THE METHOD OF LINES FOR NUMERICAL SOLUTION OF
PARTIAL DIFFERENTIAL EQUATIONS

by

Tadeusz Leser
John T. Harrison

March 1966

Distribution of this document is unlimited.
Destroy this report when it is no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
THE METHOD OF LINES FOR NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Tadeusz Leser
John T. Harrison

Computing Laboratory

RDT&E Project No. 1P014501A14B

ABERDEEN PROVING GROUND, MARYLAND
THE METHOD OF LINES FOR NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

ABSTRACT

In the method of lines for solving certain kinds of boundary value problems in rectangular or trapezoidal regions one of the variables, say y, is discretized while the other variable x is left continuous. When suitable finite difference approximations are substituted for the partial derivatives with respect to y the differential equation is changed into a simultaneous system of ordinary differential equations in the variable x. The method used very little in the USA is used extensively in the Soviet Union and nearly all the literature on this subject is in Russian. The method has been tried in BRL and it seems to be a very useful one. This report does not pretend to be a monograph on the subject. It intends to be a practical guide to computations.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>THE PRINCIPLE OF THE METHOD OF LINES</td>
<td>7</td>
</tr>
<tr>
<td>THE LAPLACE EQUATION</td>
<td>9</td>
</tr>
<tr>
<td>A HIGHER ORDER OF APPROXIMATION FOR THE LAPLACE (OR POISSON) EQUATION</td>
<td>9</td>
</tr>
<tr>
<td>THE CLOSED SOLUTION</td>
<td>10</td>
</tr>
<tr>
<td>NUMERICAL EXAMPLE 1</td>
<td>14</td>
</tr>
<tr>
<td>THE PARTICULAR INTEGRALS</td>
<td>15</td>
</tr>
<tr>
<td>THE GENERAL SOLUTION</td>
<td>15</td>
</tr>
<tr>
<td>NUMERICAL EXAMPLE 2</td>
<td>16</td>
</tr>
<tr>
<td>CURVILINEAR BOUNDARIES</td>
<td>20</td>
</tr>
<tr>
<td>EXAMPLE 3</td>
<td>20</td>
</tr>
<tr>
<td>MACHINE COMPUTATION</td>
<td>22</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>22</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>30</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>31</td>
</tr>
</tbody>
</table>
THE PRINCIPLE OF THE METHOD OF LINES

We shall explain the method of lines for the following differential equation of the second order in two variables which is to be integrated in the rectangular region.

\[R; \alpha \leq x \leq \beta; \; y_o \leq y \leq y_o + L \]

with boundary C.

Our boundary value problem is

\[
\begin{align*}
au_{xx} + bu_{xy} + cu_{yy} + du_x + eu_y + fu &= g \quad \text{in } R \quad (1) \\
u(x, y_o) &= q_o(x); \quad u(x, y_o + L) = q_1(x) \quad \text{on } C \quad (2) \\
u(\alpha, y) &= p_o(y); \quad u(\beta, y) = p_1(y) \quad (3)
\end{align*}
\]

where \(a, b, c, d, e, f, g \) are functions of \(x \) and \(y \), and \(q_i \) and \(p_i \) are prescribed functions of \(x \) and \(y \) and all of these functions are continuous.

To solve the above boundary value problem by the method of lines we shall use the following procedure:

Subdivide the interval \(L = y_{n+1} - y_o \) into \(n + 1 \) equal subintervals of width \(h = L/(n + 1) \), then draw \(n \) lines parallel to the \(x \) axis

\[y = y_k = y_o + kh; \quad k = 1, 2, \ldots, n. \]

which form the grid shown in Figure 1.

![Figure 1](image-url)
We assume that both the first and the second order partial derivatives are continuous in \(x \) and \(y \). Then we substitute in Equation (1)
\[
y = y_k; \quad (k = 1, 2, \ldots, n)
\]
and replace the partial derivatives with respect to \(y \) by the central differences
\[
\frac{u_y(x, y)}{h} \approx (2h)^{-1} \left[U_{k+1}(x) - U_{k-1}(x) \right]
\]
\[
\frac{u_{yy}(x, y)}{h} \approx (h)^{-2} \left[U_{k+1}(x) - 2U_k(x) + U_{k-1}(x) \right]
\]
\[
\frac{u_{xy}(x, y)}{h} \approx (2h)^{-1} \left[U'_{k+1}(x) - U'_{k-1}(x) \right]
\]
where
\[
u_k(x) = u(x, y_k); \quad U'_k(x) = (d/dx)(U(x, y_k)), \quad \text{and} \quad U_k(x) \quad \text{is an approximation of} \ u(x, y_k) \ \text{on the line} \ y = y_k.
\]

