A PROPOSED COMPUTATIONAL METHOD FOR ESTIMATION OF ORBITAL ELEMENTS, DRAG COEFFICIENTS AND POTENTIAL FIELD PARAMETERS FROM SATELLITE MEASUREMENTS—I: INTRODUCTION

J. D. Buell, H. H. Kagiwada and R. E. Kalaba
A PROPOSED COMPUTATIONAL METHOD
FOR ESTIMATION OF ORBITAL ELEMENTS,
DRAG COEFFICIENTS AND
POTENTIAL FIELD PARAMETERS FROM
SATELLITE MEASUREMENTS–I:
INTRODUCTION

J. D. Buell, H. H. Kagiwada and R. E. Kalaba

This research is sponsored by the United States Air Force under Project RAND—Con-
tact No. AF-49(638)-1700—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT
Distribution of this document is unlimited.
PREFACE

As part of The RAND Corporation's continuing study of system identification, this Memorandum presents a method of applying quasi-linearization and digital computers to the problem of simultaneously estimating the density of the earth's atmosphere at high altitudes and the geopotential, making use of measurements of a satellite's motion through the atmosphere. This study will be of interest to those working in the fields of space science and meteorology.
SUMMARY

A new approach to the problem of estimating the density of the earth's atmosphere at high altitudes is presented. Using measurements of a satellite's motion through the atmosphere, we formulate the problem as a nonlinear multi-point boundary value problem which can be solved using quasilinearization and high-speed computers. A general machine program has been written, and the results of some illustrative preliminary tests are presented. This Memorandum is an introduction to a more detailed study.
CONTENTS

PREFACE .. iii

SUMMARY .. v

LIST OF TABLES .. ix

Section
I. INTRODUCTION ... 1

II. METHOD .. 2

III. SOME NUMERICAL EXPERIMENTS 7

IV. DISCUSSION ... 12

REFERENCES ... 13
LIST OF TABLES

1. Observed and Theoretical Values of Displacements and Velocities ... 8
2. Results of Successive Approximations.............................. 10
3. The Fit to the Noisy Observations 11
I. INTRODUCTION

In a recent paper King-Hele(1) has described current views of the problem of estimating the density of the earth's atmosphere at altitudes between 200 and 1000 km employing measurements of earth satellites. In the section on future developments, he mentions the use of measurements made during a single revolution to gain improved resolution. The aim of this Memorandum is to show how measurements of displacement and velocity can be converted into estimates of orbital elements, drag coefficients and potentials. We shall employ a quasilinearization technique.(2) Earlier applications to orbit determination are given in Refs. 3 and 4. Our procedure takes full advantage of the modern computer's ability to integrate large systems of nonlinear differential equations subject to multi-point boundary conditions.
II. METHOD

We shall present our method through the discussion of a simplified one-dimensional example so as not to obscure the trend of thought in a jungle of equations. Consider the motion of a mass described by the differential equations

\[\ddot{x} = v \quad (1) \]
\[\dot{v} = g - kv^2. \quad (2) \]

The parameter \(g \) is associated with the gravitational field, and the parameter \(k \) is a drag coefficient. We suppose that at various times \(t_i, \ i = 1, 2, \ldots, N \), noisy observations are made of the displacement and velocities, the measured values at time \(t_i \) being \(b_i \) and \(c_i \), \(i = 1, 2, \ldots, N \). We wish to estimate the parameters \(g \) and \(k \) and the initial conditions (orbital elements), \(x(0) \) and \(v(0) \), so that we shall minimize \(S \), the sum of the squares of the deviations between the observed values and the theoretical values,

\[S = \sum_{i=1}^{N} \left\{ \lambda_1 \left[x(t_i) - b_i \right]^2 + \lambda_2 \left[v(t_i) - c_i \right]^2 \right\}, \quad (3) \]

where \(\lambda_1 \) and \(\lambda_2 \) are certain weights. The theoretical values \(x(t_i) \) and \(v(t_i) \) are obtained by numerically solving the differential equations (1) and (2) with the considered values of \(g \) and \(k \) and the considered initial conditions. The values of these four quantities that minimize \(S \) are our estimates.
We solve this minimization problem by a numerical technique which has worked well in many instances in the past. The scheme is a successive approximation technique. We denote the previous approximation of the functions x and v by x^0 and v^0, for $t_1 \leq t \leq t_N$, and the new ones by x^1 and v^1. The previous estimates of g and k are denoted by g^0 and k^0, and the new ones by g^1 and k^1. The linearized equations for x^1 and v^1 are

\begin{align}
\dot{x}^1 &= v^0 + (v^1 - v^0) = v^1 \\
\dot{v}^1 &= g^0 - k^0 (v^0)^2 + (-2k^0 v^0) (v^1 - v^0) + (g^1 - g^0) \\
&\quad + (-v^0)^2 (k^1 - k^0).
\end{align}

