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FOREWORD 

The study described in this report was performed during FY 1966 under the sponsor- 

ship of the U. S. Army Research Office - Durham, N. C., contract DA 31-124-ARO-D-396. 

Technical coordinators for the Government have been Messrs A, P. Sheppard and J. R. 

Suttle, ARO-D. 

ABSTRACT 

This report is concerned with a survey of the presently available literature con- 

cerning broadband antennas, in order to determine the capabilities and the limitations 

of the various techniques which have been investigated. 

The report is divided into three main parts, concerned with t.ae  following sub- 

jects: 

I.  Frequency Independent Antennas 

II.  Logarithmic Periodic Antennas 

III.  Electrically Small Antennas 

In the first part the present state of the theory of frequency independent antennas 

is discussed.  The experimental work on these structures is then briefly reviewed. 

In Section II, a parallel treatment is made for log periodic antennas.  Section III 

is mainly concerned with the theoretical question of the bandwidth limitation of an 

antenna "small" in terms of wavelength. 
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1 

INTRODUCTION 

The long term objective of the research documented in this report is to find 

promising techniques that will lead to the realization of ultimate operating L nd- 

widths for any given class of antennas. As a first step toward the accomplishment 

of this objective, a literature review has been conducted to determine promising 

theoretical approaches to broadband antenna design. 

The immense quantity of both experimental and theoretical information avail- 

able on antennas in the frequency range of interest (100 Kc to 100 Gc) obviously 

prevents consideration in depth of all antenna classes, hence this survey primarily 

considers wideband structures that are characterized by self-congruent (log spi- 

ral) and log periodic geometry. In addition, several approaches to the general 

problem of broadbanding conventional "small" antennas are reviewed, with emphasis 

placed on those papers that contain general results independent of specific antenna 

configurations. 

The reader will find that the theory of frequency-independent antenna structures 

is not well developed at the present time. The only approach having thus far been 

developed is the analysis of the periodic component of the structures, and the array 

of dipoles is apparently the only practical structure which has been solved.  In 

the dipole array case, approximations are made which degrade solution accuracy at 

dipole spacings less than a wavelength. 

For antennas small with respect to the operating wavelength, the theory in 

its present form allows prediction of an upper bound on the bandwidth obtainable 

from a certain structure, but is not able to predict the actual behavior of a 

practical antenna given its configuration. 

In the following, Section I reviews the present state of the theory of 

antennas derived from log spiral geometry, Section II considers the class of 

log periodic antennas, and in Section III, the problem of the minimum Q or max- 

imum bandwidth of small lossless antennas is discussed. 

Several promising approaches that may provide a better insight into the 

behavior of frequency independent antennas are outlined in Section IV, along 

with recommendations for future studies. 

- 1 - 



I. FREQUENCY INDEPENDENT ANTENNAS 

1.1 INTRODUCTION 

Carrel, in a very important paper, (reference [1] ) which we will examine in 

detail in Section II, gave this crystal clear definition of frequency independent 

antennas: 

"By frequency independence, as applied to an antenna, it is meant that 

the observrble characteristics of the antenna such as the field pattern and 

input impedance vary negligibly over a band of frequencies within the design 

limits of the antenna, and that this band may be made arbitrarily wide mere- 

ly by properly extending the geometry of the antenna structure. The ultimate 

band limits of a given design are determined by non-electrical restrictions. 

Size governs the low frequency limit, and precision of construction the high 

frequency limit." 

It is well known that as a rather immediate consequence of Maxwell equations, all 

the electromagnetic properties of a lossless passive structure are determined by its 

shape and size evaluated in terms of wavelengths. This seems at first glance to deny 

the possibility of existence of an antenna satisfying the above quoted definition. 

However, this turns out not to be correct: the basic idea underlying the invention 

of frequency independent antennas (FIA) is just the recognition that there exist struc- 

tures for which the geometrical properties are independent of linear dimension and 

can be specified by angles alone [2]. When scaled by an arbitrary factor they are 

transformed into others congruent to the original one. However, this is not f.he only 

requirement a structure must satisfy in order to be a frequency independent antenna. 

In addition, it is necessary that the current have a particular behavior along the 

structure. 

To clarify this point let us consider the infinite biconical antenna. It is 

obviously a self congruent geometry in the sense specified above. However, it is not 

a FIA. If we cut the conducting cones at any distance from the apex, the resulting 

finite structure behaves differently at different wavelengths. We cannot increase the 

band by simply "extending the geometry of the antenna structure." The reason is that 

the total current is constant along the structure, and therefore there is the above 

mentioned end effect, which causes a difference of behavior at different frequencies; 

in fact the surface density of current in the biconical case is decreasing as —, 

where r is the distance from the feeding point (apex of the cones).  In order not to 

have end effects, the current at the end of the structure must be negligible. This 

implies that the density of current must decay faster than — (going away from the 

* 
Numbers in square brackets refer to references Ü3ted in the Bibliography. 
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feeding point).  In such a case, the structure can be truncated at a certain dis- 

tance from the feeding point, (proportional to the largest wavelength of operation). 

The rate of decay of the current depends, of course, upon the particular structure 

under analysis. From these considerations it is apparent that the behavior of a 

frequency-independent antenna is quite different from that of the biccnical case. 

Roughly speaking, in the latter the energy is guided from the feeding point along 

the "biconical guide," and the radiation occurs because of an end discontinuity 

which transforms the guided modes in radiating ones.  In the frequency-independent 

antennas the energy reaches a region (whose location depends upon frequency) of very 

strong attenuation, beyond which the current is practically zero. In this region 

(the "active zone") the guided energy must be transformed in radiation. Ho  role is 

played in this mechanism by the edge of the structure except at the lowest frequency 

when the active region reaches it. 

In summarizing we can say that a structure, in order to work as a FIA, must 

satisfy the following requirements (one of geometrical and two of electrical nature): 

(a) self congruency (a scaling must transform the structure in itself); 

(b) the current density must decay along the structure faster than 1/r, 

where r is the distance from the feeding point; and 

(c) in the active zone there must be an efficient transformation of 

guided modes into radiating modes. 

These various points (a), (b), and (c), will be examined in more detail in the next 

sections. 

We want at this point to stress the fact that it is very difficult to predict 

whether the electromagnetic behavior of a certain structure which satisfies (a), will 

obey (b) and (c). This makes the design of novel types of frequency-independent an- 

tennas very difficult. Quoting Mittra and Jones [3] about this point: 

"The conditions prescribed . . . are undoubtedly necessary, but far 

from being sufficient. Most of the authors in the field report only the 

successful antennas and tacitly forego the discussion OP those which, 

although built on the same principle as the others, fail to work as broad- 

band antennas. For every successful antenna built, there are perhaps 

several n'hich were failures. Even today, after many years of experience, 

it is not possible to predict, a-priori, whether or not a given log- 

periodic antenna (LPA) will have broadband performance in the design range." 

The design of frequency-independent antennas is largely based on experimental 

and cut-and-try procedures. However, as we will see later, substantial steps 

i.e., The geometrical condition we have denoted by (a) 
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have been made in recent years toward an understanding of these interesting and 

peculiar structures. 

1.2 GEOMETRY OF FREQUENCY INDEPENDENT ANTENNAS 

An antenna satisfies the angle condition [(a) in Section 1.1] when expansion b> 

an arbitrary ratio T about the feed point 0, generates a structure that either coin- 

cides with the original one, or differs only by a rotation about some axis D passing 

through the point 0. 

The most general structure having this property must satisfy the following 

conditions [2,4]: 

(a) the axis of rotation D must be independent of T, and 

(b) the angle of rotation tp about D must be proportional to the logarithm 

of the expansion factor T: 

T=l2 = ea* (ia) 

1 

where r„ and r1 are the radius vectors defining two correspondent points before and 

after the expansion. 

As a consequence of (a) and (b) the surfaces bounding the antenna structure must 

have polar equations of the form: 

F(0, re"aip) = 0 

For 0=0 = const,the points of the structure are described by the equations: 

aip   a(ip + ip ) /■, o\ 
r = reT = e     Yo (1.2) 

o 

which are equiangular spirals (Fig. 1).  They make a constant angle <\>  with the 

radius vector.  The ip is the angle such that r(0) = r = e *o. When ip is varied xo o To 
the entire curve is rotated about D. 

In spite of the fact that the spiral is surrounding the origin, infinitely many 

times the arc length s from the origin 0 is finite and proportional to distance r: 

r 
COSlJl 

The parameter a of the spiral has a simple geometrical significance.  It is simple to 

show that a is related to i|) and 0 by the relationship: 

sin0 

tanij) 

1.3 THEORETICAL WORK ON FREQUENCY INDEPENDENT ANTENNAS 

1.3.1 General Considerations 

The geometrical shape of an equiangular spiral conical antenna is not a simple 

one.  The surface of the conductors are not coincident with any coordinate system for 

5 - 
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Flg.   1.     Geometry of equiangular spiral, 
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which the wave equation is separable. Therefore the analysis of this structure is a 

formidable task and an exact solution for the general conical case has not yet been 

found. On the other hand, the planar spiral has been analyzed by resorting to a very 

simplified mathematical model, an idealization of the structures practically used. 

Although this solution does not explain all the experimental results, it performs one 

of the two major steps toward an understanding of the way in which frequency-indepen- 

dent anLennas operate. 

The other basic theoretical advancement has been the introduction and systematic 

use of the fruitful and powerful idea of considering these antennas (and the log 

periodic as well) as slowly tapered versions of (uniformly) periodic structures.  If 

the properties of the latter are known, it is thus possible to deduce in an approxi- 

mate way the properties of the antennas by considering its "local" behavior (as will 

be discussed at length in Section 1.4). 

In the next sub-section, we will examine in some detail the solution for the 

planar spiral antenna found by Rumsey, Cheo, and Welch. Then we will consider in 1.3.3 

other theoretical contributions (exact and approximate solutions). Then 1.3.5.1 and 

1.3.5.2 will be devoted to an elementary discussion of the various possible waves 

which can be supported by uniform and periodic structures. The discussion of this 

question will give the background necessary in order to use the approach mentioned 

above of considering a conical spiral as locally periodic (Sub-section 1.3.5.4). This 

study will also be useful for a qualitative analysis of log-periodic antennas (Section 

II). 

1.3.2 An Exact Solution for the Planar Log Spiral with an Infinite Number of Arms 

The solution of the electromagnetic problem posed by a FIA is a formidable task, 

which so far has proved to be intractable. Therefore, it has been necessary to con- 

sider some simpler problem (which could be considered an idealization of the real one) 

amenable to theoretical solution. The mathematical model, posed by Rumsey, et al., 

consists of an infinite number of perfectly conducting wires of spiral shape infinitely 

close together [5]. It is apparent that this structure is the limiting case of a 

multi-arm antenna, of the self-complementary type (i.e., such that the angular widths 

of the metallic elements and of the space between two elements are equal, Fig. 2), 

when the number of arms is increased with limit. The antenna takes the form of an 

anisotropic sheet perfectly conducting in the direction of spiral lines and perfectly 

transparent in the perpendicular direction. This implies that on the plane of the 

antenna the component of the electric field along the wires is zero 

Et- t = 0 (1.4) 

- 7 - 
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Conducting Sheet 

Fig.   2.     Self-complementary multiarm log spiral structure. 
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where E is the tangential component of the electric field (component on the plane 

z=0) and t is a unit vector in the direction of the wires. It is of interest to 

note that the tangential magnetic field must satisfy the same boundary condition 

ät'l  = ° (1.5) 

This is because the current must necessarily flow along the direction defined by t 

(i.e., along the wires). The identity of condition (1.4) and (1.5) suggests trying 

a solution in which E and H have the same behavior (i.e., they are proportional).  It 

is however clear that the proportionality constant cannot be the same in the half 

spaces, z > 0 and z < 0 of Fig. 1, because H is discontinuous at z = 0 (since there 

is a current flow on the arms of the spiral) while E is continuous. It is possible 

to show that solutions with E proportional to H can exist only if the proportionality 

constant is either +jrj or -jt| with T) the characteristic impedance of the medium [6]; 

therefore one of the following sets of solutions must be satisfied: 

or 

«1 = +J1 H1 for z > 

I2 ■ -Jn H2 for z < 

E2 
= -*» h for z > 

Ix ■ +jn Sj for z < 

:} 
:} 

(1.6) 

(1.7) 

Let us consider for example solution (1.6). The field E. (or E„) can be derived 

from a potential U. (or U ), satisfying the wave equation as it follows [5]: 

EL = -ß^c(zü ) + Wa^zUp (1.8) 

E2 = ß^c(zU2) + VXVK(ZU2) (1.9) 

where ß is the propagation constant of free space and z is a unit vector in the z 

direction. When (1.8) and (1.9) are satisfied the field is completely specified by 

(1.6). To the functions U. and U_, which satisfy the wave equation and the radiation 

condition and have an angular variation of the type e-'  , the following integral 

representation can be given: —__. 

•   "\/R2 ,2 
for z > 0        U1 = ejnip /g(A) Jn(X  ) e"JZ   V13 'A    XdX (1.10) 

J (x ) e
jz Vß2"x2; 

0° 

for z < 0   U = ejnip /g(X) J (X ) ejZ VP 'A XdX (1.11) 
2      J

o n p 

with g(X) to be determined. J (X ) is the Bessel function of the first kin<! ^nd order 

n. The introduction of the boundary condition (1.3) and the use of (1.6) gives [5 and 7] 

-9 - 
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-a E.  = E, 
lp   lip 

which, by utilizing (1.8), (1.9), (1.10) and (1.11), yields in turn the integro- 

differential equation: 

/g(X)<{-jnaß + nVß2-X2') jj—2- + (-jaVß^+ß) X2J^(Xp)V d\ = 0 (1.12) 

It is possible to transform (1.12)into adifferential equation for g(X), which 

e solved.  In this way tl 

half space z > 0 is obtained: 

dy (1.13) 

can be solved.  In this way the expression for the potential U. of the field in the 

E space z > 0 is obtained: 

where A is a constant. For z < 0 a similar expression for the potential U can be 

obtained from (1.13), (1.10) and (1.11).  It is possible to prove that the signs in 

(1.6) and (1.7) could not be chosen in a different way, because that would have led 

to divergent expressions for IL and U unless the sign of n were changed too.  In 

fact, with the radiation conditions fixed, the choice of the plus or minus sign in 

(1.6) and (1.7) determines the polarization of the far field [6]. On the other hand, 

the sign of n specifies the sense of the polarization of the source.  Therefore, the 

physical significance of such a constraint is that the far field must have the same 

polarization as the source. 