When we perform these substitutions we obtain a system of \(n \) simultaneous differential equations of the second order which approximates the system Equations (1) and (2):
\[
a_k u'' + (2h)^{-1} b_k (U'_{k+1} - U'_{k-1}) + h^{-2} c_k (U_{k+1} - 2U_k + U_{k-1}) + d_k U'_k (4)
\]
\[
+ (2h)^{-1} e_k (U_{k+1} - U_{k-1}) + f_k u_k = g_k; \quad k = 1, 2, \ldots, n.
\]
The boundary conditions become
\[
U_0(x) = q_0(x); \quad U_n(x) = q_1(x)
\]
\[
U_k(\alpha) = r_0(y_k); \quad U_k(\beta) = r_1(y_k).
\]
Now Equations (5) are no longer considered to be boundary conditions. They determine certain terms in the equation for \(k = 1 \) and for \(k = n \) belonging to system (4). The Equations (6) are the \(2n \) boundary conditions for the \(n \) second order differential Equations (4).
The simultaneous system of ordinary differential Equations (4) and (5) together with the 2n boundary conditions Equation (6) approximate the boundary value problem Equations (1), (2), and (3). The general solution of Equations (4) and (5) depends linearly on the 2n arbitrary constants of integration which are determined from the 2n boundary conditions Equation (6).

The convergence of the approximating system Equations (4), (5), (6) to the original system Equations (1), (2) and (3) when h approaches zero under certain restrictions on the coefficients and on the boundary conditions has been proven by various Soviet mathematicians

THE LAPLACE EQUATION

Consider the boundary value problem Equations (1), (2) and (3) when the left member of Equation (1) is the Laplacian

\[\Delta u = u_{xx} + u_{yy} = g(x). \]

(1A)

In this case the approximating system of Equation (4) takes the form

\[u_k^{'''} + h^{-2}(u_{k+1}^{'} - 2u_k^{'} + u_{k-1}^{'}) = g_k; \quad k = 1, 2, \ldots, n. \]

(4A)

The Equations (5A) and (6A) would be the same as Equations (5) and (6).

A HIGHER ORDER OF APPROXIMATION FOR THE LAPLACE (OR POISSON) EQUATION

The order of approximation for the system Equations (4) or (4A) is \(O(h^2) \). For the Laplace equation we can derive an approximating system of the order \(O(h^6) \). To obtain it we expand \(u_{k+1}^{'} \) and \(u_{k-1}^{'} \) in Taylor Series about \(y_k \), keeping the fourth order terms, and after eliminating the fourth partial derivative \(u_{yyyy} \) we get

\[(5/6)u_k^{'''} + (1/12)(u_{k+1}^{'''} + u_{k-1}^{'''}) + h^{-2}(u_{k+1}^{'} - 2u_k^{'} + u_{k-1}^{'}) = (5/6)g_k + (1/12)(g_{k+1} + g_{k-1}). \]

(4B)

Superscript numbers denote references which may be found on page 30.
THE CLOSED SOLUTION

For the Laplace equation and when the prescribed values of \(u \) on the lines \(y = y_0 \) and \(y = y_{n-1} \) are zero, we can obtain a simple closed solution for each line.

Consider the boundary value problem Equations (1), (2), and (3), when \(q_1 = 0 \), which is approximated by

\[
U_k'' + h^{-2}(U_{k+1} - 2U_k + U_{k-1}) = 0; \quad k = 1, 2, \ldots, n
\]

\[
U_0(x) = U_{n+1}(x) = 0,
\]

\[
U(x, y_k) = p_0(y_k); \quad U(x, y_k) = p_1(y_k); \quad k = 1, 2, \ldots, n.
\]

Applying the separation of variables we assume the following form

\[
U_k(x) = q(k)v(x)
\]

and substitute it into the above homogeneous equation. This yields the following equation:

\[
q(k)v''(x) + h^{-2}v(x)\left[q(k + 1) - 2q(k) + q(k - 1)\right] = 0
\]

\[
q(0) = q(n + 1) = 0
\]

or

\[
v''(x)/v(x) = \left[q(k + 1) - 2q(k) + q(k - 1)\right]/ - h^2q(k) = \delta^2 = \text{constant}.
\]

To find \(q \) we must solve the homogeneous difference equation

\[
q(k - 1) - \left[2 - h^2\delta^2\right]q(k) + q(k - 1) = 0
\]

with the boundary conditions

\[
q(0) = q(n + 1) = 0.
\]

