BASIC CONSIDERATIONS IN THE DEVELOPMENT OF
AN UNGUIDED ROCKET TRAJECTORY SIMULATION MODEL

By
Louis D. Duncan

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this report is unlimited
BASIC CONSIDERATIONS IN THE DEVELOPMENT OF
AN UNGUIDED ROCKET TRAJECTORY SIMULATION MODEL

By

Louis D. Duncan

ECOM - 5076

September 1966

DA TASK 1V014501B53A-10

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE
NEW MEXICO

Distribution of this report is unlimited.
The basic requirements for the development of a six-degree-of-freedom digital simulation model are outlined, and three coordinate systems are specified which are both adequate and convenient for such a development. The nontrivial coordinate transformations are shown.

The equations of motion are developed, with indications of the standard assumptions. The principal forces and moments are discussed. The thrust misalignment effects are derived and the formulas for the jet damping moment are included.

Aerodynamic forces and moments are discussed, and the necessary aerodynamic angles are defined. These forces and moments are described from the stability derivative point of view, and components of the major forces and moments are derived.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>COORDINATE SYSTEMS AND TRANSFORMATIONS</td>
<td>2</td>
</tr>
<tr>
<td>THE EQUATIONS OF MOTION</td>
<td>4</td>
</tr>
<tr>
<td>FORCES AND MOMENTS</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION

Until approximately ten years ago, the study of rocket trajectories was primarily academic, with only the fundamental concepts considered and very liberal assumptions made. Then, during the IGY and Pre-IGY firings of unguided sounding rockets it was discovered, somewhat embarrassingly so, that simple "Kentucky Windage" with the carefully moistened finger thrust aloft was not adequate to determine the course of an unguided rocket and that a more objective technique was required.

Some of the early research in trajectory simulation and wind effect calculations for unguided rockets was performed by Lewis (1949), Rachele (1958), and Daw (1958). These early efforts, although based upon restrictive assumptions, greatly increased man's knowledge about the problem and provided techniques for support of rocket firings which were used for several years with reasonable success.

The ever-expanding capability of the electronic computer has augmented research efforts in trajectory simulations by providing the computational resources required for precise trajectory simulations. During the past five years several satisfactory trajectory simulation models have been developed; some of these are listed in the references.

There have been two unfortunate occurrences during this rapid advance in the state of the art: (1) in the majority of the literature the development is directed toward the solution of a particular problem with little or no attention given to the solution of the basic problem, and (2) the existing literature has been published as technical reports of limited distribution which are difficult to obtain.

This paper is designed to outline the basic considerations for the development of a computer program for trajectory simulations. The discussion is not pointed toward the solution of a particular problem; however, in certain instances, the techniques for such restrictions are outlined.
COORDINATE SYSTEMS AND TRANSFORMATIONS

The number and nature of the coordinate systems utilized in a simulation model depend primarily upon the complexity of simulation requirements. Three coordinate systems are presented here which are adequate for most trajectory simulations.

The output from the simulation, as well as the initial conditions, is usually desired with reference to a ground-fixed launcher. This system will be referred to as the launcher coordinate system. The only convenient system in which to compute the aerodynamic forces and moments is a system (commonly called a body system) which is affixed to and moves with the rocket.

The launcher system (denoted X', Y', Z') has its origin at the launcher and rotates with the earth. The positive X' axis points east; the positive Y' axis points north; and the positive Z' axis points "up". The body system (x, y, z) has its origin at the center of gravity, C, of the missile. The x axis coincides with the longitudinal axis and is positive toward the nose. Precise orientation of the y and z axes is somewhat irrelevant as long as the system remains right-handed. The inertial system (X, Y, Z) has its origin at the center of the earth. This system is oriented so that the X and Y axes lie in the equatorial plane and the Z axis is coincident with the earth's axis of rotation and positive toward the North Pole. This system does not rotate with the earth. Although the exact orientation of the X and Y axes is somewhat arbitrary, it is convenient to define one of these such that it initially passes through either the longitude of the launcher or through longitude 0.