In theis paper, Rumsey,et al., considered in detail the various features of their 

solution. A check of its behavior at the feeding point showed that when the distance 

p from the origin tends to zero the magnitude of the current flowing in an angular 

sector of the antenna from the source tends to a constant as it must be.  Since the 

field is circularly polarized at infinity, the radiation pattern can be characterized 

by a single scalar. The expression of the far zone electric field, obtained by using 

stationary phase method is the following: 

E<8,„) ■ AW e-J*We3n(„+f)£iE! 

where the amplitude pattern is 

g n    n   _i 
cos(tg -) e(" -) tg (-scose) 

A(0) = *   (1.14) 

sVP^-5" sin0 Vl+a cos 

and the phase pattern: 

^(e) « - •£ In |l+a2cos29| +tg_1 (-acosö) (1.15) 
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The pattern A(8) is plotted in Figs. 3 and 4 for various values of n and a and it is 

amazing that they agree reasonably well with the experimental results found by Dyson 

for the two arm spirals (see Subsection 1.4.1). 

In order to determine the current on the structure it is necessary to introduce 

(1.13) in (1.8). For this computation it is not possible for arbitrary p to utilize 

the asymptotic expressions which hold in the neighborhood of the origin or in the 

far zone. Therefore the authors found it necessary to resort to a series expansion 

of the integrand of (1.13) and a numerical integration. 

It is worth spending some time in discussing these numerical results, also because 

they are illuminating for the comprehension of the general features of frequency- 

independent antennas. 

In Fig. 5 and Fig. 6, the amplitude and phase of the current flowing in a sector 

of the antenna (normalized at the input value I ) are plotted vs ßo = 2jL p  (for n=l). 
o X 

This means that the abscissa axis corresponds to the length of the circumference at 

the radius p (measured in wavelengths). The amplitude distribution clearly shows the 

characteristic current attenuation of frequency-independent antennas (see Section 1.1). 

The parameter a is related, as already pointed out, to the curvature of the wires 

constituting the antenna. For a = » (the wires are straight) and no attenuation of 

current is found; this case corresponds to the infinite biconical structure degenerate 

into a plane. Current attenuation increases with a; for example, a = 0.1 causes a 

current reduction to about 10% at ßp = 2, i.e., p « - . The behavior of the phase is 

rather peculiar, exhibiting a sign change of the phase velocity (which is proportional 

to the reciprocal of the slope of the curve in Fig. 6) at a certain distance from the 

feeding point. For large ßp phase velocity tends to the velocity of light (this occurs 

where the current is already extremely attenuated). The wave is a slow one (phase 

velocity less than velocity of light) in the neighborhood of the origin and then be- 

comes a fast wave with increasing p. It is clear that the zone of the antenna for 

1 < ßp < 2 plays a fundamental role in the radiation mechanism. In this "active zone" 

the radial variation of the phase is slow (see Fig. 6)and adjacent wires are approximately 

in phase. In points closer to the origin, the radiation from the currents is small 

because of the rapid variation of the phase (much in the same way as the input resis- 

tance of two dipoles close to each other when they are fed in opposition of phase is 

much lower than when they are in phase). Roughly speaking, we can say that the flux 

of power from the feeding point is guided along the surface until it reaches the active 

zone where it is trans formed into radiation. This interpretation is in agreement with 

the ideas generally accepted concerning the radiation mechanism of conical-spiral and 

log periodic antennas. 

- 11 - 
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1.3.3 Other Miscellaneous Contributions to the Problem of Planar Spiral Antennas 

After the basic work of Rumsey et al., other people have tried to make use of the 

same or similar mathematical model ^o treat theoretical problems concerning planar 

spiral antennas. Particularly remarkable the paper of Bernard and Ishimaru [8] in 

which the solution for the planar log spiral excited by a dipole orthogonal to the 

plane of the antenna is found by using an integral representation for the Hertz 

Potential (of the type considered in the previous section). An interesting feature 

of the solution is that the field is linearly polarized, (showing that the solution 

is a combination of the two types of circularly-polarized modes with n=0, conr idered 

in the previous section). Furthermore the radiation obtained is at a very small 

angle with respect to the surface. In this paper the effect of the presence of a 

ground plane is considered and for generality, the case of a dielectric filling the 

space between the antenna and the ground plane is analyzed. The radiation is bounded 

to half space, a property desired in most practical applications. The frequency 

independence of the form of the radiation beam has been numerically checked, and 

experimental tests have confirmed the theoretical predictions. A typical radiation 

pattern of an experimental model is reported in Fig. 7. It refers to the vertical 

beam of a multi-arm antenna similar to that pictured in Fig. 2. The structure is made 

by using copper clad dielectric sheets with spiral slots photo-etched out of the copper 

surface. The feed (not shown in Fig. 2) is a monopole protruding out of the small 

hole in the center of the back plane. The band is limited bv the presence of the 

ground plane. However bands of 2:1 with very satisfactory radiation patterns have 

been obtained. 

From the point of view of possible applications, the work of Bernard and Ishimaru 

is particularly interesting because it indicates the possibility of obtaining omni- 

azimuthal coverage with linear polarization on a very large band. 

On a different line of thought some approximate analyses of log-spiral antennas 

have been performed by assuming certain current distributions and then computing the 

r diation patterns (e.g. Copeland [9]). This approximate type of analysis can be 

very useful, since the numerical results are often remarkably close to the experimental 

ones; however, it does not lead to an understanding of the operation of these struc- 

tures (e.g., since the current is assumed a-priori no insight is obtained about the 

mechanism by which the current is attenuated along the structure.) 

1.3.4 Pseudo Frequency-Independent Antennas 

Before passing on to the discussion of uniform and periodic structures, it is 

worth while to mention briefly some studies performed (analytically and experimentally) 

on structures which are not frequency independent (in the sense defined in Section 1.2), 

but which operate over bandwidths never reached before. 
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Flg.   7.    Radiation pattern of a multiarm spiral antenna  (with a 
ground plane),  excited by a raonopole. 
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Turner was perhaps the first to propose a spiral antenna in 1955 [10]:  two flat, 

rather narrow, constant-width metallic arms, wound in the form of an Archimedean 

Spiral (which clearly is not a self-scaling structure). Fed at the center in a 

balanced manner, it radiates a broad circularly-polarized lobe on each side of the 

plane of the antenna.  Subsequent investigations and development of this antenna pro- 

duced forms that have stable pattern and impedance characteristics over a bandwidth 

up to 10 to 1 [11-15]. 

Curtis [17] treated analytically the radiation of the archimedean spiral. He 

approximated the geometry of the structure with a series of semicircles of different 

radii. He assumed a certain distribution of current on the arms and then calculated 

the radiation field.  In spite of the fact that this approach is not theoretically 

correct, the radiation patterns calculated are surprisingly close to the experimental 

data. 

1.3.5 A General Approach to the Analysis of Frequency Independent and Log 
Periodic Structures 

1.3.5.1 "Slowly-Varying" Periodic Structures 

A great deal of work has been made in the last thirty years in the theoretical 

analysis and experimental study of electromagnetic waves on uniform and periodic 

structures. The propagation of guided waves on open structure (surface waves) has 

been thoroughly investigated in the last decade and in the last few years the more 

difficult and elegant theory of "complex" or "leaky" waves has been amply developed 

[18 - 20).  It is therefore understandable why various authors have recently attempted 

to adapt these theories, already at a high degree of development, to the analysis of 

spiral and log-periodic structures. The essential idea underlying this approach con- 

sists in assuming that if the structure changes its geometrical property gradually 

(e.g., for a conical spiral if the angle 0 is not too large), then the electromagnetic 

behavior is locally very similar to that occurring in a uniform or periodic structure 

with its section equal to that in the point under analysis.  It is essentially the 

same idea which is at the basis of the WKB method i.e., roughly speaking, to consider 

the medium "locally homogeneous" (with the obvious mathematical simplifications in the 

wave equation). 

In the two following subsections the types of waves which can be supported 

by a uniform and a periodic structure will be analyzed briefly, following essentially 

the simple exposition of [18]. 

1.3.5.2 Elementary Discussion of the Types of Waves Supported by Open 
Uniform Structures 

A long radiating structure can be considered a guiding configuration [19]. 

Although the antenna is open to free space, the surface and leaky waves are supported 

in a manner similar to that whereby modes propagate in a closed (shielded) waveguide. 

18 - 



The knowledge of the field configuration in the neighborhood of a radiating structure 

allows prediction of the far field (via the Huygen's principle). On the other hand, 

the capability of selectively exciting the various types of waves on the structure 

allows control of the radiation pattern in synthesis problems. 

Let us consider a smooth structure, which for simplicity will be assumed bi- 

dimensional, bounded by the plane x = 0. If z is the direction of the propagation, 

the waves in the upper medium (free space region) z > 0 have a spatial and temporal 

dependence of the type 

J(a>t-ktx-wz) e 

where w and k are, respectively the wave numbers in the longitudinal (z) and trans- 

verse (x) directions, and are related to free-space wave number k via the dispersion 

relation 

w2 + kt
2 = k2 (U17) 

w and k are generally complex: 

w = ß - ja (ltl8) 

kt = b - ja . (1#19) 

While the expression (1.16) for the elementary component wave and (1.17) are general 

relationships, the actual values of k and w depend of course upon the nature of the 

medium below the interface. To determine these values, the boundary value problem 

must be solved, and this is an extremely difficult task. However, in order to dis- 

cuss the behavior of these various types of waves this analysis is not necessary; 

in what follows we will consider surface and complex waves in free space without 

relating the discussion to a specific structure. 

The simplest types of waves on an open structure are the surface waves, propagat- 

ing in the direction of the interface without loss. This implies that k is purely 

imaginary and w purely real, i.e. 

From (1.17): 

kt = -j|kj (1.20) 

w2 > k2 (1.21) 

Therefore the surface waves are slow waves. The power is flowing in the z direction 

and the power flow occurs at the group velocity v which, for physical reasons ,is 

always less than the velocity c of light: 

.Ah . 
(1.22) I c I = ldWi 
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An example of a possible dispersion curve is given in Fig. 8. For the wave represented 

by this curve the group velocity and the phase velocity, 

Vf-f-c| 0.23) 

have the san,e sign in some frequency regions; opposite signs in others. The former 

case corresponds to forward waves and the latter to backward waves. The forward waves 

are the most usual, occurring in dielectric slabs, Gouban lines etc.; the backward ones 

are less widely known and occur in dispersive and/or anistropic media. In this kind 

of wave the phase delay occurs in the direction opposite to that of the flow of power. 

This behavior can seem at first glance somehow unfamiliar, but it does not contradict 

any physical principle. 

Complex waves are characterized by complex values of w even if the media are 

lossless. An example of a structure capable of supporting such waves is the slotted 

rectangular metallic waveguide. From (1.17) it clearly appears that if w is complex, 

then k must be complex too. Splitting (1.17) in its real and imaginary parts, the 

two following relationships are obtained. 

„2^.2  2   2  ,2 ß + o - a -a =k 

(1.24) 
aß + ba = 0 

In order to gain a better picture of the physical characteristics of these 

waves, polar coordinates are introduced: 

x = r cost? b = B cos0 
o 

z = r sine ß = B sine (1.25) 
o 

Equation (1.25) defines 0 and B implicitly. Notice that 6    is positive in all 

directions for which z is positive, i.e., the angle between the direction 6    and the 

direction of the flow of the feeding power is smaller than — . We can write 

e-j(wz+ktx) m  e-j(ßz+bx) e-j(az+ax) m  e-jk(0)r-D(0)r 

where k(0) and D(e) are the wave numbers and the decay terms in the radial directii.. 

defined by 0. By using (1.26) and the basic relationship (1.24) we obtain 

k(0) = B cos (0-0 ) 

sin (e-0 ) 
D(0) = a -r—- 

COS0 o 

(1.27) 
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Forward Wave Backward Forward Wave 
Wave 

Fig. 8.  Dispersion (ß,k) diagram for a uniform struc- 
ture. 
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It is seen in this way that, given complex w and k , a direction 0    is found on which 

the gradient of the phase is maximum and the attenuation zero. We can assume b posi- 

tive. B is always positive (the orientation of the propagation vector is defined by 

9   i and B is its length.) Furthermore, the amplitude of the wave propagating along 

the interface x=0 decreases progressively with z, because there is a leakage of 

energy from the guiding structure to free space. This means that a cannot be negative 

and D(0) will change sign when 0 crosses the value 0 . It is then apparent that where 

D(0) is less than zero, the "leaky" wave cannot exist in the entire half space of 

radiation, because it could not satisfy the radiation condition; in other words, it 

must be restricted to the angular region of space where D(e) > 0. This region can 

be promptly found from inspection of (1.27). Let us consider separately the two cases 

0 > 0 and 0 < 0. 
o         0 

Case (a): 0Q> 0 (Fig. 9) 

For this case 

D(0) > 0 for 0 > 0 o 

D(0) - 0 for 0=0 
0 

D(0) < 0 for 0 < 9 o 

Therefore, the region of existence of the wave is given by 

!>0>0o <L-28> 

It could be simple to check from (1.26) that the wave is attenuated in the z direction 

but increases in the x direction. This type of wave (not satisfying the radiation 

condition) is a "non-spectral" wave. 

