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ABSTRACT

This report considers two classes of pushdown automata (pde), and the
languages accepted by them. These pda accept their languages rapidly because
they reread the input word a limited number of times. Hence, such languages
are particularly useful as programming languages.

The first class, strong bounded backtrack pds, read input words from
left to right, and jump from right to left (backtrack) at most k times for somre
integer k. The languages accepted by such automata will be shown to be equiva-
lent to the finite unions of deterministic languages.

The second class, weak bounded backtrack pda, read each letter of the
input word at most k times, although they may backtrack an arbitrary number of
times. An alternative model envisioned for this device is one that has the
storage space for k states and k pushdown tapes, but no more. The device
reads a word from left to right, simulating the action of the pda. Every time
the pda reaches a total configuration (state and pushdown tape) in which it is
possible to reed another input letter, that configuration is stored. If no
move at all is possible in a given configuration, it is erased from storage.
Thus one can accept the langusge with no backtrack without having to keep track
of an arbitrary number of possible configurations of the pda.

Several results will be shown about each of these classes of pda, includ-
ing operations that preserve the properties. While these properties are not
preserved by all gsm meppings, it will be shown that information lossless gsm's
preserve the weak bounded backtrack property, and information lossless gsm's of

finite order preserve the strong bounded backtrack property.
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PUSHDOWN AUTOMATA WITH BOUNDED BACKTRACK*

INTRODUCTION

The purpose of this report is to consider restrictions on pushdown automate
rausing them to accept or reject words in a simpler manner than the most generai
pushdown automaton. We will make *two such related definitions and study their
closure properties under various operations, such as intersection with regular
sets. One restriction will be shown to be equivalent to the restriction that
a langusge be the finite union of deterministic languages, and some results

about deterministic languages will be shown.

Definition. A pushdown automaton (pda) [2,4], M, is a T7-tuple (K,Z;F,é,Zo,qo,F),

where K 1s the finite nonempty set of states, L 1s the finite nonempty set of
pushdown tape symbols, § is a mapping from K X (Z u {e})x F(l)to the firite sub-
sets of K X [%, ZO in [ is the initial tape symbol, q. in K is the initial
state, and F C K is the set of acceptable final states.

Definition. For a pda, M, let h& (or |— when M is understood) be the relation
on K X ¢ X [* such that (ql,wl,yl) lﬁ (qe,w2,y2) if and only if there is some
ain LU fe}, 2 in [, y and y in [*such that w, = aw,, Y, = V1% Yp = Y,Y, and

(QQ}Y) is in 6(ql,a,Z).

*The research reported in this paper was sponsored in part by the Air Farce
Camoridge Research Laboratories, Office of Aerospace Research, under
Contract AF 19(628)-5166, CRL - Algorithmic Languages Program.

(1)

closure of X under concatenation, X* =

¢ 18 the string of zero length. Also, for a set X, we will use X* as the
i

1go X7, and ¢ to stand for the null set.
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Let |3 (or }i when M is understood) be the relation on K X ¥ X [* such

M
that for x and y in K X ¥ X ['%, x}r y if and only if for some z, x}i Z and
7 = y, or x = y. Let }% or ‘Q be the relation on K X Pt X ['* such that x}g y
if and only if x}— y, ¥y = (q,w,¥2), Z in I, and there is some & in I such that
6(q,8,2) # f. Finally, let lﬁ* or }Q* be defined as lg but with |* in place of
F_.(Q)

Intuitively, we suppose that if (q,y) is in 6&(p,a,Z), then the pda has
the option, if Z is the symbol at the top of the pushdown tape, and a is the
first input symbol, or ¢, of moving from state q to state p, replacing Z by the
(possibly empty) string Y, and erasing a from the input tape. The set of words,
v, such that for some p in F, and vy in I'¥, (qo,w,Zo)}ﬁ (p, e, vy) 15 the set of
words "accepted" by M, often denoted T(M). The sets of words accepted by some
pda are exactly those sets that are context free lengusages [l].(3)

We shall define two different, related restrictions on pde implying that,

in some sense, the languages accepted by pda, meeting the restriction, are

easily compiled. The first, called "strong bounded backtrack,' implies that

(2)Note that if M 1s deterministic, and x}g* Yy, then x<g* Yy in the sense of

| [6,7], but the converse is not necessarily true.

(3)

where V is a finite vocabulary, L SV 1s the set of terminal symbols, P &

A context free language is a set generated by a grammar G = (V,Z;P,o),

get of ordered pairs (T,w) where T is in V-L and v in V¥, and ¢ in V-%L
The strings generated by G are defined: ¢ is & string, and if urv is a
string, u and v in V¥, and 7 in V-I, and (T,w) is in P, then uwv is & string

generated by G. The language generated by G is the set of strings generated
G Intersected with *.
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for some integer, k, we may determine whether or not a word, w, is accepted by
a process that scans w from left to right and "backtracks' (Jjumps from right to
left and restores the state and pushdown tape to the condition that prevailed
when the new point of scan was last reached) at most k times.

The second restriction, called "weak bounded backtrack', implies that for
some integer, k, and any word, w, we may determine whether or not w is accepted,
by a process that scans each symbol of w at most k times. Alternatively, if we
have space in memory for k copies of the pda, we may scan w only once, asslgning
various actions of the pda to the several copies. A more formel discussion

follows.

Notation. For a set X, we will let #X represent the cardinality of X.

For x and y, words over some common alphabet, the relation x < y shall
hold if and only if there is some word, v, such that xv = y. Note that v may
be e¢.

For a given pda, M = (K,Z;F,&,Zo,qo,F), x and y strings in (KDE[*)* let
the relation xJy hold if and only if, for some w in %, x = VoYW Yy

LV Yn end y = Qoo Yol Wi WYy« o+ VWY D Vit 1 Yoy * Y Y2 vhere O £ n < m,

and for 0 < i < m, 9y is in K, w, is in ¥* and 7] is in '*.

i
We will here, and throughout the paper, assume that the set of states,

set of tape symbols, and set of input symbols for any pda, are mutually dis-

Joint.

Definition. For pda, M = (K,Z;F,&,ZO,qO,F), let PM(w) be the set {qowoyoqlwlyl...

qﬁwnyn/for 0<1i<n, qi is in K, Wy in 3*, and Y4 in I'%, Vg =Wy, = Zo’ wn = ¢,

for 0 £ i < n, (qi,wi,yi)}-(qi+l,wi+l,yi+l) and for no q and vy is (qn’e’Yh)

"— (Q) €)’Y) tme}'
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Let QM(x,y) be the binary function from % X ¥ to the subsets of
(KT**)* defined as follows:
QM(x,x) = PM(x)
If it is false that x < y, Q,M(x,y) = f.
ffor & in £ and v in ¥, let QM(x,xaw) = {y/y is in PM(x) and for all z
such that yJz, z 1s not in PM(xa)}.

Derinition. A pda M 1s said to be a strong bounded backtrack (sbb) pda with

bound k if and only if M has no infinite loops with input e(u), and for some
integer k, and any x in I*, there are no more than k elements, y, in (KI¢[*)*
such that for some z < x, y is in QM(z,x).

Intuitively, PM(x) represents the set of responses of M to word x, for
which the entire word x is input to M, and M cannot operate further without a
non-e¢ input. QM(y,x) represents the responses to x for which, after reading
the proper initial subword y, of x, M can make no move that will enable it to
read the next symbol of x. Thus the ebb property bounds the number of distinct
paths a pda may traverse while reading any word, a path, of course, being any
successicn of triple s consisting of state, remaining input word, and pushdown

tape contents.

Definition. For the pda M = (K,}:,I‘,a,zo, qO,F), let RM(x) = {(q, Y)/(qo’x’zo)

|%* (e v)])

(h)M has an infinite loop with input e¢ if for some w in ¥* and ql’Yi’qe’Yé"°'»
; *

CIPRTPRRE there exists an Infinite sequence, (qow,Zo)}—(ql,G,Yi)“(qg:e:Yé)|_°°-

= (qi,e,yi) |-~ (qi+l’e’Yi+l)l_°"
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A pda will be said to be of week bounded backtrack (wbb) with bound R if

for some integer k and any x in ¥, #RM(x) < k.
A language will be said to be of sbb (wbb) if it is accepted by some sbb
(wbb) pushdown automaton.

