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FOREWORD

The study described in this report was performed during FY 1966 under the sponsor-
ship of the U. S. Arwy Research Office - Durham, N. C., contract DA 31-124-AR0-D-396.
Technical coordinators for the Government have been Messrs A, P, Sheppard and J. R.

Suttle, ARO-D.

ABSTRACT

This report is concerned with a survey of the presently availabl!e literature con-
cerning broadband antennas, in order to determine the capabilities and the limitations
of the various techniques which have been investigated.

The report is divided into three main parts, concerned witl tue following sub-
jects:

I. Frequency independent Antennas
II. Logarithmic Periodic Antennas
III. Electrically Small Antennas
In the first part the present state of the theory of frequency independent antennas
is discussed. The experimental work on these structures is then briefly reviewed.
Ia Section II, a parallel treatment is made for log periodic antennas. Section III
is mainly concerned with the theoretical question of the bandwidth limitation of an

antenna ''small' in terms of wavelength.
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INTRODUCTION

The long term objective of the research documented in this report is to find
promising techniques that will lead to the realizaticn of ultimate operating L nd-
widths for any given class of antennas., As a first step toward the accomplishment
of this objective, a literature review has been conducted to determine promising
theoretical approaches to broadband antenna design.

The immense quantity of both experimental and theoretical information avail-
able on antennas in the frequency range of interest (100 Kc to 100 Gc) obviously
prevents consideration in depth of all antenna classes, hence this survey primarily
considers wideband structures that are characterized by self-congruent (log spi-
ral) and log periodic geometry. In addition, several approaches to the general
problem of broadbanding conventional "small'" antennas are reviewed, with emphasis
placed on those papers that contain general results independent of specific antenna
configurations.

The reader will find that the theory of frequency-independent antenna structures
is not well developed at the present time. The only approach having thus far been
developed is the analysis of the periodic component of the structures, and the array
of dipoles is apparently the only practical structure which has been solved. 1In
the dipole array case, approximations are made which degrade solution accuracy at
dipole spacings less than a wavelength.

For antennas small with respect to the operating wavelength, the theory in
its present form allows prediction of an upper bound on the bandwidth obtainable
from a certain structure, but is not able to predict the actual behavior of a
practical antenna given its configuration,

In the following, Section I reviews the present state of the theory of
antennas derived from log spiral geometry, Section II considers the class of
log periodic antennas, and in Section III, the problem of the minimum Q or max-
imum bandwidth of small lossless antennas is discussed.

Several promising approaches that may provide a better insight into the
behavior of frequency independent antennas are outlined in Section IV, along

with recommendations for future studies.,
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I, FREQUENGY INDEPENDENT ANTENNAS

1.1 INTRODUCTION

Carrel, in a very important paper, (reference [1]*) which we will examine in
detail in Section II, gave this crystal clear definition of frequency independent
antennas:

"By frequency independence, as applied to an antenna, it is meant that

the observ-ble characteristics of the antenna such as the field pattern and

input impedance vary negligibly over a band of frequencies within the design

limits of the antenna, and that this band may be made arbitrarily wide mere-

ly by properly extending the geometry of the antenna structure. The ultimate

band limits of a given design are determined by non-electrical restrictions,

Size governs the low frequency limit, and precision of construction the high

frequency limit."

t is well known that as a rather immediate consequence of Maxwell equations, al!l
the electromagnetic properties of a lossless passive structure are determined by its
shape and size evaluated in terms of wavelengths. This seems at first glance to deny
the possibility of existence of an antenna satisfying the above quoted definition.
However, this turns out not to be correct: the basic idea underlying the invention
of frequency independent antennas (FIA) is just the recognition that there exist struc-
tures for which the geometrical properties are independent of linear dimension and
can be specified by angles alone [2]. When scaled by an arbitrary factcr they are
transformed into others congruent to the original one, However, this is not the only
requirement a structure must satisfy in order to be a frequency independent antenna.
In addition, it is necessary that the current have a particular behavior along the
structure,

To clarify this point let us consider the infinite biconical antemna. It is
obviously a self congruent geometry in the sense specified above. However, it is not
a FIA, If we cut the conducting cones at any distance from the apex, the resulting
finite structure behaves differently at different wavelengths. We cannot increase the
band by simply "extending the geometry of the antenna structure.' The reason is that
the total current is constant along the structure, and therefore there is the above
mentioned end effect, which causes a difference of behavior at different frequencies;
in tact the surface density of current in the biconical case is decreasing as %,
where r is the distance from the feeding point (apex of the cones). In order not to
have end effects, the current at the end of the structure must be negligible. This

implies that the density of current must decay faster than % (going away from the

*
Numbers in square brackets refer to references iisted in the Bibliography.
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feeding point). In such a case, the structure can be truncated at a certain dis-
tance from the feeding point, (propcrtional to the largest wavelength of operation).
The rate of decay of the current depends, of course, upon the particular structure
under analysis. From these considerations it is apparent that the behavior of a
frequency-independent antenna is quite different from that of the biccnical case.
Roughly speaking, in the latter the energy is guided from the feeding puvint along
the "biconical guide,'" and the radiation occurs because of an end discontinuity
which trunsforms the guided modes in radiating ones. 1In the frequency-independent
antennas the energy reaches a region (whose location depends upon frequency) of very
strong attenuation, beyond which the current is practically zero. 1In this region
(the "active zone") the guided energy must be transformed in radiation. Lo role is
played in this mechanism by the edge of the structure except at the lowest frequency
when the active region reaches it.
In summarizing we can say that a structure, in order to work as a FIA, must
satisfy the following requirements (one of geometrical and twc of electrical nature):
(a) self congruency (a scaling must transform the structure in itself);
(b) the current density must decay dlong the structure faster than 1/r,

where r is the distance from the feeding point; and
(¢) in the active zone there must be an efficient transformation of

guided modes into radiating modes.
These various points (a), (b), and (c), will be examined in morc detail in the next
Rections.

We want at this point to stress the fact that it is very difficult to predict
whether the electromagnetic behavior of a certain structure which satisfies (a), will
obey (b) and (c). This makes the design of novel types of frequcncy-independent an-
temmas very difficult, Quoting Mittra and Jones [3] about this point:

"The conditions prescribed1 . + . are undoubtedly necessary, but far

from being sufficient. Most of the authors in the field report only the

successful antennas and tacitly forego the discussion or those which,

although built on the same principle as the others, fail to work as broad-

band antennas. For every successful antenna built, there are perhaps

several vhich were failures. Even today, after many years of experience,

it is not possible to predict, a-priori, whether or not a given log-

periodic antenna (LPA) will have broadhand performance in the design range."

The design of frequency-independent antennas is largely based on experimental

and cut-and-try procedures. However, as we will see later, substantial steps

1i.e., The geometrical condition we have denoted by (aj.
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have been made in recent years toward an understanding of these interesting and
peculiar structures.
1.2 GEOMETRY OF FREQUENCY INDEPENDENT ANTENNAS
An antenna satisfies the angle condition [(a) in Section 1.1] when expansion by
an arbitrary ratio 7 about the feed point O, generates a structure that either coin-
cides with the original one, or differs only by a rotation about some axis D passing
through the point 0.
The most general structure having this property must satisfy the following
conditions [2,4]:
(a) the axis of rotation D must be independent of T, and
(b) the angle of rotation ¢ about D must be proportional to the logarithm
of the expansion factor T:

T2 a
=== % (1.1)
r
1
where r, and r, are the radius vectors defining two correspondent points before and
after the expansion.
As a consequence of (a) and (b) the surfaces bounding the antenna structure must

have polar equations of the form:
F(6, re %) =0

For 6 = 60 = const,the points of the structure are described by the equations:

r'=r e

. ap _ a(e+ cpo) (1.2)

which are equiangular spirals (Fig. l1). They make a constant angle { with the
radius vector. The e, is the angle such that r(0) = La = e®%. When e, is varied
the entire curve is rotated about D.

In spite of the fact that the spiral is surrounding the origin, infinitely many

times the arc length s from the origin O is finite and proportional to distance r:

s-
cosy

The parameter a of the spiral has a simple geometrical significance. It is simple to
show that a is related to § and 60 by the relationship:

siné
[o]

tand (1.3)

1.3 THEORETICAL WORK ON FREQUENCY INDEPENDENT ANTENNAS

1.3.1 General Considerations

The geometrical shape of an equiangular spiral conical antenna is not a simple

one. The surface of the conductors are not coincident with any coordinate system for
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Fig. 1.

Geometry of equiangular spiral.
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which the wave equation is separable. Therefore the analysis of this structure is a
formidable task and an exact solution for the general conical case has not yet been
found. On the other hand, the planar spiral has been analyzed by resorting to a very
simplified mathematical model, an idealization of the structures practically used.
Although this solution does not explain all the erxperimental results, it performs one
of the two major steps toward an understanding of the way in which frequency-indepen-
dent antlennas operate.

The other basic theoretical advancement has been the introduction and systematic
use of the fruitful and powerful idea of considering these antennas (and the log
periodic as well) as slowly tapered versions of (uniformly) periodic structures. If
the properties of the latter are known, it is thus possible to deduce in an apprcxi-
mate way the properties of the antennas by considering its '"local" behavior (as will
be discussed at length in Section 1.4).

In the next sub-section, we will examine in some detail the solution for the
planar spiral antenna found by Rumsey, Cheo, and Welch. Then we will consider in 1.3.3
other theoretical contributions (exact and approximate solutions). Then 1.3.5.1 and
1.3.5.2 will be devoted to an elementary discussion of the various possible waves
which can be supported by uniform and periodic structures. The discussion of this
question will give the background necessary in order to use the approach mentioned
above of considering a conical spiral as locally periodic (Sub-section 1.3.5.4). This
study will also be useful for a qualitative analysis of log-periodic antennas (Section
11).

1.3.2 An Exact Solution for the Planar Log Spiral with an Infinite Number of Arms

The solution of the electromagnetic problem posed by a FIA is a formidable task,
which so far has proved to be intractable, Therefore, it has been necessary to con-
sider some simpler prcblem (which could be considered an idealization of the real one)
amenable to theoretical solution, The mathematical model, posed by Rumsey, et al.,
consists of an infinite number of perfectly conducting wires of spiral shape infinitely
close together [5]. It is apparent that this structure is the limiting case of a
multi-arm antenna, of the self-complementary type (i.e., such that the angular widths
of the metallic elements and of the space between two elements are equal, Fig. 2),
when the number of arms is increased with limit. The antenna takes the form of an
anisotropic sheet perfectly conducting in the direction of spiral lines and perfectly
transparent in the perpendicular direction., This implies that on the plane of the

antenna the component of the electric fieid along the wires is zero

E -t =0 (1.4)

= V.=
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Conducting Sheet
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Fig. 2. Self-complementary multiarm log spiral structure.
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where Et is the tangential component of the electric field (component on the plane
= 0) and t is a unit vector in the direction of the wires. It is of interest to
note that the tangential magnetic field must satisfy the same boundary condition

gt-g =0 (1.5)

This is because the current must necessarily flow along the direction defined by t
(i.e., along the wires). The identity of condition (1.4) and (1.5) suggests trying

a solution in which E and H have the same behavior (i.e., they are proportional). It
is however clear that the proportionality constant cannot be the same in the half
spaces, 2z > 0 and z < 0 of Fig. 1, because ﬂt is discontinuous at z = 0 (since there
is a current flow on the arms of the spiral) while Et is continuous. It is possible
to show that solutions with E proportional to H can exist only if the proportionality
constant is either +jn or -jq with n the characteristic impedance of the medium [6];

therefore one of the following sets of solutions must be satisfied:

E, =*h B, for z > 0
(1.6)
EZ = -1 52 for 2 < 0
or
§2=-j11_}j2 for z > 0
(1.7)
E = +in 51 for 2 <0

Let us consider for example solution (1.6). The field El (or Ez) can be derived

from a potential U1 (or UZ)’ satisfying the wave equation as it follows [5]:

E; = -pw(2U)) + Wk (zU)) (1.8)

§2 BVk(zUz) + Vka(zUZ) (1.9)
where B is the propagation constant of free space and z is a unit vector in the z
direction. When (1.8) and (1.9) are satisfied the field is completely specified by
(1.6). To the functions U1 and U2’ which satisfy the wave equation and the radiation
condition and have an angular variation of the type eJ ¢’ the following integral

representation can be given:

ine % -5 B2_>\2
forz>0 U =el™ [g00) 3,00 e J AdA (1.10)
(o]
Lo VAR
forz<0 U, = eI™ fe(n) T, %) el” AdA (1.11)
(o]

with g(\) to be determined. Jn(xp) is the Bessel function of the first kiul and order
n. The introduction of the boundary condition (1.3) and the use of (1.6) gives [5 and 7]:
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-a Elp = El@

which, by vtilizing (1.8), (1.9), (1.10) and (1.11), yields in turn the integro-

differential equation:

(g (-jnag + nvﬁz_}\z)" Jgo‘o) + (-jaVBz-)\zﬂi) AZJ;()\O) dr =0 (1.12)
o]

It is possible to transform (1.12)into adifferential equation for g(\), which

can be solved. 1In this way the expression for the potential U, of the field in the

1
half space z > 0 is obtained:

1- Vi, 2 /2 (1-aj‘v:7-1+j(n/a) e'j S e

o
Ul = Aej““’f —ﬁ, J (Bpy) dy (1.13)
[o] n
1+¥1-y y

where A is a constant. For z < 0 a similar expression for the potential U2 can be

obtained from (1.13), (1.10) and (1.11). It is possible to prove that the signs in

(1.6) and (1.7) could not be chosen in a different way, because that would have led
to divergent expressions for U1 and U2 unless the sign of n were changed too. 1In
fact, with the radiation conditions fixed, the choice of the plus or minus sign in
(1.6) and (1.7) determines the polarization of the far field [6]. On the other hand,
the sign of n specifies the sense of the polarization of the source. Therefore, the
physical significance of such a constraint is that the far field must have the same

polarization as the source.

In theiyp paper, Rumsey,et al., considered in detail the various features of their

solution. A check of it:s behavior at the feeding point showed that when the distance
p from the origin tends to zero the magnitude of the current flowing in an angular
sector of the antenna from the source tends to a constant as it must be. Since the
field is circularly polarized at infinity, the radiation pattern can be characterized
by a single scalar. The expression of the far zone electric field, obtained by using

stationary phase method is the following:

= ay -ipr
E(8,9) = A(8) e v (8) ej“(¢ + 2).2_;_.

where the amplitude pattern is

n -
cos(tg g) e(” %) tg 1(wacose)

A(e) = (1.14)
sing V1+a cosze
and the phase pattern:
1®) = -2 1n |1+a’cos’6| +tg"! (-acose) (1.15)
-10 -
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The pattern A(8) is plotted in Figs.3 and 4 for various values of n and a and it is
amazing that they agree reasonably well with the experimental results found by Dyson
for the two arm spirals (see Subsection 1.4.1).

