The experimental study has provided very extensive and comprehensive data 
for the two test geometries investigated.    Likewise,   these data have provided much 
guidance toward the determination of the relative importance of the many parameters 
which influence the cavitation phenomena.    As a result,   several reasonable mathe- 
matical approximations which describe these phenomena,   and which are readily 
calculated without the aid of a computer,  have been derived frorr. the more detailed 
and comprehensive theoretical studies.  Consequently, generally adequate predictions 
for other geometries and charge sizes can now be readily made for the following: 

1. Boundaries of the cavitated region, 

2. Depth at which cavitation closure occurs, 

3. Time at which cavitation closure occurs, 

4. Velocity history of the surface until cavitation 
closure occurs,   and 

5. Displacement history of the surface until cavitation 
closure occurs. 

Although these calculations have been compared in detail only with the experi- 
mental data herein,   spot checks of other data indicate that these relationships are 
valid for a surprisingly wide range of charge sizes and geometries.    The limits of 
validity,  however,  have yet to be established for both charge size and geometry. 

For the closer regions extending even beyond the ring of first impact,   the 
displacement measurements indicate quite clearly that the bubble expansion causes 
the water below the closure depth to rise and thus causes closure to occur at a much 
earlier time,   since the layer does not have to fall to its original position.    The 
closure pulse pressure can,  of course,   also be considerably affected by this motion 
due to bubble expansion. 

The experiments indicated that when the draft of a floating structure is small 
compared to the thickness of the water layer,   the bodily motions of that struccure 
are essentially the same as the water layer,   and these motions are relatively 
independent of the structure's cross sectional shape. 

This test series also demonstrated that negative reflections from the bottom 
strong enough to produce cutoff are quite possible even with relatively large pres- 
sure amplitudes,  and are capable of considerably modifying the region of cavitation. 
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APPENDIX A. 

EXPERIMENTAL TEST DATA 

While the interest of the study presented as the text of this report is fairly 
specific,   the data of the experimental test series represent a very comprehensive 
documentation of the pressure field and surface phenomena for the geometries 
studied.    Since these data could be useful for further study and they have not been 
published elsewhere,   the majority of the records obtained are given in this appendix, 
even including those with obvious errors (such as a shift or drift in the base line). 

Pressure,   velocity and displacement histories are presented for the bursts at 
50-ft and 100-ft depths according to range from the burst.    In the pressure and 
velocity records,   the primary shock wave is labeled and the signal charge shock 
waves are labeled where their occurrences are certain.    The theoretical velocity and 
displacement histories calculated are shown as dashed lines on each corresponding 
measurement for all ranges up to and including the 1000-ft range.    The calculated 
initial surface particle kickoff velocity is also indicated (by a small dot at the pri- 
mary shock wave) on velocity records in the 200 to 1000-ft range.    The base line of 
the pressure record represents the depth of the gauge,   although the history is slotted 
with pressure as the ordinate.    Some of the pressure records are magnified to show 
details that are small in comparison with the primary shock wave,   and in these 
cases the full amplitude of the shock wave is not shown. 

The time scales of all the records are shown with respect to detonation of the 
primary charge.    The time scales of thf pressure records in some of the figures, 
however,   are not exactly the same.    In each of these,   the time scale at the top 
applies to the top record and ticks are applied at 10-millisecond intervals above 
each of the other records in that figure.    The records are approximately aligned and 
hence the ticks in a column correspond to the same time with respect to detonation 
of the primary charge.    The records in figures which show no time ticks have 
identical time scales. 
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■ A15 - Pressure Histories - 1600-Ft Range from Burst at 50-Ft Depth (Station 5, Test 2) 
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1800-Ft Range from Burst at 50-Ft Depth (Station 7, Test 2) 
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A21 - Pressure Histories - 600-Ft Range from Burst at 100-Ft Depth (Station 5, Test 7) 
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Figure A22 - Pressure Histories - 800-Ft Range from Burst at 100-Fl Depth (Station 5, Test 3) 
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I*. ABSTRACT 

The detailed theoretical models of bulk cavitation derived in studies conducted by the Engineering-Physics Company of Rockville, 
Maryland, under contract of the Office of Naval Research and bulk cavitation data obtained from tests conducted by the David Taylor Model 
Basin are used to develop simple calculations for predicting bulk cavitation phenomena. Several reronable mathematical approximations 
describing these phenomena are derived. The matheratieal treatment« have, as a foundation, conches derived in the theoretical study; how- 
ever they are modified and simplified in this study where experiments! results indicate that such modifications and simp!ifi«.tiwis are justi- 
fied. With these approximate mattomatical models, estimations can be made of nie boundaries, depths \,A durations of cavitation as well as 
the motion of the water surface for i wide variety of conditions without employing a computer. 

Other findings derived fron the experimental test data are: (1) far the closer regions extending even beyond the ring of first impact, 
the bubble expansion causes the water below the closure depth to rise am) thus causes closure to occur at a much earlier time, since the 
layer does not have tofal! to its original position, (2) when the draft c' a floating structure is small compared to the thickness of the water 
lay«., the bodily motions of that structure are essentially the sass as the water layer, and these motions are relatively independent of the 
cross sectional shape of the structure; and (3) negative reflections from the bottom strong enough to p.ocuce cutoff are quite possible even 
with relative., !J:JS pressure amplitudes, and are capable of considerably modifying the region of cavitation. 
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