Definition. The pda M as above will be said to be deterministic [6,8,10]1if for

all q,& and Z in K, T U {e} and T respectively, #6(q,&8,2) <1, and if &(q, ¢,2)
/ P, then for all a in ¥, &(q,s,2) = #.
Intuitively, a deterministic pda 1s one for which, for any input word, at

most one response 1is possible.

Section 1. Strong Bounded Backtrack and Deterministic Languages

The primary result of this section is that every sbb langusge is the union
of a finite numher of deterministic languages. For this result we need several
lenvas.
Lemma 1.1. A deterministic languege is an sbb language.
Proof. We will show that every loop-free deterministic pde satisfies the
definition of strong bounded backtrack, with a bound of k = 1. It has been
shown [6] that every language accepted by a deterministic pda is accepted by a
loop-free deterministic pda. Let M = (K,i;F,b,ZO,qO,F) be such a pda. Suppose
that there exist y and y' such that either y and y' are in QM(v,x) for some v
and x such that v £ x, or y is in QM(v,x) and y' is in QM(V',x) for distinct
v and v' such that v s v' s x.

In the first case, suppose that y = qovzoqlvlyl...qnvnyn and y' =

qovZoqiviyi...quANQ. Without loss of generality, we may assume that n < m.
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Since M is deterministic, for 1 < i < n, q, = qi, v, = vi and vy, = yi- If

m=n, then y = y', s0 we may assume n < m. But then (qo,v,Zo)}i(qn,e,Yn)Fi
(qm’e’Ym)’ contradicting the assumption that y was in PM(V).
In the second case, suppose y = q V24 4,VyY;.--Q v vy, &aod y' = qov'Zoqiviyi...
qévéya. Then since M is deterministic, and v is a proper initial subword of v',
= 1 = 1 1 = 1 .
for 1 £1i < n, it must be the case that qy = 9y Yy T Y and Vi vivy But
then there must be some a in L such that va < v' end a largest s such that y" =
qovaZoqlvlayl---qnvnayn...qéeyé and y'Jy'. Since M is lcop free, either y" is
in PM(va), or there will be some finite sequence (qé,e,yé)f—(qi,e,y{)}-(q&,e,yg)
n 1"t 11 - mn_o1non n " "m o n
f‘(qt;G;Yt), such that y =y Y95 Yn" + A Yy is in PM(va) and in either case,
PM(va) is not empty, s0 y could not be in QM(v,x). We thus conciude that M is

a sbb machine with a bound of one.

Lemma 1.2. The union of sbb languages is a s8bb language. Also, the union of

wbb languages is a wbb langusage.

Proof. Let M, = (Kl,i;F,bl,Zo,qo,Fl) and M, = (KQ,Z;F,62,Zo,q6,F2) and assume
= . n - " =

that K, NK, = § Let g not be in K; UK,, K=K UK, U {q'} and F=F, UF,.

1 2
Define 6 as follows:

6(q,8,2) 6l(q,a,Z) for g in K;, a in LU (¢} and Z in T

]

6(a,8,2) 62(q,a,Z) for g in X, a in LU {e} and Z in T

2
6(9_;, E,Zo) = [(qo’zo)’ (qc'))zo)}

P for a in I

6(q;,a,Zo)
Comsider the pda M = (K,5T,8,2,,a,,F). Surely, T(M) = T(M ) U T(M,)).
Also, it is easy to see for any x in ¥, that y is in Ry (x) U RMQ(X) if and
1

only if qxZ y 1s in Ry(x). Hence, #R,(x)s #RMl(x) + #RM?(X), s0 that if M,

and M2 are wbb machines, M is a wbb machine.
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Likewise, y is in P (x) UP, (x) if and only if qt')'xzoy is in PM(x).

1
Suppose y is in QM(v,x) for some v, a proper initial subword of x. Then y =
q(')'vzoy' for some y' in Py (v) UP, (v). Sey y' is in Py (v) without loss of
generality. Suppose ther% is an 27 in L and z in P (va) such that y'Jz. Then

l
qu(')'vaZoz, which contradicts the assumption that y is in QM(v,x). Thus
#&M(v,x)s#uml(v,x) + #QMz(v,x) for all v < x, and if M and M, are sbb mechines,
M will be likewise.
Definition. Given a pda M = (K, 51,6,2 qO,F), e branch point is an element
(q,8,2) of K X (ZU {e}) X I" such that if a i1s in &, #6(q,2,2) + #6(q,¢,2) 2 2
and 6(q,8,2) # . If a = ¢, then elther #6(q, ¢,Z) 2 2 or 6(q,¢,2) # £ and for
some b in I, 6(q,b,2) # P.
Lemme 1.3. If M= (K,L,T, 6,ZO,qO,F) is sbb with bcund k, (qo,xo, yo)i—(ql,xl, yl)
lb_ll"' ‘Tﬂ.(qn’xn’yn)’ whers y = 2 and x_ = ¢ end for 0 =i <mn, a, in LU {€)

i

= . = 1 . ' ..
is defined by 8yXiy = Xy and Zi in [ is defined by \7] YiZi for some Vi in ¥,

then #{(qi,ai,Zi)/(qi,ai,Zi) is a branch point and 1 < n} s k-1.

Proof. Suppose (qb(l)’ab(l)’zb(l))’ (qb(2)’8’b(2)’zb(2))’ ceey (qb(k)’ab(k)’zb(k))

are k branch points, not necessarily distinct, but with b(i) <b(Jj) for 1 < j,
and (k) <n. Then for 1 <1 <k, (qb(i)’xb(i)’yb(i))}—(qi’xi’Yl)’ where either
a4 # qb(i)+l or x:L # xb(i)+l or vy # Yb(i)+l' Then, since M has no infinite

B "o n 3+ ' f
loops, either for some q, and v,, (qo,xo,yo)f—(qb(i),xb(i),yb(i))I—(qi,xi,yi)
}— (qi, e,yi) and for no q in K and y in I'* does (q'i', c,y;)|—(q, ¢,y), or for some
ay, *; aed vy, (q_,X ¥, )qu(i) xb(i),vb(i))l"(qi, i,vi)Hqi, Xy,Y;) and if a
1s in LU {e}, and xi = a.xi", for xi" in ¥*, then for no q and vy does

tt

(agrx vy ) (2% v)-
In the first case, there is a y, in QM(xo,xo), and in the second, a y, in

QM(x,xo), where xx; = X . Also, there must be & y in Q,M(xo,xo) such that



3 December 1965 10 T™-738/022/00

qoxonqllel"'qnannJy' It should be easy to see that y # yi for any i, and
that for distinct 1 and j, Yy # yJ. Thus, there would be at least k + 1 elements
inuLSJx QM(u’xo)’ which violates the assumption that M is sbb with bound k.
Lemmaol.h. An sbb language is the finite union of deterministic languages.
Proof. Let M = (K,Z;F,&,ZO,qO,F) be an sbb pushdown automaton with bound k on

backtruck. Let M have branch points B.,B.,...,B_, certainly a finite number.
1’72 e

It By = (qi,ai,zi), 94 in K, &y in LU {e}, and Z, in [, has fi members in

i

6(qi,ai,Zi), let these be known as C +++»Cyp + Consider the set S =

i

)/)1s1i <eendl sy Sf, forl sn <k-1}.
2dp 1%E%Jk-l g R

Also, define K' = {@'"//q inKand 1 s 1 sk} and F' = [q(i)/q in FPand 1 <1 < kj.