These equations are obtained by expanding the right-hand sides of Eqs. (1) and (2) about $x = x^0$, $v = v^0$, $k = k^0$ and $g = g^0$ and retaining only the terms that are linear in x^1, v^1, k^1 and g^1. We wish to determine the functions x^1 and v^1 and the constants g^1 and k^1 so as to minimize the sum S_1,

\begin{equation}
S_1 = \sum_{i=1}^{N} \left\{ \lambda_1 \left[x^1(t_i) - b_i \right]^2 + \lambda_2 \left[v^1(t_i) - c_i \right]^2 \right\}.
\end{equation}

This problem may be solved computationally at the expense of solving a few initial value problems by the method of complementary functions, a task for which modern computers are admirably suited.

First we produce numerically the solutions of the homogeneous equations.
\[h_{11} = h_{21}, \quad t_1 \leq t \leq t_N, \quad (7) \]

\[\dot{h}_{21} = (-2k^0 v^0) h_{21}, \quad t_1 \leq t \leq t_N, \quad (8) \]

\[h_{11}(t_1) = 1, \quad (9) \]

\[h_{21}(t_1) = 0, \quad (10) \]

and

\[h_{12} = h_{22}, \quad (11) \]

\[\dot{h}_{22} = (-2k^0 v^0) h_{22}, \quad t_1 \leq t \leq t_N, \quad (12) \]

\[h_{12}(t_1) = 0, \quad (13) \]

\[h_{22}(t_1) = 1. \quad (14) \]

Then we numerically produce the particular solutions \(p_1 \) and \(p_2 \)

\[\dot{p}_1 = p_2, \quad (15) \]

\[\dot{p}_2 = g^0 - k^0 (v^0)^2 - (2k^0 v^0) (p_2 - v^0) - g^0 + (-v^0)^2 (-k^0), \quad (16) \]

on the interval \(t_1 \leq t \leq t_N \) using the initial conditions

\[p_1(t_1) = 0, \quad (17) \]

\[p_2(t_1) = 0. \quad (18) \]
And finally we produce numerically the particular solutions

\[\dot{q}_1 = q_2, \quad q_1(t_1) = 0, \]
\[\dot{q}_2 = (-2k^0 v^0) q_2 + 1, \quad q_2(t_1) = 0, \]

and

\[\dot{r}_1 = r_2, \quad r_1(t_1) = 0, \]
\[\dot{r}_2 = (-2k^0 v^0) r_2 + (-v^0)^2, \quad r_2(t_1) = 0, \]

all for \(t_1 \leq t \leq t_2 \).

The general solution to Eqs. (4) and (5) may now be written in the form

\[x^1 = \alpha h_{11} + \beta h_{12} + p_1 + g^1 q_1 + k^1 r_1 \]
\[v^1 = \alpha h_{21} + \beta h_{22} + p_2 + g^1 q_2 + k^1 r_2. \]

The constants \(\alpha \) and \(\beta \) are the new estimates of the orbital elements:

\[x^1(t_1) = \alpha \]
\[v^1(t_1) = \beta. \]

To find the values of the parameters \(\alpha, \beta, g^1 \) and \(k^1 \) which minimize the sum of the squares of the deviations \(S_1 \) we return to Eq. (6) and replace \(x^1(t_1) \) and \(v^1(t_1) \) by their equivalents from Eqs. (22) and (23). In this way we see that \(S \) is quadratic in the parameters \(\alpha, \beta, \)
g^1 and k^1. We find the values of these parameters which minimize S_1
by solving the linear system of algebraic equations

$$\frac{\partial S_1}{\partial \alpha} = 0 \quad (26)$$

$$\frac{\partial S_1}{\partial \beta} = 0 \quad (27)$$

$$\frac{\partial S_1}{\partial g^1} = 0 \quad (28)$$

$$\frac{\partial S_1}{\partial k^1} = 0. \quad (29)$$

Once the minimizing values of α, β, g^1 and k^1 have been determined,
we return to Eqs. (22) and (23) and produce the numerical values of
the functions x^1 and v^1 on the interval $t_1 < t < t_N$. This completes
a basic cycle of the iterative calculation. The rapid quadratic con-
vergence which can be expected is discussed in Ref. 2.