The general solution of this difference equation has the form

\[
q(k) = c_1\lambda_1^k + c_2\lambda_2^k
\]
where C_1 and C_2 are arbitrary constants and λ_1 and λ_2 are the roots of the characteristic equation

$$\lambda^2 - \left[2 - h^2 \delta^2\right] \lambda + 1 = 0.$$

From the boundary conditions we have

$$q(0) = C_1 + C_2 = 0,$$ hence $C_2 = -C_1$

$$q(k + 1) = C_1(\lambda_1^{n+1} - \lambda_2^{n+1}) = 0,$$ hence $(\lambda_1/\lambda_2)^{n+1} = 1$

and

$$(\lambda_1/\lambda_2) = \exp\left(2\pi i s/(n + 1)\right).$$

From the characteristic equation we have that

$$\lambda_1 \lambda_2 = 1$$

consequently

$$\lambda_1 = \exp\left(\pi i s/(n + 1)\right),$$

$$\lambda_2 = \exp\left(-\pi i s/(n + 1)\right),$$

$$s = (y_s - y_0)/h = 1, 2, \ldots, n.$$

From the characteristic equation we have also that

$$\lambda_1 + \lambda_2 = 2 - h^2 \delta^2$$

consequently

$$2 - h^2 \delta^2 = \exp\left(\pi i s/(n + 1)\right) + \exp\left(-\pi i s/(n + 1)\right) = 2 \cos\left(\pi s/(n + 1)\right)$$

$$h^2 \delta^2 = 2 - 2 \cos\left(\pi s/(n + 1)\right) = 4 \sin^2\left(\pi (y_s - y_0)/2L\right)$$

$$q_s(k) = C \left[\exp\left(\pi i k/(n + 1)\right) - \exp\left(-\pi i k/(n + 1)\right)\right] = C \sin\left(\pi s(y_s - y_0)/L\right).$$
Then taking
\[v''(x) - \delta^2_s v(x) = 0 \]
we obtain
\[v_s(x) = C_s \exp(\delta_s x) + D_s \exp(- \delta_s x). \]

Thus, we have a set of linearly independent solutions
\[
U_{k,s}(x) = \left[C_s \exp(\delta_s x) + D_s \exp(- \delta_s x) \right] \sin(\pi s(y_k - y_0)/L); \quad s = 1, 2, \ldots, n
\]
and the general solution is
\[
U_k(x) = \sum_{s=1}^{n} \left[C_s \exp(\delta_s x) + D_s \exp(- \delta_s x) \right] \sin(\pi s(y_k - y_0)/L)
\]
where \(C_s \) and \(D_s \) are arbitrary constants.

In a similar way it can be shown that the solution of the homogeneous system corresponding to the higher order approximation for the Laplace Equation (\(\alpha \beta \)) is
\[
U_k(x) = \sum_{s=1}^{n} \left[C'_s \exp(\delta'_s x) + D'_s \exp(- \delta'_s x) \right] \sin(\pi s(y_k - y_0)/L)
\]
where
\[
\delta'_s^2 = 24 \sin^2(\pi/2L)(y_s - y_0)/h^2(5 + \cos(\pi/L)(y_s - y_0))
\]
and \(C'_s \) and \(D'_s \) are arbitrary constants.

Having the general solution of homogeneous system we may be able in many concrete cases to find the particular integral corresponding to the given right member, \(g(x, y) \).

For example if \(g \) is a constant or a function of \(y \) only, then
\[\Delta u = g(y) \]
and
\[
u''_k + h^{-2}(u_{k+1} - 2u_k + u_{k-1}) = g_k; \quad (g_k = g(y_k)) . \quad (4A)
\]

12
Assume that the particular integral on the k-th line is

\[U_k = A_k \text{ (a constant).} \]

Substituting it in Equation (4A) we obtain the linear system of equations

\[A_{k+1} - 2A_k + A_{k-1} = g_k b^{-2} \]

from which the values of \(A_k \) are easily determined.

When \(g \) is a n-th degree polynomial in \(x \), we can assume the solution in the form of another n-th degree polynomial whose coefficients are determined by substituting it in Equation (4A). Let for example

\[g = m_0 x^2 + m_1 x + m_2 . \]

Assume the solution to be

\[U_k = A_k x^2 + B_k x + C_k . \]

Substituting it in Equation (4A) we obtain

\[2A_k + (A_{k+1} - 2A_k + A_{k-1})x^2 + (B_{k+1} - 2B_k + B_{k-1})x \]
\[+ C_{k+1} - 2C_k + C_{k-1} = m_0 x^2 + m_1 x + m_2 . \]

Comparing coefficients of the same powers of \(x \) we have

\[A_{k+1} - 2A_k + A_{k-1} = m_0 \]
\[B_{k+1} - 2B_k + B_{k-1} = m_1 \]
\[C_{k+1} - 2C_k + C_{k-1} + 2A_k = m_2 \]

from which the values of \(A_k, B_k, C_k \) can be determined.
NUMERICAL EXAMPLE 1

Solve the following boundary value problem:

\[\Delta u = -1 \quad \text{in the region } R \text{ which is the rectangle } |y| \leq \frac{1}{2}; \ |x| \leq \frac{1}{2} \quad (1) \]

\[u \left(\frac{1}{2}, y \right) = u \left(-\frac{1}{2}, y \right) = 0 \quad \text{on the boundary } C; \quad (2) \]

\[u(x, \frac{1}{2}) = u(x, -\frac{1}{2}) = 0. \quad (3) \]