A linear transformation between any two of these systems will be denoted by T_{X'X}, where the 'ft-hand subscript denotes the domain of the mapping. Since the coordinate systems are all orthogonal, the inverse of the transformation is just the transpose. The transformation T_{X'X} is easily determined by geometric and trigonometric considerations. This transformation depends upon the earth-model considered (e.g. spherical, oblate spheroid, pear-shaped, etc.) and the earth's rotation.

The transformation T_{X'X} is not so easily obtained. Two methods will be given below for obtaining this transformation. The development of these methods is lengthy and will be omitted. The first method is based on Euler angles, and a development can be found in much of the literature, e.g., Lass (1950). The second method is based on direction cosines; a development has been presented by Duncan (1966).
The x-y plane will intersect the X'-Y' plane in a line, called the nodal line N. Let θ be the angle between the z and Z' axes, ψ the angle between the X' and N axes, and φ the angle between the N and x axes. (This is but one of several ways by which the Euler angles can be defined.) The angles, ψ, θ, φ completely specify the relative orientation of the two systems; hence, the rotation matrix, the matrix of T_{x2x}, can easily be determined once the values of these angles are determined.

Let ω define the angular velocity of the x, y, z system relative to the X, Y, Z system. Then

$$\dot{\omega} = pi + qj + rk,$$

where i, j, and k are unit vectors along the x, y, z axes. It is shown by Lass (1950) that,

$$p = \frac{d\psi}{dt} \sin \theta \sin \phi + \frac{d\theta}{dt} \cos \phi$$

$$q = \frac{d\psi}{dt} \sin \theta \cos \phi - \frac{d\theta}{dt} \sin \phi$$

$$r = \frac{d\psi}{dt} \cos \theta + \frac{d\theta}{dt}$$

If the Euler angle technique is used to determine the transformation T_{x2x}, the system of equations (2) becomes three of the equations of motion in the simulation model.

The second technique employs differential equations involving ω and the direction cosines. Let (ℓ_1, ℓ_2, ℓ_3), (m_1, m_2, m_3) and (n_1, n_2, n_3) be the respective direction cosines of the x, y, and z axes in the X, Y, Z system. Then the matrix of T_{x2x} is

$$\begin{pmatrix}
\ell_1 & \ell_2 & \ell_3 \\
m_1 & m_2 & m_3 \\
 n_1 & n_2 & n_3 \\
\end{pmatrix}$$

6)
It has been shown by Duncan (1966) that

\[\dot{\alpha}_i = r m_i - q n_i \quad i = 1, 2, 3 \]

\[\dot{m}_i = p n_i - r q \]

\[\dot{n}_i = q r_i - p m_i \quad i = 1, 2, 3 \] \hspace{1cm} (4)

If the second method is used to determine the transformation \(T \), then the system of equations (4) becomes nine of the equations of motion in the simulation model.

Both of the methods discussed above have certain undesirable features. In method one it is possible for one of the Euler angles to become undefined; method two requires the integration of a larger system of equations.

THE EQUATIONS OF MOTION

The equations involving the moments of inertia, aerodynamic forces and moments, and the thrust forces are greatly simplified if expressed in the body coordinate system; hence, this system will be used. The two basic equations which define the motion of a rigid body are

\[\ddot{\mathbf{F}} = \frac{d}{dt} (m \dot{\mathbf{V}}) \] \hspace{1cm} (5)

and

\[\ddot{\mathbf{M}}_T = \frac{d}{dt} (\dot{\mathbf{H}}) \] \hspace{1cm} (6)

where \(\ddot{\mathbf{F}} \) represents the external forces,

\(\ddot{\mathbf{M}}_T \) represents the external moments,

\(\dot{\mathbf{H}} \) represents the angular momentum.
Numerical analysis of these vector equations requires their resolution into vector components and definition of the scalar coefficients. These manipulations are discussed in detail in many texts in Mechanics. The essential steps are reviewed here, however, for completeness.