In crder to determine the ciurrent on the structure it is necessary to introduce
(1.13) in (1.8). For this computation it is not possible for arbitrary p to utilize
the asymptotic expressions which hold in the neighborhood of the origin or in the
far zone., Therefore the authors found it necessary to resort to a series expansion
of the integrand of (1.13) and a numa2rical integration.

It is worth spending some time in discussing these numerical results, algso because
they are illuminating for the comprehension of the general features of frequency-
independent antennas.

In Fig. 5 and Fig, 6, the amplitude and phase of the current flowing in a sector
of the antenna (normalized at the input value Io) are plotted vs fp = %F o (for n=1).
This means that the abscissa axis corresponds to the length of the circumference at
the radius p (measured in wavelengths). The amplitude distribution clearly shows the
characteristic current atteruation of frequency-independent antennas (see Section 1.1).
The parameter a is related, as already pointed out, to the curvature of the wires
constituting the antenna. For a = o (the wires are straight) and no attenuation of
current is found; this case corresponds to the infinite biconical structure degenerate
into a plane. Current attenuation increases with a; for example, a = 0.1 causes a
current reduction to about 107 at fp = 2, i.e., p = % . The behavior of the phase is
rather peculiar, exhibiting a sign change of the phase velocity (which is proportional
to the reciprocal of the slope of the curve in Fig. 6) at a certain distance from the
feeding point. For large Bp phase velocity tends to the velocity of light (this occurs
where the current is already extremely attenuated). The wave is a slow one (phase
velocity less than velocity of light) in the neighborhood of the origin and then be-
comes a fast wave with increasing p. It is clear that the zone of the antenna for
1 < Bp < 2 plays a fundamental role in the radiation mechanism. 1In this "active zone"
the radial variation of the phase is slow (see Fig. 6)and adjacent wires are approximately
in phase. 1In points closer to the origin, the radiation from the currents is small
because of the rapid variation of the phase (much in the same way as the input resis-
tance of two dipoles close to each other when they are fed in opposition of phase is
much lower than when they are in phase). Roughly speaking, we can say that the flux
of power from the feeding point is guided along the surface until it reaches the active
zone where it is transformedinto radiation. This interpretation is in agreement with
the ideas generally accepted concerning the radiation mechanism of conical-spiral and

log periodic antennas.
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1.3.3 Other Miscellaneous Contributions to the Problem of Planar Spiral Antennas

After the basic work of Rumsey et al., other people have tried to make use of the
same or similar mathematical model to treat theoretical problems concerning planar
spiral antennas., Particularly remarkable the paper of Bernard and Ishimaru [8] in
which the solution for the planar log spiral excited by a dipole orthogonal to the
plane of the antenna is found by using an integral representation for the Hertz
Potential (of the type considered in the previous section). An interesting feature
of the solution is that the field is linearly polarized, (showing that the solution
is a combination of the two types of circularly-polarized modes with n=0, concidered
in the previous section). Furthermore the radiation obtained is at a very small
angle with respect to the surface. In this paper the effect of the presence of a
ground plane is considered and for generality, the case of a dielectric filling the
space between the antenna and the ground plane is a2ralyzed. The radiation is bounded
to half space, a property desired in most practical applications. The frequency
independence of the form of the radiation beam has been numerically checked, and
experimental tests have confirmed the theoretical predictions. A typical radiation
pattern of an experimental mciel is reported in Fig. 7. It refers to the vertical
beam of a multi-arm antenna similar to that pictured in Fig. 2. The structure is made
by using copper clad dielectric sheets with spiral slots photo-etched out of the copper
surface. The feed (not shown in Fig. 2) is a monopole protruding out of the small
hole in the center of the back plane. The band is limited bv the presence of the
ground plane. However bands of 2:1 with very satisfactory radiation patterns have
been obtained.

From the point of view of possible applications, the work of Bernard and Ishimaru
is particularly interesting because it indicates the possibility of obtaining omni-
azimuthal coverage with linear polarization on a very large band.

On a different iine of thought some approximate analyses of log-spiral antennas
have been performed by assuming certain current distributions and then computing the
r diation patterns (e.g. Copeland [9]). This approximate type of analysis can be
very userful, since the numerical results are often remarkably close to the experimental
ones; however, it does not lead to an understanding of the operation of these struc-
tures (e.g., since the current is assumed a-priori no insight is obtained about the
mechanism by which the current is attenuated along the structure.)

1.3.4 Pseudo Frequency-Independent Antennas

Before passing on to the discussion of uniform and periodic structures, it is
worth while to mention briefly some studies performed (analytically and experimentally)
on structures which are not frequency independent (in the sense defined in Section 1.2),

but which cperate over bandwidths never reached before,
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Turner was perhaps the first to propose a spiral antenna in 1955 [10}: two flat,
rather narrow, constant-width metallic arms, wound in the form of an Archimedean
Spiral (which clearly is not a self-scaling structure), Fed at the center in a
balanced manner, it radiates a broad circularly-polarized lobe on each side of the
plane of the antenna. Subsequent investigations and development of this antenna pro-
duced forms that have stable pattern and impedance characteristics over a bandwidth
up to 10 to 1 [11~-15].

Curtis [17] treated analytically the radiation of the archimedean spiral. He
approximated the geometry of the structure with a series of semicircles of different
radii., He assumed a certain distribution of current on the arms and then calculated
the radiation field. In spite of the fact that this approach is not theoretically
correct, the radiation patterns calculated are surprisingly close to the experimental
data.

1.3.5 A General Approach to the Analysis of Frequency Independent and Log
Periodic Structures

1.3.5.1 "Slowly-Varying'" Periodic Structures

A great deal of work has been made in the last thirty years in the theoretical
analysis and experimental study of electromagnetic waves on uniform and periodic
structures. The propagation of guided waves on open structure (surface waves) has
been thoroughly ianvestigated in the last decade and in the last few years the more
difficult and elegant theory of "complex" or '"leaky'" waves has been amply developed
[18 - 20]., It is therefore understandable why various authors have recently attempted
to adapt these theories, already at a high degree of development, to the analysis of
spiral and log-periodic structures. The essential idea underlying this approach con-
sists in assuming that if the structure changes its geometrical property gradually
(e.g., for a conical spiral if the angle & is not too large), then the electromagnetic
behavior is locally very similar to that occurring in a uniform or periodic structure
with its section equal to that in the point under analysis. It is essentially the
same idea which is at the basis of the WKB method i.e., roughly speaking, to consider
the medium "locally homogeneous" (with the obvious mathematical simplifications in the
wave equation).

In the two following subsections the types of waves which can be supported
by a uniform and a periodic structure will be analyzed briefly, following essentially
the simple exposition of ([18].

1.3.5.2 Elementary Discussion of the Types of Waves Supported by Open
Uniform Structures

A long radiating structure can be considered a guiding configuration [19].
Although the antenna is open to free space, the surface and leaky waves are supported

in a manner similar to that whereby modes propagate in a closed (shielded) waveguide.
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The knowledge of the field configuration in the neighborhood of a radiating structure
allows prediction of the far field (via the Huygens principle). On the other hand,
the capability of selectively exciting the various types of waves on the structure
allows control of the radiation pattern in synthesis problems,

Let us consider a smooth structure, which for simplicity will be assumed bi-
dimensional, bounded by the plane x = 0, If z is the direction of the propagation,
the waves in the upper medium (free space region) z > 0 have a spatial and temporal
dependence of the type

ej@nt-ktx-wz) (1.16)
where w and kt are, respectively the wave numbers in the longitudinal (z) and trans-

verse (x) directions, and are related to free-space wave number k via the dispersion

relation
w2 + kcz - k2 S (1.17)
w and kt are generally complex:
wEg - e (1.18)
LI R (1.19)

While the expression (1.16) for the elementary component wave and (1.17) are general
relationships, the actual values of kt and w depend of course upon the nature of the
medium below the interface. To determine these values, the boundary value problem
must be solved, and this is an extremely difficult task. However, in order to dis-
cuss the behavior of these various types of waves this analysis is not necessary;
in what follows we will consider surface and complex waves in free space without
relating the discussion to a specific structure,.

The simplest types of waves on an open structure are the surface waves, propagat-
ing in the direction of the interface without loss. This implies that kt is purely

imaginary and w purely real, i.e,
kt = 'jlktl (1.20)

From (1.17):

w2 > k2 (1.21)

Therefore the surface waves are slow waves., The power is flowing in the z direction
and the power flow occurs at the group velocity vg which, for physical reasons,is

always less than the velocity c of light:

v
18] = 1S5 (1.22)
- 19 -
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An examole of a possible dispersion curve is given in Fig. 8. For the wave represented

by this curve the group velocity and the phase velocity,
w k

Vo e 2 (o] (1.23)
B B

have the same sign in some frequency regions; opposite signs in others. The former

case corresponds to forward waves and the latter to backward waves. The forward waves
are the most usual, occurring in dielectric slabs, Gouban lines etc.; the backward ones
are less widely known and occur in dispersive and/or anistropic media. In this kind

of wave the phase delay occurs in the direction opposite to that of the flow of power.
This behavior can seem at first glance somehow unfamiliar, but it does not contradict
any physical principle.

Complex waves are characterized by complex values of w even if the media are
lossless. An example of a structure capable of supporting such waves is the slotted
rectangular metallic waveguide. From (1.17) it clearly appears that if w is complex,
then kt must be complex too. Splitting (1.17) in its real and imaginary parts, the

two following relationships are obtained.

82 B nBu 2 1 2 g 2

(1.24)
of +ba=20

In order to gain a better picture of the physical characteristics of these

waves, polar coordinates are ir.troduced:

X = r cosf b

B cosé
o

z =r ging B

B siné (1.25)
(o]

Equation (1.25) defines eo and B implicitly. Notice that 90 is positive in all
directions for which z is positive, i.e., the angle between the direction 60 and the

direction of the flow of the feeding power is smaller than % . We can write

e_j(wz+ktx) - o J(Bztbx) oJ(oztax) _ e'jk(ﬁ)r-D(G)r (1.26)

where k(0) and D(9) are the wave numbers and the decay terms in the radial directi..

defined by 6. By using (1.26) and the basic relationship (1.24) we obtain

k(6) = B cos (9-90)
(1.27)
sin (6-90)
D(e) = - cosf
o
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It is seen in this way that, given complex w and kt’ a direction Go is found on which
the gradient of the phase is maximum and the attenuation zero. We can assume b posi-
tive. B is always positive (the orientation of the propagation vector is defined by
60, and B is its length,) Furthermore, the amplitude of the wave propagating along
the interface x=0 decreases progressively with z, because there is a leakage of
energy from the guiding structure to free space. This means that @ cannot be negative
and D(6) will change sign when 0 crosses the value 60. It is then apparent that where
D() is less than zero, the "leaky'" wave cannot exist in the entire half space of
radiation, because it could not satisfy the vadiation condition; in other words, it
must be restricted to the angular region of space where D(p) > 0. This region can
be promptly found from inspection of (1.27). Let us consider separately the two cases
60 > 0 and 0, < 0.

Case (a): 60> 0 (Fig. 9)

For this case

D) >0 for 6 >6

o
D@®) =0 for 6 = 60
D) <O for 6 < 90

Therefore, the region of existence of the wave is given by

m
2

>0 >0 (1.28)

It could be simple to check from (1.26) that the wave is attenuated in the z direction
but increases in the x direction., This type of wave (not satisfying the radiation
condition) is a "non-spectral" wave.

Case (b): 60 <0

In this case similar considerations show that the wave exists in the regicn
8, <8< g and it is attenuated in both x and z directions. This wave is therefore
of "spectral" type.

From (1.25) it is apparent that for waves of type (a) and (b), B is respectively
positive and negative, Consequently, (since we have assumed that along the interface
the source feeds power in the z direction) the (a) type of wave is forward, and the
(b) type is backward.

If we plot k vs B in a dispersion diagram (Fig., 10) it is possible to get infor-
mation about leaky vaves in a way analogous to that of surface waves. A bounded wave
is one with B >> k., In fact from (1,27) and (1.25), it can be established that in
this case b ~ B > k, The wave travels essentially at the interface (6_:'%). In the

Brillouin diagram this corresponds to a point of the type B or A of Fig. 10 (forward
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and backward slow waves). In the case that § < k (points C and D) it can be shown
similarly that the wave is essentially radiating. From the antenna design viewpcint
this is very interesting since one can predict the radiating behavior of a given
structure if the plot of k vs £ on the Brillouin diagram is given. For example, if

the representative point moves from a point of tne type A, to points of the type C

and D, it is possible to predict that the structure will begin to radiate effectively
as a backfire antenna when the point crosses the line at -45°, then the squint angle

of the beam will move toward broadside, and finally it reaches a zone where the antenna
will radiate end-fire. Notice the importance of the straight lines k = 8§ and k = -
which divide the zones of 'fast" and "slow" waves.

For what follows,it is convenient to put in abscissae and ordinates of the
dispersion diagram fa, and ka, where "a'" is a characteristic dimension of the struc-
ture (Fig. 11). For example, if we are considering the propagation along a dielectric
rod, "a" can be its radius. This modification of the dispersion diagram, mathematically
trivial, is however conceptually very important and is the key for a qualitative under-
standing of tapered (conical) structures. If, as already mentioned, we assume that
the structure is '"slowly" changing its -ross section we can assume that in every point
("approximately") its behavior is similar to that of a uniform structure with the same
characteristic length "a'". Therefore, we can apply the Brillouin diagram to tapered
structures by considering k constant (i.e., for a certain frequency) and '"a" as a vari-
able, Suppose the dispersion pattern for the smooth structure is that one of Fig. 10,
From it we can deduce that, for a fixed frequency (i.e., fixed k), the tapered version

will be able to support a forward wave in the zone characterized by:

0 < ka< kal
or simply 0<ac< a,
In the zone,
a; <ac< a, (1.29)

it will be able to support two forward waves and a backward wave. For

32 <a ,

the only possible wave is a forward wave. Notice that for any wave propagating in
the z direction there is a possible wave in the -z direction.

1.3.5.3 Waves in Periodic Structures and Application to F.I. and L.P.
Structures

The electromagnetic behavior of a periodic structure will now be considered.

The basic tool for this study is given by Floquet theorem [23,24]. Essentially this




theorem states that in a structure which is periodic in the z direction with period
d, if p(z) denotes any field component, then

-jw 2 (1.30)

p(z) = e P(z)

where P(z) is a periodic function of z with period d and v is a constant wave number.