Applying the method of lines we shall use the three lines:

\[y_1 = -\frac{1}{4}; \quad y_2 = 0; \quad y_3 = \frac{1}{4}; \quad (h = \frac{1}{4}; \quad n = 3; \quad L = 1). \]

We shall compute \(U_k(x) \) on these lines using the approximating system of Equations (4A), which in our case is:

\[U_1''(x) + 16[U_2(x) - 2U_1(x)] = -1; \quad U_0(x) = U_4(x) = 0. \]

\[U_2''(x) + 16[U_3(x) - 2U_2(x) + U_1(x)] = -1 \quad (1a) \]

\[U_3''(x) + 16[U_2(x) - 2U_3(x)] = -1, \]

with the boundary conditions

\[U_i(-\frac{1}{2}) = U_i(\frac{1}{2}) = 0; \quad i = 1, 2, 3. \]

\[y_1 = -\frac{1}{4}; \quad y_2 = 0; \quad y_3 = \frac{1}{4}; \quad y_4 = 1/2; \quad \text{Figure 2} \]

14
THE PARTICULAR INTEGRALS

We shall assume that the particular integrals of our system are the constants

\[U_i = A_i \]

Substituting the above in the system Equation (1a) we obtain

\[A_1 = A_3 = 3/32; \quad A_2 = 1/8 \]

THE GENERAL SOLUTIONS

Since the prescribed values of \(u \) on the lines \(y = -\frac{1}{2} \) and \(y = \frac{1}{2} \) are zero we can use the closed solution. Adding the complementary functions to the particular integrals we can write the general solutions on each line as

\[
U_1(x) = \sin \frac{\pi}{4} [c_1 \exp(d_1x) + d_1 \exp(-d_1x)] + \sin \frac{\pi}{2} [c_2 \exp(d_2x) + d_2 \exp(-d_2x)] \\
+ \sin(3\pi/4)[c_3 \exp(d_3x) + d_3 \exp(-d_3x)] + 3/32 = \\
= (\sqrt{2}/2)(c_1 \exp(d_1x) + d_1 \exp(-d_1x) + c_3 \exp(d_3x) + d_3 \exp(-d_3x)) \\
+ c_2 \exp(d_2x) + d_2 \exp(-d_2x) + 3/32
\]

\[
U_2(x) = \sin \frac{1}{2}\pi[c_1 \exp(d_1x) + d_1 \exp(-d_1x)] - \sin(\pi/2)c_2 \exp(d_2x) + d_2 \exp(-d_2x)] \\
+ \sin(3\pi/2)[c_3 \exp(d_3x) + d_3 \exp(-d_3x)] + 1/8 \\
= c_1 \exp(d_1x) + d_1 \exp(-d_1x) - c_3 \exp(d_3x) - d_3 \exp(-d_3x) + 1/8
\]

\[
U_3(x) = \sin(3\pi/4)[c_1 \exp(d_1x) + d_1 \exp(-d_1x)] + \sin(3\pi/2)[c_2 \exp(d_2x) \\
+ d_2 \exp(-d_2x)] + \sin(9\pi/4)[c_3 \exp(d_3x) + d_3 \exp(-d_3x)] + 3/32 \\
= (\sqrt{2}/2)[c_1 \exp(d_1x) + d_1 \exp(-d_1x)] - [c_2 \exp(d_2x) + d_2 \exp(-d_2x)] \\
+ (\sqrt{2}/2)[c_3 \exp(d_3x) + d_3 \exp(-d_3x)] + 3/32
\]
where
\[d_1^2 = 64 \sin^2(\pi/8); \quad d_2^2 = 64 \sin^2(\pi/4); \quad d_3^2 = 64 \sin^2(3\pi/8). \]

Since the region R and the boundary conditions are symmetrical with respect to the y axis that is \(U_k(x) = U_k(-x) \), we have
\[C_1 = D_1 \]

and using the boundary conditions we obtain the system of algebraic equations which determine \(C_1 \)
\[(\sqrt{2} \cosh(d_1/2))C_1 + (2 \cosh(d_2/2))C_2 + (\sqrt{2} \cosh(d_3/2))C_3 = -3/32 \]
\[(2 \cosh(d_1/2))C_1 - (2 \cosh(d_3/2))C_3 = -1/8 \]
\[(\sqrt{2} \cosh(d_1/2))C_1 - (2 \cosh(d_2/2))C_2 + (\sqrt{2} \cosh(d_3/2))C_3 = -3/32 \]

Hence
\[C_1 = -(3\sqrt{2} + 4)\text{sech}(d_1/2)/128; \quad C_3 = -(3\sqrt{2} - 4)\text{sech}(d_3/2)/128; \quad C_2 = 0. \]