117C40

{(c ,C yoee,C
1.J.°71
11

Then for each s in S, define M_ = (K',E;F,és,Zo,qgl),F'), where §_ is defined

as follows:

If (q,8,Z) in K X (2 U {e}) X T is not a branch point, 68(q(i),a,Z) =

i i
{(p( ))'Y)} if 6(q,8,2) = {(p)Y)} and 68((1( ),a,Z) = ¢ if 6(q,8,2) = ¢) for all
1, 1 s1 sk.
If for some m, 1 s m < k-1, the n*® coordinate of s is Cy y = (psvy), and
m“m

. th .
{q,a,2) is the i~ branch point, let és(q(m),a,z) = {(p(m+l),y)]. Otherwise,
m
let 6s(q( ),a,Z) = @.

It is easy to see that each Ms so defined is deterministic. If

(1 (1.) n
(qo )’x’ZO)lﬁs(ql 1 )xl)Yl)lﬁs"' ms(q‘r(li )) Q)Yn)) then certainly, (qo’x’zo)l'b_/[

(ql,xl,yi)}ﬁ...hq(qn,e,yn), so that T(Ms) C T(M). Hence, Ui . T(Ms) c T(M).
S n

Now we must show that T(M) C Ui 5 T(Ms)' Suppose that x is in T(M).
s in

Then (qo,aoxo,YbZO)|ﬁ(ql,alxl,ylzl)}ﬁ...}ﬁ(qn,anxn,ynzn) vhere a x _ = x,

worifipcrd
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= < =] =] =] “ o -
ai+lxi+l Xy for 0O £ 1 <n and Yo = 8, = X, €. From Lemma 1.3, at most k-1
of the triplets (qi,ai,Z ), 0 s i <n are branch points. Let these be
Z
(qb(l)’&b(l)’ b(l))’ (q'b \’Zb qb(k )’ ab(k')’Zb(k')) for some

! -1. ! = l1sj. sk'.
k' s k-1. Define Y4 by Yb(i)+lzb(i)+l Yb(i)Yi’ Jy k Then (qb(i)’

(1) %0(1)) 1 By,
end 1 <3, s fgi. let s = (cgl 1’Cg232"“’cgk'3k'
ll's being used only if k' < k-1. Then
(1)

8% Yo%o) bi_(9n1) % (1)0(1) Yo(1)%0(1)) i,

1)7o(
(2) k'
(0 (1)+17 ®0(1 )+ 1% (1)+ 12 Yo(1 )+ 1%0(1 )41 ‘M i (qt()( !

and (qb(i)+l’Yi') is some C_ ., for 1 sisk', lsg se

1d4

’Cll’cll""’cll) have

exactly k-1 components, the right-hand C

(1)

M, accepts x. For (q0

) k') (k') 0(k") Yok )20k "))
(k'+1) (k'+l)

FA (q Y (k' )+1’&b( N1%b (k)41 Yo(k )+ 1% (k' )+1 ‘M (a, Xy Yoy ), Where

B Xy = X, 8y 0% = Xp for 0 s 1 <n, Yo = 8, = X, = & and qg 1) is in F'.

Theorem 1.1. A language is sbb if and only if it is the finite union of deter-
ministic languages.
Proof. Immediate from Lemmas 1.1, 1.2, and 1.4.
Definition. An operation, f, that maps sets to sets is salid to be additive
(5)
fl{x}).
X Yn S ({ )

Lemma 1.5. If f is an additive operation that preserves deterministic

if for any set S, f(S) =

languages, f preserves sbb languages.

Proof. If L is an sbb language, by Theorem 1.1, for some integer k and deter-

k
ministic languages Ll’L2’ -+sL, e have L =i§lLi- Then f(L) = figlLi) =
f(ltju ) = 1Lj[u f(w)] Uf( ). si f(L,) is deterministi

W = . e S detle s8tlcC
=l v in L, 0 $=lwinly 1 ne 1 rmin ’

(S)From here, we will use f(x) for f({x}). No confusion will arise.
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f(L) is the finite union of deterministic languages.

Theorem 1.2. The following operations preserve sbb languages (L is an sbb

language, and R a regular set(6)): a) LNR b) L-R c) L/R= {u/ for some v

in R, uv is in L} d) LR = {uv/u in L and v in R} e) G-l(L) for any generalized
sequential machine mapping, G(7) £) Init(L) = {u/for some string v, uv is in L}
g) fc(L) = {u/ucv is in L for some string v and u contains no occurrence of c¢ },
Proof. FEach of the above operations is ee<ily seen to be additive, and each

was shown to preserve deterministic langusges in [6].

Section 2. Operations on Weak Bounded Backtrack Languages

Having disposed of several important questions regarding operations that
preserve the sbb property, we will now proceed to consider the same questions
for wbb languages. The properties of sbb and wbb languages turn out to be quite
gimilar, and in fact, all the operations in Theorem 1.2 can be shown to preserve

wbb languages. To begin, we prove the following simple but important theorem:

(6)

and closed under union, concatenation and ciosure (*) [9]. Alternatively, a

The regular sets form the smallest class of sets containing the finite sets

regular set is & set accepted by some finite automaton [11].

(7)A generalized sequential machine [5] (gsm) is a six-tuple (K,Z;A,é,x,qo)

where K 1s the finite nonempty set of states, T the finite nonempty set of
input symbols, and A the finite nonempty set of output symbols. § is a mapping
from K X £ to K, and A\, a mapping from K X T to A¥. qo is the initial state,

a member of K. We may extend 6 and A to K X I* by 6(q,¢) = q,A(q,¢) = ¢ and
for v in I* and a in I, &(q,wa) = 8(8(q,w),a) and A(q,wa) = A(q,w) A(6(q,w),a).

The corresponding gsm mapping tekes any word w in ™ to x(qo,w). The inverse
gsm mapping is, of co'rse, the mapping which tekes u in A% to the set of w in

P* for which u = A(q_,w).

h-m‘ 1

pee
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Theorem 2.1. The intersection or difference of a wbb language and a regular

set 1s a wbb language.
Proof. Let L = T(M) for wbb pda M = (K, LI, 6,Zo,qo,F), and R = T(A) for finite
8 '
automaton A = (KA,Z;éA,pO,FA).( ) Consider the pda N = (K X KA,I;F,é ,Zo,(qo,po),
F'), where 6'((q,p),8,2) = {((q'JP'))Y)/éA(P:a) = p' and 6(q,8,2) contains

(a',v)}, for ell a in & q and q' in X, p and p' in K,, and Z in I'}. Also,

6'((a,p),e2) = {((a'yp),y)/6(q,e2) contains (q',y), for g and q' in X, p in

K, and Z in I'}.

*
It is clear that ((qo,po),w,Z )tﬁ((q,p),e,y) if and only if 6A(po,w) = p

o

and (qo,w,Zo)lﬁ(q, ¢,Y). Hence, if we define F' = {(q,p)/q in F and p in F, s
T(N) = L NR. If F'= {(qp)/q in F and p not in F, b ?(N) = L-R. Also, for
w in %%, and ((g,p),y) in RN(w), p = 6A(po,w) and (g,y) is in RM(w). Hence

#RN(W) S #RM(W), so N is a wbb pda.
(n) 1

Notation. For a given set, X, let X =0 4= ignx .

Theorem 2.2. If G is a gsm mapping and L a wbb language, then G-l(L) is a wbb

language.

(8)

of states, KA, a finite nonempty set of input symbols, I, a mapping from

A finite automaton [11]is a five-tuple consisting of a finite nonempty set

KA X L to KA, 6A, a start state in KA’ po, and a set of acceptable final states
FA EZKA. 6A is extended to domain KA X ¥, as for the mapping § for the gsm
in footnote (7). The set of words accepted by the finite automaton, T(A) is

{w/éA(po,w) is in EA}. As noted, each such set is regular, and every reguler
set is T(A) for some .inite automaton, A.
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Proof. Let M = (KM,A,F ’6M’Zo’qo’FM) be a wbb pda accepting L, and S

(Ks» & 4, 6S,x,po) be a gsm with )\(po,‘v') = G(w) for all w in ¥*. Let r
max{ |A(p,2)|/p in Ky, & in r}. Define K = Ky * Kg X A(r) UK U {qé}, where
q) 1s in neither K. nor K, X K, X o). et X, not be in I}, end I' = [y {X_].
Let F = K; U {(3,p,¢)/q in F, p in KS}. Then consider the pda N = (K, 51,6,X ,a/,F),
where § 1s defined as follows:

For q in KM’ p in KS,
thac 6M(q,b,Z) 7 @, for all a in L with A(p,a) # ¢, let ((q,p',w),%) be in

and Z in fM, if and only if there is a b in A such

6((a,p, €),8,2), where p' = 6S(p,a) and w = \(p,a).

