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ABSTRACT

The attenuation of a strong plane shock produced in a target
by the impact of a thin striker is studied by the numerical method
of characteristics, The calculated results show that late-stage
equivalence exists for impacts in aluminum, copper, and ideal
gases with various ratios of specific heats, y. The shock fronts
produced by different impacts approach each other in position, and
in strength, at late times provided that dug is constant where d
is the thickness of the striker, u. the impact velocity, and a a
constant with values of 1,28, 1,50, 1,62, 1,50, and 1.32, for
aluminum, copper, and ideal gases with y equal to 2.0, 1.4, and

1.1, respectively,
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SYMBOLS

A - area

¢. - sound speed

d « striker pléte thickness
E - specific internal energy
F - friction force

p =~ pressure

q - heat transfer rate per unit time and per unit mass

s = specific entropy

t « time varisble

u - particle velocity

U =« shock wave velocity

X = space variabie

a =« equivalence parameter
Y - ratio of specific heats
v - gecmetric parameter

p =~ deasity

Subscripts’

o =~ initial condition
x =~ conditions just ahead of a shock

y - conditions just behind a shock
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I, INTRODUCTION

In Reference 1, the problem of the attenuation of a strong plane
shock produced in aluminum by the impact of a thin striker was studied
by three approaches, namely, a graphical method, an approximate
analytical method, and experimental observations. Results from these
three showed general agreement; and a principle of late-stage equivalence
was found to exist, The problem treated céhsists of the impact of a
thin striker plate on a thick target of the same material. Two plane
shock waves are produced, one propagating back into the striker and the
other propagating forward into the target, Upon reaching the rear
surface of fhe plate, the shock in the striker reflects into a centered
rarefaction wave, which eventually overtakes the forward moving shock,

and reduces its velocity, ‘The solutions for impacts with strikers of

- different thickness are shown to exhibit late-stage equivalence provided

the thicknesses d and the velocities u, of the striker are chosen in
such a way that ugd is a constant with a = 1,27, Late-stage equivalence
is a2ssumed to exist if the position of the shock front in the (x,t)
plane, as well as the peak pressure distribution in the target, for
different impacts are the same,

The approximate analytical solution of Ref, 1, which is based on the
assumption that the forward-facing characterisitcs are straight lines,
is :accurate only within a certain time after impact; and is not accurate
at very late stage, The graphical solution and experimental results
reported in Ref, 1 are also limited to rather short time intervals

after impact.




In the present paper, the impact problem is calculated numerically.
on a computer following the method of characteristics. The results,
which are believed to be accurate up to a very late time, indicate
thut late-stage equivalence'éxists for ideal gases, for copper, as
well as for aluminum. The equivalence parameter a has values of 1,28,
1.50, 1;62, 1.50, and 1.32, for aluminum, copper, ideal gas with
vy = 2,0, 1,4, and 1.1, respectively.

The method of characteristics for one-dimensional unsteady flow
is quite well-known, especially if the medium is an ideal gas and
the solution is intended by hand calculation or by grapﬁical means, 2
Recently, Hoskin3 presented the characteristic equations in Lagrangian
coordinates and the procedufeé for computer calculation. In the
following section, we shall first present the governing characteristic
equations in Eulerian coordinatesfor any perfect fluid with a known

equation of state. The subsequent numerical procedure is also

designed for computer calculation.

I1. GOVERNING EQUATIONS

The equ;tioﬁs are written in terms of four dependent variables
o, u, p, and E, because most equations of state are given in the form
of one relﬁtion between p, p, and E, The friction and heat addition
effects are included in the derivation for general reference,

The governing equations for ocne-dimensional unsteady motions of a
perfoct fluid are the conservation of mass equation

90 su 9p -pu dA
PR T Y TR dx (1)
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the conservation of momentum equation

u du 1 .5 o9F 1 32_ ap - -
W+u3x+p(3§)p3'f+3(ap)53-f " 2

&
and the conservation of energy equation

oE oE 9p u 3p
at*“ax'gf'ﬁ"gf'a?'q*“p (3)

where u is the particle velocity; p, the density; p, the pressure;
E, the specific internal energy; A, the area; q, the heat addition;
and F, the frictional force per unit mass of fluid, In addition to