The initial approximations for the constants g and k and the
functions x and v (for $t_1 < t < t_N$) may be obtained, e.g., by using
the best estimates of g and k available and then integrating Eqs. (1)
and (2) from t_1 to t_N, using the best available estimates of $x(0)$
and $v(0)$.
III. SOME NUMERICAL EXPERIMENTS

First we present the results of an experiment designed to show
the rapidity of convergence of the technique. We integrated Eqs. (1)
and (2) using

\[g = 32.2 \quad (30) \]
\[k = 32.2 \times 10^{-3} = 0.0322 \quad (31) \]

and

\[x(0) = 0.0 \quad (32) \]
\[v(0) = 0.0 \quad (33) \]

the integration extending from \(t = 0 \) to \(t = 1.0 \). The results are
given in columns 3 and 5 of Table 1, and provide us with a set of dis-
placement and a set of velocity measurements for \(t = 0.1, 0.2, ..., 1.0 \).
The estimation problem consists of assuming these twenty observations
as given and seeking to uncover the values of the parameters \(g \) and \(k \)
as well as the initial conditions \(x(0) \) and \(v(0) \).

We employed the method sketched in Section II, assuming our
initial estimates of the unknowns to be

\[x^0(0) = 0.1 \quad (34) \]
\[v^0(0) = -0.1 \quad (35) \]
\[g^0 = 30.0 \quad (36) \]
\[k^0 = 0.003 \quad (37) \]
Table 1

OBSERVED AND THEORETICAL VALUES OF DISPLACEMENTS AND VELOCITIES

<table>
<thead>
<tr>
<th>Time</th>
<th>x Observations</th>
<th>v Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.16072253E 00</td>
<td>0.32089146E 01</td>
</tr>
<tr>
<td>0.2</td>
<td>0.63959687E 00</td>
<td>0.63524209E 01</td>
</tr>
<tr>
<td>0.3</td>
<td>0.14270092E 01</td>
<td>0.93703303E 01</td>
</tr>
<tr>
<td>0.4</td>
<td>0.25077758E 01</td>
<td>0.12212048E 02</td>
</tr>
<tr>
<td>0.5</td>
<td>0.38622596E 01</td>
<td>0.14839446E 02</td>
</tr>
<tr>
<td>0.6</td>
<td>0.54676883E 01</td>
<td>0.17227990E 02</td>
</tr>
<tr>
<td>0.7</td>
<td>0.72995026E 01</td>
<td>0.19366275E 02</td>
</tr>
<tr>
<td>0.8</td>
<td>0.93325923E 01</td>
<td>0.21254341E 02</td>
</tr>
<tr>
<td>0.9</td>
<td>0.11542327E 02</td>
<td>0.22901304E 02</td>
</tr>
<tr>
<td>1.0</td>
<td>0.13905332E 02</td>
<td>0.24322771E 02</td>
</tr>
</tbody>
</table>

The E notation refers to exponents of 10, i.e., 0.32089171E 01 = 3.2089171.
Notice that the initial approximation of k is incorrect by a factor greater than ten. Our initial estimates of the functions $x(t)$ and $v(t)$ were obtained by integrating Eqs. (1) and (2) subject to the conditions in Eqs. (34) through (37). The results are displayed in Table 2. They show that excellent estimates are obtained by the initial approximation. The second and fourth columns of Table 1 contain the values of the displacements and velocities obtained using those estimates in Eqs. (1) and (2).