Case (b): 0 < 0 o 
In this case similar considerations show that the wave exists in the region 

0 < 6 < ■? and it is attenuated in both x and z directions. This wave is therefore 
o     I 

of "spectral" type. 

From (1.25) it is apparent that for waves of type (a) and (b), ß is respectively 

positive and negative. Consequently, (since we have assumed that along the interface 

the source feeds power in the z direction) the (a) type of wave is forward, and the 

(b) type is backward. 

If we plot k vs ß in a dispersion diagram (Fig. 10) it is possible to get infor- 

mation about leaky v.aves in a way analogous to that of surface waves. A bounded wave 

is one with ß » k. In fact from (1.27) and (1.25), it can be established that in 

this case b ~ B > k. The wave travels essentially at the interface (0 ~"^). In the 

Brillouin diagram this corresponds to a point of the type B or A of Fig. 10 (forward 
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Fig. 9.  Geometry of a leaky wave structure. 

Fig. 10. Dispersion diagram for complex waves, 
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and backward slow waves).  In the case that ß < k (points C and D) it can be shown 

similarly that the wave is essentially radiating.  From the antenna design viewpoint 

this is very interesting since one can predict the radiating behavior of a given 

structure if the plot of k vs ß on the Brillouin diagram is given. For example, if 

the representative point moves from a point of the type A, to points of the type C 

and D, it is possible to predict that the structure will begin to radiate effectively 

as a backfire antenna when the point crosses the line at -45°, then the squint angle 

of the beam will move toward broadside, and finally it reaches a zone where the antenna 

will radiate end-fire. Notice the importance of the straight lines k ■ ß and k = -ß 

which divide the zones of "fast" and "slow" waves. 

For what follows,it is convenient to put in abscissae and ordinates of the 

dispersion diagram ßa, and ka, where "a" is a characteristic dimension of the struc- 

ture (Fig. 11).  For example, if we are considering the propagation along a dielectric 

rod, "a" can be its radius. This modification of the dispersion diagram, mathematically 

trivial, is however conceptually very important and is the key for a qualitative under- 

standing of tapered (conical) structures.  If, as already mentioned, we assume that 

the structure is "slowly" changing its TOSS section we can assume that in every point 

("approximately") its behavior is similar to that of a uniform structure with the same 

characteristic length "a". Therefore, we can apply the Brillouin diagram to tapered 

structures by considering k constant (i.e., for a certain frequency) and "a" as a vari- 

able.  Suppose the dispersion pattern for the smooth structure is that one of Fig. 10. 

From it we can deduce that, for a fixed frequency (i.e., fixed k), the tapered version 

will be able to support a forward wave in the zone characterized by: 

0 < ka < ka, 

or simply 

In the zone, 

0 < a < a. 

ax < a < a2  , (1.29) 

it will be able to support two forward waves and a backward wave. For 

a2<a  , 

1 

the only possible wave is a forward wave. Notice that for any wave propagating in 

the z direction there is a possible wave in the -z direction. 

1.3.5.3 Waves in Periodic Structures and Application to F.I, and L.P. 
Structures 

The electromagnetic behavior of a periodic structure will now be considered. 

The basic tool for this study is given by Floquet theorem [23,24]. Essentially this 
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theorem states that in a structure which is periodic in the z direction with period 

d, if ^(z) denotes any field component, then 

t s  -    "JW°Z v,  ^ (1'30> <p(z) - e    P(z) 

where P(z) is a periodic function of z with period d and w is a constant wave number. 
o 

Because of its periodicity, one may expand P(z) in a Fourier Series 

. z 

P(z) = E Pn e  
d (1.31) 

-co 

If we put 

%       w    . 
nod 

Wn=W  +¥* (1.32) 

we can write for the various terms of (1.31),making explicit the dependence upon x and 

-p  j(üit"ktnX-WnZ) <Pn-Pne (1.33). 

with P a constant. Since the various space harmonics (1.33) must satisfy the wave 

equation, (1.17) and (1.24) must hold, and for each of the harmonics the treatment of 

the previous section can be applied. The real part of (1.32) (multiplied by d for 

convenience) will be written: 

ßnd = ßQd + 2mi , (1.34) 

Plotting kd versus d we obtain a periodic diagram of the type of Fig. 12. It is clear 

from the expression of the 

different phase velocities: 

from the expression of the propagation constant ß that all the space harmonics have 

v, =^*—*4= (1.35) fn  ßn  p +2M 
d 

and the higher harmonic are slow waves. On the other hand, the group velocity is 

equal for all the harmonics: 
dco   1     1 ,, „,. 

vg = öß-!T"^ß7 * (1,36) 

cto    ^— 00) 

This can be expected since the space harmonics form a single physical unit which 

accounts for the wave in question and the group velocity is the speed of the energy 

carried by the wave. 

An interesting point is that if w is a complex, all the w are also complex with 

the same attenuation constant a  (as it can be immediately seen from eq 1.32). However, 
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Fig. 11.  Modified dispersion diagram. 

Fig. 12-  Dispersion (or Brillouin) diagram for a periodic 
structure. 
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the physical interpretation of this attenuation terra is different for the various har- 

monics, since some of them are essentially bounded waves and other essentially radiating 

according to the discussion in the previous section. For example, suppose that for a 

certain frequency the harmonic n - -1 is represented by the point A  in the ßd, kd 

plane (Fig. 13). This represents a leaky wave which, since A  is located in the zone 

above the +45 lines, is essentially radiating. The points A , A , A , etc. which 

(according to eq 1.32) represent space harmmonics, correspond instead to waves essen- 

tially bounded (they are below the +45 lines). They are strongly attenuated in the 

transverse direction (as it could be seen from eq 1.24), and for very large n in 

the transverse attenuation constant tends to ß .   rn 

A basic point which helps explain the manner of log-spiral and log-periodic 

antennas, is that under certain hypothesis (approximately verified in some practical 

cases) we can deduce from the Brillouin Diagram that the first radiating wave is a 

backward wave. This is a well Known experimental feature which is typical for this 

kind of structure (which radiate toward the feeding point).  Suppose that ß is pro- 

portional to the frequency; and larger than the free space wave number: 

ß /k - constant > 1  . (1.37) 

Equation (1.37) applies if the antenna behaves exactly as a delay structure.  This 

hypothesis is approximately verified for helical structures.  Let us consider what 

happens when the frequency is increased,  ß and all the space harmonics of order 

n > 0 are non radiating (see eq 1.34) since their wave numbers are larger than k, 

i.e. they are forward slow waves.  On the other hand, the wave number of the backward 

wave of order na-l, 

ß-1-ßo-f ' (1'38) 

increases with k, (and ß ), and reaches a value equal to -k for 

ß0 - &  » -k (1.39) 

A further increase of the frequency makes the na-l wave change character from back- 

ward slow wave to backward fast wave, i.e. a radiating wave since ß , > -k, and the 

point A 1 representing the wave crosses the -45 line in the Brillouin Diagram. A 

further increase of the frequency eventually makes other harmonics radiate, also. 

If a slowly-tapered periodic structure is not considered, following a line of reason- 

ing similar to that developed in the end of Section 1.4.2, we recognize that the 

above discussion can be applied to this case, as well.  Considering the diagram of 

Fig. 12, it is clear that we can move to the various parts of the diagram either by 
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Fig. 13.  Different character of the space harmonics, 
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changing k with d constant (periodic structures) or by keeping k constant and chang- 

ing d (the spatial period being proportional to the transverse dimension. A change 

of d means simple that we consider different points of the antenna.  For example, if 

the structure under analysis is a conical spiral (the tapered version of the helix) 

the above discussion shows that going away from the apex of the cone (the feeding 

point) a slow forward wave zone is found, followed by a zone where a backward radiating 

wave is present, which is responsible essentially for all the radiative phenomena on 

the structure [25,26]. 

In conclusion, when the k-ß plot is known, an invaluable tool for the investiga- 

tion of long radiating tapered structures is available.  It allows prediction of the 

types of waves which will be present. However, all pertinent information cannot be 

obtained by simple inspection of this diagram. For example, no information is avail- 

able about the relative strength of space harmonics. For example, in the log-spiral 

case discussed above, the existence of a fast backward wave in a certain zone of the 

structure can be predicted, but it is not clear whether this wave efficiently converts 

the guided energy into radiating wave, or whether the radiation is due to more than 

one space harmonic.  These questions can be answered only by a complete solution of 

the electromagnetic problem. 

We terminate this section by recalling that the above approximate qualitative 

discussion has been made in terms of radiative behavior.  It is possible also to 

build transmission line models of the antenna which allow prediction of the input 

behavior of the structure (i.e., impedance, standing-wave ratio on the feeding line). 

The proposed model will be discussed in the next chapter in connection with log-periodic 

structures. 

1.3.5.4 Use of Dispersion Diagram for Log-Spiral Antennas 

The periodic counterpart of the log spiral is the helix, and the analysis of this 

structure is by no means simple. However, extensive study has been performed because 

of its importance to traveling-wave tubes. A solution of the problem was given by 

aensiper [27].  The most important result of his analysis as far as the applications 

of log-spiral antennas are concerned, is that the propagation constant along the helix, 

in extended regions of the Brillouin Diagram, turns out to have an approximate expression 

which is surprisingly simple and conforms closely with intuitive reasoning.  In fact, 

referring to Fig. 1, for the harmonic of zero order, the following relationship holds 

approximately: 

k " ß cosdi cosQ       , (1.40) 

and it is very simple to see that this can be interpreted as a wave progressing at 

the speed of light along the helix.  Since (1.40) is in the form (1.37) all the 
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deductions made in 1.4.3 can be applied; in particular the antenna will radiate a back- 

ward endfire beam.  Let us investigate this question in detail.  Let p = r sine (Fig. I) 
o 

be the radius of the circle, cross section of the cone of the antenna (i.e. 2TCD  is the 

length of the circumference on the plane at a distance r cose> from the feeding point). 

In the helix theory it is customary to modify the usual Brillouin Diagram by plotting 

  vs ' PP, .  In a similar way for the spiral we will plot —^_ cos vs £ ° 
taniji        tamji J v        tanij)        o tani|) 
With this normalization the period of the Brillouin diagram is equal to unity. 

For the monofilar helix it takes the form in Fig. 14. We see that the relation 

between ß and p follows the law indicated by (1.40) up to the neighborhood of the 

point A where the law of dependence changes rapidly (and the latter fact could be 

explained by resorting to the theory of coupled modes [28J). As a first approximation, 

we can assume that the dependence of k on ß in the radiating region can be approximated 

by segments of straight lines. For a bifilar helix, (with the two wires excited in 

opposition of phase) which corresponds to the widely used two-arm antenna, the 

approximate Brillouin Diagram takes the form of Fig. 15. This is due to the fact that 

all the harmonics of even order are zero [29].  In order to explain the radiation 

mechanism, we only need to consider the n"l and n*-l harmonics. 

A peculiarity of the Brillouin Diagram for the two-arm spiral, Fig. 14, is that 

the curve for the lowest order forward harmonic starts at the point k=0; p     o = \t 
tarn}; 

In otherwords, the n=0 harmonic has zero amplitude.  This may seem strange at first 

glance, but it is quite logical since, even for frequencies  tending to zero, the 

difference of phase between the two arms is still 180 . From the study of the Brillouin 

Diagram the following quantities can be obtained: 

(a) The approximate position of the beginning of the active zone 

(b) The phase shift between two successive turns. 

If on Fig, 15 we move on the line from A] to A , this corresponds on the antenna 

to moving away from the deeding points. The ordinate of the point A„ (which can be 

found with simple geometrical consideration (by approximating A., and A„ with a straight 

line) gives the value of p which in our approximation corresponds to the beginning of 

the active zone. We see, from the Brillouin Diagram, that when the point represent- 

ing the first forward harmonic has reached A , the point corresponding to the first 

backward harmonic reaches A_ and afterwards the n=-l harmonic begins to radiate. This 

mechanism has already been discussed in Section 3.3.3 and will not be repeated here. 

The ordinate of A corresponds to 
„     sindj cos0 2m 1 °  (1.41) 
X    1 + cosdi cos0 o Y    o 

where X is the free space wavelength. For values of pitch angle in the usual range 

(70° - 80°) this means that the active zone begins at a distance from the feeding point 
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1 

where the circumference section of the conical surface with a plane orthojonal to the 

axis is less but not greatly different from the free space wavelength.  The propaga- 

tion constant of the first forward harmonic along the axis of the cone is given by 

G = 2n   4*  
1 1  X   X cosib cos0 U.»/J 

o   o   ^    o 

The pitch distance if two terms (of the same arm) at the beginning of the active re- 

gion is: 
COSlti   COS0 

(1.43) 
O   1   +   COSlL   COS0 H o 

An inspection of Brillouin Diagram gives the phase constant of the (radiating) 

backward leaky harmonic in the active zone 

ß_! a " f1 (1.45) 
o 

0 .45) clearly shows that the radiation is backwaro endfire. 

1.4 EXPERIMENTAL WORK ON LOG-SPIRAL ANTENNAS 

1.4.1 Two-Arm Spirals 

As we mentioned in Section I, Rumsey was the first to advance (in 1955) the theory 

that an antenna constructed in the form of an equiangular spiral would be frequency 

independent with regard to pattern and impedance, and proposed that the characteristics 

of finite size antennas be investigated.  The first practical implementation of this 

structure was made at the University of Illinois in 1955 [30],  Two forms of the antenna 

were used, the plane conductor antenna, i.e., metallic arms suspended in free space, 

and the slot antenna, which consists of spiral slots cut in large conducting screen. 