To determine the translational acceleration, consider a point P defined in the \((x, y, z)\) system by the vector \(\vec{r}\). Let the origin of the \((x, y, z)\) system with respect to the \(X, Y, Z\) system be specified by the vector \(\vec{R}\).

Then
\[
\vec{r} = x\hat{x} + y\hat{y} + z\hat{z},
\]
\[
\vec{R} = X\hat{X} + Y\hat{Y} + Z\hat{Z}.
\]
(7)

In the development of the equations of motion the forces are usually assumed to act through the center of gravity of the rocket, i.e. \(r = 0\). It is more convenient to express the velocity of the origin of the body system in body axis coordinates; these are usually denoted by \(u, v, w\).

The equation \(\vec{F} = m\vec{V}\) is true in the \(X, Y, Z\) system but must be modified if the forces are to be computed in the body system. To this end, let \(S\) be a vector in the \((x, y, z)\) system. Then
\[
\frac{dS}{dt} = \frac{dS}{dt} + \omega \times S
\]
(8)

where the symbol \(\frac{d}{dt}\) indicates differentiation in the \((X, Y, Z)\) system and \(\frac{d}{dt}\) refers to the body system.

Now the first equation of motion becomes, in component form:

\[
F_x = m(\ddot{u} - rv + qw),
\]
\[
F_y = m(\ddot{v} - wp + ur),
\]
\[
F_z = m(\ddot{w} - uq + vp).
\]
(9)
These equations determine the translational motion.

The equations expressing the rotational motion are obtained in a straightforward manner. The angular momentum of a body about its center of gravity is given by

\[\mathbf{H} = \left[I_{xx}p - I_{xy}q - I_{xz}r \right]k_x + \left[-I_{xy}p + I_{yy}q - I_{yz}r \right]k_y \]
\[+ \left[-I_{xz}p - I_{yz}q + I_{zz}r \right]k_z. \] (10)

It is the general practice at this point in the derivation of the equations of motion to assume that the body axes are principal axes of inertia. Under this assumption one has

\[\mathbf{H} = I_{xx}p \dot{k}_x + I_{yy}q \dot{k}_y + I_{zz}r \dot{k}_z. \] (11)

Hence,

\[\dot{\mathbf{H}} = (I_{xx} \dot{p} + I_{xx}p)k_x + [I_{yy} \dot{q} + I_{yy}q]k_y + [I_{zz} \dot{r} + I_{zz}r]k_z \]
\[+ I_{xx} \dot{k}_x + I_{yy} \dot{k}_y + I_{zz} \dot{k}_z \] (12)

Now \(\dot{k}_x = \omega \times k_x, \dot{k}_y = \omega \times k_y, \dot{k}_z = \omega \times k_z. \) Hence

\[\dot{\mathbf{H}} = [I_{xx} \dot{p} + I_{xx} \dot{p} + (I_{zz} - I_{yy})qr]k_x \]
\[+ [I_{yy} \dot{q} + I_{yy} \dot{q} + (I_{xx} - I_{zz})pr]k_y \]
\[+ [I_{zz} \dot{r} + I_{zz} \dot{r} + (I_{yy} - I_{xx})pq]k_z. \] (13)

The \(x, y, z \) components of the total external moment are commonly known as \(L, M, N, \) respectively. Now the rotational equation of motion becomes, in component form,
\[L = l_{xx} \dot{p} + l_{xx} p + (l_{zz} - l_{yy}) qr \]
\[M = l_{yy} \dot{q} + l_{yy} q + (l_{xx} - l_{zz}) pr \]
\[N = l_{zz} \dot{r} + l_{zz} r + (l_{yy} - l_{xx}) pq. \]
(14)

FORCES AND MOMENTS

The forces and moments acting on a rocket are due to three specific effects. These are the thrust, the gravitational attraction, and the aerodynamic features of the rocket. The forces and moments are expressed in the body coordinate system.