Thus finally
\[U_1(x) = \sqrt{2}C_1 \cosh(d_1 x) + \sqrt{2}C_3 \cosh(d_3 x) + 3/32 \]
\[U_2(x) = 2C_1 \cosh(d_1 x) - 2C_3 \cosh(d_3 x) + 1/8 \]
\[U_3(x) = \sqrt{2}C_1 \cosh(d_1 x) + \sqrt{2}C_3 \cosh(d_3 x) + 3/32 \]

NUMERICAL EXAMPLE 2

Solve the boundary value problem
\[\Delta u = 0 \text{ in } R \quad (1) \]
\[u(x, 0) = u(x, 8) = 100 x (12 - x) \quad \text{on } C \quad (2) \]
\[u(0, y) = u(12, y) = 100 y (8 - y) \quad \text{on } C \quad (3) \]
\[R; \quad 0 \leq x \leq 12; \quad 0 \leq y \leq 8 \]
Applying the method of lines we shall use the three lines

\[y_1 = 2, \ y_2 = 4, \ y_3 = 6; \quad (h = 2, \ n = 3, \ L = 8). \]

We shall compute \(U_k(x) \) on these lines using the approximating system Equation (4B) which in our case is

\[
\frac{5}{6} U_k'' + \left(\frac{1}{12}\right) (U_{k+1}'' + U_{k-1}'') + h^2(U_{k+1} - 2U_k + U_{k-1}) = 0 \quad (4B)
\]

\[
U_0(x) = U_4(x) = 100 x (12 - x) \quad (5B)
\]

\[
U_k(0) = U_k(12) = 100 y_k(8 - y_k); \quad k = 1, 2, 3. \quad (6B)
\]

We shall rewrite the system combining Equations (4B) and (5B)

\[
\frac{5}{6} U_1'' + \left(\frac{1}{12}\right) (U_2'' - 200) + (1/4)(U_2 - 2U_1 + 100 x (12 - x)) = 0
\]

\[
\frac{5}{6} U_2'' + \left(\frac{1}{12}\right) (U_3'' + U_1'') + (1/4)(U_3 - 2U_2 + U_1) = 0 \quad (4B)
\]

\[
\frac{5}{6} U_3'' + \left(\frac{1}{12}\right) (-200 + U_2'') + (1/4)(U_1(100 x (12 - x) - 2U_3 + U_2) = 0
\]

\[y_1 = 2; \quad U_1(0) = 1200; \quad U_1(12) = 1200 \]

\[y_2 = 4; \quad U_2(0) = 1600; \quad U_2(12) = 1600 \quad (6B)
\]

\[y_3 = 6; \quad U_3(0) = 1200; \quad U_3(12) = 1200. \]
For digital computations the second order system must be reduced to an initial value first order system. To achieve this let us set

\[U'_1 = V_1 ; \]
\[U'_2 = V_2 ; \]
\[U'_3 = V_3 ; \] (I) (II) (III)

Substituting Equation (I), (II), (III) in Equation (4B) we obtain

\[(5/6)V'_1 + (1/12)(V'_2 - 200) + (1/4)(U'_2 - 2U_1 + 100 \times (12 - x)) = 0 \] (IV)
\[(5/6)V'_2 + (1/12)(V'_3 + V'_1) + (1/4)(U'_3 - 2U_2 + U_1) = 0 \] (V)
\[(5/6)V'_3 + (1/12)(-200 + V'_2) + (1/4)(100 \times (12 - x) - 2U_3 + U_2) = 0 \] (VI)

or

\[V'_1 + (1/10)V'_2 + (3/10)U_2 - (6/10)U_1 = 20 - 30 \times (12 - x) \] (IV)
\[V'_2 + (1/10)(V'_3 + V'_1) + (3/10)(U'_3 - 2U_2 + U_1) = 0 \] (V)
\[V'_3 + (1/10)V'_2 - (6/10)U_3 + (3/10)U_2 = 20 - 30 \times (12 - x) \] (VI)

The Equations (I) through (VI) form the system of six first order equations, two of them nonhomogeneous. The conditions Equation (6B), however, are not all initial and we have to arrange for that. The solution on any line \(k \) will be the linear combination of independent solutions of the homogeneous system \(U'_k \) plus the particular integral \(U^p_k \)

\[U^i_k(x) = \sum_{I=1}^{6} C^i_k U^i_k(x) + U^p_k(x) \quad k = 1, 2, 3, \] (VII)

where \(C^i_k \) are constants to be determined from the boundary conditions.