(1) to (3), we shall assume that an equation of state of the form

p = p, 0) (4)

exists; therefore

»

v = (glﬁ’-)p dE + (—(‘f;fj’-)E do (5)

In regions where the properties u, p, and E are continunus, three

equations of total differentials may be written, i,e,,

. au au

aua = '5; dx = 3T dt

. 9p ap'

s = X dx + 3t dt (6)
oE 3E

dE = I dx + T dt

From the six equations (1) to (3) and (6), the six first derivatives
of u, p, and E, may be soived for and arranged in a quotient form,
such as,

9p

X

o=

&)
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The vanishing of the denominator D yields three physical characteristics

3 i
(dtln = ut /(gg)ﬁ + ch-P-) 8)
(%)m - @

where the I and II characteristics are the right traveling and left
traveling Mach waves, and the II1 characteristics are particle path

lines, Introducing the sound speed, c, defined by
cZ = ( ) (10)

where the derivative is taken at constant entropy, s; and keeping in

mind the thermodyramic relationship
Tds = dE - -Ezdp . (11)

it may be shown that

I B (12)

Thus, Egqs. (8) become

(%)1,11 = utec (13)

The vanishing of N in Eq. (7) yields, after utilizing Eqs. (5) and (12),

the state characteristics

dp -3y L uc dA |
5 + du + dt (:tF (as)p = (@ # uF) + T 0 (14)

along the I-characteristics (upper signs) and II-characteristics (lower

signs), respectively; and

1;-, dp - dE + (q + uF)dt = 0 (15)

along the IIl-characteristics.,
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Equations (14) and (15), together with Eqs. (5) and (12), govern
the variables p, p, u, E, and ¢, along the characteristic directions,
The terms (1/A) (dA/dx) assumes the form (v-1)/x, where v has the value
of 1, 2, or 3 for plane, cylindrical, or spherical symmetrical flow,
respectively,

For ideal gas with an equation of state

p = (v -1)Ep (16)

where y is the ratio of specific heat , Eqs. (14) and (15) reduce to

d 1 uc dA |

-b-g- * du + dt [’!F «(y=-1) e (q+uF) + T ix = 0 (17)
along I and II; and

dp = %y-[:dp - (v-1) » (q+uF)d{] (18)

along III,
Across a shock, the conservation of mass, momentum and energy

leads to the following familiar equations:

py(U-uy) = o, (U-u) (19)
Py = P = ey U-utup-u) (20)
- . . 1.2 2
pyuy - pu, = px(U ux) [Ly Ex+ 2(uy ux)] (21)

where U is the shock velecity, and subscripts x and y refer to states
ahead of and behind the shock front, respectively, If all properties
y? uy, Ey, and
U are related by the four equations, (4) and (19) to (21). Specification

ahead of the shock are known, then the quantities py, p

of any one of these variables will determine the remaining ones, For
most solids under high pressure the available equation of state as

expressed in the form of Eq. (4) is often semiempirical with uncertain
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accuracy. On theq other hand, more accurate shock Hugoniot data are
available for most solids through direct measurements., This shock
Hugoniot may be conveniently expressed as a relation between the

pressure and density behind the shock for a given condition shead of

it, or,

Y
ne
(28]

S

This shock Hugoniot, instead of the general cquation of state,
£q. (4)., may be used for shock fronts, Thus Eqs. (19), (20), and
(22) govern the four variables py' py, U, and uy; specification of
any one of these will determine the other three,

In performing the numerical calculation, the characteristics
equations, (13), (14), and (15) are written in finite-difference form,
similar to those used in Ref. 4, For the present impact problem,

we assume that q, F, and dA all vanish,

III.  NUMERICAL TECHNIQUE

A typical impact problem is demonstrated in Fig, 1, which shows
the physical plane of the decay of the shock front and the flow field
behind it. The distance, x, is measured from the free surface of the
striker plate at the instant of impact, The properties in regions 0,
1, 2, and 3 are either given, or may be calculated from simple formulas,
The properties in region 5, which is bounded by the reflected head of
the rarefaction wave BC, the tail of the rarefaction CE, and the shock
front BD, are to be calculated by the method of characteristics, The
rarefaction wave is divided into one hundred segments along BC, and the