Because of its periodicity, one may expand P(z) in a Fourier Series

21n
0 -j 3
P(z) = L P e (1.31)
If we put:
21
wn = wo +-E— n (1.32)

we can write for the various terms of (1.31),making explicit the dependence upon x and
t:
~ j@bt-ktnx-wnz)
®, = P e (1.33).

with Pn a constant. Since the various space harmonics (1.33) must satisfy the wave
equation, (1.17) and (1.24) must hold, and for each of the harmonics the treatment of
the previous section can be applied. The real part of (1.32) (multiplied by d for

convenience) will be written:
pd=B8d+2m , (1.34)
Plotting kd versus d we obtain a periodic diagram of the type of Fig. 12. It is clear

from the expression of the propagation constant Bn that all the space harmonics have

different phase velocities:

an = — =——+-E (1.35)
n Bo d

and the higher harmonic are slow waves. On the other hand, the group velocity is

equal for all the harmonics:

dw 1

= e &
Vg = B ag aB . (1.36)
30 0
ow

This can be expected since the space harmonics form a single physical unit which
accounts for the wave in question and the group velocity is the speed of the energy
carried by the wave,

An interesting point is that if W is a complex, all the w _are also complex with

the same attenuation constant @ (as it can be immediately seen from eq 1.32). However,
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the physical interpretation of this attenuation term is different for the various har-
monics, since some of them are essentially bounded waves and other essentially radiating
according to the discussion in the previous section. For example, suppose that for a
certain frequency the harmonic n = -1 is represented by the point A_1 in the fd, kd
plane (Fig. 13). This represents a leaky wave which, since A_1 is located in the zone
above the 1450 lines, is essentially radiating. The points A-Z’ Ao, Al’ etc. which
(according to eq 1.32) represent space harmmonics, correspond instead to waves essen=
tially bounded (they are below the iﬁso lines). They are strongly attenuated in the
transverse direction (as it could be seen from eq 1.24), and for very large n in

the transveise attenuation constant tends to Bn.

A basic point which helps explain the manner of log-spiral and log-periodic
antennas, is that under certain hypothesis (approximately verified in some practical
cases) we can deduce from the Brillouin Diagram that the first radiating wave is a
backward wave. This is a well known experimental feature which is typical fér this
kind of structure (which radiate toward the feeding point). Suppose that Bo is pro-

portional to the frequency; and larger than the free space wave number:
Bo/k = constant > 1 , (1.37)

Equation (1.37) applies if the antenna behaves exactly as a delay structure. This
hypothesis is approximately verified for helical structures. Let us consider what
happens when the frequency is increased. Bo and all the space harmonics of order

n > 0 are non radiating (see eq 1.34) since their wave numbers are larger than k,
i,e. they are forward slow waves. On the other hand, the wave number of the backward

wave of order n=-1,

21

B.1 "B, "3 > (1.38)

increases with k, (and Bo),,and reaches a value equal to -k for

2n .
By k (1.39)

A further increase of the frequency makes the n=-1 wave change character from back-
ward slow wave to backward fast wave, i.e. a radiating wave since §_, > -k, and the
point A_1 representing the wave crosses the -45° line in the Brillouin Diagram. A
further increase of the frequency eventually makes othar harmonics radiate, also.

If a slowly-tapered periodic structure is not considered, following a line of reason-
ing similar to that developed in the end of Section 1.4.2, we recognize that the
above discussion can be applied to this case, as well. Considering the diagram of

Fig. 12, it is clear that we can move to the various parts of the diagram either by
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changing k with d constant (periodic structures) or by keeping k constan: and chang-
ing d (the spatial period being proportional to the transverse dimension. A change

of d means simple that we consider different points of the antenna. For example, if
the structure under analysis is a conical spiral (the tapered version of the helix)

the above discussion shows that going away from the apex of the cone (the feeding
point) a slow forward wave zone is found, followed by a zone where a backward radiating
wave is present, which is responsible essentially for all the radiative phenomena on
the structure [25,26].

In conclusion, when the k-B plot is known, an invaluable tool for the investiga-
tion of long radiating tapered structures is available. It allows prediction of the
types of waves which will be present. However, all pertinent information cannot be
obtained by simple inspection of this diagram. For example, no information is avail-
able about the relative strength of space harmonics. For example, in the log-spiral
case discussed above, the existence of a fast backward wave in a certain zone of the
structure can be predicted, but it is not clear whether this wave efficiently converts
the guided energy into radiating wave, or whether the radiation is due to more than
one space harmonic. These questions can be answered only by a complete solution of
the electromagnetic problem,

We terminate this section by recalling that the above approximate qualitative
discussion has been made in terms of radiative behavior. It is possible also to
build transmission line models of the antenna which allow prediction of the input
behavior of the structure (i.e., impedance, standing-wave ratio on the feeding line).
The proposed model will be discussed in the next chapter in connection with log=-periodic
structures.

1.3.5.4 Use of Dispersion Diagram for Log-Spiral Antennas

The periodic counterpart of the log spiral is the helix, and the analysis of this
structure is by no means simple. However, extensive study has been performed because
of its importance to traveling-wave tubes. A solution of the problem was given by
sensiper [27]. The most important result of his analysis as far as the applications
cf log-spiral antennas are concerned, is that the propagation constant along the helix,
in extended regions of the Brillouin Diagram, turns out to have an approximate expression
which is surprisingly simple and conforms closely with intuitive reasoning. In fact,
referring to Fig. 1, for the harmonic of zero order, the following relationship holds
approximately:

k = Bo cosy c039o 3 (1.40)

and it is very simple to see that this can be interpreted as a wave progressing at

the speed of light along the helix. Since (1.40) is in the form (1.37) all the
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deductions made in 1.4.3 can be applied; in particular the antenna will radiate a back-
ward endfire beam. Let us investigate this question in detail. let p = r sineo (Fig. 1)
be the radius of the circle, cross section of the cone of the antenna (i.e. 2mp is the
length of the circumference on the plane at a distance r cose0 from the feeding point).
In the helix theory it is customary to modify the usual Brillouin Diagram by plotting

0s8
R —Ba_ . In a similar way for the spiral we will plot ko cos_ Vs EBS_E_E
tany tang tany o tany

With this normalization the period of the Brillouin diagram is equal to unity.

For the monofilar helix it takes the form in Fig. 14. We see that the relation
between B and p follows the law indicated by (1.40) up to the neighborhood of the
point A where the law of dependence changes rapidly (and the latter fact could be
explained by resorting to the theory of coupled modes [28]. As a first approximation,
we can assume that the dependence of k on B in the radiating region can be approximated
by segments of straight lines. For a bifilar helix, (with the two wires excited in
opposition of phase) which corresponds to the widely used two-arm antenna, the
approximate Brillouin Diagram takes the form of Fig. 15, This is due to the fact that
all the harmonics of even order are zero [29]. 1In order tc explain the radiation
mechanism, we only need to consider the n=l1 and n=-1 harmonics.

A peculiarity of the Brillouin Diagram for the two-arm spiral, Fig. 14, is that
Bp coseo

the curve for the lowest order forward harmonic starts at the point k=0;

an
In otherwords, the n=0 harmonic has zero amplitude. This may seem strange at first

glance, but it is quite logical since, even for frequenc:i:es tending to zero, the
difference of phase between the two arms is still 180°. From the study of the Brillouin
Diagram the following quantities can be obtained:
(a) The approximate position of the beginning of the active zone
(b) The phase shift between two successive turns.
If on Fig, 15 we move on the line from A1 to A2, this corresponds on the antenna
to moving away from the feceding points. The ordinate of the point A2 (which can be

found with simple geometrical consideration (by approximating A1 and A, with a straight

2
line) gives the value of p which in our approximation corresponds to the beginning of

the active zone, We see, from the Brillouin Diagram, that when the point represent-

ing the first forward harmonic has reached A2, the point corresponding to the first
backward harmonic reaches A3 and afterwards the n=-1 harmonic begins to radiate. This

mechanism has already been discussed in Section 3.3.3 and will not be repeated here.

The ordinate of A2 corresponds to
5 siny cosf
F5{0) o]

Ao 1 + cosy coseo

(1.41)

where Ao is the free space wavelength., For values of pitch angle in the usual range

(70O - 807) this means that the active zone begins at a distance from the feeding point
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where the clrcumference section of the conical surface with a plane orthogonal to the
axis is less but not greatly different from the free space wavelength. The propaga-

tion constant of the first ferward harmonic along the axis of the cone is given by

2 ::—2-11 4“
S + A _ cos| cosf (1.42)
o o o

The pitch distance ~f two terms (of the same arm) at the beginning of the active re-

gion is:
cosy coseo

P = A5 T cosy c039o (WLe%3)

An inspection of Brillouin Diagram gives the phase constant of the (radiating)

backward leaky harmonic in the active zone
= . 28
B-l X (1.45)

(1.45) clearly shows that the radiation is backwaru endfire.

1.4 EXPERIMENTAL WORK ON LOG-SPIRAL ANTENNAS
1.4.1 Two-Arm Spirals

As we mentioned in Section I, Rumsey was the first to advance (in 1955) the theory
that an antenna constructed in the form of an equiangular spiral would be frequency
independent with regard to pattern and impedarce, and proposed that the characteristics
of finite size antennas be investigated. The first practical implementation of this
structure was made at the University of Illinois in 1955 [30]. Two forms of the antenna
were used, the plane conductor antenna, i.e., metallic arms suspended in free space,
and the slot antenna, which consists of spiral slots cut in large conducting screen.
These antennas, of course, had a bidirectional pattern. The technique of feeding the
antenna with what can be called an "infinite balun'" was used (probably for the first
time); this method consists of soldering the coaxial feed cable to the ground plane
(Fig. 16). One of the two arms is connected to the generator (in transmission) or
to the receiving load (in reception.) The inner conductor of the coaxial of the feed
arm is connected to the outer conductor of the coaxial of the other arm. A perfect
balance is in this way obtained (at least for the frequencies high enough to cause the
gap to be a significant part of a wavelength. Fig. 17 illustrates radiation patterns
(from [30)) in two planes orthogona: to the antenna plane (See Fig. 1 for geometrical
representation). The antenna has a remarkably constant behavior with frequency in a
band of 20:1. Notice the excellent circular polarization on the peak of the radiation
beam. Because of the bi-directionality of the radiation, these structures are not

very practical and these early experiments have mainly an historical interest. At
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Fig. 16. Spiral antenna feeding zone with "infinite balun."
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that moment, however, they were very significant, because they showed that a practical
(i.e., truncated) structure behaved correctly, provided the diameter of the antenna
was larger than about one-half wavelength,

The spiral conical antenna, which gives a unidirectional radiation, began to be
experimentally studied in 1958 [32]. For included cone angle less than about 450, the
radiation is confined to one broad circularly-polarized lobe with maximum radiation
toward the apex of the cone, As in the planar case, the antenna is a balanced struc-
ture with the feed voltage applied between the two arms at the apex of the cone.
Dyson tested many different structures, The most interescing for its simplicity and
ease of construction is perhaps that one of Fig, 18; the cables of the infinite balun
constitute the radiating structure, with the feed cable forming one of the arms. At
the apex the center conductor is carried over and bonded to the outer braid of a
dummy cable which forms the opposite arm of the antenna. The cables are mechanically
supported by polystyrene ribs. Rigorcusly speaking, the antenna is not frequency
independent. However, the experimental data show that the behavior is rather insensi-
tive to the width of the arms, Fig, 19, illustrates the radiation patterms and SWR
of this structure. 1In [31] it was reported that decreaging the | angle (Fig. 1) from
76° to 45° caused the beamwidth to change from around 70° to approximately 180°,

The effect of the angle 60 on the beamwidth is rather minor, while a small 60
(10o - 200) improves the front-to-back ratio, Dyson obtained a front-to-back ratio
of about 15 db for 0° = 10°. The input impedance does not show a definite trend as
a function of |. I. increases as the arm width decreases, passing from values arcund
80 ohms (for very large armsg) to about 300 ohms (for very small arms). For self-
complementary structures (i.e., equal arm width and spacing) the measured values are
close to 190 ohms (a value which can be shown to be characteristic of all self-comple-
mentary structures).

It is worth briefly mentioning that measurements of the near field of the spirals
were made to determine whether the approximate theory sketched in Section 1.3.5
reflected the physical situation, [33]). A small magnetic loop was used to measure the
relative amplitide and phase of the current flowing along the conductor of the antenna.
The results indicated:

(a) a rapid decay in the amplitude uver the first portion of the
structure, and

(b) the average phase velocity along the arms in the initial region was

always equal to or slightly greater than the speed of light. The
second result confirms the result of the approximate analysis of

Section 1.4,
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Fig. 18. A mechanically simple form of conical log-spiral antenna,
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Fig. 19. Radiation patterns of the conical spiral of Fig. 18.
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It is possible to modify the log-conical geometry, making it simpler to fabricate.
Tang has proposed a "pnligonal” form of log spiral [34]. This type of antenna is non-
frequency independent but is rather log-periodic. However, the geometrical and elec-
trical characteristic ave very close to that of a true log-spiral (Fig. 20 and 21),
For the same pitch angle, the square antenna presents characteristics practically iden-
tical (with respect to radiation pattern and impedance) to the conical one.

1.4.2 Miscellaneous Modifications of the Basic Geometry

The basic two-arm conical structure is satisfactory for many applications, when
a moderate gain is required with an end-fire type radiation, and when the size of the
antenna is not a problem. To cope with special requirements, a number of modifications
of the basic structure has been proposed; some of these will be briefly considered.

It is desirable in some cases to have a '"conical" or beacon type beam. The
log-spiral antenn: s properly modified, are ideally suitable for this kind of applica-
tion. A '"conical" beam can be obtained by constructing an antenna with more than two
spirals and symmetrically connecting these arms to provide a suppression of the radiated
fields on the axis of the antenna {35]. The arrangement used in a four arm spiral
antenna is shown in Fig. 22, Typical patterns which have been obtained are shown in
Fig. 23. The angle o of Dyson corresponds to {, in the notation we used throughout
this report. Increasing the pitch angle causes the angle of rotationally-symmetrical
radiation with respect to the horizon to increase also. For { = 450, we have a coverage
of "azimuthal" type. The SWR is reported to be less than 2:1 over a band of about 10:1
(the pattern bandwidth).

Another type of (planar) log-spiral antenna with very similar type of coverage
(and having the advantage of the possibility of being flush-mounted) has been proposed
by Mei and has already been described in Section 1.3.3.

Arrays of spiral antennas have been studied in an effort to devise a radiating
structure having bandwidth capability similar to that of a conical antenna, but greater
directivity and gain. It is possible to do this to a limited extent with log-spiral
antennas. The limitation arises because the frequency-independent characteristics can
be preserved only by making the vertices of the cones coincident, Fig. 24, 7In this
way, the phase center of the components antennas lie on a circle. Therefore, a large
phase error is introduced. Naturally, this effect is present only for arrangements of
more than two elements. It is possible to arrange the elements in a parallel fashion;
but, of course, in this case the antenna has a beamwidth (and a gain) which varies
with the frequency. In order to predict the input SWR of these structures over the
band it is necessary to know the mutual impedances of two spirals for different spac-
ings. An exhaustive experimental analysis has been performed by Dyson who has given
the mutual coupling between conical log spirals for many different geometries [36].