Gravitational Effects:

The gravitational force, \(mg \), is easy to compute. However, the exact magnitude and direction of \(g \) depend upon the earth model chosen for the simulation. Since this subject is discussed quite thoroughly in the literature it will not be discussed here.

Thrust Effects:

Let \(m \) be the mass of the rocket including the unspent fuel and let \(\Delta m \) be the change in mass (due to burning of fuel) during a small time interval \(\Delta t \). By the law of conservation of momentum, the momentum at time \(t \) is equal to that at time \(t + \Delta t \).

\[m\dot{V} = (m + \Delta m)(\dot{V} + \Delta V) + \Delta m(\dot{V}_e - \dot{V}) \]
(15)

where \(\dot{V} \) is the velocity, in the body system, of the exit gases. Hence, \(m\dot{V} = -\Delta m\dot{V}_e \). This is the force on the rocket due to the changing momentum.

Besides \(m\dot{V} \), there is an additional force due to the difference between the pressure at the exit nozzle and the atmospheric pressure. If the pressure at the exit nozzle is \(P_e \), the atmospheric pressure \(P_a \), and the area of the exit nozzle \(A_e \), then this additional force is \(A_e (P_e - P_a) \), giving a total thrust of
\[T = m\dot{V}_e + (P_e - P_a)A_e. \] \hspace{1cm} (16)

If the thrust is measured at a test stand at an atmospheric pressure \(P_{s.t.} \) it would be

\[T_{s.t.} = m\dot{V}_e + A_e (P_e - P_{s.t.}). \] \hspace{1cm} (17)

Hence,

\[T = T_{s.t.} + A_e (P_{s.t.} - P_a). \] \hspace{1cm} (18)

Since a rocket rotates about a transverse axis during burning, the gases must be accelerated laterally as they flow through the nozzle. This lateral acceleration produces the so-called jet damping moment. The following expression for the jet damping moment was derived by Brown et al. (1961):

\[\ddot{M}_p = m(\ell_j^2 - \ell_p^2)\dot{\omega}_p, \] \hspace{1cm} (19)

where \(\dot{m} \) is the mass flow rate, \(\dot{\omega}_p \) is the instantaneous pitching velocity, \(\ell_j \) is the distance between the vehicle's \(C_g \) and the exit nozzle, and \(\ell_p \) is the distance between the \(C_g \) of the vehicle and the propellant \(C_g \).

The components of this moment are, for a symmetric rocket,

\[M_j = m(\ell_j^2 - \ell_p^2)q, \] \hspace{1cm} (20)

\[N_j = m(\ell_j^2 - \ell_p^2)r. \]

The rocket thrust is capable of producing components of force and moment along each of the body axes. These may be due to a misalignment of the thrust vector with respect to the x-axis or to an off-center installation of the rocket motor. Let \(x_i, y_i, \) and \(z_i \) be the \(x, y, z \) coordinates of the \(i \)-th exit nozzle. Let \(T_i^* \) be the thrust vector of the \(i \)-th exit nozzle. Suppose the \(i \)-th thrust vector
is oriented as shown in Fig. 1. Then the components of the i-th thrust vector are

\[T_{ix} = T_i \cos \lambda_i \]
\[T_{iy} = T_i \sin \lambda_i \cos \phi_i \]
\[T_{iz} = T_i \sin \lambda_i \sin \phi_i \quad (21) \]