If (q,y) is in 6M(q',e,Z), for q and q' in Kp 2 in [y then for every p
in K, let (a,p,¢),y) be in 6((qa',p,€),%5,2).

For b in A Ufe},uin a*, q and Q' in Ky pinK,, Z4in Ty, end vy in 1},
if (q',v) is in &,(q,b,2), let ((q',pyu),y) be in &((q,p,bu),¢,2).

For fixed q in F, 2 in [, &nd aay p in K, if for no b in 4 1is 6M(q,b,Z)
4P, let (p,e) be in 6((q,p,e), €,2Z).

Let &6(p, e 2) = {(p,¢)]} for all Z in Iy and p in K .

For & in L, and p in K, AMp,a) = ¢ let 6(p,a,XO) = {(6S(p,a),xo)}. If
Mp,a) # ¢ let &6(p,8,X ) = d.

8(al, &, X ) = {(q,,p,, ), X 2,) ]}

Suppose x(po,w) = u in L, for given w in ¥, and (qo,u,Zo)lﬁ(q,e,y) for
q in F and in [*. Then elther (q(;,w,xo)}ils(o,, e,X,Y), vhere ¢ = (q,6:(p_,v),¢),
or there is some initial subword, w', of w, with w'w" = w, such that (qé,w,Xo)}ﬁ
(Q,W",XOY)I%;(p, €&X,), where Q = (q,85(p_,vw"),¢€), p = 65(p_,w) and Még(p "),
w") = ¢. Hence G-l(L) C T(N). But it is easy to see that T(N) SZG_l(L), so N

accepts G(L).
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(r) and v in

. ax*
Now suppose (q',w,X )| (@, ¢ v) for @ = (q,p,u) in K, % K5 % o
' ax*
[*. Then, u= ¢ and p = 6S(p0’w)’ and (Q.: Y) is in RM(W)' If (qo:wyxo)lﬁ (p: € 'Y)
* = .

for p in K, and vy in '*, then y = X . Hence #RN(w) < #RM(w) + #KS, and N is wbb

One operation that preserves wbb languages, which will be used to show that
other operations do likewise, is the operation fc' We first show the following
lemmas.
Lemma 2.1. If L is a wbb language, then L = Null(N)(g)for some wbb pda, N.
Proof. Let L = T(M), where M = (K,Z;F,é,Zo,qo,F) is a wbb pda with bound k.
Let p, and p, not be symbols of K, and X not in I'. Let Ky = KU {pl,pe}, ' =
{Z'/Z in T}, where Z' is an abstract symbol, and [y =T UT" U (X}. Define

6N as follows:
If (p,vy) is in 8(q,a,2), let (p,vy) be in 6N(q,a,Z) for q in X, a in

Zuy {e} and Z in T.

If (p,Yy) is in &6(qg,8,2), let (p,Y'y)be in 6N(q,a,Z'), for Y in [, vy in [*.
If (p,¢) is in 6(q,a,2), let (pl,X) be in 6N(q,a,Z').

If q is in F, let (pe,e) be in 6.(q,¢2) for all Z in T U I'.

i
For ell & in Land 2 in [ U T', let 6.(p),8,X) = {(p),X)]} and 6y(p,, ,2) =
{(py, e}
Let N be the pda (Kﬁ,i;FN,éN,Zé,qo,ﬁ). It is known [7] that T(M) =

Null(N). We note that if, for q # by, (q ,,2')[5(q, &,y), then either y = X

o} o’ 'N

or y = Z'Yl for Z' in I'' and Y, in [*. Hence, ¢ never occurs on the pushdown

O)kor pan N = (K, 5T, 60,200 ,F), Nald(K) = (w/(a_,w,20) E(a ¢ e) for
some q in KN}.
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q*

tape unless N is in state p,. Also, it is never true that (qo,w,Zc;)‘—ﬁ (p2, &Y,
*

for any v in ¥, vy in [ *, and 1if (qo,w,Zc;)}% (pl, €,y), then y = X. Finally,

g*

')F—l*( Z'y) £ in X, Z' in [' and y in *, then (g ,w,2 ) |5
N (L &Z'y) for any q in K, n and y in 1%, 90 VsZg) Iy

if (QO) Wy Zo

(a, e,2v). We thus conclude that #RN(W) < #RM(W) + 1, hcnce that N is a wbb pda.
Note. The standard proof [7] also shows that if L = Null(M) for a wbb pde M,
then L i8 a wbb language. Also, if M is sbb, then L is an sbb language. How-
ever, it is not true that every sbb lenguage is Null(M) for some sbb pda, M.

In fact, it is not hard to show that in an sbb language, L is Null(M) for some

sbb pda, M, if and only if there exists an integer k. such that for any word,

1
w, in L, #{u/u s w and u in L} <k .
Lemma 2.2. It is decidable for a given pda M = (K, LT, 6,Zo,nqo,F) and g, in K,
whether or not there exists w in ¥ such that (qo,w,Zo)P*(ql, ¢ c).
Proof. Let ['' = {2'/2 in T}, and [ = T U I''. Define 6 as follows:
6N(an,Z) = 6(q,8,2) for all q in K, a in T U {e} and Z in T.
If (q',Yy) is in 6(q,8,Z), let (q',Y'y) be in 6N(q,a,Z').

If (q',¢) is in 6(aq,a,Z), let (q',¢) be in 6 (q,8,2') if and only if

n¢
= q-

Then it is easy to see that if N = (KN, Z,FN, 6N,Zc'),q0,¢), then Null(N) =
{w/(qo,w,Zo)lﬁ(ql, ¢, e)}. Since Null(N) is & language for any pda, N [2,4,7),
it is decidable whether or not Null(N) = f§.

Corollary. For ¢ in X and ql in K, 1t is decidable for pda M; whether or not
there exists w 1a I* such that (qo, cw,Zo)ll—‘:(ql, ¢ €).

Proof. Null(N) N cD* is a langusge.
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Theorem 2.3. Let L be a wbb language € ¥*, and c an element of L. Then fc(L)

is a wbb language.

Proof. By Lemma 2.1, L = Null(M) for some wbb pda M = (K, 5T,6,2, qo,;é) with

bound k. Define YN = {(Z,5,T}/Z in [, S eand T subsets of K}. For (q,Z) in

K X I, define the function 8 by 6(q,Z) = {p/p in K eand for some w in I¥,
(q,cw,Z)ﬁ(p, €, €)}. Define y(q,Z) = {p/p in K and for some w in L¥, (q,w,?.ﬁ)}%4
(pse e)}. Define x(q,2) = {p/p in K and (g, e,Z)h-*&(p, €, €)}. ©and y are
effectively calculable by Lemmsa 2.2, and it is easy to see that y is likewise.
Let Ky = K U {a'/q in K} end FN = {q'/q in K}. Define 8 &s follows:

If (p,¢) is in 6(q,8,Z) for ¢ in K, @ in T U {¢} and Z in I, let (p, ) be
maN(an, (z,s,T]) for all S, T CK.

If (p,ZlZe...Zs) is in 6(q,8,2), s 21, let (p, LZl,Sl,Tl][Ze,S2,T2]...
[ZS,SS,TS]) be in 6N(q,a,[Z,S,T])for each S and T, each contained in K, where
S =8, T =T, and for 2 <1 <5, 5, = {¢/¥(a,2, ;) NS, ; #8}, T, =
(/o8(0,2, ) NS,y #BYu {o/x(az, ;) N1y = 8]

If, for q in K and [Z,S,T] in Iy 8(q,z) NS # P or x(4,2) NT # P, let
(a',(2,5,T]) ve in 6y(q, ¢ (2,5,T]).