The main results of this work are the following:
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Fig., 20. '"Square spiral" antenna,
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Fig. 24. Frequency independent array of log-spiral antennas
(A, B, C phase centers).
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(a) the coupling among the elements in a parallel (therefore, frequency
independent) array is low, of the order of -30 db or greater for
element-to-element spacing of % or more; this coupiing varies with
rotation, being a minimum for a 900 rotation between elements;

(b) coupling is on the order of =20 db in the conical array; minimum
coupling for 15° cones occurs at an array angle of approximately
35° to 50° depending upon the spiral angle j;

(c) changes in the basic element pattern caused by the presence of other
elements are minor for an element-to-element spacing of at least one-
half wavelength and consists mainly of a broadening of the element
pattern beamwidth in the plane of the array; and

(d) a good approximation tc the array pattern of small arrays can be
obtained by using the pattern of the isolated element.

Before concluding this survey of the various miscellaneous structures derived
from spiral antennas, we will briefly mention some attempts to reduce the size of
conical spirals. Some experimenters loaded log spiral conical antennas with ferrite
in varicus ways [37]. One of the techniques used consisted in loading the two arms
of the spiral with ferrite layers. Also loading with a complete cone of ferrite coaxial
with the antenna has been tried, with the antenna located in free space and in a
cavity open in a ground plane. It is reported that a reduction of about orne-half the
size of the equivalent air antenna can be expected. However, the loading produced a
drop of the efficiency to 137 for the antenna in the cavity and 23% for free space
antenna and the temperature dependence of ferrite was found very critical.

Slightly more successful attempts at reducing the size of the antennas have been

obtained with log-periodic structures (see Section II).

1.5 DESIGN OF FREQUENCY-INDEPENDENT ANTENNAS

The analysis of log-spiral structures is very difficult, However, the design

of an equiangular antenna is usually a .atively simple matter. This is because the
radiation pattern and impedance are not critically dependent upon the geometrical
parameters of the structure. In other words, although in designing an antenna of

this type, it is difficult to predict exactly the electrical parameters, the approxi-
mate characteristics can be predicted reliably. Thus there is generally no serious
problem in designing a log spiral, at least if the antenna specifications are not
unusually stringent. Difficulty may arise if, for some special purposes, the beamwidth
or the impedance must be accurately specified over a wide frequency band. As an
example, this case occurs in some electromagnetic surveillance systems, when it is
intended to find the direction of a source by beam-comparison techniques. The develop-

ment of antennas having controlled beam shapes over a large band can require a
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considerable amount of development work (experimental).
We will now sketch briefly the design procedure for a log-spiral antenna. Suppose
that the given specifications are:
(a) a frequency band of operation between f1 and fz;
(b) a nominal impedance with permissible deviations over the band;
(c) a nominal beamwidth, with permissible deviations over the band.

Frequency Band

We assume that in order to have a balanced input the technique of the infinite
balun considered in Section 1.5.1 is adopted. The specification of minimum frequency,
fl’ establishes the maximum radius r, of the feeding region. As a reasonable value
r

, can be chosen where A, is the free space wavelength. Notice that this speci-

=il
1 8 1
fication can result in practical difficulties from the point of view of mechanical
tolerances and of the possibility of arcing, if the frequency is very high (e.g., in
the microwave spectrum). In some cases particular types of miniaturized coaxial cable
must be used, since the arm width at radius r, must be at least equal to the coaxial
cable diameter d. For ease of construction, it is generally convenient to use the
coaxial itself as the arm of the spiral (according to the technique considered in
Section 1.4.1). The overall size of the antenna will be determined by the upper fre-

quency of operation f The diameter of the cone base will be chosen from % to 1

times the wavelength i, to prevent spoilage of the beamwidth and of the circular
polarization experienced at the lowest frequency of the band. The lower value
of cone base niy be used at higher values of { (70o - 800). With this choice, the ratio
between r, and T, (vector radii corresponding to spiral points closest and farthest
from the apex of the cone, respectively) is actually larger than fz/fl’ because of the
finite size of the active 2one. With this choice of parameters, the maximum axial
ratio of the polarization ellipse on the peak of the beam can be expected to be about
2.1,
Impedance
The impedance of the antenna can be controlled to a limited extent by varying
the width of the arms. As mentioned in Section 1.5.1, it is possible to obtain a
variation in the range from 80 to 300 ohms. When the coaxial cable is used as the
arm of the spiral, an average impedance of about 200 ohms can be expected. For pro-
per choice of a line of suitable characteristic impedance, the standing-wave ratio
can always be less than 2:1. The impedance is rather insensitive to variations in
§ and %y
Beamwidth

The geometric element which provides the main control over the beamwidth is the

pitch angle (. Higher values of { (spiral closely wounded) correspond to narrower
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half-power beamwidths. Proper design can result in beamwidths of about 70° and 180°
for values of | equal to 750 and 450, respectively, as mentioned in 1.5.1. In the
last case,an almost hemispherical coverage is obtained. The angle 90 controls the
front-to-back ratic; for small 60 (10o - 150),a front-to-back ratio of 15 db can
easily be obtained.

It is to be emphasized again that the development of an antenna of this type is
essentially experimental. Naturally,the theory is important to give the basic cri-
terion of design through the understanding of the radiation mechanism of the struc-

ture. However, at the present state-of-the art, the theory supplies only guidelines

of a qualitative nature.
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IT. LOGARITHMICALLY PERIODIC ANTENNAS

2.1 GENERAL CONCEPT OF LOG-PERIODIC ANTENNAS

Logarithmically periodic antennas are the class of extremely wideband
antennas receiving wide use. Modifying the basic idea of Rumsey of
specifying antenna geometry solely by angles, DuHamel and Isbell introduced a
new principle in broadband antenna design, yet closely related to the frequency-
independent antenna concept. They considered a class of structures scaling to
themselves log periodically, rather than in a continuous manner [38]. 1In Fig.
25, a typical log periodiL antenna is shown. Two metal sheet structures are fed
against each other by a generator placed between their vertices. The four sets

of teeth are defined by similar curves expressed in polar coordinates as
6 =f (log r) (2.1)

where f is a periodic function of its argument. From (2.1) it can be seen that
the structure expands with r, but is always angularly limited between the maxi-
mum and the minimum value of 2, The simplest of this type of geometry is defined

by the equation (Fig. 27):
6 = sin (log r), (2.2)

corresponding to an expanded sinusoid structure, which has been used as a
practical antenna. The periodic functions defining the structure will be in
general more complicated. For example in Fig. 26 the curves defining the upper

half structure of Fig. 25 arc plotted vs log r., If

T = — (2.3)

{independent of n) is the distance from the vertex to the outer edge of the tooth,
it is seen that period of the curve is equal to log (1/7). From (2.3) it is ap-
parent that all similar sets of dimensions form a geometric sequence with the
same geometrical ratio 7. The geometry is clearly not '"'defined by angles' as
discussed in 1.2, and the antenna, therefore, is not frequency independent.
However, a scaling of a factor 7, with n any integer, transforms the structure

into itself. Therefore, all the electrical characteristics of the antenna will

remain unchanged when the frequency is scaled by the factor o~ In the case




Fig. 25. Saw tooth log periodic array.
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Fig., 26. Sinusoidal zigzag antenna.

St e

Fig. 27. Plot of B vs ln r for one of the component structures of Fig. 25.
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of structures of the type of Fig. 25, because of their special left-right
symmetry the period of the impedance curve is % log 1/t rather than log 1l/v.
The radiation pattern has instead a periodicity of log 1/7. 1If we assume

that the variation of impedance and radiation pattern is not too large over one
period of the frequency, the structure may be considered frequency independent
for all practical purposes.,

Much of the discussion of the previous chapter concerning frequency-
independent antennas can be applied to log-periodic structures (Section 1.4,2
and 1.4,3). In particular, it can be seen that the log-periodic geometrical
condition is necessary; however, it is not sufficient, and does not guarantee
that the currunt on the structure dies off rapidly after a certain zone (the
active zone) where an efficient conversion to radiating modes must take place.
This attenuation is necessary to avoid on frequency-dependent end effects
(as discussed in Section 1.2).

In summary, a log-periodic antenna is an antenna which is not wigorously
frequency independent, since if it is expanded by a scale factor K the re-
sulting structure is in general not self congruent to the original one. However,

for an infinite discrete set of values of K:

the structure is scaled in itself, The electrical behavior of the structure
is therefore the same for frequencies having the ratio t'. It is therefore
clear that if v is close to unity, the behavior with frequency is not far from

that of a truly frequency-independent structure.

2.2 STATE OF THE THEORY OF LOG-PERIODIC ANTENNAS
2.2.1 Mathematical Models

The theory of log-periodic antennas is still relatively undeveloped. Not
a single structure has been solved exactly and the only general approach for an
analytical study is the one outlined in Section 1.3.5. The structure is considered
as "slowly" expsnding. Its periodic counterpart is analyzed (in an exact or an
approximate manner) and it is in this way possible to determine its local pro-
perties. 1In particular, from the knowlege of the dispersion diagram the location
of the active zone can be determined, However, it is not a simple matter to
determine the Brillouin diagram for practical structures. Section 1.3.5.3 con-
tains a discussion of the types of waves an open periodic structure can support,

Clearly, such a treatment can be applied to the present case,

. T N R




The analytical works on log-periodic antennas can be loosely grouped

in four broad different classes:

(a) Exact analysis of very simplified mathematical structures.
Although the results cannot be applied directly to practical
problems, they can give a qualitative insight on the nature
of the phenomena.

(b) Approximate analysis of a periodic array of dipoles (as a
periodic counterpart of the log-periodic array of the same
type of elements).

(c) Approximate analysis of the "interior" problem (mathematicallv
modeling the antenna as a loaded line). This approach is use-
ful for predicting the impedance properties and the location
of the active zone, (but no the radiation properties).

(d) Numerical analysis of the interior and exterior problems of
the exact structure idealized as a bipolar transmission line

loaded with dipoles of different lengths.,

Carrel, in a beautiful and exhaustive paper followed the approach(d).
His numerical analysis of the electromagnetic problem is not based on the con-
cept of the periodic counterpart and the work (which will be discussed in
Section 2.3) is therefore somewhat atypical.

The above approaches will be respectively considered in Sections 2.2,2
2.2.3, and 2.2.4,

2.2.2 The Sinusoidally Anisotropic Surface

In Subsection 1.3.2, we saw that a special type of anisotropic plane sur-
face was adopted as a mathematically tractable model for the planar spiral
antenna, Following a similar idea, a reasonably simple model for a log-periodic
antenna was devised by Rumsey, which, although extremely idealized, still ex-
plains some of the features experimentally observed [39].

If we consider the periodic counterpart of the simple structure depicted
in Fig. 27, we obtain a sinusoidal wire. A mathematically simpler structure,
less difficult to analyze, is obtained by considering a surface made of an in-
finite number of sinusoidal wires infinitely close together, in such a way as to
form an anisotropic surface with sinusoidally variable properties. An approximate
physical realization can be obtained by using coplanar sinusoidal metal strips

as in Fig. 28.
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Many cf the considerations developed in Subsection 1.3.2 are applicable
to this structure. For example if t is a unit vector in the direction of the
wires, it follows immediately that the same boundary conditions apply to E and

H (with the same meaning of the symbols of Subsection 1.3.2)
E- E =10 (1.4)
H." & =@ (1.5)

It is possible to find a solution of the type (1.6) or (l.4), which in accor-
dance with the discussion of Section 1.4.3 must be in the form of a Floquet
series, Only an outline of this type of approach will be included here. By
introducing the Floquet's series for the electric (or the magnetic) field and
imposing the boundary condition, a recurrence formula is obtained relating the
n-1, n, and ntl, amplitudes of the space harmonics. This recurrence formula can
be thought of asan homogeneous system of infinite equations in an infinite
number of unknowns. The coefficients of the system depend upon the propagation
constant. In order for the system to have solutions it is necessary to equate
the (infinite) determinant to zero; thus, an equation for the propagation con-
stant is obtained. It is possible to show that the convergence is very rapid,
or in other words,the infinite determinant can be replaced by another ome
having a finite number of rows [39]. We then obtain an equation which in the sur-
face wave zone can be numerically solved in a reasonably easy way. In the
leaky-wave region, the numerical solution is more difficult, However, drastic
simplifications are obtained in both the cases of slightly-curved or extremely-
curved wires. In this latter case, when the free-space wavelength is much
sinaller than the wavelength Aw of the wires (see Fig. 28), an extremely high
attenuation occurs (of the order of hundreds of db per Aw). This attenuation
occurs both in the slow-wave and fast-wave ‘requency regions, Therefore, from
this treatment it does not seem easy to determine whether the attenuation will
be caused by slow-wave stop-band reflection, or by leaky-wave radiation.

We will not discuss longer this mathematically interesting approach. We
will only mention that a subject of current research at the University of
falifornia is the analysis of propagation on two parallel anisotropic sinusoidal
sheets of the type considered in this subsection. This structure is a highly
idealized model of the antenna of Fig. 25, in the same way the single aniso-

tropic plane is a model of the single-sheet structure.

- 57 -

W AR W e e - e e we A - < Y 3 g APy A i o s =




p £l

o

2.2.3 The Periodic Array of Dipoles

It is very difficult to obtain the Brillouin diagram for periodic struc-
tures. In the case of the helix (Section 1.4.4) the 1nalysis was drastically
simplified by the possibility of assuming that the propagation along the struc-
ture occurred with a phase velocity proportional to that of the light, (see
equation 1.37), Unfortunately, the only periodic structure for which this
"constant slowness" prcperty is approximately valid is the zigzag. The periodic
structures corresponding to the antenna depicted in Fig. 25 pose analytical
problems which are unsolvable at the present state-of-the-art.

A "non-constant slowness'" structure which can be analyzed "almost' exactly
is the dipole loaded transmission line [40]. Mittra and Jones considered uni-
form dipole arrays with non-reversed and reversed elements as shown in Figs.