These antennas, of course, had a bidirectional pattern.  The technique of feeding the 

antenna with what can be called an "infinite balun" was used (probably for the first 

time); this method consists of soldering the coaxial feed cable to the ground plane 

(Fig. 16).  One of the two arms is connected to the generator (in transmission) or 

to the receiving load (in reception.) The inner conductor of the coaxial of the feed 

arm is connected to the outer conductor of the coaxial of the other arm. A perfect 

balance is in this way obtained (at least for the frequencies high enough to cause the 

gap to be a significant part of a wavelength.  Fig. 17 illustrates radiation patterns 

(from [30]) in two planes orthogona. to the antenna plane (See Fig. 1 for geometrical 

representation).  The antenna has a remarkably constant behavior with frequency in a 

band of 20:1.  Notice the excellent circular polarization on the peak of the radiation 

beam.  Because of the bi-directionality of the radiation, these structures are not 

very practical and these early experiments have mainly an historical interest.  At 
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Fig.   16.     Spiral antenna   feeding zone with  "infinite   balun." 
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that moment, however, they were very significant, because they showed that a practical 

(i.e., truncated) structure behaved correctly, provided the diameter of the antenna 

was larger than about one-half wavelength. 

The spiral conical antenna, which gives a unidirectional radiation, began to be 

experimentally studied in 1958 [32]. For included cone angle less than about 45°, the 

radiation is confined to one broad circularly-polarized lobe with maximum radiation 

toward the apex of the cone. As in the planar case, the antenna is a balanced struc- 

ture with the feed voltage applied between the two arms at the apex of the cone. 

Dyson tested many different structures. The most interesting for its simplicity and 

ease of construction is perhaps that one of Fig. 18; the cables of the infinite balun 

constitute the radiating structure, with the feed cable forming one of the arms. At 

the apex the center conductor is carried over and bonded to the outer braid of a 

dummy cable which forms the opposite arm of the antenna. The cables are mechanically 

supported by polystyrene ribs. Rigorously speaking, the antenna is not frequency 

independent. However, the experimental data show that the behavior is rather insensi- 

tive to the width of the arms. Fig. 19. illustrates the radiation patterns and SWR 

of this structure.  In [31] it was reported that decreasing the ty  angle (Fig. 1) from 

76 to 45 caused the beamwidth to change from around 70° to approximately 180°. 

The effect of the angle 8    on the beamwidth is rather minor, while a small 8 
o o 

(10 - 20 ) improves the front-to-back ratio. Dyson obtained a front-to-back ratio 

of about 15 db for 0 ~  10 . The input impedance does not show a definite trend as 

a function of t|f.  Ii_ increases as the arm width decreases, passing from values around 

80 ohms (for very large arms) to about 300 ohms (for very small arms). For self- 

complementary structures (i.e., equal arm width and spacing) the measured values are 

close to 190 ohms (a value which can be shown to be characteristic of all self-comple- 

mentary structures). 

It is worth briefly mentioning that measurements of the near field of the spirals 

were made to determine whether the approximate theory sketched in Section 1.3.5 

reflected the physical situation, [33]. A small magnetic loop was used to measure the 

relative amplitide and phase of the current flowing along the conductor of the antenna. 

The results indicated: 

(a) a rapid decay in the amplitude over the first portion of the 

structure, and 

(b) the average phase velocity along the arms in the initial region was 

always equal to or slightly greater than the speed of light. The 

second result confirms the result of the approximate analysis of 

Section 1.4. 
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Fig. 18. A mechanically simple form of conical log-spiral antenna. 
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Fig. 19. Radiation patterns of the conical spiral of Fig. 18. 
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It is possible to modify the log-conical geometry, making it simpler to fabricate. 

Tang has proposed a "poligonal" form of log spiral [34].  This  type of antenna is non- 

frequency independent but is rather log-periodic.  However, the geometrical and elec- 

trical characteristic a-e very close to that of a true log-spiral (Fig. 20 and 21). 

For the same pitch angle, the square antenna presents characteristics practically iden- 

tical (with respect to radiation pattern and impedance) to the conical one. 

1.4.2 Miscellaneous Modifications of the Basic Geometry 

The basic two-arm conical structure is satisfactory for many applications, when 

a moderate gain is required with an end-fire type radiation, and when the size of the 

antenna is not a problem.  To cope with special requirements, a number of modifications 

of the basic structure has been proposed; some of these will be briefly considered. 

It is desirable in some cases to have a "conical" or beacon type beam. The 

log-spiral antenn. "3 properly modified, are ideally suitable for this kind of applica- 

tion. A "conical" beam can be obtained by constructing an antenna with more than two 

spirals and symmetrically connecting these arms to provide a suppression of the radiated 

fields on the axis of the antenna [35].  The arrangement used in a four aim spiral 

antenna is shown in Fig. 22.  Typical patterns which have been obtained are shown in 

Fig. 23. The angle a of Dyson corresponds to ijj, in the notation we used throughout 

this report.  Increasing the pitch angle causes the angle of rotationally-symmetrical 

radiation with respect to the horizon to increase also. For i[i = 45 , we have a coverage 

of "azimuthal" type. The SWR is reported to be less than 2:1 over a band of about 10:1 

(the pattern bandwidth). 

Another type of (planar) log-spiral antenna with very similar type of coverage 

(and having the advantage of the possibility of being flush-mounted) has been proposed 

by Mei and has already been described in Section 1.3.3. 

Arrays of spiral antennas have been studied in an effort to devise a radiating 

structure having bandwidth capability similar to that of a conical antenna, but greater 

directivity and gain.  It is possible to do this to a limited extent with log-spiral 

antennas.  The limitation arises because the frequency-independent characteristics can 

be preserved only by making the vertices of the cones coincident, Fig. 24.  In this 

way, the phase center of the component's antennas lie on a circle.  Therefore, a large 

phase error is introduced.  Naturally, this effect is present only for arrangements of 

more than two elements.  It is possible to arrange the elements in a parallel fashion; 

but, of course, in this case the antenna has a beamwidth (and a gain) which varies 

with the frequency.  In order to predict the input SWR of these structures over the 

band it is necessary to know the mutual impedances of two spirals for different spac- 

ings. An exhaustive experimental analysis has been performed by Dyson who has given 

the mutual coupling between conical log spirals for many different geometries [36]. 

The main results of this work are the following: 
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Fig.  20.    "Square spiral" antenna. 
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Fig. 2L.    Frequency Independent array of log-spiral antennas 
(A, B, C phase centers). 
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(a) the coupling among the elements in a parallel (therefore, frequency 

independent) array is low, of the order of -30 db or greater for 

element-to-element spacing of — or more; this coupling varies with 

rotation, being a minimum for a 90 rotation between elements; 

(b) coupling is on the order of -20 db in the conical array; minimum 

coupling for 15 cones occurs at an array angle of approximately 

35 to 50 depending upon the spiral angle ty; 

(c) changes in the basic element pattern caused by the presence of other 

elements are minor for an element-to-element spacing of at least one- 

half wavelength and consists mainly of a broadening of the element 

pattern beamwidth in the plane of the array; and 

(d) a good approximation to the array pattern of small arrays can be 

obtained by using the pattern of the isolated element. 

Before concluding this survey of the various miscellaneous structures derived 

from spiral antennas, we will briefly mention some attempts to reduce the size of 

conical spirals.  Some experimenters loaded log spiral conical antennas with ferrite 

in various ways [37]. One of the techniques used consisted in loading the two arms 

of the spiral with ferrite layers. Also loading with a complete cone of ferrite coaxial 

with the antenna has been tried, with the antenna located in free spa<_e and in a 

cavity open in a ground plane.  It is reported that a reduction of about one-half the 

size of the equivalent air antenna can be expected.  However, the loading produced a 

drop of the efficiency to 13% for the antenna in the cavity and 23% for free space 

antenna and the temperature dependence of ferrite was found very critical. 

Slightly more successful attempts at reducing the size of the antennas have been 

obtained with log-periodic structures (see Section II). 

1.5 DESIGN OF FREQUENCY-INDEPENDENT ANTENNAS 

The analysis of log-spiral structures is very difficult. However, the design 

of an equiangular antenna is usually a  i-auively simple matter. This is because the 

radiation pattern and impedance are not critically dependent upon the geometrical 

parameters of the structure.  In other words, although in designing an antenna of 

this type, it is difficult to predict exactly the electrical parameters, the approxi- 

mate characteristics can be predicted reliably. Thus there is generally no serious 

problem in designing a log spiral, at least if the antenna specifications are not 

unusually stringent. Difficulty may arise if, for some special purposes, the beamwidth 

or the impedance must be accurately specified over a wide frequency band. As an 

example, this case occurs in some electromagnetic surveillance systems, when it is 

intended to find the direction of a source by beam-comparison techniques. The develop- 

ment of antennas having controlled beam shapes over a large band can require a 
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considerable amount of development work (experimental). 

We will now sketch briefly the design procedure for a log-spiral antenna.  Suppose 

that the given specifications are: 

(a) a frequency band of operation between f and f ; 

(b) a nominal impedance with permissible deviations over the band; 

(c) a nominal beamwidth, with permissible deviations over the band. 

Frequency Band 

We assume that in order to have a balanced input the technique of the infinite 

balun considered in Section 1.5.1 is adopted.  The specification of minimum frequency, 

f1, establishes the maximum radius r. of the feeding region. As a reasonable value 

r, = -g , can be chosen where X. is the free space wavelength.  Notice that this speci- 

fication can result in practical difficulties from the point of view of mechanical 

tolerances and of the possibility of arcing, if the frequency is very high (e.g., in 

the microwave spectrum).  In some cases particular types of miniaturized coaxial cable 

must be used, since the arm width at radius r. must be at least equal to the coaxial 

cable diameter d. For ease of construction, it is generally convenient to use the 

coaxial itself as the arm of the spiral (according to the technique considered in 

Section 1.4.1). The overall size of the antenna will be determined by the upper fre- 

quency of operation f?.  The diameter of the cone base will be chosen from \  to 1 

times the wavelength X, to prevent spoilage of the beamwidth and of the circular 

polarization experienced at the lowest frequency of the band. The lower value 

of cone base n iy be used at higher values of ty (70 - 80 ). With this choice, the ratio 

between r1 and r  (vector radii corresponding to spiral points closest and farthest 

from the apex of the cone, respectively) is actually larger than f /f., because of the 

finite size of the active zone.  With this choice of parameters, the maximum axial 

ratio of the polarization ellipse on the peak of the beam can be expected to be about 

2:1. 

Impedance 

The impedance of the antenna can be controlled to a limited extent by varying 

the width of the arms. As mentioned in Section 1.5.1, it is possible to obtain a 

variation in the range from 80 to 300 ohms. When the coaxial cable is used as the 

arm of the spiral, an average impedance of about 200 ohms can be expected.  For pro- 

per choice of a line of suitable characteristic impedance, the standing-wave ratio 

can always be less than 2:1.  The impedance is rather insensitive to variations in 

ill and <? . T     o 
Beamwidth 

The geometric element which provides the main control over the beamwidth is the 

pitch angle i}>.  Higher values of ty   (spiral closely wounded) correspond to narrower 
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half-power beamwidths.  Proper design can result in beamwidths of about 70 and 180 

for values of i]< equal to 75 and 45 , respectively, as mentioned in 1.5.1.  In the 

last case,an almost hemispherical coverage is obtained.  The angle 6    controls the 

front-to-back ratio; for small 0  (10 - 15 ), a front-to-back ratio of 15 db can 

easily be obtained. 

It is to be emphasized again that the development of an antenna of this type is 

essentially experimental.  Naturally,the theory is important to give the basic cri- 

terion of design through the understanding of the radiation mechanism of the struc- 

ture.  However, at the present state-of-the art, the theory supplies only guidelines 

of a qualitative nature. 
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II.  LOGARITHMICALLY PERIODIC ANTENNAS 

2.1 GENERAL CONCEPT OF LOG-PERIODIC ANTENNAS 

Logarithmically periodic antennas are the class of extremely wideband 

antennas receiving wide use. Modifying the basic idea of Rumsey °f 

specifying antenna geometry solely by angles, DuHamel and Isbell introduced a 

new principle in broadband antenna design, yet closely related to the frequency- 

independent antenna concept. They considered a class of structures scaling to 

themselves log periodically, rather than in a continuous manner [38], In Fig. 

25, a typical log periodic antenna is shown. Two metal sheet structures are fed 

against each other by a generator placed between their vertices. The four sets 

of teeth are defined by similar curves expressed in polar coordinates as 

6 =  f (log r) (2.1) 

where f is a periodic function of its argument. From (2.1) it can be seen that 

the structure expands with r, but is always angularly limited between the maxi- 

mum and the minimum value of 6,     The simplest of this type of geometry is defined 

by the equation (Fig. 27): 

0 = sin (log r), (2.2) 

corresponding to an expanded sinusoid structure, which has been used as a 

practical antenna.  The periodic functions defining the structure will be in 

general more complicated.  For example in Fig. 26 the curves defining the upper 

half structure of Fig. 25 are plotted vs log r.  If 

R + 1 
^s-\  (2-3) 

n 

(independent of n) is the distance from the vertex to the outer edge of the tooth, 

it is seen that period of the curve is equal to log (1/T). From (2.3) it is ap- 

parent that all similar sets of dimensions form a geometric sequence with the 

same geometrical ratio T. The geometry is clearly not "defined by angles" as 

discussed in 1.2, and the antenna, therefore, is not frequency independent. 