The independent solutions of the homogeneous system Equations (I) through (VI), where the right members in the Equations (IV) and (VI) are replaced by zeros, are obtained from the following set of initial conditions at \(x = 0 \):
TABLE I

INITIAL CONDITIONS, \(x = 0 \)

<table>
<thead>
<tr>
<th>Symbols of the Ind. Solutions</th>
<th>(u_1(0))</th>
<th>(u_2(0))</th>
<th>(u_3(0))</th>
<th>(v_1(0))</th>
<th>(v_2(0))</th>
<th>(v_3(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1) (k)</td>
<td>(u_1) (k)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_2) (k)</td>
<td>(u_2) (k)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_3) (k)</td>
<td>(u_3) (k)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_4) (k)</td>
<td>(u_4) (k)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(v_5) (k)</td>
<td>(u_5) (k)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(v_6) (k)</td>
<td>(u_6) (k)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_7) (k)</td>
<td>(u_7) (k)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The particular* integrals \(u_k^p \) are obtained from the non-homogeneous system Equations (I) through (VI) with initial conditions all zero (as shown in the above table). The constants \(c^i \) are determined from the linear system arising from substituting in Equation (VII) the boundary conditions at \(x = 0 \) and at \(x = 12 \):

\[
\sum_{i=1}^{6} c^i u_k^i(0) = u_k(0) - u_k^p(0)
\]

\[
\sum_{i=1}^{6} c^i u_k(12) = u_k(12) - u_k^p(12); \quad k = 1, 2, 3.
\]

* We shall explain Table I on the example. The first line indicates that the initial conditions are \(u_1(0) = 1 \); \(u_2(0) = u_3(0) = v_1(0) = v_2(0) = v_3(0) = 0 \). The solutions resulting from these initial conditions are \(v_1 \) and \(u_1 \).
CURVILINEAR BOUNDARIES

If the region of integration \(R \) is of a shape of a curvilinear trapezoid shown in Figure 2 which is bounded by the lines

\[
y = y_0; \quad \text{and} \quad y = y_{n+1}
\]

and by the curves

\[
x = \alpha(y) \quad \text{and} \quad x = \beta(y); \quad y_0 \leq y \leq y_{n-1},
\]

then the procedure of the method of lines remains essentially the same as for a rectangular region. The proof of convergence, however, requires that the third partial derivative with respect to \(y \) be continuous. The curvilinear boundaries will be explained in the following example.

EXAMPLE 3

Solve the boundary value problem

\[
\Delta u = 0 \text{ in } R \quad (1)
\]

\[
u(x, 0) = u(x, 4) = 0 \quad (2)
\]

on the curve \(\alpha u = \varphi_1(x, y) = x + y \quad (3) \)

on the curve \(\beta u = \varphi_2(x, y) = x - y \)

where \(R \) is \(\alpha(y) \leq x \leq \beta(y); \quad 0 \leq y \leq 4 \)

\[
x = \alpha(y) = \frac{1}{8} y^2 + 1; \quad x = \beta(y) = \frac{1}{10} e^y + 3
\]

![Diagram of curvilinear boundaries with labeled coordinates and curves](image-url)
Applying the method of lines we shall use the three lines

\[y_1 = 1; \quad y_2 = 2; \quad y_3 = 3(n = 1, n = 3, L = 4). \]

We shall compute \(U_k(x) \) on these lines using the approximating system of Equations (4A) which in our case is

\[
\begin{align*}
U_1'' + U_1 - 2U_1 + U_0 &= 0; \quad U_0 = U_4 = 0; \\
U_2'' + U_3 - 2U_2 + U_1 &= 0 \\
U_3'' + U_4 - 2U_3 + U_2 &= 0
\end{align*}
\]

On the curve \(\alpha \);

\[U_k^{(\alpha_k)} = x_{k1} + y_k = \frac{1}{5} y_k^2 + y_k + 1 \]

On the curve \(\beta \);

\[U_k^{(\beta_k)} = x_{k2} - y_k = \frac{1}{10} e^{y_k} - y_k + 3 \]

where \(x_{k1} \) is the abscissa of the point of intersection of the line \(y = y_k \) and the curve \(x = \alpha(y) \), and \(x_{k2} \) is the abscissa of the point of intersection of the line \(y = y_k \) and the curve \(x = \beta(y) \).

Like in the previous examples we obtain six independent solutions from the assumed initial values shown in Table I and form the general solution:

\[U_k(x) = \sum_{i=1}^{6} c_i U_i^k(x) \]

We determine the constants \(c_i \) from the linear system arising from substituting the boundary conditions:

\[U_k(x_{k1}) = \sum c_i U_i^k(x_{k1}) \]

\[U_k(x_{k2}) = \sum c_i U_i^k(x_{k2}); \quad k = 1, 2, 3. \]
MACHINE COMPUTATION

In order to compare the method of lines with the conventional grid method, Numerical Example 2 has been programmed using the two methods. The programming, with notation included, for the method of lines is given. Figure 5 is a flow chart showing computer operations.