29 and 30. The latter case is the periodic counterpart of an antenna which

was invented by D. E. Isbell in 1958 [41] (Fig. 39). The technique they used
for finding the k-f diagram is the following. It is clear that the structures
of Fig., 29 and 30 are equivalent to transmission lines periodically loaded with
a network described by an admittance matrix having a periodic property (Fig. 31).
This matrix has an infinite number of terms (since we are dealing with an in-
finite periodic structure)., It is apparent that the impedance Z' seen at a pair
of terminals (for example A A' of Fig. 31) is equal to the impedance seen at

any other pair of terminals. Therefore, for a certain frequency and from the
point of view of the phenomena on the transmission line, the circuit of Fig. 31
is equivalent to the one of Fig. 32 (i.e., to a line periodically loaded with
mutually uncoupled bipolar networks). It is possible to compute these ¢

loads by simple circuit analysis. In order to do this, however, the mutual
impedance among the dipoles must be calculated and this can be done by the well
known induced e.m.f. method (see for example Ref. [43]). It is convenient tog
assume that any dipole is coupled to only a finite number of other dipoles. Let
us limit ourselves, as a first approximation, to consideration of only the
nearby elements. This means that in Fig. 31 the port n is coupled only with

the port n-1 and 1, Moreover,it is clear from the periodic character of the

structure that the self and mutual impedances znn’ Z are in-

n, n+1,zn, n-1
dependent of the subscript n., From this it can be deduced that in order to
find the propagation constant of the loaded line, we have only to solve a trans-
cendental equation, obtained by equating a third order determinant to zero.
Of course, it is possible to improve the approximation by using a larger number

of mutual impedances, in which case many values for the propagation constants are

=50 =




-

o— i —o] h/2

o

Fig. 29. Unreversed element uniform dipole array.
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Fig. 30. Reversed elements uniform dipole array.
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Fig. 31. Transmission line model for the uniform array of dipoles.
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Fig. 32. Uncoupled load transmission line model for the
uniform dipole array.
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obtained ; these corresr nd to different modes on the structure, which can

have different relative s:rengths, The problem cannot be solved without source
considerations. However, the first approximation gives a sufficiently accurate
picture of the physical piienomena. In Fig. 33 and 34 the Brillouin diagram
experimentally measured by Mayes and Ingerson [42] is compared with computed
data. The agreement is indeed excellent. It is even more impressive the
comparison with the experimental data found on a log-periodic array by Carrel
[1]. To obtain the curves of Fig. 35, Mittra and Jones calculated the phase
shift and attenuation for the local kd, where d changes now frem cell to cell,
and used these values considering k constant and d variable, as we have already
discrssed. These theoretical curves were calculated by using a distance d
between the eclements equal to 0.112 timesthe length of the diple (to correspond
to Carrel's choice of the parameters). It is \torth pointing out that once the
behavior of the voltage along the line is obtained the input current of an
element is also found (since the input impedance of the equivalent network of
Fig. 32 is known). From an assumed sinusoidal current on the dipoles (i.e.,
having the same form utilized for the calculation of mutual impedance), the

radiation pattern can be evaluated. Therefore, it seems possible to use this

model for optimizing some parameters of a log-periodic array (e.g., the distance

among the elements).

In conclusion it seems that the mathematical model here considered can be
very useful for design purposes. However, from a theoretical point of view, it
does not clarify some problems concerning log-periodic arrays. For example,
the possibility of existance of, ar the role planed by higher modes in log-periodic
array is a question which cannot be answered by using this type of analysis.

2.2.4 log-Periodic Loaded Lines

In Section 1.3.5, the radiation mechanism of the log-periodic and frequency-
independent antennas was discussed in a qualitative way. Very concisely, the
approximate physical picture of the phenomena was the following: the structure
acts in its first part as a surface waveguide whose characteristics are slowly
varying. fh the active zone, the modes become radiating, or in other words a
conversion of the guided into radiated energy takes place. If the structure is
an efficient antenna the conversion is almost total, with small reflection
toward the input. It is clear from this that, if it is possible to schematize
the antenna as a (variable impedance) transmission line with distributed or
lumped loading (progressively changing), the antenna "internal" behavior can

be investigated without solving the electromagnetic problem., Thus, in a rather
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Fig. 34. Brillouin diagram for unrevemsed uniform dipole array,
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simple way, the amplitude and phase of the voltage along the antenna and
the position of the active zone can be found by using only circuit and trans-
mission-line theory.

A transmission line with resonant shunt circuits distributed in a log-
periodic fashion can be adopted as a simple model. An even simpler model is a
line loaded logaritimically (instead of log periodically). Mittra and Jones
considered both these models. [44]. The latter, which is simpler, is the first
they treated. In their terminology, Continuously Scaled, (C.S.) i synmymous
with self-congruent, i.e., what we have always called in this report "frequency
independent.'" Therefore,a C.S. line is one in which the voltage and current
distribution remain unchanged if the frequency and the distance x to the point
of observation are changed simultaneously, such that wx remains constant., In

other words for abscissae and frequencies such that:

»

Slhﬁ
el N

N

’ (2.4)

the impedance will be equal. Little reflection then leads to the conclusion
that the impedance and the admittance for unit length of the line must have the

following type of functional dependence upon x and w:

2(x,0) = ﬂ%‘l (2.5)
Y(x,0) = X—%—"l (2.6)
If we put
X = wr,

it is easily found that the differential equations for the voltage and the cur-

rents are:

dv Z

S 1 (2.7)

I _ _ Y

ar = \ (2.8)
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For purely shunt distributed RLC loading the expressions for the impedance and the

admittance for unit length are:

Z = joL (2.9)

. 1
jac + 1 (2.10)
x[R + j(oL x - wc_lx )]

]

Y

where L and C are the parameters of the uniform line (without the loading), while

L1 and C1 are the ones due to loading.

It is convenient at this point to introduce the following definitions:

1
xoz - — (2.11)
w L, C
o 171
_ 2
Lo = L1 x0 (2.12)
R0 =R X (2.13)
Q = a)oLo/R0 (2.14)

where X is the point of the line where the load is resonant, and ®, is an arBitrary
frequency. If the propagation constant of the uniform line and the characteristic
impedance are both taken equal to unity, by using formulas from (2.7) to (2.14), the

following equation for V is obtained:
v+ x) V=0 (2.15)

where p X 2/R Q
k“(x) =1 - 20 '

If the wave along the line 1is essentially progressive,it is possible to treat
(2.15) by WKB method [45]. It is also possible to consider the line made up of short
sections of different uniform lines., By using this second method, it is not necessary
to make any hypothesis about the amount of reflected energy along the line. Fullowing
this latter approach the authors have found a recurrence relationship for the complex
amplitude of the incident and reflected wave. It is interesting to observe that as
x tends to zero the characteristic impedance is purely resistive; see (2.9) and
(2.10) The same happens for the input impedance, since the reflected wave has negli-
gible amplitude, as the numerical results show. In Fig. 36 the amplitude and phase of
the voltage along the structure is plotted as a function of Box (Bo being the propagation
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constant of the unloaded line at the frequency W considered). In the first part

of the structure the atteruation is low and there is an approximately linear phase
delay for unit length, of larger value than in the unloaded line. This means that
near the input there is a slow-wave zone. Although the line is not uniform, the
phase velocity is approximately constant. In the following region ¢he active zone),
the attenuation is high, typically 20 - 25 db. In the final part of the structure,
the amplitude decays very slowly, and the behavior of the voltage is heavily
influenced by the nature of the termination, which has little or no influence in the
input and active regions. In Fig. 37, the amplitude and phase behavior of the same
structure of Fig. 36, but with a short~circuit termination, are plotted. The first
part of the curves in Fig. 36 and Fig. 37 (before the active zone) are practically
identical. This can be expected because of the large attenuation in the active zone
which insulates the input from the load. The authors report that the computed reflec-
tion coefficient in the zone before the active region was about 10-3, independent of
the load., Behind the active region it was about 10-3 in the matched termination case
and of the order of magnitude of the unity in the short circuit case. It is also
interesting to consider the behavior cf the active zone when Q is increased (for
constant RoQ)’ The main effect is that the width of th: active region decreases

with Q; the total attenuation however is not greatly affected. The authors have also

computed the voltage distribution in the CS structure by using WKB methods, with

numerical results vary close to those obtained by using the method previously described.

In a well designed log-periodic structure, the performance not only repeats itself
at log-,eriodic frequencies, but also deviates very little from the mean value for
intermediate frequencies. The authors have shown, in fact, that if the C.S. model
described above is modified by replacing the continuous loading of the line with a
lumped one, according to a log-periodic sequence, the behavior of the voltage along
the line does not change significantly. More precisely, they considered the line
made up of an infinite number of log-periodic sections, loaded with shunt elements.
The loads are equal to the length of a section times y [given by (2.10)]. We will
not report here the details of the calculation procedure, which, essentially is stan-
dard circuit analysis. The interesting numerical results are plotted in Fig. 38 where
D is the ratio between the length of a section and the wavelength corresponding to
the frequency of resonance of the load., We see that in the region between the feed
point and the active zone, and at some extent in the active zone itself, the LP and
the CS models have practically identical behavior. Other computations (not reported
here) show that if D, and/or Q are sufficiently large, the behavior of a log-periodic
structure becomes different from that of the corresponding CS one, (with smaller

attenuation in the active zone and increase in the input SWR).

-6l

— g ol R . A.as._.-.—a-’(‘.-~.u:.~~.< 3 S A - . et T T

I e 3 70




Voltage Amplitude in db

N ’
N .
2 =y y -2
b pi N -4
VL
-6 ﬁ‘—ﬁ‘ \ S SN (e -6
Rt 'Reson%nt
o W N S -8
B \ﬂ\ 0\ Flément
-10 " N N -10
'\
-12 ; NW -12
-14 ' et -14
' N\
-16 H Npt——i-16
1"\“. N N
-18 -1 XT1-18
N
-20 - -20
-22 R 1-22
1N
"2& + \ 1‘ = _24
- \_ ¥ N 3
-26 ! N2
-28 : ———=- 28
=30 I ! 30

0 2 4 6 810 12 14 16 18 20

Fig. 38.

ﬁox in Radians

— — —Phase for Continuously Loaded
Line

— =-—Phase for Log-Periodically Loaded
Line

~—Amplitude for Continuously Loaded
Line

===Amplitude for Log-Periodically
‘Loaded Line

Valtage Phase in Radians

Comparison of voltage amplitude and phase on LP and CS
transmission lines with v = 0,9, D ~ 0.5, Ro = 0,5,
Q= 2, and Zo =1,

- 62 -




In conclusion the study made by Mittra and Jones, although not concerned with
the electromagnetic behavior of log periodic antennas, is however an important con-
tribution to understanding their circuit behavior. The following two main points have
been clarified: .

(a) The input SWR of a log-periodic structure is low if several
elements are "active'" (i.e. absorb power) at a certain frequency.
The line acts as a continuous impedance transformer. The active
zone insulates the input by the final load, and therefore, the
antenna is insensitive of its termination.

(b) 1In a certain range of the v, D, Q, and R parameters a LP struc-
ture is a good approximation of a CS one. In other words, as
far as the "internal" behavior is concerred, log-periodic and

frequency-independent antennas may be considered equivalent,

2.3 NUMERICAL ANALYSIS OF THE LOG-PERIODIC DIPOLE ARRAY
2.3.1 Numerical Approach

Conceptually, the most satisfactory approach to the analysis of frequency-
independent and log-periodic antennas is to consider the structure as a whole, to
determine the "modes" (i.e., the types of waves which can be supported by a given
geometry), and to determine which modes can be excited by certain given sources.

This is, in principle, as it is well known, a standard procedure in solving problems
cf mathematical physics.1 This type of approach certainly can lead to a deep under-
standing of the electromagnetic behavior of the structure, and can clarify the role
played by the various geometrical parameters. However, the analytical difficulties
associated with this problem are formidable; even the simpler problems posed by the
periodic counterparts of these antennas are generally impossible to solve at the
present state-of-thc art. We have seen in the previous sections that in order to have
an insight into the behavior of these structures it was necessary either to resort to
extremely simplified models (i.e., different from the actual case as in Section 2,2.2),
or to study a simply periodic line loaded with dipoles (Subsection 2.2.3), or to
investigate only the interior problem of the antenna by considering either a "con-
tinuous scaled" or a log-periodic line loaded in a particular way, (Subsection 2.2.4).
This section will be devoted to a review of a paper of R, Carrell dealing with an
analysis, essentially numerical, of a particular kind of log-periodic antenna, which

has wide application: the log periodic array of (reversed) dipoles of the type first

A reasonably simple and readable reference (for the electromagnetic problems)
can be, for example, Reference [46].
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considered by Isbell (41]. Clearly this structure is simpler to analyze than, for
example, that one of Fig. 25, since it is possible to use well-developed linear

antenna theory to determine the interaction among the radiating elements. The approach
utilized by Carrell is relatively straightforward [1]. A mathematical model of the
antenna of Fig. 39, which very closely represents the physical structure under investi-
gation, is built in the form oﬁ a uniform transmission line logarithmically loaded

with dipoles. The question can be thus split in two parts; interior problem=-to
determine the current at the terminals of each dipole; and exterior problem--to find the
radiated field and the phase center of the antenna (compare Subsection 2.2.3). We

will see in the next subsections that as a result of the numerical investigation and
experimental results, design information is presented in useful formulas and nomo-
graphs. Several pages will be devoted in this report to the survey cf Carrell's paper
because of its usefulness for design purposes and completeness of data.

2.3.2 Formulation of the Problem

The antenna analyzed by Carrell is depicted in Fig. 39, and schematized in
Fig. 40, The ratio v has the usual significance of expansion ratio and it is the
ratio of the lengths of two adjacent dipoles? A line through the ends of the dipcle
elements on one side of the antenna subtends an angle @ with the center line of the
antenna at the virtual apex 0. The spacing factor ¢ is defined as the ratio of the
distance between two adjacent elements to twice the length of the larger element, and

is constant for a given antenna. Parameters g, T, and @ are related by the formula

c=% (1 - 1T1) cota (2.16)

The largest element is called element number 1. The half length of the element
is denoted by hn’ Therefore

2 Rigorously speaking, because of the inversion of the dipnles the ratio between
two dipules is the square root of the expansion ratio. We will follow here however
the definition used in [1].
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Fig. 3¢,

Log-periodic array of reversed dipoles.
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The ratio of element height to radius is the same for all elements in a given antenna
and will be denoted by h/a.

The antenna can be red through a coaxial line inserted through the back of one
of the hollow feeder conductors (Fig. 39). The shield of the coax is connected to its
half of the feeder at the front of the antenna, the central conductor of the coax is
connected to the other side of the feeder. With this method,an infinite balun is
obtained in a way conceptually similar to that described for the log-spiral antennas.
When the operating frequency is within the design limits, radiation is end-fire toward
the feeding point, and the radiation occurs essentially in an active zone. Therefore
behirnd such region the current is very attenuated and the nature of the load which
terminates the feeder line is to a large extent immaterial (compare Subsection 2.2.4).

The dipoles are assumed to be very thin (a/h << 1) and the current on the dipoles
is considered sinusoidal. Therefore, once the interior problem has been solved and
the input current of the elements have been found, the current distribution on the
various dipoles is also known. It is then possible, by using the standard formulas
for linear current distribution, to determine the radiation pattern of the array.