properties at each of the dividing points are calculated from the given
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initial data and the formula for the simple wave ABC, A characteristic
network is then constructed from these points, and the properties at
the resh points of this network are calculated by an iterative process.
Two types of points are encountered: the regular interior points and
the points on the shock front., For a typical interior point, such as
point 3 in Fig, 2, the iteration process  is as follows, Assuming all
properties at points 1 and 2 are known, a first estimation of the
properties at point 3 is made. Physical characteristics from the two
known points 1 and 2 are constructed; point 3 is thus located., With
an estimated value of u at point A, the intersection between the IIl-
characteristic from point 3 and the straight line joining points 1

and 2, the location of A may be determined. The properties, E, p, p,
and c, at point A are then obtained by interpolation from those at 1
and 2, More accurate values of properties at point 3 may now be cal-
culated from the finite-difference equations obtained from Eqs. (14)
and (15), and Eqs. (5) and (12), This iterative process is repeated
until the differences of u, p, and ¢ at point 3 from two successive
iterations are below 2 desired limit. A similar procedure was adopted
for points on the shock front, This complete numerical iterative
process is an extension of that present in Ref. 4, which can be used .

for ideal gas only,

IV,  RESULTS

Calculations of the impact problem were made for five different
materials, namely, aluminum, copper, and ideal gas with values of the ;

ratio of specific heat, vy, equal to 1,1, 1.4, and 2,0, For aluminum




and copper, an equation of state of the following form was used,’

P = (&%=t )Ep + Au + B2 (23)
+ 1
Eonz
where n = p/po and u = n - 1, The constants used are listed in
Tﬂ:\)le Io
com3
a b A(Mbar)  B(Mbar) E_(R8r-cm.,
o gr
Aluminum 0.5 1.63 0,752 0,65 0,05
Copper 0.5 1.5 1,39 1.1 0.325

Table I ConstantsUsed in the Equations of State for
Aluminum and Copper
For each material, a standard impact case was first calculated.
Other cases with the same equation of state, the same initial density
and sound speed, but different initial velocity and striker plate
thickness, were then calculated and results compared with the standard
one. The initial condition for the five different materials are shown

in Table I1I,

uo(km/sec) d po(bar) co(km/sec)
y = 2,0 4,572 9,723 cm 1.013 . 3048
Ideal Gas Yy=1,4 4,572 9,385 cm 1,013 .3048
y=1,1 4,572 8,900 cm 1,013 . 3048
Aluminoin 20,33 4,830 mm 1,013 5,275
Copper 22,017 2,885 mm 1.013 3,951

Table I1  Initial Conditions of the Standard Impact Case
for Five Different Materials

e T e
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The criterion used for late-stage equivalence is the position of

the shock front and the peak pressure distribution in the target.

Late-stage equivalence is assumed to exist if the position of the shock

front in the (x,t) plane, as well as the peak pressure distribution for

different impacts are the same,

For each material, impact cases with different combinations of d

and u, are compared with the standard case; yielding a value of a for

each case by the relation

a
dstd (uo std)

a
du
o

(24)

Figure 3a shows the results of peak pressure distribution for the ideal
gas with y = 1,4, Figure 3b is a plot of a portion of the pressure
distribution curves at an ealarged scale, It can be seen that the

peak pressure of all impact cases with a = 1.5 are close together at
large x, or late time; while those with a value of a different from

1.5 show considerable deviation, Figure 3c gives the corresponding

shock front positions, again indicating that cases with a = 1,5 are

w%—-«.

equivalent at late stage. Thus we conclude that for an ideal gas with

y = 1,4, late-stage equivalence exists for impacts having a = 1.5,

where o is defined in Eq. (24).

For ideal gas with vy = 2 and 1.1, the late-stage equivalence

parameter o assumes values of 1,62 and 1,3, respectively. These

results are in agreement with those obtained by Dienes.® For

aluminum and copper, the values for a are 1,28 and 1,50, respectively,

as shown in Figs. 4 and 5.
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Figure 1  The physical (x,t) plane of one-dimensional impact
of a thin striker plate on a semi-infinite target,
Properties in regions 0, 1, 2, and 3 are known, and

those in region 5 are to be calculated by the method

of characteristics, ’
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A Typical Interior Point in the (x,t)-Plane.
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