However, a scaling of a factor T, with n any integer, transforms the structure 

into itself.  Therefore, all the electrical characteristics of the antenna will 

remain unchanged when the frequency is scaled by the factor r .  In the case 
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Fig. 25.  Saw tooth log periodic array. 
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Fig. 26.  Sinusoidal zigzag antenna. 
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Fig. 27.  Plot of 0 vs In r for one of the component structures of Fig. 25. 
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of structures of the type of Fig. 25, because of their special left-right 

symmetry the period of the impedance curve is \  log 1/T rather than log 1/T. 

The radiation pattern has instead a periodicity of log 1/T. If we assume 

that the variation of impedance and radiation pattern is not too large over one 

period of the frequency, the structure may be considered frequency independent 

for all practical purposes. 

Much of the discussion of the previous chapter concerning frequency- 

independent antennas can be applied to log-periodic structures (Section 1.4.2 

and 1.4.3). In particular, it can be seen that the log-periodic geometrical 

condition is necessary; however, it is not sufficient, and does not guarantee 

that the current on the structure dies off rapidly after a certain zone (the 

active zone) where an efficient conversion to radiating modes must take place. 

This attenuation is necessary to avoid on frequency-dependent end effects 

(as discussed in Section 1.2). 

In summary, a log-periodic antenna is an antenna which is not rigorously 

frequency independent, since if it is expanded by a scale factor K the re- 

sulting structure is in general not self congruent to the original one. However, 

for an infinite discrete set of values of K: 

the structure is scaled in itself. The electrical behavior of the structure 

is therefore the same for frequencies having the ratio T . It is therefore 

clear that if T is close to unity, the behavior with frequency is not far from 

that of a truly frequency-independent structure. 

2.2 STATE OF THE THEORY OF LOG-PERIODIC ANTENNAS 

2.2.1 Mathematical Models 

The theory of log-periodic antennas is still relatively undeveloped. Not 

a single structure has been solved exactly and the only general approach for an 

analytical study is the one outlined in Section 1.3.5. The structure is considered 

as "slowly" expanding.  Its periodic counterpart is analyzed (in an exact or an 

approximate manner) and it is in this way possible to determine its local pro- 

perties.  In particular, from the knowlege of the dispersion diagram the location 

of the active zone can be determined.  However, it is not a simple matter to 

determine the Brillouin diagram for practical structures. Section 1.3.5.3 con- 

tains a discussion of the types of waves an open periodic structure can support. 

Clearly, such a treatment can be applied to the present case. 
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The analytical works on log-periodic antennas can be loosely grouped 

in four broad different classes: 

(a) Exact analysis of very simplified mathematical structures. 

Although the results cannot be applied directly to practical 

problems, they can give a qualitative insight on the nature 

of the phenomena. 

(b) Approximate analysis of a periodic array of dipoles (as a 

periodic counterpart of the log-periodic array of the same 

type of elements). 

(c) Approximate analysis of the "interior" problem (mathematically 

modeling the antenna as a loaded line). This approach is use- 

ful for predicting the impedance properties and the location 

of the active zone, (but no the radiation properties). 

(d) Numerical analysis of the interior and exterior problems of 

the exact structure idealized as a bipolar transmission line 

loaded with dipoles of different lengths. 

Carrel, in a beautiful and exhaustive paper followed the approach (d). 

His numerical analysis of the electromagnetic problem is not based on the con- 

cept of the periodic counterpart and the work (which will be discussed in 

Section 2.3) is therefore somewhat atypical. 

The above approaches will be respectively considered in Sections 2.2.2 

2.2.3, and 2.2.4. 

2.2.2 The Sinusoidally Anisotropie Surface 

In Subsection 1.3.2, we saw that a special type of anisotropic plane sur- 

face was adopted as a mathematically tractable model for the planar spiral 

antenna. Following a similar idea, a reasonably simple model for a log-periodic 

antenna was devised by Rumsey, which, although extremely idealized, still ex- 

plains some of the features experimentally observed [39]. 

If we consider the periodic counterpart of the simple structure depicted 

in Fig. 27, we obtain a sinusoidal wire. A mathematically simpler structure, 

less difficult to analyze, is obtained by considering a surface made of an in- 

finite number of sinusoidal wires infinitely close together, in such a way as to 

form an anisotropic surface with sinusoidally variable properties. An approximate 

physical realization can be obtained by using coplanar sinusoidal metal strips 

as in Fig. 28. 
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'ig. 28.  Sinusoidally anisotropic surface. 
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Many of the considerations developed in Subsection 1.3.2 are applicable 

to this structure.  For example if Jt is a unit vector in the direction of the 

wires, it follows immediately that the same boundary conditions apply to E and 

H (with the same meaning of the symbols of Subsection 1.3.2) 

E ' t » 0 (1.4) 

H ' t = 0 (1.5) 

It is possible to find a solution of the type (1.6) or (1.4), which in accor- 

dance with the discussion of Section 1.4.3 must be in the form of a Floquet 

series.  Only an outline of this type of approach will be included here.  By 

introducing the Floquet's series for the electric (or the magnetic) field and 

imposing the boundary condition, a recurrence formula is obtained relating the 

n-1, n, and n+1, amplitudes of the space harmonics.  This recurrence formula can 

be thought of asan homogeneous system of infinite equations in an infinite 

number of unknowns.  The coefficients of the system depend upon the propagation 

constant.  In order for the system to have solutions it is necessary to equate 

the (infinite) determinant to zero; thus, an equation for the propagation con- 

stant is obtained.  It is possible to show that the convergence is very rapid, 

or in other words,the infinite determinant can be replaced by another one 

having a finite number of rows [39], We then obtain an equation which in the sur- 

face wave zone can be numerically solved in a reasonably easy way.  In the 

leaky-wave region, the numerical solution is more difficult.  However, drastic 

simplifications are obtained in both the cases of slightly-curved or extremely- 

curved wires.  In this latter case, when the free-space wavelength is much 

sinaller than the wavelength A of the wires (see Fig. 28), an extremely high 
w 

attenuation occurs (of the order of hundreds of db per A ). This attenuation 

occurs both in the slow-wave and fast-wave frequency regions. Therefore, from 

this treatment it does not seem easy to determine whether the attenuation will 

be caused by slow-wave stop-band reflection, or by leaky-wave radiation. 

We will not discuss longer this mathematically interesting approach. We 

will only mention that a subject of current research at the University of 

California is the analysis of propagation on two parallel anisotropic sinusoidal 

sheets of the type considered in this subsection.  This structure is a highly 

idealized model of the antenna of Fig. 25, in the same way the single aniso- 

tropic plane is a model of the single-sheet structure. 
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2.2.3 The Periodic Array of Dipoles 

It is very difficult to obtain the Brillouin diagram for periodic struc- 

tures.  In the case of the helix (Section 1.4.4) the analysis was drastically 

simplified by the possibility of assuming that the propagation along the struc- 

ture occurred with a phase velocity proportional to that of the light, (see 

equation 1.37). Unfortunately, the only periodic structure for which this 

"constant slowness" property is approximately valid is the zigzag. The periodic 

structures corresponding to the antenna depicted in Fig. 25 pose analytical 

problems which are unsolvable at the present state-of-the-art. 

A "non-constant slowness" structure which can be analyzed "almost" exactly 

is the dipole loaded transmission line [40]. Mittra and Jones considered uni- 

form dipole arrays with non-reversed and reversed elements as shown in Figs. 

29 and 30.  The latter case is the periodic counterpart of an antenna which 

was invented by D. E. Isbell in 1958 [41] (Fig. 39). The technique they used 

for finding the k-ß diagram is the following.  It is clear that the structures 

of Fig. 29 and 30 are equivalent to transmission lines periodically loaded with 

a network described by an admittance matrix having a periodic property (Fig. 31). 

This matrix has an infinite number of terms (since we are dealing with an in- 

finite periodic structure).  It is apparent that the impedance Z1 seen at a pair 

of terminals (for example A A' of Fig. 31) is equal to the impedance seen at 

any other pair of terminals.  Therefore, for a certain frequency and from the 

point of view of the phenomena on the transmission line, the circuit of Fig. 31 

is equivalent to the one of Fig. 32 (i.e., to a line periodically loaded with 

mutually uncoupled bipolar networks).  It is possible to compute these e 

loads by simple circuit analysis.  In order to do this, however, the mutual 

impedance among the dipoles must be calculated and this can be done by the well 

known induced e.m.f. method (see for example Ref. [43]).  It is convenient to^ 

assume that any dipole is coupled to only a finite number of other dipoles.  Let 

us limit ourselves, as a first approximation, to consideration of only the 

nearby elements.  This means that in Fig. 31 the port n is coupled only with 

the port n-1 and n+1.  Moreover,it is clear from the periodic character of the 

structure that the self and mutual impedances Z , Z     Z    , are in- r       nn  n, n+1, n, n-1 
dependent of the subscript n.  From this it can be deduced that in order to 

find the propagation constant of the loaded line, we have only to solve a trans- 

cendental equation, obtained by equating a third order determinant to zero. 

Of course, it is possible to improve the approximation by using a larger number 

of mutual impedances, in which case many values for the propagation constants are 

52 - 

m  — n m   i uw  —,'-^7 yvv -r •*>• ■«■■ 



€ 

1 
h 

1 

Fig. 29. Unreversed element uniform dipole array, 

Fig. 30. Reversed elements uniform dipole array, 

■53 

in   mil       llii I    ■  njWHIM"imW  !■ W   \lX ii JP***^3 'Pl-jr,1   . ■ '*gjw»w ■>   *  ■-~TS. ■ nr jj» "ttmsgnqpip'^*? 

A*. ««  - I .    i  .n *^*'* «■    ' ihtiiWi ■-  • 



--2Z. -Z. n+l / n+2 y 

Fig. 31. Transmission line model for the uniform array of dipol es, 
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Fig. 32. Uncoupled load transmission line model for the 

uniform dipole array. 
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obtained ; these corresp ^d to different modes on the structure, which can 

have different relative s.rengths.  The problem cannot be solved without source 

considerations. However, the first approximation gives a  sufficiently accurate 

picture of the physical phenomena.  In Fig. 33 and 34 the Brillouin diagram 

experimentally measured by Mayes and Ingerson [42] is compared with computed 

data.  The agreement is indeed excellent. It is even more impressive the 

comparison with the experimental data found on a log-periodic array by Carrel 

[1],  To obtain the curves of Fig. 35, Mittra and Jones calculated the phase 

shift and attenuation for the local kd, where d changes now fr&m cell to cell, 

and used these values considering k constant anJ d variable, as we have already 

discrssed. These theoretical curves were calculated by using a distance d 

between the elements equal to 0.112 times the length of the dipole (to correspond 

to Carrel's choice of the parameters). It is \?orth pointing out that once the 

behavior of the voltage along the line is obtained the input current of an 

element is also found (since the input impedance of the equivalent network of 

Fig. 32 is known). From an assumed sinusoidal current on the dipoles (i.e., 

having the same form utilized for the calculation of mutual impedance), the 

radiation pattern can be evaluated. Therefore, it seems possible to use this 

model for optimizing some parameters of a log-periodic array (e.g., the distance 

among the elements). 

In conclusion it seems that the mathematical model here considered can be 

very useful for design purposes. However, from a theoretical point of view, it 

does not clarify some problems concerning log-periodic arrays. For example, 

the possibility of existance of, or the role planed by higher modes in log-periodic 

array is a question which cannot be answered by using this type of analysis. 

2.2.4 Log-Periodic Loaded Lines 

In Section 1.3.5, the radiation mechanism of the log-periodic and frequency- 

independent antennas was discussed in a qualitative way. Very concisely, the 

approximate physical picture of the phenomena was the following: the structure 

acts in its first part as a surface waveguide whose characteristics are slowly 
* 

varying. In the active zone, the modes become radiating, or in other words, a 

conversion of the guided into radiated energy takes place.  If the structure is 

an efficient antenna the conversion is almost total, with small reflection 

toward the input. It is clear from this that, if it is possible to schematize 

the antenna as a (variable impedance) transmission line with distributed or 

lumped loading (progressively changing), the antenna "internal" behavior can 

be investigated without solving the electromagnetic problem. Thus, in a rather 
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Fig. 33. Brillouin diagram for reversed uniform dipole array. 
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Fig.   34.     Brillouin diagram forunreversed   uniform dipole array. 
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simple way, the amplitude and phase of the voltage along the antenna and 

the position of the active zone can be found by using only circuit and trans- 

mission-line theory. 