2.3.3 The Interior Problem

In order to solve the interior problem the antenna is considered as the parallel
connection of two networks representing respectively the feeder and the radiating
system (Fig. 41). The admittance matrix of the feeder circuit is [YF] and its elements
are trigonometric functions. If we call Bo the propagation constant of the unloaded
line and Yo its characteristic admittance from elementary transmission line theory

it is simple to ascertain that [Yf] has the form:

_(.YT-on cot Bodl) -on csc Bodl 0 iia 0 I
-on csc Bod1 -on(cot Bod1 -on csc Bod2 sl 0
+ cot Bod2)
[YF] ={0 -on csc Bod2 -on(cot Bod2 s EE O
+ cot Bod3)
0 0 0 .« o =JY_ cot BodN_h
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(b) Feeder Circuit

(c) Complete Circuit

Fig. 41. Schematic circuits for the LPD interior problem,
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The relationship between the voltages and input currents in the feeder circuit
is obviously

? = Y ‘3 2,17

where ?; and'V% are column matrices which represent the'driving currents and response
voltages of the feeder circuit. Similarly it [YA] is the admittance matrix of the

antenna elements,

3
AN CARA (2.18)

» -+
where IA and VA are the sets of input currents and voltages at the terminals. If the

corresponding terminals of the feeder and dipole. circuits are connected in parallel,

a new circuit is obtained as shown in Fig. 4lc. It is evident that

v, -7
A F

Therefore from (2.17) and (2.18), since the current column matrix is now
e -
=L 7%
it follows that > >
1= ([YA]-I-[YF]) A
Setti Z]=[Y]-1
e ng [ A A
gives the

- \ » »
RN TARN ST AR AL (RS SRR B4 (2.19)

*
where [U] is the unitary matrix. If we consider the matrix I and the circuit of Fig. &4lc
it is clear that‘i has only the first term, which represents the input current of the

entire array. Formula (2.19) gives the solution to the problem. In fact, if the matrix,
[T} = [U] + Y] (2,] ,
is inverted the input currents of the dipoles are given by
T =Y
IA = [T] .

The form of the matrix [YF] has beep already indicated. [ZA] is the matrix of the
mutual and self impedance of dipoles, and can be formed, as we said in Subsection 2.2.3,
by the standard e.m.f. method [43].

Besides‘$A, quantities of interest resulting from this analysis are the ones we

have considered already many times: the voltage distribution along the feeder given by
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and the location, the extension, and the power absorption of the active zone.

2.3.4 Radiation Pattern

Once the element base currents are found the radiation pattern can be calculated.
Suppose that IAn are the elements of the column matrix‘i;. Standard computations then

give the radiation pattern. Assuming that the current on the antenna is
I =1, 8inBt - |z|)

where f is the free space wave number, the amplitudes of the H and E planes radiation

patterns, if the coordinate systems is that indicated in Fig. 42 are the following:

H plane:
N '
i P, (9) | ~(% I, (L-cosBh) ePxpcos @ I (2.20)
: n=1
E plane:
N
Pe(e,w) | ~ | sin ¢ ni1 IAn cos[(cos Bhncos p) = cos Bhn] (2.21)

ejansin @ cosg

The phase patterns are given by the phase of the expression under sign of modules in
the left side of (2.20) and (2.21).

2.3.5 Numerical Computations

Extensive numerical computations were performed by the method indicated in the
previous subsections. The following quantities were computed:
(a) the matrix [ZA] of the exterior ccuplings among the elements;
{(b) the matrix [ZL] of the line circuits;
(c) the voltage'Vi i.e. the behavior of the voltage along the feeder;
(d) the input currents of the dipoles.!;; and
(e) the radiation patterns.

A plot of the voltage along the line is shown in Fig. 43 as a function of normalized
X

distance A

from the Apex. The frequencies are denoted by:

fj = fl T (2-22)

where fl is the frequency at which dipole number one is one-half wavelength long. For

comparison purpose in Fig. 43 the data taken from measurements on an experimental model
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Fig. 42. Coordinate system used in the computation
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c =0.089, a4 = 17.5°
, h/a = 125, short circuit
termination 0,128 A\ behind element number one.
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are indicated too. The agreement is indeed excellent, The plot shows a steadily
decreasing voltage going away from the feed point to the largest element. 1In the
first zone there is essentially propagation without radiation: the small elements
fed out of phase act as small shunt capacitors, For §-> 1 the feeder voltage de-
creases very rapidly, due to the coupling of energy into the elements of nearly half
wavelength (active region). As the frequency is changed, the shape of the curve re-
mains unchanged, and the position of the active zone moves along the antenna. The
active region becomes deformed as it begins to include the front or back element

of the antenna, and this establishes the upper and lower frequency of the antenna.

The ratio of operating frequency limits of the antenna is somewhat smaller than

the ratio of the longest to the smallest elements on the antenna, which is:

2

B = 1 T1--N
e ZN (2.23)
The operating bandwidth is instead B
S
B=le— (z.24)
Bar

where Bar is a factor larger than 1. Notice that Bs, B and Bar are non-dimensional
numbers. The plot of Fig, 44 obtained by performing numerous computations shows the
dependence of Ba: upon & for different values of .

The amplitude and phase of the base currents are plotted in Fig, 45. The phase
curve shows the presence of a backward wave in the active region. The amplitude peak
occurs for a dipole length somewhat smaller than % . In Fig. 46 many computed patterns
are compared with the experimental ones given by Isbell [41]). From the patterns it
is possible to obtain an approximate estimation of the directivity from the E and H
plane half power patterns:

41000

D & o) (W)

=10 1o (2.25)

db
Fig. 47 contains computed curves which are very useful for design. The curves of
constant directivity are plotted vs ¢ and v, end for every v is given the value of
copt (i.e., that value of ¢ which maximizes the gain). For values of ¢ greater than
the optimum, large sidelobes appear on the radiation pattern.

The directivity is found to be independent of the characteristic impedance of
the feeder. However, the element height to radius does affect the directivity: for
each doubling of h/a the directivity decreases by about 0.2 db in the range
50 < h/a < 10000,

The phase center of the antennas has been calculated too. In general, rigorously

speaking, no antenna has a true phase center. As a matter of fact, the existence of
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Fig. 46 . Computed and measured patterns, v = 0,888,
o =0.089, a = 17,59, Zo = 100 Q, h/a = 125,
ZT = gshort at o'lkmax behind element number one.

-76 -

- ~ - Bt o
e g S i TTH ST




A0S = L

9L°

8L°

Z ‘001 =

o

08° ¢8°

8

1 x03d%eg 21808

98°

88°

0

.m.

Z ‘D pue ‘O ‘1 saA zua>auuwuav jJuejzsuod 3

111 = o/q ‘z/Ty 3e
0 sanojuod pajyndwo)

‘LY *314

!
m

TTITI L

4+

|

]
m.u
- 1+
|
|

i ﬂf; =
T
7 |
.....ﬂ.... = i
tlJmﬂuMWJllL!L.Ln
. mf/,._ ._ 1
L i IS
N ./
= . 4] * :

qp

=

hv

So°

| 90°
Lo°

60°
o1’
1T1°

(A%
€1°

1 o1

ST
91"
L1’
21°
{1 61°
oc*
1T

e

© 3ujoeds aaj3eiay

7

- —

poma g

S -

LT IR TS T e e v WP NG W O W Ty ey




a phase center would imply that the phase front of the rudiation field of the antenna
would be spherical, and this is true only for very particular sources, However fer
every direction 8, it is always possible to find the centers of curvatures of the
sections of the phase front with two orthogonal planes. These define two 'phase
centers'" relative to the direction and the plane under consiheration. In this way,
from the expression of the radiation patterns, the phase centers relative to the peak
of the radiation pattern have been calculated for the E and H planes. The results
for the H plane are plotted in Fig. 48. For the range of & shown, the location of
the phase center is independent of v and ¢. The E plane phase center lies always
ahead of the H plane one. 1In all cases it lies between the apex of the structure and
the element whose length is one-half wavelength.

Considering the input impedance, the mean value of the resistance is given by

the approximate formula

R0 (2.26)
where Zo is the characteristic impedance of the feeder and
h
Za =120 (In el 2,25) (2.27)

is an average characteristic impedance of a short dipole as a function of h/a. The
SWR with respect to Ro has a minimum value of about 1.,1:1 at the optimum value of o.
As ¢ is decreased below the optimum, the SWR rises above 1.8:1 at ¢ = 0.05. These
calculated valuesrepresent lower bounds; the measured SWR is usually greater.

2.3.6 Design Data

The numerical analysis considered in this section can be applied directly to the
design of the log-periodic dipole array. Moreover, in a qualitative way the same data
can be useful as a guideline for the development of other types of log-periodic
antennas. In this subsection we will consider how to utilize such data for design
purposes.

The first step in the design is a choice of t and ¢, keeping in mind that a large
value of 7 (i.e., T close to the unity) increases the number of the elements. The boom
length (distance between the smallest and largest element) is determined mainly by o,
increasing with ¢. For a certain required directivity, a preliminary choice of 1
and ¢ can be made from the graph of Fig. 47. The dependent parameter ¢ is then given
by (2.16). The bandwidth, Bar of the active region, for the given values of r and a
can be found from the graph of Fig., 44, The bandwidth of the structure BS is then given
by
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Bs =3B Bar (2.28)

where B is the required operating bandwidth. The geometry of the log-periodic dipole
antenna provides the following relationship between the boom length L and the longest
operating wavelength Amax:

L 3 1
X = %(1 - E—) cota (2.29)
max s

because the length of the first element is Xmax/z . L is the boom length between the
largest and smallest element. The number of elements required is found from the

equation

log Bs

N=1+—" (2.30)
log 1/7

The principal log-periodic dipole parameters are thus determined. It is likely that
the first estimate of v and ¢ will lead to a longer boom length than is necessary, so
a revision must be made in 7 and G, repeating the above procedure several times until
the minimum boom length is found.

In order to obtain a required input impedance Ro’ the characteristic impedance
of the feeder must be specified. Structural considerations generally determine h/a

and Za is obtained by (2.27). Inverting (2.26), the characteristic impedance of the

feeder relative to Ro is found

-
S R -\/__1__3 m 2.31)
(] 4 J
o 8¢ Za/Ro (8¢ AZ/RO)

[
n

where ¢' = G/GT.

All the elements for the design are now available. Carrell suggests short-
circuiting the terminal of element number 1 (the longest), since at the lowest fre-
quency the shorted element acts as a passive reflector.

In conclusion, the work of Carrell seems the most exhaustive parametric analysis
available for this type of structure. Although specifically concerned with log-
periodic dipole arrays, the large amount of information given in it can be used also

for other kinds of log-periodic antennas. The data in Table 1 show the effects of para-
meter modifications [1].

2.4 MISCELLANEOUS LOG-PERIODIC ANTENNAS
The log-periodic principle can be realized in a variety of geometries. As men-

tioned previously, the present state-of-art does not permit predicting the performance
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of a novel type of structure. Due to this lack of theoretical insight, a large
amount of experimental work has been devoted to the development of different kinds of
new antennas. We will briefly consider some of the most interesting miscellaneous
structures which have been proposed.

Log-Periodic Folded Monopole Array

At the Radiolocation Research Laboratory Department of the Electrical Engineering Dept.

of the University of Illinois, a limited investigation has been performed on a new
typ; of unidirectional, vertically-polarized, log-periodic antenna, the log-periodic
folded monopole array [47]. Such an antenna in its most promising version is con-
structed by a series of folded vertical log-periodic dipoles on a ground plane fed by
a coax feeder line. The outer conductor is log-periodically broken and the folded
monopole is fed in series as shown in Fig. 49. The ground plane clearly increases

the directivity. The radiation patterns obtained are fairly satisfactory, but the SWR
is not generally very good. Since this structure was judged not to have many advan-
tages over the zigzag or coaxial fed monopole arrays, no attempt was made to improve
its impedance characteristic.

Log-Periodic Cavity-Backed Slot Antennas

The usual types of log-periodic antennas are not suitable for use on aerospace
vehicles traveling st high speed in the atmosphere, because such vehicles cannot
employ protruding objects from the surface of the vehicle. Therefore, it is highly
desirable for such applications to develop a flush-mounted antenna based on the log-
periodic principle.

Perhaps the most successful attempt in this sense has been made at the Univerisity
of Illinois [48). The device proposed is constituted by an array of slots, each one
backed by a cavity. The sizes of the slots, their spacings, and the cavity dimen-
siong follow a log-periodic law. The cavitiec are excited by a series of loops in
series on a feeder line and the energy is radiated through the slots. It is clear
that the number of variable parameters in this type of antenna are much larger than in
the case of log-periodic dipole array. Therefore, the choice of optimum parameter is
more difficult, A program was conducted to find a satisfactory set of parameters,
including tests on a single radiating element (i.e., slot and backing cavity to estab-
lish the optimum size and positionofthe magnetic loop). Design data are not given in
[48]. Although the results are not too satisfactory, at least the feasibility of an
antenna of this type has been demonstrated.

Other Log-Periodic Slot Arrays

Other different log-periodic slot arrays have been proposed with moderate success.
Various techniques have been tried by utilizing ground-plane slots as radiating ele-
ments. Fig. 50 shows a fairly successful array remarkable for the simplicity and
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cleanness of design is shown [50]. A completely printed construction is adopted.
Antenna currents flowing on the ground plane on the array axis are parallel to a

line bisecting the elements (i.e., the axis of the array). Thus, the ground plane
can be cut along the array axis and sections of a printed circuit transmission line
inserted therein. The radiating elements are "folded slots," the dual of folded
dipoles. The smaller (inner) slot of each element can be used for the fine phasing
of the elements. It has been experimentally determined that the optimum length for
these phasing slots is in the neighborhood of one-half the length of the outer

slots. Appreciable deviationsfrom this optimum length are accompanied by pattern
degradation. Some radiation patterns are shown in Fig. 51. It is to be noticed that
the radiation is bidirectional. Attempts to make it unidirectional with the addition
of a backing cavity were not very successful,.

Circularly-Polarized Log-Periodic Antennas

A peculiar property of log-periodic antennas, which seems quite general although not
analytically proven, is the so-called phase rotation phenomenon: if the phase of the
field is measured relative to the phase of the input current, the phase of the re-
ceived signal will be delayed of 2n if the structure is expanded throug. a period [50].
The relation between the log of the freqjuency and the phase rotation is practically
linear, with deviations of less than about 15° from the exact law. This allows
frequency-independent phasing of the array elements. Consider now two log-pericdic
structures, placed at right angles to each other, with one structure scaled by the

(A

factor v with respect to the other. The situation is depicted in Fig. 52. (Notice
that the period v is as indicated, because of the veversal of feeding connections

of the dipolec). The phase rotation phenomenon guarantzes that circular polarization
independent of frequency is obtained on the peak of the beam. Not only the dipole
array but also other different structures can be arranged according to the same idea,
to give circular polarization. For example, two trapezoidal tooth structures of the
type of Fig. 25, can be arranged in a pyramidal shape. Axial ratios greater than

2:1 can be obtained on the entire bands of the component antennas. The circular
polarization obtained with antennas of the type shown in Fig. 52 is generally better
than that given by trapezoidal tooth structures [51].