Then consider the pda N = (KN,Z;FN,GN,XO,qO,FN), where X = [ZO,K,¢]. It

is easy to see by induction on the length of the pushdown tape, [Zl,sl, Tl]

(10)

sider all possible pda defined as the pda N is defined in this proof, but with
arbitrary functions 8, y, and x from K X [ to the subsets of K, and know that
one of them accepted the desired set. However, the proof is somewhat simpler

because the computability is used to advantege.

(10)

It is not actually necessary to have 6, §, and x calculable. We could con-
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[22’82’T2]"'[Zr’sr’Tr]’ that q 18 in S,, 1 =1 <r, if and only if for some

i’

w in P* and p in K, (q,w,zlze...zi_l)}ﬁ(p,c,c). Also, q is in T, if and only

if for some w in I* and p in K, (q,cw,zlze...zi_l)}ﬁ(p,c,e). Let h be the

homomorphism from F§ to ['* that sends [2,S,T] to Z for all S and T. A word,v,
is in T(N) 1f end only if for some q in K and vy in [¥, (qo,w,xo)lﬁ(q,e,y)}ﬁ
(', ¢, y)- But then and only then will there be a word w' in ©* and p in K such
that (q,cw',h(y))[ﬁ(p,c,c), 80 that wew' is in Null (M). Thus 2(N) = {u/ucv is
in L for u and v in D¢}, and if N is wbb, T(N) N (Z-{c})* = £_(L) will be & wbb
lenguage. Hence it 18 sufficient to show that N is a wbb pda.

We note that if (qo,w,Xo)|%*(q,c,y), then q is a member of K and (qo,w,Zo)
}ﬁ*(q,c,h(y)). Also, it is easy to see by induction on the length of the push-
down dape, [Zl’sl’Tl][ZQ’S2’T2]'"[Zr’sr’Tr]’ that the sequence Z,,Z,,:.,2

together with the functions 8, y, and yx, uniquely determines Si and Ti for all

ax* \ ax*
1, 1 <1 <r. Thus if (qoxwxxo)i'ﬁ (q, €N/ and (qo’w’xo)l-ﬁ (q, ¢ Y2) and h(Yl)

]

h(yé), then y, = y,. We may conclude that #RN(w) = #RM(w), hence that N is wbb.

Theorem 2.4. If L is a wbb langusge, and R a regular set, (a) L/R 1s a wbb

languege, (b) Init(L) is & wbb language.

Proof. (a) As in [6], we may define a gsm mapping, G, that takes a to a for

all a In I, the Jjoint vocabulary of L end R, and c¢c to ¢ for some c not in EL.

Then L/R = fc(G'l(L) N D*cR). Since fc,G'l end intersection with a regular set

preserve wbb langueges, by Theorems 2.1, 2.2 &nd 2.3, L/R is a wbb language.
(b) 1Init(L) = L/D*, hence Init also preserves wbb languages.

Theorem 2.5. If L is a wbb language and R a regular set, then LR is a wbb

language.
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Proof. Let L = T(M), where M = (KM,I;F s Sy 21 4 Fy ) is a wbb machine with
bound k. Iet R = T(A), where A = (K »5,6,,D5 A) is a finite automaton. We
will assume KA n KM = ¢, and that qé is a member of neither KA nor KM. Let
K=K, UK, U {a2}, X not be an element of [}, and I' = I, U (xo}. Define §
as {ollows:

8(a2s &X, ) = {(a.,X 2,)]

If q is in K-Fy, & in LU {e}, and Z in I}, let 8(q,8,2) = by(q,8,2).
mrqin%VZinq”JgtM%aﬂ)=6w%&Z)u{@ch.

6(po,¢,Z)

{(Po,e)} for all Z in lM

5(P:3:X0) = {(5A(P:a),xo)}, for all p in KA and a in L.

6(q,8,2) = § otherwise.

Define pda N = (K, %[, 6,X ,a',F,). Evidently, 1f (q',w,X )|g*(q ¢ Y), and

) ::o:qO:A ’ qo,, N 1€ Y))
*

qis in K,, then y= X . If ais in K, (a,%2) 9¥(a, 6 y'), where y = X_y'.
Furthermore, it is impossible that g could be qé. Thus #RN w) < #RM(W) + #KA’
and if M is wbb, N is wbb.

Section 3. Information Lossless Gsm Mappings

We will now consider two restricted classes of gsm's, and show that one
preserves deterministic, sbb, and wbb languages, the other wbb languages only.
These results are significant, for we will show later that not all gsm mappings
preserve sbb langueges, and it is strongly suspected that the same applies to

wbb languages.

Definition. A gsm, S = (K,Z;A,é,k,po), is sa:.d to be information lossless (IL)

if for X, and x, in * X # X, implies either 6(po,xl) # 6(po,x2) or

Mpsx ) # Mppx,) [3].



3 December 1965 20 TM-738/022/00

A gsm is said to be information lossless of order k (IL-k) if for

= ' = ' 1 ' d
x, = ax; and X, = bX;, a and b in L x; and x; in o, ]xﬂ >k, |x2| >k, an
any p in K, x(p,xl) < k(p,xe) implies a = b.

Note that an IL-k gsm is IL. An IL gsm not IL-k for any k is sald to be

information lossless of infinite order.

We will show that IL-k gsm's preserve deterministic and sbb langueges,
but first will need a simple lemma.
Lemma 3.1l. If L is a deterministic language, thea there exists a deterministic
pda, M, with T(M) = L and Null (M) = §.
Proof. Let L = T(N), where N = (H,Z;F,é,zo,qo,F) is a deterministic pda. Let
X, not be in I, and FM =T U {xo}. Let qs not be in K, and KM =KU [qé}.

Define 6M(q,a,z) = 8(q,8,2) for all q in K, & in T U (e} and Z in [, end

{(a,X2,)}- 6y has value f elsewhere. Then it is trivial to

show that M = (KM’Z;FM’éM’Xo’qé’F) satisfies the requirements of the lemma.

1
6M(q0’ € xo)

Lemms 3.2. If L is a deterministic langusge and G an IL-k gsm mapping, then

G(L) is a deterministic language.

Proof. Let M = (K, %L[,6,2,q,F) be a deterministic pda accepting L. Let
S = (KS,X;A,és,x,po) be an IL-k gsm, with G(w) = x(po,w) for all w in . We
assume, without loss of generality, by Lemma 3.1, that Null(M) = ¢. Let r, =
mex{ |\(p,a)|/a in L, p in KS}, and r = rl(k+l). Define K' = K, X K, X A(r),
K"={x'/x in K'}, end K = K' UK". Also, let [ = {(Z,7)/Z is in Iy end T is
a mapping from KM.to the subsets of Zﬂk)}- Tntuitively, 7(q) will represent
the words in Zﬂk) that would leave the pda, M, in a state in F, beginning in

state g, but with the top symbol of the pushdown tape erased.
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Define a function, u, from KS X A(r) to LU {f}, such that y(p,w) = a if a

1s the unique element of L such that A(p,a) < w, and u(p,w) = P otherwise.

For q and q' in Ky and Z in FM, define y(g,q',2) = {w/(q,w,Z)h—:(q', € ¢€)}

Finally, define 8(q,Z) = {w/(q,w,Z)li

M(q',e,\() for q¢' in F and y in I'*}
n g,

Let N be the pda (K,A,r,é,xo,Qo,K“), where X = (Zo’To) and for all q in
Ko 7,(2) = $, and @ = (qa_,p,,¢e). Let & be defined as follows:
(1) If (2,7) is in I, (q,p,w) in K', and for some word, x, in 8(qg,2) U

U W(Q,Q',Z)T(Q') N E(k): )\(P)x) = w, let 6((‘-1:13:"’): G,(Z,T)) = {((Q:p:w)':
Q' in Ky

(ZJ T))}‘
(2) If 8y(a,¢2) = {(t,e)}, let 8(Q,¢,X) = {(T,¢€)}, for all X = (2,1),
(r)

in [, 7 arbitrary, v in ' °, and p in K, wvhere Q = (a,p,w)" if 6((q,p,w), e,X)

is defined by rule (1), Q = (q,p,w) if not, and T = (t,p,w).