The components of the total thrust vector \(\vec{F} = \sum_{i} \vec{F}_i \) are \(T_x = \sum_{i} T_{ix}, T_y = \sum_{i} T_{iy}, T_z = \sum_{i} T_{iz} \). It follows immediately from the relation \(\vec{M}_i = \vec{r}_i \times \vec{F}_i \) that the components of the i-th moment are

\[L_{Ti} = y_i T_{iz} - z_i T_{iy} \]
\[M_{Ti} = z_i T_{ix} - x_i T_{iz} \]
\[N_{Ti} = x_i T_{iy} - y_i T_{ix} \quad (22) \]

where \(\vec{r}_i = (x_i, y_i, z_i) \) and \(L_{Ti}, M_{Ti}, N_{Ti} \) are the i-th thrust moments about the \(x, y, z \) axes, respectively. The components of the total thrust moment \(\vec{M} = \sum_{i} \vec{M}_i \) are

\[L_T = \sum_{i} L_{Ti}, M_T = \sum_{i} M_{Ti}, N_T = \sum_{i} N_{Ti} \quad (23) \]

Aerodynamic Forces and Moments

There are several angles which are used to calculate the aerodynamic forces and moments. These angles are shown in Figure 2. They can be expressed in terms of the velocity components as follows. Let \(w_x, w_y, w_z \) be the \(x, y, z \) components of the wind. The components \(\vec{V} \) of the velocity of the rocket relative to the wind are \(u' = u - w_x, v' = v - w_y, w' = w - w_y \) and the relative speed is \(V_a = [v(u')^2 + (v')^2 + (w')^2]^{1/2} \). The angle of attack, \(\alpha \), the
FIGURE 1.

FIGURE 2. AERODYNAMIC ANGLES
angle of sideslip, β, and the absolute angle of attack, δ, are defined by

$$
\alpha = \tan^{-1}\left[\frac{w'}{u'} \right]
$$

$$
\beta = \tan^{-1}\left[\frac{\sqrt{\left(\frac{v'}{u'}\right)^2 + (w')^2}}{u'} \right]
$$

$$
\delta = \tan^{-1}\left[\frac{\sqrt{(w')^2 + (v')^2}}{u'} \right].
$$

The auxiliary angle of attack, α^*, and the auxiliary angle of sideslip, β^*, are given by

$$
\alpha^* = \tan^{-1}\left[\frac{w'}{\sqrt{\left(\frac{v'}{u'}\right)^2 + (w')^2}} \right]
$$

$$
\beta^* = \tan^{-1}\left[\frac{v'}{u'} \right]
$$

The general technique for specifying the aerodynamic forces and moments utilizes the concept of stability derivations. Stability derivations have been discussed in considerable detail by Neilsen (1960). The basic ideas and the application of the concept will be presented below.

The formulas for computing the forces and moments are

$$
F = C_F q' S
$$

$$
M_T = C_M q' S d
$$

where C_F and C_M are dimensionless coefficients, q' is the dynamic pressure, S and d are the reference area and reference length, respectively. The above equations are usually written in component form. They become
where \(C_x, C_y, C_z, C_m, C_n, \) and \(C_L \) are considered to be functions of several variables. The stability derivatives are simply partial derivatives of these functions. The procedure by which stability derivatives are applied is best described by an example. Suppose \(C_m = f(\alpha_1, \alpha_2, \ldots, \alpha_n) \). Let \(\frac{\partial C}{\partial \alpha_j} \) and suppose \(C_m \) is known for some value \((\alpha_1, \alpha_2, \ldots, \alpha_n)\); call this value \(C_m^{\infty} \). Then if each of the \(\alpha_j \)'s changes by a small amount \(\Delta \alpha_j \)

\[
C_m = C_m^{\infty} + \sum_{i=1}^{n} C_{m\alpha_i} \Delta \alpha_i.
\]

(28)

It is usually assumed that \((\alpha_1, \alpha_2, \ldots, \alpha_n) = (0, \ldots, 0)\) and that \(C_m \) is linear for all realizable neighborhoods of this point. Under this assumption \(\Delta \alpha_i \) is approximated by \(\alpha_i \) and the above equation becomes

\[
C_m = C_m^{\infty} + \sum_{i=1}^{n} \alpha_i C_{m\alpha_i}.
\]