Reduced Size Log-Periodic Antennas

We have already mentioned some attempt to reduce the size of log-spiral antennas.
Loading the antenna with lumped elements, or with a continuous dielectric or magnetic
material has been suggested [52]. However, it seems that the moet promising approach,
is one proposed at the University of Illinois: the log-periodic helical zigzag antenm ,
essentially a modification of the log-periodic zigzag antenna on a ground plane [53
and 54]. This antenna is constituted of a single conducting wire, arranged in a log-

periodic way as indicated in Fig. 53. A disadvantage of such an antenna, which does
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not make it attractive at low frequencies, is that the height is rather large,
exceeding one-half the maximum wavelength on the band cov-~red.

The method of size reduction utilized in the log-periodic helical zigzag antenna
is conceptually very simple. The linear conductors of the structure of Fig. 53 are
replaced by helical ones (Fig. 54), the cell-to-cell phasing is then adjustable by
changing the pitch angle of the helix. 1In fact, according to the discussion in
Section I, the phase velocity along the wire of the helix is approximately that of
light. Consequently, the propagation along the helix axis occurs at a velocity smaller
than in the case of the simple linear conductor of Fig. 53, and the active zone occurs
over iacrements considerably shorter than a half wavelength. However, to get the same
directivity as a simple zigzag antenna, it is necessary to increase the length of the
active zone since a reduction of broadside effect must be compensated by an increase
of end-fire effect. In fact, the author suggests as a satisfactory set of parameters;
a pitch angle of the helix, ¢ = 300, expansion facter v = .9 and a® = 10°. Notice
that such a small o gives origin to a long structure (see Section 2.3). Therefore,
it is not clear whether the overall size of the antenna can be reduced. However, a
reduction of one dimension at the expense of an increase of another can be useful for
particular applications.

Array of Log-Periodic Structures

In Section 2.3, a special type of log-periodic antenna, the log-periodic array
of dipoles, was considered in detail. It is a planar structure and therefore, in some
respects is simpler than the one depicted in Fig. 25. Almost all the other practical
structures consist of non-planar arrangements. In order to increase the gain, two
log-periodic planar structures may be arrayed in a bg-periodic fashion. This arrange-
ment also simplifies the feeding problem, since it is possible to feed one-half struc-
ture against the other half. Arrangement of more than two structures are seldom used,
because of difficulty in the feeding problem, and more importantly, because the increase
of gain is modest while the radiation pattern is not too satisfactory. This is due
to the inherent phase error, since for log-periodic operations, the phaize centers must
lie on a circle (see Subsection 1.4.2).

Let us consider an array of two-planar elements as in Fig. 25. If ¢ is the
observation direction in the E plane and | is the angle between the planes of the
two elements, the radiation pattern is given by

E = cosn(-‘ﬂ%-ll’-)exp(jﬁd sinﬂz’- simp) + cos“(-‘ﬁ—;—‘k) exp(-de sin% simp) (2.32)

where d is the distance of the phase center from the virtua’ apex and cosn % is an

assumed function form for the element pattern. Although in (2.32) the interaction
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effects between the two component structures are neglected, the expression is reason-
ably accurate, To practically find n, the beamiidth of a component structure is first
determined. This can be obtained by data in the literature. Duhamel gives a plot of
the pattern characteristics of wire trapezoidal tooth elements as a function cf «

for the minimum value of v (for smaller + the pattern degrades considerably) (Fig. 55
and [4]). It is then possible by using the empirical graph of Fig. 56, to obtain n,
and therefore by using (2.32), to predict approximately the H plane pattern. The E
plane pattern is the same as that for a single component structure and can be obtained
by using the graph of Fig. 57, where the front-to-back ratio is also indicated.

The impedance behavior of these structures as a function of the various para-
meters is not clear. In general, it appears that a wire structure has a characteris-
tic impedance somewhat higher than a sheet structure. There is no definite trend in
the variation of impedance with v, Some data on the impedance and SWR as a function

of v and | for particular structures can be found in the Antenna Handbook [4].

2.5 DESIGN OF LOG PERIODIC ANTENNAS

The design of a log-periodic array is stiil in many aspects an art rather than a
science. Cut-and-try procedures, assisted by good physical intuition, are necessary
to develop an antenna meeting given specifications., As pointed out in Section 1.5
about log spirals; it is rather simple to design a log-periodic antenna behaving reason-
ably well, but it is sometimes very hard to obtain a behavior closely following given
specifications.

In reviewing the design procedure, we distinguish between antennas constituted
by a single planar log-periodic structure (as the log-periodic dipole array), and by
two component structures arrayed (as in Fig. 25).

Single Planar Structures

The only important antenna constituted by a single planar radiating structure is
the log-periodic array of dipoles. Design data are discussed rather thoroughly in
Section 2.3.6. Therefore, we will repeat only briefly the steps of the design proce-
dure,

Assume that certain directivity and impedance are specified. A v and o can
thus be chosen, taking in account that the number of the elements increases with T,
and that the boom length increases with ¢. Given a certain specified directivity, the
use of the graph of Fig, 47 allows determination of v and o. The angle @ is a dependent
quantity according to (2.16). The above procedures can be repeated in order to reduce
the minimum beam length, keeping in mind that the best front-to-back ratio can be
obtained by using a value of ¢ which is close to the optimum. The input impedance

determines the characteristic impedance of the feeder line according to (2.31).
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Array of Two Component Structures

Suppose that in the H plane the required beam is too narrow to be obtained by
means of a single planar structure. In such a case, it is necessary to resort to an
array configuration (Fig. 25). The equivalent broadside aperture D (distance between

the phase centers of the two components structures) can be given by the following

semi-empirical formula,

>|o
"

(2.33)

sl |5

which takes into account the directivity of a single structure (due to the

end-fire effect). Aperture D can be computed with the data given by Fig. 48 (which
holds approximately for any kind of log-periodic antenna). The design data given in
2.3.6 can be used (according to the procedure reported above) to determine all the
other necessary parameters. Of course, for wire and tooth structures the data given
by Carrel can be useful only for a very qualitative prediction of the radiation
patterns. Alternatively, the graph of Fig. 35, where some data for wire and tooth
structures are given, can be used. By usin: Fig. 56, the parameter n to be introduced
into (2.32) can be determined. After choosing an angle {, (2.32) can give an idea

of how the radiation pattern will look. The computation can be repeated several times

to find a suitable value of . The graph of Fig. 27 can help in a preliminary evalua-
tion of the gain and the front-to-back ratio.
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III. BROADBANDING CONVENTIONAL ANTENNAS

3.1 THE "SMALL ANTENNA" PROBLEM

We have seen in the previous Sections that the way to obtain antennas with
frequency bands extremely extended is to use a certain class of structures
geometrically characterized by being self-congruent, and having a peculiar type
of current attenuation along the structure. The power (in transmission type of
operation) is radiated by an active zone whose size counted in wavelengths is
constant with frequency: this means that when the antenna is operated in the
upper frequency range not all the structure is utilized. The cize of this ac-
tive zone is always of the order of one or several wavelengths and the gain
obtainable from these antennas is low or moderate.

There are cases when the small size is desirable and the gain is not an
important factor. This occurs generally at frequencies in the range of the Mc
or of the tenths of Mc, often in vehicular applications, In such instances, if
broadbanding is required, the basic F.I. or L.P approach is out of question,
The antenna geometry is generally very simple (a simple stylus, for example, or
a biconical structure), and broadbanding is attempted using an input network
which matches the impedance rapidly varying with frequency.

It turns out that this approach has strong limitation in principle. 1In
fact, as in any other linear network, the rate of variation of the input im-
pedance of an antenna is rapidly increasing with the increase of the reactive
energy (stored in the neighborhood of the antenna), which in turn increases at
an extremely high rate if the size of the cntenna is decreased behind a certain
point., This and related questions (as the possibility of supergain antennas)
have been the subject of some classical papers, and now are well clarified
[55-57].

Chu considered the question of the physical limitations of an antenna
omnidirectional in the azimuthal plare, and showed that the Q of the antenna,
defined in a suitable way, increases at an astronomical rate if the size of an
antenna is decreased under a certain value dependent upon the gain [55]. Later
Harrington considered the more general case of a directive antenna [56], and
showed that the maximum gain obtainable from a broadband antenna is approximately
equal to that of a circular uniformly illuminated aperture whose diameter is
equal to the maximum size of the antenna,

Here we will limit ourselves to the consideration of the omni-azimuthal
case (which is the most important for this kind of application) and will examine
the question of the limitation which the size of the antenna imposes on the frequency

band, We will only require that the band is a maximum, without imposing any
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requirement on the gain., We will find that the antenna which has the pntentially
broadest band is one which has a radiation pattern corresponding to that of an
infinitesimally small dipole. This in turn leads to the conclusion that, for
small antennas, trying to devise very complex structure is not a very promising
approach to broadbanding, which must rather be attempted through a careful de-
sign of the input network. However, the results which can be expected are quite
limited, if losses are not purposely introduced to reduce the Q, and consequently

the efficiency, of the radiating system,

3.2 THE O OF A RADIATING ELECTROMAGNETIC SYSTEM

The first exhaustive treatment of this problem has been given by Chu who
found a lowest bound for the Q of a lossless antenna (defined later), once its
maximum size is given, which is strictly related to its broadbanding potentiality.

Let the largest size of the antenna be 2a, and let us imagine the complete
antenna structure (including the source of power) enclosed inside a geometrical
spherical surface of radius a. It is well known that the field outside the sphere
is completely determined by the distribution of equivalent currents on the
spherical surface and can be due to infinitely different distributions of sources

inside the sphere, The Q of the antenna is defined as

2 W,
if W >W
[c] m
Q: (3.1)
W W
D ifW >Sw
m e

where wm and we are the average magnetic and electric energies stored in the
neighborhood of the antenna and P is the power supplied at the antenna input,
The justification of the definition (3.1) can be simply given by considering

that the antenna will be always tuned with a reactance to give a resistive input,.
This therefore implies that the total average energy stored by the antenna and
tuning network is as given in the numerator of (3.1).

It is rather difficult to determine the energy stored in the localized
reactive field and to separate it from the radiation field. One method consist
of recognitior. of the fact that the power flow from an antenns is equal to an
energy density (Ue + Um) multiplied by a velocity of energy flow. Then, for
infinite Ue’um and “he power flow may be readily evaluated and the velocity of

energy flow determined [57]. If U and U_ are subtracted from the expressions
e m P
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i E E¥* and % H H*, giving the total energy density in the field, the remainder
is the energy density associated with the reactive field. Chu's method,

which is the one considered here, consists instead of finding for each of the
spherical modes an equivalent network and reducing therefore the problem to

circuit analysis [55].

3.3 EXPRESSION OF THE FIELD OF AN OMNIAZIMUTHAL ANTENNA

If we assume that the antenna is omniazimuthal and the system of current
is vertical, i.e., in the direction of an axis z, associated in a standard way
with a system of polar coordinates R,8,¢p, we have as the only nonvanishing

field components :

==
"

1
ﬁ AnPn (cos 8) hn(kR)

[e2]
]

- ¥ b (kR)
1 -j(zj) L An(n+ 1) P (cos 8) “kR (3.2)
n

1
E, = j (Ea% E AP~ (cos 6) %E gﬁ [Rh (kR)]

where Pn (cos A) is the Legendre Polynomial of order n, Pnl(cos £) is the first
associated Legendre polynomial, hn(kR) is the spherical Hankel function of the
second kind, k = 2u/A, VGI7€ is the wave impedance of a plane wave in free space
and I/FJ is the velocity of light. The An's are a get of coefficients,
generally complex,

The asymptotic expression for the field (i.e., that one valid in the far
zone) 1is:
oo ik gy G D2 P_'cos )
" Ve n

(3.3)

The directivity gain is:

2
g
68 = o 2
[ |E9| sin8dede
(o o)
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Putting 0 = % , (i.e., considering the directivity in the equatorial plane)
and using the orthogonality properties of the associated Legendre polynomials

we get, assuming all the An in phase (for maximum gain):

' 2
5 An('l) (1) /2 Pnl(O)
7} _ n
e (5) T T a2 oG (i)
n 21

where T' represents the sum over odd n only [55].

3.4 EQUIVALENT CIRCUITS OF THE VARIOUS MODES
The flow of the complex power computed at the surface of the sphere is

the integral of the complex Poynting vector over the same sphere:

2
A
’ . nt+1l
Pfa) = j2u vg’ h —k“ J——)-“ZHH ph_(p) (3.5)

- = g A -
where p = ka, hn hn(p), phn 0 phn(p). The real part is the average

radiated power:

A n(ntl

P = 2n\F’ £t 2 Tontl (3.6)
T € k

The expression (3.5) in which the orthegonal properties of the wave functions

are clearly apparent, can be the starting point tc devise an equivalent circuit
for the various modes. If we replace the space outside the sphere by number of
independent equivalent circuits (Fig. 58), each of them corresponding to a mode,

their input voltages, currents and impedances are:

A %
! : 4 1
Ve 2 [ e @)

A

L fE e ], 0
(ph_)

Zn = j aa (3.9)
n

'The method which is used in [55] to find the reactive energy stored stems from

the recognition that the impedance (3.9) (which is physically realizable)
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can be written as a continued fraction by using some recurrence relations of

Bessel functions:

n 1
Zn=35+
2n-1 + 1
jp Z?éé i el (3.10)
% 1
3 1
ol o
jo

The circuit interpretation is a cascade of series capacitances and shunt induc-

tances terminated with a unit resistance (Fig. 59). For n = 1, the field is

the same as that of an elementary dipole and the equivalent circuit is shown

in Fig. 60. It is apparent from (3.10) that the resistive element is hidden

at the end of a series of high pass filter cells, The effect of an increase

of frequency is equal to an increase of the radius of the sphere. It is there-

fore clear that practically, for an antenna of very small size with respect to

the wavelength,the higher modes contribute only to the reactive energy and the

radiation pattern is essentially that of a dipole. In principle, however,

if the amplitudes of *the higher modes are exceedingly high, it is possible to

obtain arbitrarily shaped radiation patterns with an arbhitrarily gmall antenna

at the expense of an enormous increase of the reactive energy of the antenna.
To calculate the energy stored in the reactive elements of the equivalent

bipolar network Zn of Fig. 59 is a rather long procedure. However, in the

neighborhood of the operating frequency,zn can be approximated by a simple series

RLC circuit., The Rn’ Ln’ and Cn of the simplified equivalent circuit can be
found by equating the resistance, reactance and frequency derivative of Zn to

these of the series RLC circuit, The results are:

_ -2
Rn - |p hnl
) 1
dX X
c =< |—_.n
n 2 dw w
w

=
=]
I
N —
Lrwaral
2P
o ]
+
o »s
>

where

i = [?jn(ojn)' it onn(onn)]
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and jn and n are the spherical Bessel functions of the first and second kind.
The simplified circuit describes Zn accurately enough in the immediate neighbor-
hood of the operating frequency. 1If a Qr for the n mode is defined