(3) 1If aM(q,e,z) = {(t,zlzz...zs)}, s 21, let 8(Q,¢X) = {(T,xl 2‘,..xs)}
for all X in [, X = (Z,1), arbitrary 7, w in A(r), and p in Ky, where T and Q
are defined as in (2), X, = (Zl’ 'rl), T, =T and for 2 i<, X, = (Zi’ Ti)
where for q' in K, 'ri(q') = B(q',Zi_l) U U w(q',q",Zi_l)-ri_l(q") N 2(k).

Hi
5

(4) Let qbe in K, » in K, w in A7), 2 10 1, 6,(a,6,2) = 4, ena

S
w(p,w) = a in L. Further, define w' by A(p,a)v' = w,p' by 6s(p,a) = p', and
assume 6M(q,a,Z) = {(t, %)}- Then let 6(Q.; €,X) = {(T) e)}: where Q = (q,p,w)'
if 6((q,p,%), 6,X) is defined by rule (1), Q = (q,p,w) if not, X = (Z,7), arbi-

trery 7, and T = (t,p',w"').
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(5) Under the same conditions as (4), except & (q,8,2) = [(t,lez...ZS)],

M
8 21, let 8(Q,¢,X) = {(T,xlxz...xs)], Q, X, and T as in (k4), X)Xy oo o Xy @S
in (3).

(6) For q in Kp P in Ko, v in A

and p.(p,a) = ¢) for all b in A, let 5(Q:b;X) = {((Q:p:Wb):X)); where Q = (Q;P;w)|

(r'l), Xin I, X = (2,7), 6M(q, ¢, s) =P

if 6((q,p,w), ¢,X) is defined by rule (1), Q = (q,p,w) if not.

(7) 6(Q,b,X) =p for all Q in K, b in A U {e)} and X in [ unless explicitly
defined otherwise by rules (1) - (6).

It is straightforward to see that N is a deterministic pda, since under no
circumstances may two rules be applied simultaneously. Let y be in ['*, y =
(Zl,Tl)(Ze,fz)...(ZB,TB), 8 2 1. Then it is easy to see by induction on s,
that for eny q in Ky, and 2 <1 s s, 7,(q) = {w/(q,w,zlz2...zi_l)h’-;(q',g,y')
for some q' in F and y' in Fﬁ] N iﬂk). Also, Tl(q) = §.

Let h be the homomorphism from [* to [¥ which takes (Z,7) to Z for all r.
Suppose for some u in A%, Q in K' and y in I¥%, (Qo,u,Xo)lﬁ(Q,e,y). Let Q =
(a,pyu’'). Then for some u" in A*, u"u' = u. Also, there is some w in ¥* such
that x(po,w) =u", és(po,w) = p, and (qo,w,ZO)}ﬁ(q,e,h(y)). We note that h(y)
is not ¢, hence y # €. But (Q,e,Y)fﬁ(Q',eyy) if and only if there is some word

w' in z(k) such that ww' is in L and x(po,w') = u. Thus T(N) < G(L).

Theorem 3.l. Information lossless gsm mappings of finite order, k, preserve
sbb languages.
Proof. All gsm mappings are additive, hence sbb languages are preserved by

IL-k mappings according to Lemmas 1.5 and 3.2.

— e . — - Bt e~ e - - W — e = e s g
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Theorem 3.2. If L is a wbb language, and G an IL gsm mapping, then G(L) is a

wbb language.
Proof. Let M = (KM,z;r,aM,zo,qo,FM), L = (M), and M be a wbb pda with bound
k. Let S = (KS,X;A,és,x,po) be an IL gsm realizing the mapping, G. Suppose

the maximum of |A(p,a)|, over all a in £ and p in K

(r-1)

g’ is r. Let K = KM X

KS X 4 Define 6 as follows:
If (q,p,w) is in K, b in 4, Z in [, and |w| = r-1, let 6((q,p,v),b,2) =

%(g?a%b{((q-,as(p,a),e),qu',y) is in 6,(3,8,2))-

If |w| < r-1, end for some a in L, wb < A(p,a) end 6M(q,a,Z) # B, let
8((a,p,w),b,2) §wa p,a),¢€),v)/(a',y) 1s in §,(a,8,2)} U
{((q,'p:Wb))Z)}'

For g in Ky, p in Ky and 2 in I, let 6((a,p,€),62) = {((a',p,¢),v)/(a',y)

is in 6M(q" e)Z)} U %(gz‘laﬁ: {((q|)6s(p)a): e):Y)/(‘.‘.':Y) is in 6M(q:a)Z)}'

-

Let F = {(q,p, €)/q in Fy 8nd p in KS}. Define the pda, N = (K,A,F,b,Zo,Qb,F),

where Q_ = (qoypo)e)'
Suppose w = 8,858, 8 2 O, and v is in L. Then for some q, qi, Yq»
t . 2 1 1 *
Yi, lsiss, qs+l and YS+l" (q )W, o)"_(qllw)Yl)lﬁ(ql:aea:B"'aSJYl)"ﬁ
* *
(q2)3233"'as’ Y2)h:/i(q2|’ a3a)+”'as’ Y2 "_ i_ ’YS)‘ﬁ(qs" €, Yé)‘ﬁ(qsﬁl’ € .{S+l)’

. < = T ' = 5 oo
where q_ , is in Fy,. For 1 <1 <5, let 1 6S(po,ala2 ai), Py 6S(po,ala2

v ' 1 1 _ =
ai-l)’ Qi = (qi’pi’ 6), and Qi (qi’pi’ui)’ where 1if )\(pi’ai) = ¢, then u, €

= g = * .
and ci ¢, and x(pi,ai) uici for ui in A% and ci in A, otherwise Then it

. o * '
should be evident that (QO,K(po,w),AO)}ﬁ(Ql,clk(pl,a2a3---a )’Yl)}ﬁ(Ql’
*
1 ]
Mpl}a2a3"‘a )} Yl)l._(Qz}C2)\(p2}a’3a’h' }Y2 i_ Q2 )\ p2} 'as)’Y2)
:C g7 Vg }I_‘] :ex'Y rﬁ((q5+l’p5’ €), e’YS+l). Thus, if w is in (M), A(
is in T(N).

CHRCIE:
2Tk

7.-'1;1'“.'.-.‘“"1 = v g - e — —
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Now suppose (Q_,u;Z };—\; Q e Y), for Q in K, of the form (q,p, e), y in I*,
and u in A¥. We will prove by induction on |u|, that there must be some w in
™™ such that )\(po,w) = u and (qo,w, )|—(q, €,y). Suppose u = ¢. Then

(QO’ €, YO)‘T‘J(QI’ e;'Yl)h'\'[' . }E(QB’ €y YS)’ where QS = Q 'YB = vy and YO = Zo‘ Let

Qi = (qi’pi’ €), 0 1 < 8. Then for each 1 between 1 and s, either (qi-l’ e Yi-l)
‘—I\_ﬁ(qi’ €, Yi) or (qi-l’a’ Yi-l) lb_fl(qi’ € ‘Yi) for some a in . Thus it is obvious
that a w exists with )\(po,w) = ¢ and (qo,w,Zo) }%;(q, &Y).