A transmission line with resonant shunt circuits distributed in a log- 

periodic fashion can be adopted as a simple model. An even simpler model is a 

line loaded logarithmically (instead of log periodically). Mittra and Jones 

considered both these models. [44]. The latter, which is simpler, is the first 

they treated.  In their terminology, Continuously Scaled, (C.S.) i     synonymous 

with self-congruent, i.e., what we have always called in this report "frequency 

independent." Therefore,a C.S. line is one in which the voltage and current 

distribution remain unchanged if the frequency and the distance x to the point 

of observation are changed simultaneously, such that OMC remains constant.  In 

other words for abscissae and frequencies such that: 

Ü  f2 
o>2 " xx 

(2.4) 

the impedance will be equal. Little reflection then leads to the conclusion 

that the impedance and the admittance for unit length of the line must have the 

following type of functional dependence upon x and cu: 

z(x>ü)) = Zfcoxji (2.5) 

Y(x,cu) = -* J (2.6) 

If we put 

x = cur, 

it is easily found that the differential equations for the voltage and the cur- 

rents are: 

dr a) (2.7) 

dr co 
(2.8) 
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For purely shunt distributed RLC loading the expressions for the impedance and the 

admittance for unit length are: 

Z = JCDL (2.9) 

Y - ja* +  (2.10) 

where L and C are the parameters of the uniform line (without the loading), while 

L. and C. are the ones due to loading. 

It is convenient at this point to introduce the following definitions: 

Xo2=  2'  I (2-11) 
^o L1C1 

Lo=LlXo2 <2'12> 

R
0 ■ R *0 (2.13) 

Q=cooLo/Ro (2.14) 

where x is the point of the line vrhere the load is resonant, and co is an arbitrary o o 
frequency.  If the propagation constant of the uniform line and the characteristic 

impedance are both taken equal to unity, by using formulas from (2.7) to (2.14), the 

following equation for V is obtained: 

V" + k2(x) V = 0 (2.15) 

where , X 2/R Q 
k2(x) = ! .  2_o 

2    2   ,Xo x - x  - j— X o   J Q 

If the wave along the line is essentially progressive,it is possible to treat 

(2.15) by WKB method [45].  It is also possible to consider the line made up of short 

sections of different uniform lines.  By using this second method,it is not necessary 

to make any hypothesis about the amount of reflected energy along the line.  Following 

this latter approach the authors have found a recurrence relationship for the complex 

amplitude of the incident and reflected wave.  It is interesting to observe that as 

x tends to zero the characteristic impedance is purely resistive; see (2.9) and 

(2.10)  The same happens for the input impedance, since the reflected wave has negli- 

gible amplitude, as the numerical results show.  In Fig. 36 the amplitude and phase of 

the voltage along the structure is plotted as a function of ß x (ß being the propagation 
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constant of the unloaded line at the frequency <x>    considered).  In the first part 

of the structure the attenuation is lov; and there is an approximately linear phase 

delay for unit length, of larger value than in the unloaded line.  This means that 

near the input there is a slow-wave zone.  Although the line is not uniform, the 

phase velocity is approximately constant.  In the following region, (the active zone), 

the attenuation is high, typically 20 - 25 db.  In the final part of the structure, 

the amplitude decays very slowly, and the behavior of the voltage is heavily 

influenced by the nature of the termination, which has little or no influence in the 

input and active regions.  In Fig. 37, the amplitude and phase behavior of the same 

structure of Fig. 36, but with a short-circuit termination, are plotted. The first 

part of the curves in Fig. 36 and Fig. 37 (before the active zone) are practically 

identical.  This can be expected because of the large attenuation in the active zone 

which insulates the input from the load. The authors report that the computed reflec- 
-3 

tion coefficient in the zone before the active region was about 10 , independent of 
-3 

the load. Behind the active region it was about 10  in the matched termination case 

and of the order of magnitude of the unity in the short circuit case.  It is also 

interesting to consider the behavior of the active zone when Q is increased (for 

constant R Q). The main effect is that the width of th^ active region decreases 

with Q; the total attenuation however is not greatly affected. The authors have also 

computed the voltage distribution in the CS structure by using WKB methods, with 

numerical results v?ry close to those obtained by using the method previously described. 

In a well designed log-periodic structure,the performance not only repeats itself 

at log-heriodic frequencies, but also deviates very little from the mean value for 

intermediate frequencies.  The authors have shown, in fact, that if the C.S. model 

described above is modified by replacing the continuous loading of the line with a 

lumped one, according to a log-periodic sequence, the behavior of the voltage along 

the line does not change significantly. More precisely, they considered the line 

made up of an infinite number of log-periodic sections, loaded with shunt elements. 

The loads are equal to the length of a section times y [given by (2.10)]. We will 

not report here the details of the calculation procedure, which, essentially is stan- 

dard circuit analysis. The interesting numerical results are plotted in Fig. 38 where 

D is the ratio between the length of a section and the wavelength corresponding to 

the frequency of resonance of the load. We see that in the region between the feed 

point and the active zone, and at some extent in the active zone itself, the LF and 

the CS models have practically identical behavior. Other computations (not reported 

here) shov that if D, and/or Q are sufficiently large, the behavior of a log-periodic 

structure becomes different from that of the corresponding CS one, (with smaller 

attenuation in the active zone and increase in the input SWR). 
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In conclusion the study made by Mittra and Jones, although not concerned with 

the electromagnetic behavior of log periodic antennas, is however an important con- 

tribution to understanding their circuit behavior. The following two main points have 

been clarified: 

(a) The input SWR of a log-periodic structure is low if several 

elements are "active" (i.e. absorb power) at a certain frequency. 

The line acts as a continuous impedance transformer. The active 

zone insulates the input by the final load, and therefore, the 

antenna is insensitive of its termination. 

(b) In a certain range of the T, D, Q, and R parameters a LP struc- 

ture is a good approximation of a CS one.  In other words, as 

far as the "internal" behavior is concerned, log-periodic and 

frequency-independent antennas may be considered equivalent. 

2.3 NUMERICAL ANALYSIS OF THE LOG-PERIODIC DIPOLE ARRAY 

2.3.1 Numerical Approach 

Conceptually, the most satisfactory approach to the analysis of frequency- 

independent and log-periodic antennas is to consider the structure as a whole, to 

determine the "modes" (i.e., the types of waves which can be supported by a given 

geometry), and to determine which modes can be excited by certain given sources. 

This is, in principle, as it is well known, a standard procedure in solving problems 

of mathematical physics.  This type of approach certainly can lead to a deep under- 

standing of the electromagnetic behavior of the structure, and can clarify the role 

played by the various geometrical parameters.  However, the analytical difficulties 

associated with this problem are formidable; even the simpler problems posed by the 

periodic counterparts of these antennas are generally impossible to solve at the 

present state-of-the art. We have seen in the previous sections that in order to have 

an insight into the behavior of these structures it was necessary either to resort to 

extremely simplified models (i.e., different from the actual case as in Section 2.2.2), 

or to study a simply periodic line loaded with dipoles (Subsection 2.2.3), or to 

investigate only the interior problem of the antenna by considering either a "con- 

tinuous scaled" or a log-periodic line loaded in a particular way, (Subsection 2.2.4). 

This section will be devoted to a review of a paper of R. Carrell dealing with an 

analysis, essentially numerical, of a particular kind of log-periodic antenna, which 

has wide application:  the log periodic array of (reversed) dipoles of the type first 

A reasonably simple and readable reference (for the electromagnetic problems) 
can be, for example, Reference [46]. 
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considered by Isbell [41]. Clearly this structure is simpler to analyze than, for 

example, that one of Fig. 25, since it is possible to use well-developed linear 

antenna theory to determine the interaction among the radiating elements. The approach 

utilized by Carrell is relatively straightforward [1]. A mathematical model of the 

antenna of Fig. 39, which very closely represents the physical structure under investi- 

gation, is built in the form of a uniform transmission line logarithmically loaded 

with dipoles. The question can be thus split in two parts; interior problem—to 

determine the current at the terminals of each dipolejand exterior problem-—to find the 

radiated field and the phase center of the antenna (compare Subsection 2.2.3). We 

will see in the next subsections that as a result of the numerical investigation and 

experimental results, design information is presented in useful formulas and nomo- 

graphs. Several pages will be devoted in this report to the survey c€ Carrell's paper 

because of its usefulness for design purposes and completeness of data. 

2.3.2 Formulation of the Problem 

The antenna analyzed by Carrell is depicted in Fig. 39, and schematized in 

Fig. 40. The ratio T has the usual significance of expansion ratio and it is the 
2 

ratio of the lengths of two adjacent dipoles. A line through the ends of the dipcle 

elements on one side of the antenna subtends an angle a with the center line of the 

antenna at the virtual apex 0. The spacing factor a  is defined as the ratio of the 

distance between two adjacent elements to twice the length of the larger element, and 

is constant for a given antenna. Parameters cf, T, and a are related by the formula 

tf - k  (1 " T) cota (2.16) 

The largest element is called element number 1. The half length of the element 

is denoted by h . Therefore 3    n 

h = h, T 
n   1 

The distance d from element n to element n+1 is given by (compare Section 2.1) 

d ■ d, T 
n   1 

If a is the radius of element number n, the a 's are given by. 
n n 

a ■ an T n   1 
n-1 

2 
Rigorously speaking, because of the inversion of the dipoles the ratio between 

two dipoles is the square root of the expansion ratio. We will follow here however 
the definition used in [1]. 
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Flg. 39. Log-periodic array of reversed dipoles, 
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Fig. 40..    A schematic of the  log-periodic dipole antenna,   including 
symbols used  in its description, 
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The ratio of element height to radius is the same for all elements in a given antenna 

and will be denoted by h/a. 

The antenna can be ted through a coaxial line inserted through the back of one 

of the hollow feeder conductors (Fig. 39). The shield of the coax is connected to its 

half of the feeder at the front of the antenna, the central conductor of the coax is 

connected to the other side of the feeder. With this method,an infinite balun is 

obtained in a way conceptually similar to that described for the log-spiral antennas. 

When the operating frequency is within the design limits, radiation is end-fire toward 

the feeding point, and the radiation occurs essentially in an active zone. Therefore 

behind such region the current is very attenuated and the nature of the load which 

terminates the feeder line is to a large extent immaterial (compare Subsection 2.2.4). 

The dipoles are assumed to be very thin (a/h « 1) and the current on the dipoles 

is considered sinusoidal. Therefore, once the interior problem has been solved and 

the input current of the elements have been found, the current distribution on the 

various dipoles is also known.  It is then possible, by using the standard formulas 

for linear current distribution, to determine the radiation pattern of the array. 

2.3.3 The Interior Problem 

In order to solve the interior problem the antenna is considered as the parallel 

connection of two networks representing respectively the feeder and the radiating 

system (Fig. 41). The admittance matrix of the feeder circuit is [Y,,] and its elements 
r 

are trigonometric functions.    If we call ß    the propagation constant of the unloaded 

line and Y    its characteristic admittance    from elementary transmission line theory 

it  is simple to ascertain that  [Y„] has the  form: 

tV 

(Y -jY    cot B d.)       -iY    esc B d.       0 
TJo o  1 o ol 

■jY    esc B d, J  o o  1 
-jY (cot B d,       -jY    esc B d Jo ol o o2 

+ cot B d  ) 

■jY    esc B d„       -jY (cot B d. Jo o2 o o2 

+ cot B d.) 
o  J 

.   .   .   0 

.   .   .   0 

■jY    cot B dM  , J  o o N-l 
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Fig. 41. Schematic circuits for the LPD interior problem. 
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The relationship between the voltages and input currents in the feeder circuit 

is obviously 

IF=[YF]VF (2.17) 

where I and V are column matrices which represent the driving currents and response 

voltages of the feeder circuit. Similarly if [Y] is the admittance matrix of the 

antenna elements, 

\ B  [YA]^A (2<18) 

where I. and V. are the sets of input currents and voltages at the terminals. If the 

corresponding terminals of the feeder and dipole. circuits are connected in parallel, 

a new circuit is obtained as shown in Fig. 41c. It is evident that 

-»  •# 

A   F 

Therefore from (2.17) and (2.18), since the current column matrix is now 

I - I. + Ij. 

it follows that 

Setting [ZA] = [YA]
_1 

"N |[YA] + [V) VA . 

gives the 

"i = ([YA] + [YF]| [ZA]  IA = ([U] + [YF] [ZA]| IA       (2.19) 

■r 
where [U] is the unitary matrix. If we consider the matrix I and the circuit of Fig. 41c 

it is clear that I has only the first term, which represents the input current of the 

entire array. Formula (2.19) gives the solution to the problem. In fact, if the matrix, 

[T] = [U] + [YF] [ZA] , 

is inverted the input currents of the dipoles are given by 

IAMT]  I . 

The form of the matrix [Y„] has been already indicated.  [Z ] is the matrix of the 

mutual and self impedance of dipoles, and can be formed, as we said in Subsection 2.2.3, 

by the standard e.m.f. method [43]. 

Besides I., quantities of interest resulting from this analysis are the ones we 
A 

have considered already many times:  the voltage distribution along the feeder given by 
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VA = 'V h    ■ 
and the location, the extension, and the power absorption of the active zone. 

2.3.4 Radiation Pattern 

Once the element base currents are found the radiation pattern can be calculated. 

Suppose that I. are the elements of the column natrJxT. Standard computations then 

give the radiation pattern. Assuming that the current on the antenna is 

I =1.  sin ß(h - Izl) 
n   An    K n  ' ' 

where ß is the free space wave number, the amplitudes of the H and E planes radiation 

patterns, if the coordinate systems is that indicated in Fig. 42 are the following: 

H plane: 

P*(<P) 

i N 
T-    T    /l ou \   jßx COS (0 ~  E  I.  (1 - cos ßh ) eJK n   y 

,  Ai: r n 
'n=l 

(2.20) 

E plane: 

Pe(0,<p) sin 
N r i 

ip Z    I. cos I (cos ßh cos ip) - cos ßh I  (2.21) 
. An    L     n nj 

nÄl 

ißx sin 6 cosip 
eJr n       T 

The phase patterns are given by the phase of the expression under sign of modules in 

the left side of (2.20) and (2.21). 

2.3.5 Numerical Computations 

Extensive numerical computations were performed by the method indicated in the 

previous subsections.  The following quantities were computed: 

(a) the matrix [Z.] of the exterior couplings among the elements; 

(b) the matrix [Z. ]  of the line circuits; 

(c) the voltage v. i.e. the behavior of the voltage along the feeder; 

(d) the input currents of the dipoles I.; and 

(e) the radiation patterns. 

A plot of the voltage along the line is shown in Fig. 43 as a function of normalized 

distance 7 from the Apex. The frequencies are denoted by: 

j 
flT 

1-J (2.22) 

where f. is the frequency at which dipole number one is one-half wavelength long. For 

comparison purpose in Fig. 43 the data taken from measurements on an experimental model 
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Fig. 42. Coordinate system used in the computation 
of the far field radiation patterns. 
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are indicated too.  The agreement is indeed excellent.  The plot shows a steadily 

decreasing voltage going away from the feed point to the largest element.  In the 

first zone there is essentially propagation without radiation:  the small elements 

fed out of phase act as small shunt capacitors.  For — > 1 the feeder voltage de- 
A 

creases very rapidly, due to the coupling of energy into the elements of nearly half 

wavelength (active region). As the frequency is changed, the shape of the curve re- 

mains unchanged, and the position of the active zone moves along the antenna.  The 

active region becomes deformed as it begins to include the front or back element 

of the antenna, and this establishes the upper and lower frequency of the antenna. 