Now we turn to the results of an experiment involving noisy observations. The values of the velocities used in the earlier experiment were corrupted by adding about two percent gaussian noise to each observation. These new noisy observations are listed in column 5 of Table 3. The displacement observations are the same as before, and the value of g is kept at 32.2. We found the minimizing values of the unknowns to be

\begin{align*}
 x(0) &= 0.928198 \times 10^{-1} \\
 v(0) &= -0.270570 \\
 k &= 0.298726 \times 10^{-1}
\end{align*}

(38)

(39)

(40)

This serves as a warning by showing that quite small errors in the observations can lead to significantly larger errors in the estimates. The value of using numerical experiments such as these to aid in estimating the accuracy and number of the measurements required to obtain the desired accuracy in the estimates is evident.

Results such as these are obtained in an execution time of a few seconds on an IBM 7044.
<table>
<thead>
<tr>
<th></th>
<th>Zero</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>True Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(0)$</td>
<td>0.100000</td>
<td>0.193715×10^{-6}</td>
<td>-0.571534×10^{-4}</td>
<td>0.536442×10^{-6}</td>
<td>0.000000</td>
</tr>
<tr>
<td>$v(0)$</td>
<td>-0.100000×10^{2}</td>
<td>0.119209×10^{-6}</td>
<td>0.128591×10^{-2}</td>
<td>-0.200272×10^{-4}</td>
<td>0.000000</td>
</tr>
<tr>
<td>g</td>
<td>0.300000×10^{2}</td>
<td>0.321997×10^{2}</td>
<td>0.321992×10^{2}</td>
<td>0.322000×10^{2}</td>
<td>0.322000×10^{2}</td>
</tr>
<tr>
<td>k</td>
<td>0.300000×10^{-2}</td>
<td>0.321995×10^{-1}</td>
<td>0.320768×10^{-1}</td>
<td>0.322000×10^{-1}</td>
<td>0.322000×10^{-1}</td>
</tr>
</tbody>
</table>
Table 3
THE FIT TO THE NOISY OBSERVATIONS

<table>
<thead>
<tr>
<th>Time</th>
<th>x</th>
<th>x Observations</th>
<th>b_i</th>
<th>v</th>
<th>v Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.226581E 00</td>
<td>0.160722E 00</td>
<td>0.294152E 01</td>
<td>0.320540E 01</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.679259E 00</td>
<td>0.639597E 00</td>
<td>0.609782E 01</td>
<td>0.627940E 01</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.144238E 01</td>
<td>0.142701E 01</td>
<td>0.914155E 01</td>
<td>0.882816E 01</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.250218E 01</td>
<td>0.250778E 01</td>
<td>0.120240E 02</td>
<td>0.121049E 02</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.384052E 01</td>
<td>0.386226E 01</td>
<td>0.147071E 02</td>
<td>0.144243E 02</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.543608E 01</td>
<td>0.546769E 01</td>
<td>0.171651E 02</td>
<td>0.170832E 02</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.726556E 01</td>
<td>0.729950E 01</td>
<td>0.193840E 02</td>
<td>0.192415E 02</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.930481E 01</td>
<td>0.933259E 01</td>
<td>0.213608E 02</td>
<td>0.212337E 02</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.115298E 02</td>
<td>0.115423E 02</td>
<td>0.231011E 02</td>
<td>0.236843E 02</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.139176E 02</td>
<td>0.139053E 02</td>
<td>0.246175E 02</td>
<td>0.243658E 02</td>
<td></td>
</tr>
</tbody>
</table>
IV. DISCUSSION

A general program in FORTRAN IV has been written which solves nonlinear multi-point boundary value problems using the method sketched in Section II. It is available from the authors. We plan to investigate its utility in estimating parameters of the geopotential and drag coefficient from satellite measurements.

Previous experience plus experiments similar to those reported here show that small parameters in differential equations can be estimated successfully using experimental observations on the solutions.

It must not be thought, however, that matters are completely routine. Various problems such as instability of the linearized equations, limited memory, and ill-conditioning of the linear algebraic equations can and do arise. Methods for overcoming these difficulties are given in Refs. 2 and 5.
REFERENCES

A new computational approach for estimating the density of the earth's atmosphere at high altitudes, based on measurements of a satellite's motion through the atmosphere. The problem is formulated as a nonlinear multipoint boundary-value problem that can be solved using quasi-linearization and high-speed digital computers. A general machine program has been written in FORTRAN IV, and the results of some illustrative preliminary tests are presented.