Now, let |u| =t, t 2 1, and assume the inductive hypothesis for all t' < t.
Then u = u'b for some u' in A* and b in A. There are some Q',Q",y', and y" such
that (Qo,u,Zo)}%;(Q',b,y')|ﬁ(Q",e, Y”)F};(Q’ €, Y), where Q' is of the form (q',p',u"
and Q" is of the form (q",p",¢e). u" is a terminal subword of u' of length r-1

or lees, so let u"'u" = u'. Then for some Q'' of the form (q'',p'', ¢), and

v''' in ¥, (Qo,u"',zo)}l—’;(Q"', €& vy'"') and A(p'',a) = u"b for some a in E. By the
inductive hypothesis, there is some w' such that )\(po,w') = u'" and (qo,w',Zo)
* ' * 1" 1]

|.I:i(q' e vy''"'). Then )\(PO;W&) = u and (qo,wa,Zo)h—&(q yG Y ). By the argument
used in the case u = ¢, there will be a wv" in T* such that A(p",w") = ¢ and

(q",w",y")}ﬁ(q, ¢,y). Since (q,p,e) is in F if and only if q is in F» ve con-

clude that i1f u is in T(N), then there is a w in T(M) such that Mpgsw) = u

Thus T(N) = G(L).

g*
Now suppose (Qo’v’zo)h\l ((ayp,u), e,y) for v in 4%, q in Ky P in Kg) u in

(r-1)

A , and y in [*. There exists b in A such that ((q,p,u),b,y)}-ﬁ(Q, e&y'), Q

in K, y' in ™. Let v = u'u. Then there is some a in I and exactly one w such

that (q_,v,2.) (a6 ), Mpg,w) = u', 85(p,,v) = p, ub < A(p,a), and (q,a,y)l-;1

1 1 " *
(a", e, v") for some q" in Ky end y" in [*. Hence q W2 |ﬁ (a,e,v). Therefore,
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*
if #KS = m, there are at most kmr pairs, ((a,p,u),y), such that Q vyZg }%

((q,p,u),e,y). Hence, N is a wbb machine, and the theorem is proven.
One question has been left unanswered. Do IL gsm's of infinite order
preserve sbb languages? The answer is no, but this result will be left for a

later section.

Section 4. The Relation Between the Sbb and Wbb Properties

The main result here is that the sbb languages form a proper subset of
the wbb languages.
Lemma 4.1. Every sbb pda is a wbb pda.
Proof. Suppose M = (K,Z;F,&,Zo,qo,F) were an sbb pda with bound k, but not
wbb. Let n = #L. Then there is some x in I* for which #RM(x) > nk, hence some
a in L and distinct (qg,y,), 1 1 S ktl, in K X I* for which (qo,a,zo)F
(qi,a,yi)|~(qi,e,yi) for some qi in K and yi in [*. Since M may have no infinite
loops with input e, for each i, 1 s i < k+1, there will be some q; and y'i' in K
and [, respectively, such that (qi,e,yi)li(q;,c,y;) and for no q in K, y in I'*
is (qi,e,yi)f- Q, € Yy) true. Thus, for each 1, 1 < i < k+1, there will be an
element in P, (xa), and it is not hard to see that these elements must be dis-

M

tinct. But then the assumption that k was a bound on U QM(y,xa) has been
y=xa

violated, so we conclude that if M is sbb, it is wbb.

We will now exhibit a language that is wbb, but not sbb. ILet L

{anbn/n 21}, L, = {anbnc/n 21, L

l -
_ 2n y¥(11)
= {an-b CC/n 2 l}, and Lu = <Ll U L2 U L3) .

3

(ll)The language Lh may seem more caomplicated than necessary, but this language

will be needed in the next section to prove an additional result.
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We will prove Lh to be wbb, but not sbb. These languages will be as defined
above for the remainder of the paper.

Lemma 4.2. Let M = (K,E;F,é,ZO,qO,F) be a loop-free, deterministic pda, with
L= {a,b,c}, and T(M) C L,. Let w be in L), and for an infinity of n, let
wa b be in T(M). Then there must be some m such that wa™d" is in T(M), but
for no w' in T* is wambamccw’ in T(M).

Proof. Let S = {n/wa'®" is in T(M)}. Assume for some integer, r, and an
infinity of arbitrary integers, n, (qo,wan,Zo)li(qn,e,yn) for ¢ in K, y, in

I* and Iyn\ S r. Then there exist q and y such that g = q and y = y, for an
infinity of n, since K and r(r) are finite sets. Let n, be the smallest n with

1

qnl = q and Ynl = vy, and n, the smallest element of S with n, 2 n,. We can

find ng with qn3 = q and Y, =Y end ng > n,, else {n/qn = qand y = y} would

3

be bounded, hence finite, But then, (qo,wan3+n2-nl an,ZO)li(qd,anQ-nl bna,y)
* '

}—(q »€&Y') for some q' in F and y' in [*. But n3 + n, - 0y > n,, 80

+nA-
wa3 22781 "2 cannot be a word of Ly,

We thus conclude that for every integer, r, there ig a smallest integer,

n %
m_, such that if n 2 m, and (qo,wa ,ZO)|—(q,e,y), then |y| 2 r. Since M is
n *

loop free, if (qo,wa ,Zo)l—(q,e,y), the set {m/(q,a,v)|¥(qa', ¢, v') and lv'| = m}
is bounded. Hence, no m may be m, for more than a finite number of r, and
[m/m =m, for some r} is infinite. We may therefore find an infinite, mono-
tonically increasing sequence of integers, nl,ne,...,ni,..., such that for
121, ( e ) )‘i(q €,Y,Z,) where is in K in [™* d

y \Q 184 12 € Y444 qi ,Yin , an Ziin[‘,and

if, for J = 1, (qi,a*’,yizi)l—*(q',e,y‘), then y, s y'. (Note that it is suffi-

cient that n, + 1 be m_ for some r, and é(qi,a,Zi) # #.) We may then find some

_,g 7N T === e =g a1 e e e e O — — — -

———

-

rd
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q and Z such that for an infinity of i, g = qy and Z = 2 Renumbering, if

i
necessary, we may find a new infinite, monotonically increasing sequence,

n *
Ny« «+s0yy+++ With the property that for all i =z 1, (q,ve i,zo) F(a, e, Yiz)
for some vy, in I*, and if for § 21, (q,aJ,in)}i(q',e,y'), then y; S v'.

Now suppose there is some n in S, n, s n <n for some i > 2, such that

i i+’
n * n-n;, . n '
(qo,wanb ,Zo)}—(q,a 1% ,YiZ)f—(Qi,Xl;Yi)f-(qé,xe,yé)]—...}—(q;,xs,ys), where
X, = € qé is in F, and for 1 s J < s, X, is a terminal subsequence of aB70i f

and y; S yj- Then (qo,waan-nl bn,Zo) P(q,a" ™™ ", YZY;Z)p(q;, € Y,Yg )» Where
vy = YlY; and Yé = yly;'. But n, - n, > 0, so we again have a word in Lh thet
does not belong.

Ssn<n

We have thus shown the existence, for each n in S, n i>2

i i+1’
of a smallest integer, p, S n, such that (qo,wanbpn,zo)}i(q,an-ni bpn,in)}f

P * 1
(qﬁ,b n,yiyé)f-(q;,e,yé), for some qﬁ and qA in K, and yﬁ in '*. We note that
there will be some g' such that q' = q; for an infinity of n in S.

At this point, let us introduce the assumption contrary to the statement

of the lemma we are trying to prove, namely that for each n in S, there is a w'

in ¥* such that e el a9 @ T(M). Then we may find s and t in S, with

1 " ' t, 28-p_+ ' ¥* ' 2s8- " "
Q. =q, =a', s >2t, and (qo,wa =8 " Pe" Ptecw ,Zo)}-(q ,b psccw',yé)}i(q y ey )y

for some w' in £*, q" in F, and y" in [*. However, s 2 P, 80 28-p_ + p. > 2t,
which implies, again, that T(M) is not contained in L, We may thus conclude
the lemma.

Lemma L4.3. L, is not the finite union of deterministic languages.

k
Proof. Suppose L =191 T(Mi)’ where M, is deterministic for each i. We may

assume M

i is loop-free deterministic without loss of generality. Let LA T

- —— e e 1 'W':*i."."'i" =1 At o — e g R ———— g =
e P -
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For each J > O, assume that wj-l is in Lh' Then for all n, wj_lanbn is in

Lh’ and we can find some 1

J

such that for an infinity of n, wJ_lanbn is in T(Mi )

J

Then we can find, by Lemma 4.2, an m such that for no w' in {a,b,c}* is

wJ-l

&% eew' 1n 'I‘(Mi ). Define w

J

J

= wJ”lambzmcc, certainly a word in Lh'

Since L is in Lh’ we see that wJ is in Lh for all j, when defined in the man-

ner sbove.

thus, for no i, 1 <1 < k, does Mi

{a,b

,C}*-

However, consider w, .

k

No integer may be 1

J

accept & word of the form w

for two different j,

kw', for w' in

But wkab, for example, is in Lh’ thus Lh could not be the finite

union of deterministic languages.