The ratio of operating frequency limits of the antenna is somewhat smaller than 

the ratio of the longest to the smallest elements on the antenna, which is: 

H      1-N 
Bs * T   T (2-23) 

N 

The operating bandwidth is instead 
B 

z=-r- (2-24) 
Bar 

where B  is a factor larger than 1. Notice that B , B and B  are non-dimensional 
ar ° s       ar 

numbers. The plot of Fig. 44 obtained by performing numerous computations shows the 

dependence of B  upon a  for different values of T. 
Si. 

The amplitude and phase of the base currents are plotted in Fig. 45. The phase 

curve shows the presence of a backward wave in the active region. The amplitude peak 

occurs for a dlpole length somewhat smaller than -r .  In Fig. 46 many computed patterns 

are compared with the experimental ones given by Isbell [41]. From the patterns it 

is possible to obtain an approximate estimation of the directivity from the E and H 

plane half power patterns: 

Ddb = 10 l0* (BW'HBS) <2'25> 
a H 

Fig. 47 contains computed curves which are very useful for design. The curves of 

constant directivity are plotted vs o and T, end for every r  is given the value of 

a        (i.e., that value of a which maximizes the gain). For values of a greater than 
opt 

the optimum, large sidelobes appear on the radiation pattern. 

The directivity is found to be independent of the characteristic impedance of 

the feeder. However, the element height to radius does affect the directivity:  for 

each doubling of h/a the directivity decreases by about 0.2 db in the range 

50 < h/a < 10000. 

The phase center of the antennas has been calculated too. In general, rigorously 

speaking, no antenna has a true phase center. As a matter of fact, the existence of 
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a phase center would imply that the phase front of the radiation field of the antenna 

would be spherical, and this is true only for very particular sources. However for 

every direction d,(f>  it is always possible to find the centers of curvatures» of the 

sections of the phase front with two orthogonal planes. These define two "phase 

centers" relative to the direction and the plane under consideration.  In this way, 

from the expression of the radiation patterns, the phase centers relative to the peak 

of the radiation pattern have been calculated for the E and H planes. The results 

for the H p^ane are plotted in Fig. 48. For the range of a  shown, the location of 

the phase center is independent of r  and 0. The E plane phase center lies always 

ahead of the H plane one.  In all cases it lies between the apex of the structure and 

the element whose length is one-half wavelength. 

Considering the input impedance, the mean value of the resistance is given by 

the approximate formula 

R 
Z 
o 

o    / TT (2.26) 

« 

where Z is the characteristic impedance of the feeder and 

Z = 120 (In - - 2.25) (2.27) 
a a 

is an average characteristic impedance of a short dipole as a function of h/a.  The 

SWR with respect to R has a minimum value of about 1.1:1 at the optimum value of 0. 

As 0 is decreased below the optimum, the SWR rises above 1.8:1 at a -  0.05.  These 

calculated values represent lower bounds; the measured SWR is usually greater. 

2.3.6 Design Data 

The numerical analysis considered in this section can be applied directly to the 

design of the log-periodic dipole array. Moreover, in a qualitative way the same data 

can be useful as a guideline for the development of other types of log-periodic 

antennas.  In this subsection we will consider how to utilize such data for design 

purposes. 

The first step in the design is a choice of T and a,  keeping in mind that a large 

value of T (i.e., T close to the unity) increases the number of the elements.  The boom 

length (distance between the smallest and largest element) is determined mainly by or, 

increasing with a.    For a certain required directivity, a preliminary choice of T 

and a  can be made from the graph of Fig. 47.  The dependent parameter a.  is then given 

by (2.16).  The bandwidth, B  of the active region, for the given values of T and a 

can be found from the graph of Fig. 44.  The bandwidth of the structure B is then given 

by 
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B = B B (2.28) s    ar 

where B is the required operating bandwidth. The geometry of the log-periodic dipole 

antenna provides the following relationship between the boom length L and the longest 

operating wavelength ,\  : 

7  = i(l " B~) cota (2.29) 
max        s 

because the length of the first element is X  /2 . L is the boom length between the 

largest and smallest element.  The number of elements required is found from the 

equation 

log Bs 
N = 1 +  (2.30) 

log 1/T 

The principal log-periodic dipole parameters are thus determined.  It is likely that 

the first estimate of T and a will lead to a longer boom length than is necessary, so 

a revision musi. be made in T and e, repeating the above procedure several times until 

the minimum boom length is found. 

In order to obtain a required input impedance R , the characteristic impedance 

of the feeder must be specified.  Structural considerations generally determine h/a 

and Z is obtained by (2.27).  Inverting (2.26), the characteristic impedance of the 
a 

feeder relative to R is found o 

V (8<y' A /Ry 
-*• 1  + \f + l (2.31) 
o  8CJ' Z /R a o 

where a' = a/a . 
T 

All the elements for the design are now available. Carrell suggests short- 

circuiting the terminal of element number 1 (the longest), since at the lowest fre- 

quency the shorted element acts as a passive reflector. 

In conclusion, the work of Carrell seems the most exhaustive parametric analysis 

available for this type of structure. Although specifically concerned with log- 

periodic dipole arrays, the large amount of information given in it can be used also 

for other kinds of log-periodic antennas. The data in Table 1 show the effects of para- 

meter modifications [1]. 

2.4 MISCELLANEOUS LOG-PERIODIC ANTENNAS 

The log-periodic principle can be realized in a variety of geometries. As men- 

tioned previously, the present state-of-art does not permit predicting the performance 
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of a novel type of structure.  Due to this lack of theoretical insight, a large 

amount of experimental work has been devoted to the development of different kinds of 

new antennas. We will briefly consider some of the most interesting miscellaneous 

structures which have been proposed. 

Log-Periodic Folded Monopole Array 

At the Radiolocation Research Laboratory Department of the Electrical Engineering Dept. 

of the University of Illinois, a limited investigation has been performed on a new 

type of unidirectional, vertically-polarized, log-periodic antenna, the log-periodic 

folded monopole artay [47].  Such an antenna in its most promising version is con- 

structed by a series of folded vertical log-periodic dipoles on a ground plane fed by 

a coax feeder line. The outer conductor is log-periodically broken and the folded 

monopole is fed in series as shown in Fig. 49. The ground plane clearly increases 

the directivity.  The radiation patterns obtained are fairly satisfactory, but the SWR 

is not generally very good.  Since this structure was judged not to have many advan- 

tages over the zigzag or coaxial fed monopole arrays, no attempt was made to improve 

its impedance characteristic. 

Log-Periodic Cavity-Backed Slot Antennas 

The usual types of log-periodic antennas are not suitable for use on aerospace 

vehicles traveling at high speed in the atmosphere, because such vehicles cannot 

employ protruding objects from the surface of the vehicle. Therefore, it is highly 

desirable for such applications to develop a flush-mounted antenna based on the log- 

periodic principle. 

Perhaps the most successful attempt in this sense has been made at the Univerisity 

of Illinois [48]. The device proposed is constituted by an array of slots, each one 

backed by a cavity. The sizes of the slots, their spacings, and the cavity dimen- 

sions follow a log-periodic law. The cavities are excited by a series of loops in 

series on a feeder line and the energy is radiated through the slots.  It is clear 

that the number of variable parameters in this type of antenna are much larger than in 

the case of log-periodic dipole array. Therefore, the choice of optimum parameter is 

more difficult. A program was conducted to find a satisfactory set of parameters, 

including tests on a single radiating element (i.e., slot and backing cavity to estab- 

lish the optimum size and positionofthe magnetic loop). Design data are not given in 

[48]. Although the results are not too satisfactory, at least the feasibility of an 

antenna of this type has been demonstrated. 

Other Log-Periodic Slot Arrays 

Other different log-periodic slot arrays have been proposed with moderate success. 

Various techniques have been tried by utilizing ground-plane slots as radiating ele- 

ments.  Fig. 50 shows a fairly successful array remarkable for the simplicity and 
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Fig.  50.    Log-periodic  folded slot array. 
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cleanness of design is shown [50]. A completely printed construction is adopted. 

Antenna currents flowing on the ground plane on the array axis are parallel to a 

line bisecting the elements (i.e., the axis of the array).  Thus, the ground plane 

can be cut along the array axis and sections of a printed circuit transmission line 

inserted therein. The radiating elements are "folded slots," the dual of folded 

dipoles. The smaller (inner) slot of each element can be used for the fine phasing 

of the elements.  It has been experimentally determined that the optimum length for 

these phasing slots is in the neighborhood of one-half the length of the outer 

slots. Appreciable deviations from this optimum length are accompanied by pattern 

degradation.  Some radiation patterns are shown in Ffg. 51.  It is to be noticed that 

the radiation is bidirectional. Attempts to make it unidirectional with the addition 

of a backing cavity were not very successful. 

Circularly-Polarized Log-Periodic Antennas 

A peculiar property of log-periodic antennas, which seems quite general although not 

analytically proven, is the so-called phase rotation phenomenon:  if the phase of the 

field is measured relative to the phase of the input current, the phase of the re- 

ceived signal will be delayed of 2TT if the structure is expanded through a period [50]. 

The relation between the log of the frequency and the phase rotation is practically 

linear, with deviations of less than about 15 from the exact law. This allows 

frequency-independent phasing of the array elements. Consider now two log-periodic 

structures, placed at right angles to each other, with one structure scaled by the 

factor T with respect to the other.  The situation is depicted in Fig. 52.  (Notice 

that the period T is as indicated, because of the reversal of feeding connections 

of the dipoles). The phase rotation phenomenon guarantees that circular polarization 

independent of frequency is obtained on the peak of the beam. Not only the dipole 

array but also other different structures can be arranged according to the same idea, 

to give circular polarization. For example, two trapezoidal tooth structures of the 

type of Fig. 25, can be arranged in a pyramidal shape. Axial ratios greater than 

2:1 can be obtained on the entire bands of the component antennas. The circular 

polarization obtained with antennas of the type shown in Fig. 52 is generally better 

than that given by trapezoidal tooth structures [51]. 

Reduced Size Log-Periodic Antennas 

We have already mentioned some attempt to reduce the size of log-spiral antennas. 

Loading the antenna with lumped elements, or with a continuous dielectric or magnetic 

material has been suggested [52]. However, it seems that the most promising approach, 

is one proposed at the University of Illinois:  the log-periodic helical zigzag antenna , 

essentially a modification of the log-periodic zigzag antenna on a ground plane [53 

and 54]. This antenna is constituted of a single conducting wire, arranged in a log- 

periodic way as indicated in Fig. 53. A disadvantage of such an antenna, which does 
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Fig. 52. A circularly polarized log periodic 
dipole array. 
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not make it attractive at low frequencies, is that the height is rather large, 

exceeding one-half the maximum wavelength on the band covered. 

The method of size reduction utilized in the log-periodic helical zigzag antenna 

is conceptually very simple. The linear conductors of the structure of Fig. 53 are 

replaced by helical ones (Fig. 54), the cell-to-cell phasing is then adjustable by 

changing the pitch angle of the helix.  In fact, according to the discussion in 

Section I, the phase velocity along the wire of the helix is approximately that of 

light.  Consequently, the propagation along the helix axis occurs at a velocity smaller 

than in the case of the simple linear conductor of Fig. 53, and the active zone occurs 

over increments considerably shorter than a half wavelength. However, to get the same 

directivity as a simple zigzag antenna, it is necessary to increase the length of the 

active zone since a reduction of broadside effect must be compensated by an increase 

of end-fire effect.  In fact, the author suggests as a satisfactory set of parameters; 

a pitch angle of the helix, <p = 30 , expansion factor T = .9 and a° = 10°. Notice 

that such a small a gives origin to a long structure (see Section 2.3).  Therefore, 

it is not clear whether the overall size of the antenna can be reduced.  However, a 

reduction of one dimension at the expense of an increase of another can be useful for 

particular applications. 

Array of Log-Periodic Structures 

In Section 2.3, a special type of log-periodic antenna, the log-periodic array 

of dipoles, was considered in detail.  It is a planar structure and therefore, in some 

respects is simpler than the one depicted in Fig. 25. Almost all the other practical 

structures consist of non-planar arrangements.  In order to increase the gain, two 

log-periodic planar structures may be arrayed in a bg-periodic fashion. This arrange- 

ment also simplifies the feeding problem, since it is possible to feed one-half struc- 

ture against the other half. Arrangement of more than two structures are seldom used, 

because of difficulty in the feeding problem, and more importantly, because the increase 

of gain is modest while the radiation pattern is not too satisfactory.  This is due 

to the inherent phase error, since for log-periodic operations, the pha^e centers must 

lie on a circle (see Subsection 1.4.2). 

Let us consider an array of two-planar elements as in Fig. 25.  If <p is the 

observation direction in the E plane and ijj is the angle between the planes of the 

two elements, the radiation pattern is given by 

E = cosnp-t!)exp(jßd 8in| sin^p) + cosn(^-~^) exp(-jßd sin| sirup)   (2.32) 

where d is the distance of the phase center from the virtual apex and cos "£ is an 

assumed function form for the element pattern. Although in (2.32) the interaction 
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effects between the two component structures are neglected, the expression is reason- 

ably accurate. To practically find n, the beamvidth of a component structure is first 

determined. This can be obtained by data in the literature. Duhamel gives a plot of 

the pattern characteristics of wire trapezoidal tooth elements as a function of a 

for the minimum value of T (for smaller r the pattern degrades considerably) (Fig. 55 

and [4]).  It is then possible by using the empirical graph of Fig. 56, to obtain n, 

and therefore by using (2.32), to predict approximately the H plane pattern. The E 

plane pattern is the same as that for a single component structure and can be obtained 

by using the graph of Fig. 57, where the front-to-back ratio is also indicated. 