CONCLUSIONS

The method of lines and the conventional grid methods have been compared on two high-speed digital computers at Ballistic Research Laboratories, Computing Laboratory, Aberdeen Proving Ground, Maryland, with respect to run time, computer limitations, and one known solution, \(u(4, 4) = 2428 \). Let "H" be the step size and "N" be the number of points. The comparisons follow:

First Method - Conventional Grid Method

A. \(H = 2 \quad N = 15 \quad 15 \times 15 \) Matrix

- **ORDVAC** - Run Time 5 min.
 - No Limitations

- **BRLESC** - Run Time 1 min.
 - No Limitations

\(u(4, 4) = 2419.53919 \)

B. \(H = 1 \quad N = 77 \quad 77 \times 77 \) Matrix

- **ORDVAC** - Memory too small

- **BRLESC** - Run Time 1 min
 - No Limitations

\(u(4, 4) = 2420.69488 \)

C. \(H = 0.5 \quad N = 308 \quad 308 \times 308 \) Matrix

- Memory too small on both computers
Second Method - Method of Lines

A. $H = 2$ \hspace{1cm} $N = 3$ \hspace{1cm} $\Delta X = .1$ \hspace{1cm} 6×6 Matrix

ORDVAC - Run Time 5 min.
Limitations, smaller ΔX's consume too much run time

BRLESC - Run Time 1 min.
No Limitations

$U(4, 4) = 2420.4529$

B. $H = 1$ \hspace{1cm} $N = 7$ \hspace{1cm} $\Delta X = .1$ \hspace{1cm} 14×14 Matrix

ORDVAC - Run Time 10 min.
Limitations, same as A.

BRLESC - Run Time 1 min.
No Limitations

$U(4, 4) = 2420.7435$

The method of lines needs approximately ten times less storage than the conventional finite difference methods. In some cases it may be faster and more accurate. Another advantage of this method is its applicability to analog computers.

TADEUSZ LESER

JOHN T. HARRISON
FORAST PROGRAM

METHOD OF LINES

PROGRAMMER- J. T. HARRISON

COMM GIVAN-
COMM DEL U = 0 IN R
COMM U(X,0) = U(X,6) = 100X(12-X)
COMM U(0,Y) = U(12,Y) = 100Y(8-Y)

COMM FIND U(X,Y) IN REGION R

COMM NOTATION-
COMM H = STEP SIZE
COMM N = NUMBER OF LINES TO FIND (0<Y<8).
COMM L = LENGTH OF Y (0<Y<8).

COMM B1 = U1(0) = 1200 ; B4 = U1(12) = 1200
COMM B2 = U2(0) = 1600 ; B5 = U2(12) = 1600
COMM B3 = U3(0) = 1200 ; B6 = U3(12) = 1200

COMM Y = X
COMM YI = UK(X) ; (I=1,2,3) ; (K=1,2,3).
COMM YI = VK(X) = U*K(X) ; (I=4,5,6) ; (K=1,2,3).
COMM Y'I = D(UK)/DX ; (I=1,2,3) ; (K=1,2,3).
COMM Y'I = D(VK)/DX ; (I=4,5,6) ; (K=1,2,3).

COMM M1,1 - 2N X 2N MATRIX TO FINE THE C'S.
COMM CI - (I=1,2,...,6) CONSTANTS TO BE DETERMINED.
COMM CUI - (I=1,2,...,21) FINAL SOLUTIONS FOR UK(X).
COMM QI - (I=0,1,...,6) ERROR TERMS FOR SUBROUTINE.
COMM UI - (I=1,2,...,230) TEMP. STORAGE.
BLOC(Y-Y6)(Y'-Y'6)(Q-Q6)(B1-B6)%
BLOC(U1-U230)(CU1-CU45)(M1,1-M6,7)%
BLOC(C1-C6)%
SYN (X=Y)%

DELX DEC (.1%)
START INT(H=2)% INT(N=3)% INT(L=8)%
PRINT-FORMAT(F3)< H = '{H}< N = '{N}<
CONT< L = '{L}%
ENTER(PRINTA)% ENTER(PRINTB)%

COMM BOUNDARY CONDITIONS
B1=1200% B2=1600% B3=1200%
B4=1200% B5=1600% B6=1200%

COMM INTERGRATE (0<=X<=12), BY MEANS OF
COMM A SUBROUTINE, RUNGE-KUTTA GILL TO APPROXIMATE
COMM ORDINARY DIFF. EQUATIONS FROM 7 INITIAL CONDITIONS

Y'=1%
EPS=DELX*.5%
SET(TC=0)(I=0)%
1.0 READ-FORMAT(F1)-(7)NOS. AT(Y0)% INC(TC=TC+1)%
SET(C=0)%
U1,1=Y1% U2,1=Y2% U3,1=Y3%
INC(I=I+3)%
COUNT(20)IN(C)GOTO(R.K.G1)% GOTO(4.0)%