Lemme 4.k.

Lh is a wbb languege.

Proof. Consider the pda M = ({qo,ql,qe,q3,qh},{a,b,c],{Zo,Zl],é,Zo,qo,[qo])

where § is defined in table L4.1.

ez 6(q,8,2) 8(q,b,2) 8(a,¢,2) 6(a,¢2)
a, |2, |{(a,2,2,)] ¢ p p
q, {2y | ((e,,2:2))) {{(ag,e)(a,2))) @ g

a; |2, p g {(a,,2,)) |{(q,,2,))
qy |24 p {({a},e)} g p

1, | 2, g g g g

%, |2 g (a5 €)) g g

13 | Z, g p {(q,2)} | ¢

a3 | 2y g {(a,,2,)] g g

q, | 2, g g {(a,2)} | 8

aQ, |2, ¢ ¢ ¢ ¢

Table 4.1

!
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It is not hard to see that T(M) = Lh and that m is & wbb pda with a bound of

three. The verification will be left to the reader.

Theorem 4.1. The sbb languages are properly included in the wbb languages.

Proof. Immediate from Lemmas 4.1, 4.3 and b.k.

Section 5. Some Operations that Fail to Preserve the Sbb Property

The common operations of complementation and arbitrary gsm mapping do not
preserve sbb languages. We strongly suspect that the same is true of the wbb
languages, but do not have a proof, due to the difficulty in exhibiting that a
specific language is not wbb. We will also show that IL gsm mappings not of
finite order do not necessariiy preserve sbb languages.

Lemma 5.1. The language L5 = {anbm/n <m < 2n} is not the finite union of
deterministic langusages.

Proof. The proof of this lemma has many details in common with the proof of
Lemma 4.2. We will therefore not go into detail when steps can be filled in a
manner analogous to that used in Lemma 4.2.

k

Assume that for some Kk, L5 =iUJ T(Mi) for loop-free deterministic pda M

M2,..., Mk' For n 2 0, let Sn = {Mi/Mi accepts two words 2"b™l and a"b™2 with

l,

nl-m2 2 n/2k]. We observe that for n > Kk, Sn is not empty, for otherwise there
would be at most n words of the form anbm, in L5, when in fact there are n + 1.

Also observe that for some i, M, is in Sn for an infinity of n. Let us choose

i

one such i, end let M, = M = (K,Z,F,G,Zo,qo,F). Let T = {n/M is in sn]. By an

argument quite similar to that employed in Lemma 4.2, we may show that it is

not possible for some r and an infinity of integers, n, to have (qo,an,Zo)}ﬁ

Ve e— - .
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(a, 6, y) for some q in K and y in [*, with |y| s r. Also, we can show that we
must then have a q in K and Z in I, and an infinite, monotonically increasing

n ¥*
sequence of integers, n,,n,,...,n;,... such that for all 1 2 1, (qo,a i’Zo)h\-d

J

* 1
(q, g,YiZ) for some Yy in %, and if for § 2 1, (q,a ,in)lﬁ(q‘,g,y ), then

Y; S y'. Finally, as in Lemma 4.2, we may see that if n is in T, 1 > 2, and

n-n

m
n, £n , then it is not possible that (qo,anbm,Zo)lﬁ(q,a 17, v,2) by

1 <B4
(ql’xl’ Yll)h:i(qe’x?_’ Yzl)m""h_d(qs’xs”s')’ where qs is in F, xs = ¢, and for

1<jJss, x, is a terminal subsequence of a1 v, and Y, is an initial suh-

J

sequence of yj. Hence, for each n in Ty n 2 n_, there is a smallest integer,

3
P »* n-n; . p P "
pn) such that (Cloianb n)ZO)"ﬁ(q‘va i1v 2 'YiZ) hﬁ(qul)b n: Yin'l)lﬁ(qn’ € 'Y2)) for

" m
qr‘l and q, in K, Y1|1 in [*, and n, < n < Dy and if ao" is in T(M), for any

i
m, then m 2 P, We may thus choose g' in K such that for an infinity of n in

e, q, = q'.

Now let us choose s and t in T, such that q; = qt =q', and 8 > bkt. We
mey find m, and m,, withm, - m, 2 s/2k, and a®b"l and a°b"2 words of T(M).
But then, (qo,atbmfpt-ps,zo) lﬁ(q',bml-ps,yz)%(q", €,Y') for some ¢" in F, and
y' in I'*. However, m + P, - P, zm -m,tDp 2 s/2k > 2t. Hence a SpB1T Py Py

is not in LS. We have thus contradicted the assumption that L

union of deterministic languages.

5 is the finite

Theorem 5.1. The sbb languages are not closed under (a) complementation

(b) arbitrary gsm mappings.

Proof. (a) Let L= {a,b}. Then I* = L5 = {a™"/m < n} U (a™%/n =z 1,m > 2n}

U aa*bb*al* U bI¥* is easily seen to be the finite union of deterministic

languages. Its complement, L., of course, is not.

p)

Y R T e & — - et anian 5 - &zs = - ey
o =T - Tt P
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(b) Let G be the gsm mapping which always takes a to a, b to b, and

12)

c to e. Let L6 = [aicajbi+2J/i 20, §J 2 O}.( It is easily seen that L6

is deterministic. But G(L6) =L 80 not all gsm mappings preserve sbb lan-

5’
guages.
Lastly, we would like to show that it is not generally true that an IL

gsm mapping of infinite order will preserve the sbb property. We will use the

languages L, and Lh as defined in the previous section.

1
Theorem 5.2. IL gsm mappings of infinite order do not preserve sbb langusages.

Proof. Consider the gsm S = ({po,pl,pe,p3,pu],{a,b],[a,b,c},é,x,po), where §

and A are defined in table 5.1.

D 8(p,a) Mp,e) 8(p,b) A(p,b)

po pl 8 p2 E

P P, € Py, b

5 Pl cca Py b

Py 13 ca D), b

Py P a Py €
Table 5.1

i i i
Any input word to S may be written a 1pdigtepde | ol

n,n 2 l, il,Jl’ &nd
Jn 20, in 21, and im and Jm 21 for 2 sm <n. An initial sequence of b's will
appear, followed by cc at the output of S. aibj, surrounded by either ¢ or b

on the left and a on the right, can be considered to be transformed into

(lg)The use of this language was first suggested by Joseph Ullian.

- -
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(1+1)

L 8 L Ll Lfs 1/«
a?hvdec 1f 1 is even, a? b2 if 1 is odd and j is even, and a2(1+l)b2(J+l)

if both 1 and J are odd. If aLib‘j "5 a terminal sequence, the same thing
will occur, but without the terminal c's. Note that when aibj(i,J 21) is a
terminal sequence; tbhen the final state distinguishes between the cases, 1
even, 1 odd and J even, and 1 and j odd; and if ai(i 2 1) is a terminal

sequence, then the state likewlse distinguishes between i1 even and odd.

Thus S is an IL gsm.

Consider S(Ll*) = L7. Surely L.* is a deterministic language. Suppose

L7 were the finite union of deterministic languages. Then (L7 N aZ?)/aa*bb*

would be also, by Theorem 1.2, where L = {a,b,c}. But (L, N al*)/aa*bb* = Ly,

7
hence Lh is not the finite union of deterministic languages, by Lemmsa L.3.

Thus we have exhibited an IL gsm (obviously of infinite order) and a deterministic

language mapped by the gsm into a language that is not sbb.

- o ees ot i ——————— e,
e P o - =

e - = Ak . -

——at
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