2uW
n

Q = (3.11)

n

where wn 1s the average electric energy stored (which is higher than the mag-
netic energy) 4nd P is the average dissipated power in Z . From the simplified
circuit, there is obtained:
dx
=1 2 n
Q =73 leh |7 |p o "% (3.12)
The bandwidth of Zn (when externally matched with a proper amount of magnetic
energy to make it resonant) is approximately equal to the reciprocal of Qn'
A plot of Q vs 2na/A for various n is given iu Fig. 61. When 2ma/A is of the
order cf n, Qn is of the order of unity, and increases extremely fast when 2na/A

decreases.,

3.5 THE MINIMUM Q OF A SMALL LOSSLESS ANTENNA

For all n such that p = 2na/A < n the spherical Hankel function hn(p) is
essentially an imaginary positive quantity. Thus the currents of the equivalent
circuits Zn for n greater than the argument p are essentially in phase. This
means therefore, that the electric energy stored in all the equivalent circuits
oscillates in pnase. It is clear then, that if the antenna is assumed lossless,

its Q (defined in 3.1) is simply equal to

W M
Q= TP (3.13)

where we recall that wn and Pn are respectively the average reactive electric
energy and the radiated power associated with the nth mode. We have assumed for
the internal circuitry of the antenna (i.e., inside the spherical box of Fig. 58)
the most favorable condition: mno electrical energy stored, and magnetic energy

in the right quantity to make the antenna resonate, i.e., the magnetic energy
stored in the input network is equal to the sum of all the electrical energy stored

in the Zn equivalent circuits. 1In this hypothesis, (3.13) results consistent
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with the usual definition of Quality Factor for a circuit. It is easy to check

that Q can be written

ZI A 2 Eﬁ.n_"'_l.l Qn(ka)
" ontl (3.14)
n

2netl

Q=

where Qn's are given by (3.11) and the dependence upon a is explicitely pointed
out, The Q so defined,when it is high,can be interpreted as the reciprocal of
the fractional frequency bandwidth of the antenna. When it is low,however, it
can be considered only qualitatively as an indication that the antenna is broad-
vand,

It is possible to minimize (3.14) under the constraint of a certain gain
and can be shown that the maximum gain which can be obtained with a reasonable
value of Q is ~ 4a/A. We will consider however the other related question which
is perhaps more important for omniazimuthal antennas: which is the minimum Q of
an antenna of a given size when no constraint on the gain is given? Or in other
words, whici is,for a given a, the optimum combination of the model coefficients
An's in order to obtain the absolute minimum Q? From the expression (3.14) the
answer is apparent. Sincethe various Qn have different values,and the minimum
is Ql, it results that the antenna generating a field outside the sphere corres-
ponding to the first transverse magnetic mode (i.e., the field of an elementary
dipole) is the one with greater broadband potentiality. The gain of this antenna
ig 158

3.6 QUALITATIVE DISCUSSION

The discussion in the previous section has been rather theoretical. We
have considered an antenna in free space and have seen what the radiation pat-
tern must be in order to obtain the minimum Q or, equivalently, the maximum band
of the antenna, We have not considered the effect of the nearby objects which
will always be present. The only case in which the effect of a physical struc-
ture can be easily taken in account is when a ground plane is present, and in
such a case the theory is still valid with only minor modifications. For every
practical structure the theory is unable to predict the effects, except in a rough
qualitative way. For example, let us suppose that the antenna current distri-

bution has been carefully chosen to have a gain higher than 4a/A when isolated
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(and we do not want to consider here the difficulties of fulfilling this task).
This means that the antenna has also high Q, and large reactive fields in its
neighborhood. 1If the antenna is in proximity of other structures, these fields
(and of course the radiation field) will induce currents on them. The radiation
pattern will as a result be modified, with a decrease of the gain.

On the basis of this consideration it does not seem advisable to try tc devise
complicated structures for small antennas in an attempt to increasc the gain.
Moreover, a high Q means also(for every practical structure )very high conduction
losses, which will reduce the efficiency of the antenna. The general conclusions

which can be deduced by Chu's analysis are the following:

-- For small antennas, there is a practical impossibility of ob-
taining gain higher than 1.5 (the gain of an elementary dipole).
This does not completely exclude the possibility of modest in-
crease of directivity at the expense of correspondent increase
in losses,

-- The Q of the antenna is the lowest if the antenna generates a
pure dipole field. This is clearly impossible for practical
structures, but can be better approximated if complicated
geometries are avoided, We have to take in account however that
the '"output surface'" of a practical antenna 1is not a sphere.
For example, for a simple stylus it is a cylinder. Therefore,

side the spherg (having its diameter equal to the

maximum size 2a of the antenna) all the waves different from

the dipole mode are strongly attenuated; nevertheless, the reactive

field can be very strong in the space between the output sur-

face, increasing the Q of the antenna. This again suggests use
of a structure with simple geometries, and avoidance of

. 1
conductors with small radius of curvature .,

Once the maximum size(2a)of one antenna is given, the maximum bandwidth
of its input impedance (obtained by using a proper matching network) is determined.
In fact,the Q of the antenna (supposed lossless) is always less than Ql(ka).
Therefore,assuming this value for the Q and assuming an equivalent circuit as
in Fig. 60, is a conservative hypothesis. A theoretical study on the possibility
of broadbanding a given bipolar network by using a matching quadripole was made
by Fano [58]. Based on its computation Chu gave a curve, valid for an antenna

. It is well known, for example, that a thick dipole is more broadband than a

thin one, and a biconical antenna is more broadband than a dipole.
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having Q = Ql(ka). Fig. 62 shows the fractional bandwidth, for an assumed
allowable reflection coefficient, as a function of the size of the antenna,
vhen the antenna is optimally matched (i.e., is connected to the generator
through a passive lossless network which gives a constant amplitude of the
reflection coefficient throughout the band). This curve can be very useful
in determining an upper bound on the frequency bandwidth to be expected from
a given antenna. For example, consider a short dipole with length 0.1A,

and assume an allowable reflection coefficient of 0.5 (which corresponds to a
SWR of approximately 3 and an efficiency of about 757%). In this case we ob-
tain from the graph of Fig. 62

2 &
-=— T log |r|=.1

which gives AB/f =~ 257. From the curve it is seen that the band decreases very
fast with the size. For example, for an antenna whose size were 0.01A, in

absence of conduction losses, the band for the same ma-:imum reflection coefficient

is approximately ,0227%. However,for antennas of such a small size the theory
is hardly applicable since very large reactive currents and very high conduc-
tion losses also occur, For example, antennas for VLF (which are always elec-

trically small) can have conduction losses ranging from 80% to 907 of the input

power.,

3.7 NETWORK THEORETICAL APPROACH

In the previous section the problem of the minimum Q (and therefore of the
maximum bandwidth) of a lossless antenna of a given overall size has been inves-
tigated. Chu's theory allows to predict an upper bound of what can be expected
from a small antenna. A practical antenna will have a model structure different
from the ideal antenna having Q = Ql' The configuration of the field will cer-
tainly be more complicated with a doublefold effect: to increase the reactive
energy and also to increase the power loss because of the currents on the struc-
ture. As a consequence of these two contrasting effects, it is not clear which
will be the overall effect on the Q of a structure. The present state of the
theory clarifies what we cannot expect from a cerlain structure but it is not,
however able to predict the actual behavior of a practical antenna given its
physical configuration, or to suggest which configurations can be recommended in

order to have a behavior close to the theoretical limit,
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Instead of attempting to design an optimum structure, a less ambitious pro-
gram can be followed: designing the antenna on an empirical or semiempirical
basis, taking measurements of its input impedance behavior with frequency, and
then from the knowledge of these data, rationally designing the "best'" network
(in some sense). This sort of approach,in other words, does not investigate the
electromagnetic behavior of the structure and reduces the question to a network
theoretical type of problem [59].

The input impedance of a lumped element circuit can be analytically de-
scribed, as it is well known, by a rational algebraic function. Distributed
systems on the other hand can be described, in general, by meromorphic functions.
To show this point in a simple way, (related to the treatment of the previous
section), we can say that for an arbitrary structure in general the mode ex-
pansion of the field will contain an infinite number of terms; therefore,
the equivalent circuit of Fig, 58 will be constituted by an infinite number of
bipolar networks. Consequently, the input impedance function will contain an
infinite number of poles; i.e., will be a meromorphic function. The idea in
Ref. [59] is to approximate the actual impedance function with a rational
algebraic function (or equivalently to substitute the dietributed circuit with
a lumped one), and then to match it with a quadri-polar lossless network.

As a first approximation of the impedance, the simple rational function

u(p) = 3 (3.15)

can be chosen where the Ci's are constant to be determined and

p=o0+ ja

is the complex frequency.

The first requirement for this function is to be "positive real" or in other
words toc represent a physical network. Furthermore, the real part must be
evidently zero at zero frequency. These are general requirements which impose
constraints on the Ci's. The determination of the Ci's will be then completed
by requiring that (3.15) behaves as close as possible to the actual antenna
impedance. Without reporting here the details of the method which the authors
of Ref. [59] used, it can be said that essentially the modulus of the difference
between the reflection coefficient (amplitude and phase)obtained by actual mea-
surement and that one calculated from the expression (3.15), (with the Ci's still
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unknown) is minimized with respect to the Ci's. When (3.15) is so determined,
network theory allows finding the optimum matching quadripole given a certain
value of the maximum allowed reflection coeificient on the operating bandwidth.
We will not consider here this last problem, which is essentially a network
theoretical problem.

The authors give some example of the application of this method, showing,
for example, that with a proper matching network a slot backed by a cavity
has a band of about 507 narrower than its "end loaded" version (which is the

magnetic equivalent of the capacitance loaded dipole).
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IV. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The overall size is perhaps the physical quantity which most strongly ceastrains
the characteristics obtainable from an antenna. The frequency band of an antenna
“"electrically small" is always very limited, even if the theoretically optimum input
network is used. 1Its actual value, of course, depends upon the size. Practical small
antennas are generally linearly-polarized and the directivity is that of a small dipole.

Logarithmic spiral and logarithmic periodic antennas are different from all other
antennas because of the peculiar property of being "active" only in a limited part of
their structure, in such a way that their electrical size, so to speak, remains con-
stant in terms of wavelengths for a wide band of frequencies. In theory, the frequency
band can be made as large as wanted, just by increasing the overall size of the antenna.
From an engineering point of view, however, in this way only the lower limit of the
frequency band is determined. The upper bound is determined by different factors, such
as structural mechanical problems and fabrication tolerance considerations. The geo-
metrical and electrical requirements which must be satisfied are the following:

(a) The antenna must be geometrically self-congruent after an expan-ion with
respect to an infinite discrete (in the case of log periodic) or continuous (for log
spiral) set of expansion ratios.

(b) The current must decay along the structure faster than the inverse of the
distance from the feeding point.

These antennas are not small in terms of wavelengths, Their size is always of
the order of magnitude of the largest operating wavelength. The gain is small or mod-
erate and the polarization can be either linear or circular,

The theory of log periodic and frequency independent antennas is not well developed;
we have seen that the only approach having thus far been developed is the analysis of
the periodic counterpart of the structure. it this analysis can be accomplished, the
Brillouin diagram can be used in an approximate way for the slowly-tapered structure.
The analysis of thesimplified problem is still very difficult., The array of dipoles is
the only practical structure which has been solved [40]. In this case, the solution
was only approximate and was found by considering the coupling of each radiator with
the closest elements only. The approximation is good for large spacings but degrades
for spacings smaller than a wavelength. This degradation of solution accuracy is un-

fortunately the case for log periodic arrays of dipoles, since the ratio between spacing

*In Table 2, some of the characteristics of these broad classes of antennas
considered in this report, i.e., frequency independent, log pneriodic, and small antennas
are indicated. Of course, the table has only indicative values.
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ard wavelength in the active zone is uasually smaller than 0.1. It would be desirabile
to find a method by which the approximation improves with decrease in spacing. A
promising method based on the use of Fourier Analysis is described briefly in the

following section.

4.2 RECOMMENDATIONS FOR FURTHER STUDIES

Because of the general nature of this survey and the Army's broad interest in
antennas for many applications covering the entire frequency spectrum (i.e., all fre-
quencies of use to communications and radar) and a wide variety of antenna characteris-
tics, the recommendation is for a theoretical study which has the purpose of developing
a better understanding of the behavior of wideband antenna structures. The body of
this report clearly indicates the lack of adequate theoretical treatment., This r<zom-
mendation for further studies leaves open the approaches which may be considered;
obviously, this must be nature of research studies in order to allow generation and
evaluation of new concepts. However, to show that further meaningful research in this
area may be conducted, a rather specific approach to the solution of periodic-like
structures is outlined below,

The use of Fourier Transforms in certain types of electromagnetic problems can
be often very convenient [59, 60]. It has been used to determine the driving point
impedance of a phased planar array of dipoles in a rectangular arrangement [62], and
in a general periodic arrangement [63]., It has not been used to the author's know-
ledge to determine the surface waves or the leaky waves in an (either bidimensional or
linear) array of dipoles (similar to Fig. 30). To indicate how this method can be
used for this problem, consider the following approach: It is possible to determine
an expression of the impedance of an element complex in the form of a series, the terms
of which are proportional to the square of the bidimensional Fourier transform of the
current in the single element with respect of the coordinates in the plane of the array,
sampled at certain points depending upon the unknown complex propagation constant., We
can equate this impedance to the opposite of the impedance looking into the feeding
line (Fig. 30 and 32). A "Transverse Resonance' equation is thus established in a form
of a series whose terms contains the unknown propagation constant, The various solu-
tions are the propagation constants of the various modes. An interesting feature of
this equation is that it simplified as element spacing is decreased; it is possible to
show that the number of non negligible terms cf the series increases with the spacing,

Following this Fourier Analysis approach, it may be possible to achieve new steps

in the development of the theory of log periodic antennas., It is highly desirable that
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further theoretical work be done. New insight on the behavior of these interesting
and peculiar structures is very important to put the design criteria on a sounder
theoretical ground. Further work on this field could include the following tasks:

(a) Analysis of the modes ir a structure composed of an infinite number of
dipoles fed by a line (Fig. 30). This could be done, as mentioned previously, by
using a Fourier analysis technique. It would be very interesting to compare these
results with those obtained for the same problem as described in Ref. [40].

{b) With the analytical results of task (a), it is believed that solutions to
the '"source problem'" can be achieved. In other words, to consider not just the free
modes on the structure (without excitation), but the radiation when an element is
driven.

(c) Research in a different direction could be an attempt to use the method out-
lined above to analyze a periodic structure of a more complex type (e.g., the periodic
counterpart of the sawtooth structure of Fig. 25). The results of this analysis as
compared with the results concerning the array of dipoles would clarify how the nature
of the single element influences the behavior of the array. These results would be
extremely useful for design purposes.

(d) A fourth (and more ambitious) task will be to seek a method for treating
not the simple periodic, but the actual log periodic array. Although it can be anticipa-
ted that the fulfillment of this task will be very difficult, there are hopes that the
use of some special functional transform can be a first step toward the solution of

this challenging problem.
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