COMM EVALUATE THE Y'S.
EVAL'Y Y'1=Y4% Y'2=Y5% Y'3=Y6%
IF-INT(TC=7)GOTO(2.0)%
HOM = 0% GOTO(3.0)%
2.0 HOM = 20-30*X(12-X)%
3.0 AA=.6*Y1-.3*Y2+HOM% BB=-.3*(Y3-2*Y2+Y1)%
CC=.6*Y3-.3*Y2+HOM%
Y'=99*AA-10*BB+CC)/98%
Y'2=(100*BB-10*CC-10*AA)/98%
Y'3=(AA-10*BB+99*CC)/98%
Y'4=Y'1% Y'5=Y'2% Y'6=Y'3%
GOTO(R.K.GD)%

COMM EVALUATE THE Y'S.
COMM STORE DATA.

4.0
U1,1=Y1% U2,1=Y2% U3,1=Y3%
INC(I=I+3)%
IF(X=12)WITHIN(EPS)GOTO(6.0)%
SET(C=0)% GOTO(R,K,G1)%

6.0
IF-INT(TC=7)GOTO(FINDC)% GOTO(1.0)%

COMM DETERMINE THE C'S FROM UK(0) AND UK(12).
COMM FORM A 2N X 2N MATRIX.

FINDC
SET(I=0)(J=0)(T=0)(J=0)(KK=0)%
M1,1,II=U1, JJ% INC(JJ=JJ+21)(II=II+1)%
COUNT(6)INT(T)GOTO(7.0)%
M1,1,II=U1, JJ% INC(KK=KK+1)(II=II+1)%
SET(T=0)%
COUNT(3)INT(J)GOTO(8.0)% GOTO(9.0)%
8.0
IF-INT(KK<=2)GOTO(8.1)% GOTO(8.2)%
8.1
SET(JJ=10)%
8.2
SET(JJ=10)%
8.3
INT(JJ=JJ+J)% GOTO(7.0)%
9.0
IF-INT(KK=6)GOTO(10.0)% SET(J=0)% GOTO(8.0)%
10.0
ENTER(S, N, E, Y, M1, 1, 6, C1)%

COMM FIND UK(X) -(K=1, 2, 3) IN THE REGION R.

SET(K=0)(II=0, JJ=0, I=0, P=126)%
CLEAR(45)NOS. AT(CUI)% SET(KK=1, CT=0)%
PRINT<X=2>(Y=2, 2, 2, Y=2, 9, Y=4, 9, Y=6, 6, 6, 6, ENTER(PRINT))%
11.0
INT(KI=K+1)% SET(II=0)%
12.0
CU1, KI=C1, II=U1, JJ+CU1, KI%
INC(JJ=JJ+21)%
COUNT(6)INT(I)GOTO(12.0)%
CU1, KI=C1, II+CU1, P% INC(P=P+1)%
INT(JJ=I+KK)%
COUNT(3)INT(I)GOTO(11.0)%
PRINT-FORMAT(F2)<X=(CT)(3)NOS. AT(CUI, K)%
SET(I=0)% INC(K=K+3)(CT=CT+2)(KK=KK+3)%
IF-INT(K=21)GOTO(N, PROB)% ENTER(PRINT)8% GOTO(11.0)%
GOTO(11.0)%

F1 FORM(10-10)(1-7)%
F2 FORM(4-3)(3-2)(1-1)(12-4-10)(3-2)(1-3)%
F3 FORM(4-3)(1-3)%
END GOTO(START)%
Method of Lines

Input

<table>
<thead>
<tr>
<th>Y=X</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
<th>Y6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
</tr>
<tr>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>
Method of Lines

Output

\[
\begin{align*}
H &= 2 & N &= 3 & L &= 8 \\
Y=2 & & Y=4 & & Y=6 \\
X = 2 & 1200.0000 & 1600.0000 & 1200.0000 \\
X = 4 & 1907.5268 & 1944.4311 & 1907.5268 \\
X = 6 & 2581.9081 & 2420.4529 & 2581.9081 \\
X = 8 & 2839.0200 & 2620.3148 & 2839.0200 \\
X = 10 & 1907.5268 & 1944.4311 & 1907.5268 \\
X = 12 & 1200.0000 & 1600.0000 & 1200.0000 \\
\end{align*}
\]
REFERENCES

In the method of lines for solving certain kinds of boundary value problems in rectangular or trapezoidal regions one of the variables, say y, is discretized while the other variable x is left continuous. When suitable finite difference approximations are substituted for the partial derivatives with respect to y the differential equation is changed into a simultaneous system of ordinary differential equations in the variable x. The method used very little in the USA is used extensively in the Soviet Union and nearly all the literature on this subject is in Russian. The method has been tried in BRL and it seems to be a very useful one. This report does not pretend to be a monograph on the subject. It intends to be a practical guide to computations.
Partial Differential Equations
Numerical Methods