(29)

The Forces and Moments due to Air Resistance

The specific stability derivatives included in the development of a simulation model depend upon the purpose of the computation and the details required therein. (The availability of numerical values
for the stability derivatives is often another controlling factor.)
Since a derivation of the applications of all the various combina-
tions of the stability derivatives defined by Neilsen (1960) would
lead to voluminous formulations of questionable value, only those
resulting from the effect of air resistance will be discussed here.

The force due to air resistance is broken into components
parallel to and perpendicular to the x-axis; these components
are referred to as the axial and normal force, respectively. The stan-
dard notations for the dimensionless coefficients are \(C_a \) and
\(C_n \). (The force is sometimes resolved into a different reference
frame and the components are referred to as drag and lift.) The
normal force lies in the plane of the x-axis and the \(\bar{V} \) vector;
the direction is such that the force tends to decrease \(\delta \).

Most rockets possess a property called 90-degree roll symmetry.
This means that the physical characteristics of the rocket remain
unchanged if the vehicle is rotated 90\(^\circ\) about the x-axis. Thus for
the symmetric vehicle, \(C_a = C_n \) and \(C_{ma} = C_{mn} \); hence, the stability
derivatives of these functions are equal.

The coefficient \(C_a \) is primarily a function of the angle \(\delta \). If
it is assumed, and it often is, that \(C_a \) is a function of \(\delta \) alone
then it is easy to see from Figure 2 that the components of the
normal force and the moment contributions due to this force are

\[
\begin{align*}
C_y &= -C_{n\alpha} \sin \beta, \\
C_z &= -C_{n\alpha} \sin \alpha, \\
C_m &= +C_{m\alpha} \sin \alpha, \\
C_n &= -C_{m\alpha} \sin \beta
\end{align*}
\]

where \(C_{m\alpha} \) is the moment coefficient which results from the force.

The rotation of the vehicle generates a damping moment (due
to the air resistance). The standard formulation of the stability
derivatives is:
The above formulations give the following expressions for the forces and moments due to air resistance under the assumption of a 90° roll symmetric vehicle:

\[F_x = C_x q'S \]
\[F_y = -C_{na} \sin \beta q'S \]
\[F_z = -C_{na} \sin \alpha q'S \]

\[L = [C_{L} + C_L \left(\frac{rd}{2V_a} \right)] q'S d \]
\[M = [C_{ma} \sin \alpha + C_{mq} \left(\frac{rd}{2V_a} \right)] q'S d \]
\[N = [-C_{ma} \sin \beta + C_{mr} \left(\frac{rd}{2V_a} \right)] q'S d. \]

CONCLUSIONS

The principal considerations in the development of a six-degree-of-freedom trajectory simulation model have been discussed. Although any particular simulation model may include several factors not discussed in this paper, it must include a following the basic principles outlined herein. This treatise should provide a suitable background to the researcher who is required to develop a simulation model and should indicate how the various idiosyncracies of his particular problem may be handled.
REFERENCES

The basic requirements for the development of a six-degree-of-freedom digital simulation model are outlined, and three coordinate systems are specified which are both adequate and convenient for such a development. The nontrivial coordinate transformations are shown.

The equations of motion are developed, with indications of the standard assumptions. The principal forces and moments are discussed. The thrust misalignment effects are derived and the formulas for the jet damping moment are included.

Aerodynamic forces and moments are discussed, and the necessary aerodynamic angles are defined. These forces and moments are described from the stability derivative point of view, and components of the major forces and moments are derived.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aerodynamics Forces & Moments</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>2. Aerodynamics Angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Thrust Vector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Trajectory Simulations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Date" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year, or more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

1. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): if the report has been assigned any other system numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T3), (T3), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

26