The impedance behavior of these structures as a function of the various para- 

meters is not clear.  In general, it appears that a wire structure has a characteris- 

tic impedance somewhat higher than a sheet structure. There is no definite trend in 

the variation of impedance with T.  Some data on the impedance and SWR as a function 

of T and i|) for particular structures can be found in the Antenna Handbook [4]. 

2.5 DESIGN OF LOG PERIODIC ANTENNAS 

The design of a log-periodic array is stiil in many aspects an art rather than a 

science. Cut-and-try procedures, assisted by good physical intuition, are necessary 

to develop an antenna meeting given specifications. As pointed out in Section 1.5 

about log spirals; it is rather simple to design a log-periodic antenna behaving reason- 

ably well, but it is sometimes very hard to obtain a behavior closely following given 

specifications. 

In reviewing the design procedure, we distinguish between antennas constituted 

by a single planar log-periodic structure (as the log-periodic dipole array), and by 

two component structures arrayed (as in Fig. 25). 

Single Planar Structures 

The only important antenna constituted by a single planar radiating structure is 

the log-periodic array of dipoles. Design data are discussed rather thoroughly in 

Section 2.3.6. Therefore, we will repeat only briefly the steps of the design proce- 

dure. 

Assume that certain directivity and impedance are specified. A T and a  can 

thus be chosen, taking in account that the number of the elements increases with T, 

and that the boom length increases with o. Given a certain specified directivity, the 

use of the graph of Fig. 47 allows determination of T and a.    The angle a is a dependent 

quantity according to (2.16). The above procedures can be repeated in order to reduce 

the minimum beam length, keeping in mind that the best front-to-back ratio can be 

obtained by using a value of ö which is close to the optimum. The input impedance 

determines the characteristic impedance of the feeder line according to (2.31). 
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Array of Two Component Structures 

Suppose that in the H plane the required beam is too narrow to be obtained by 

means of a single planar structure.  In such a case, it is necessary to resort to an 

array configuration (Fig. 25).  The equivalent broadside aperture D (distance between 

the phase centers of the two components structures) can be given by the following 

semi-empirical formula , 

£«*2 (2.33) 

<p 

which takes into account the directivity of a single structure (due to the 

end-fire effect). Aperture D can be computed with the data given by Fig. 48 (which 

holds approximately for any kind of log-periodic antenna).  The design data given in 

2.3.6 can be used (according to the procedure reported above) to determine all the 

other necessary parameters.  Of course, for wire and tooth structures the data given 

by Carrell can be useful only for a very qualitative prediction of the radiation 

patterns. Alternatively, the graph of Fig. 35, where some data for wire and tooth 

structures are given, can be used. By usin-; Fig. 56, the parameter n to be introduced 

into (2.32) can be determined. After choosing an angle t|j, (2.32) can give an idea 

of how the radiation pattern will look. The computation can be repeated several times 

to find a suitable value of ip. The graph of Fig. 27 can help in a preliminary evalua- 

tion of the gain and the front-to-back ratio. 
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III.  BROADBANDING CONVENTIONAL ANTENNAS 

3.1 THE "SMALL ANTENNA" PROBLEM 

We have seen in the previous Sections that the way to obtain antennaj with 

frequency bands extremely extended is to use a certain class of structures 

geometrically characterized by being self-congruent, and having a peculiar type 

of current attenuation along the structure. The power (in transmission type of 

operation) is radiated by an active zone whose size counted in wavelengths is 

constant with frequency:  this means that when the antenna is operated in the 

upper frequency range not all the structure is utilized.  The size of this ac- 

tive zone is always of the order of one or several wavelengths and the gain 

obtainable from these antennas is low or moderate. 

There are cases when the small size is desirable and the gain is not an 

important factor. This occurs generally at frequencies in the range of the Mc 

or of the tenths of Mc, often in vehicular applications.  In such instances, if 

broadbanding is required, the basic F.I. or L.P approach is out of question. 

The antenna geometry is generally very simple (a simple stylus., for example, or 

a biconical structure), and broadbanding is attempted using an input network 

which matches the impedance rapidly varying with frequency. 

It turns out that this approach has strong limitation in principle.  In 

fact, as in any other linear network, the rate of variation of the input im- 

pedance of an antenna is rapidly increasing with the increase of the reactive 

energy (stored in the neighborhood of the antenna), which in turn increases at 

an extremely high rate if the size of the antenna is decreased behind a certain 

point. This and related questions (as the possibility of supergain antennas) 

have been the subject of some classical papers, and now are well clarified 

[55-57]. 

Chu considered the question of the physical limitations of an antenna 

omnidirectional in the azimuthal plane, and showed that the Q of the antenna, 

defined in a suitable way, increases at an astronomical rate if the size of an 

antenna is decreased under a certain value dependent upon the gain [55], Later 

Harrington considered the more general case of a directive antenna [56], and 

showed that the maximum gain obtainable from a broadband antenna is approximately 

equal to that of a circular uniformly illuminated aperture whose diameter is 

equal to the maximum size of the antenna. 

Here we will limit ourselves to the consideration of the omni-azimuthal 

case (which is the most important for this kind of application) and will examine 

the question of the limitation which the size of the antenna imposes on the frequency 

band. We will only require that the band is a maximum, without imposing any 
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requirement on the gain. We will find that the antenna which has the potentially 

broadest band is one which has a radiation pattern corresponding to that of an 

infinitesimally small dipole.  This in turn leads to the conclusion that, for 

small antennas, trying to devise very complex structure is not a very promising 

approach to broadbanding, which must rather be attempted through a careful de- 

sign of the input network.  However, the results which can be expected are quite 

limited, if losses are not purposely introduced to reduce the Q, and consequently 

the efficiency, of the radiating system. 

3.2 THE 0 OF A RADIATING ELECTROMAGNETIC SYSTEM 

The first exhaustive treatment of this problem has been given by Chu who 

found a lowest bound for the Q of a lossless antenna (defined later), once its 

maximum size is given, which is strictly related to its broadbanding potentiality. 

Let the largest size of the antenna be 2a, and let us imagine the complete 

antenna structure (including the source of power) enclosed inside a geometrical 

spherical surface of radius a.  It is well known that the field outside the sphere 

is completely determined by the distribution of equivalent currents on the 

spherical surface and can be due to infinitely different distributions of sources 

inside the sphere.  The Q of the antenna is defined as 

2Cü W 
e if    W   > W Pern 

Q= (3.1) 
2co W 
—=-S   if w    > w 

P me 

where W and W are the average magnetic and electric energies stored in the me 
neighborhood of the antenna and P is the,power supplied at the antenna input. 

The justification of the definition (3.1) can be simply given by considering 

that the antenna will be always tuned with a reactance to give a resistive input. 

This therefore implies that the total average energy stored by the antenna and 

tuning network is as given in the numerator of (3.1). 

It is rather difficult to determine the energy stored in the localized 

reactiv fi^ld and to separate it from the radiation field. One method consist 

of recognitioi. of the fact that the power flow from an antennr is equal to an 

energy density (U + U ) multiplied by a velocity of energy flow.  Then, for 

infinite U ,U and ';he power flow may be readily evaluated and the velocity of 

energy flow determined [571.  If U and U are subtracted from the expressions em 
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7 — —* and A — —*'  giv*-n8 tne total energy density in the field, the remainder 

is the energy density associated with the reactive field. Chu's method, 

which is the one considered here, consists instead of finding for each of the 

spherical modes an equivalent network and reducing therefore the problem to 

circuit analysis [55]. 

3.3 EXPRESSION OF THE FIELD OF AN OMNIAZIMUTHAL ANTENNA 

If we assume that the antenna is omniazimuthal and the system of current 

is vertical, i.e., in the direction of an axis z, associated in a standard way 

with a system of polar coordinates R,0,ip, we have as the only nonvanishing 

field components: 

H =EAP (cos 0) h (kR) iß n n        n Y  n 

h (kR) 
E

R 
= "Htis V(n + L> Vcos *> "V" (3-2> »(f) s V(n 

* *  n 

*, = j [tf  S Vn1 <cos *> W S [RVkR>l 

where P (cos 9)  is tne Legendre polynomial of order n, P (cos f) is the first 

associated Legendre polynomial, h (kR) is the spherical Hankel function of the 

second kind, k = 2n/A, \\I/£  is the wave impedance of a plane wave in free space 

and l/\/q?is the velocity of light.  The A 's are a set of coefficients, 

generally complex. 

The asymptotic expression for the field (i.e., that one valid in the far 

zone) is: 

Ee ■ \f? e "jkr S V-1*  (A + 1)/2 Pnlc°S P) 

kR 

\-JFEe 
(3.3) 

The directivity gain is: 

lEel2 

G(8)  = 
11211        2 

/ /     | Eg |   sinQdBdip 
o o 
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Putting B  = — , (i.e., considering the directivity in the equatorial plane) 

and using the orthogonality properties of the associated Legendre polynomials 

we get, assuming all the A in phase (for maximum gain): 

W-^ 
Z   A (-1) C»«)/2 p 1(0)' 

2 n(ttfl) 
n   2n+l 

(3.4) 

where £' represents the sum over odd n only [55]. 

3.4 EQUIVALENT CIRCUITS OF THE VARIOUS MODES 

The flow of the complex power computed at the surface of the sphere is 

the integral of the complex Poynting vector over the same sphere: 

Ka). iUy? s, £ sign pVp) (35) 

where p = ka, h = h (p), ph = — ph (p). The real part is the average 
' n   n     n  dp  n r 

radiated power: 

An 
2 nin+U (3 6) 

Pr = 2,{\Fp L' f       2nTT 

The expression (3.5) in which the orthogonal properties of the wave functions 

are clearly apparent, can be the starting point tc devise an equivalent circuit 

for the various modes. If we replace the space outside the sphere by number of 

independent equivalent circuits (Fig. 58), each of them corresponding to a mode, 

their input voltages, currents and impedances are: 

^ff *n      n rkrcn(n+lj| k. ,- Q. 
* ~ ' 2n+l  J phn (3-8) 

(Phn) 
Zn " J "ST- (3'9) 

n 

The method which is used in [55] to find the reactive energy stored stems from 

the recognition tnat the impedance (3.9) (which is physically realizable) 
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Fig. 58.  Equivalent circuit of a vertically 
polarized onmi-directional antenna. 
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can be written as a continued fraction by using some recurrence relations of 

Bessel functions: 

z -f + 1  
n  jp 

2n-l + _1   
j     2n-3 . 
p    — + "\ <3'10> 

3 +   l 

jp  -i+ 1 
JP 

The circuit interpretation is a cascade of series capacitances and shunt induc- 

tances terminated with a unit resistance (Fig. 59). For n = 1, the field is 

the same as that of an elementary dipole and the equivalent circuit is shown 

in Fig. 60.  It is apparent from (3.10) that the resistive element is hidden 

at the end of a series of high pass filter cells. The effect of an increase 

of frequency is equal to an increase of the radius of the sphere.  It is there- 

fore clear that practically, for an antenna of very small size with respect to 

the wavelength,the higher modes contribute only to the reactive energy and the 

radiation pattern is essentially that of a dipole.  In principle, however, 

if the amplitudes of rhe higher modes are exceedingly high, it is possible to 

obtain arbitrarily shaped radiation patterns with an arbitrarily small antenna 

at the expense of an enormous increase of the reactive energy of the antenna. 

To calculate the energy stored in the reactive elements of the equivalent 

bipolar network Z of Fig. 59 is a rather long procedure. However, in the 

neighborhood of the operating frequency,Z can be approximated by a simple series 

RLC circuit. The R , L , and C of the simplified equivalent circuit can be 
n' n     n        v M 

found by equating the resistance, reactance and frequency derivative of Z to 

these of the series RLC circuit. The results are: 

R - JP h f2 
n  '      n1 

where 

„ Tdx  xl _1 
c -•*- —s - — 
n   2 I do»   ai I 

CD   fc 

i  fdx    X 1 
n  2 Idco    CDJ 

Cn= [pJn(pJnV + Pnn(pnn)] 
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nc  (2n-3)c 

Z — L 
n 

a m      a 
f(2n-l)cl(2n-5)c 

a = Radius of sphere 

c = Velocity of light 

Fig. 59. Equivalent circuit of TM spherical wave. 

c 

■*—II- 

c 

Fig. 60. Equivalent circuit of electric dipole 
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} 

and j and n are the spherical Bessel functions of the first and second kind. 

The simplified circuit describes Z accurately enough in the immediate neighbor- 
n 

hood of the operating frequency. If a Q for the n mode is defined 

2üuW 

n 

where W is the average electric energy stored (which is higher than the mag- 

netic energy) and P is the average dissipated power in Z . From the simplified 

circuit, there is obtained: 

«n'lKJ2    [p3T-Xn] <3-l2> 
The bandwidth of Z (when externally matched with a proper amount of magnetic 

energy to make it resonant) is approximately equal to the reciprocal of Q . 

A plot of Q vs 2na/\ for various n is given in Fig. 61. When 2na/A is of the 

order of n, Q is of the order of unity, and increases extremely fast when 2na/A 

decreases. 

3.5 THE MINIMUM Q OF A SMALL LOSSLESS ANTENNA 

For all n such that p = 2ira/A < n the spherical Hankel function h (p) is 

essentially an imaginary positive quantity. Thus the currents of the equivalent 

circuits Z for n greater than the argument p are essentially in phase. This 
n 

means therefore, that the electric energy stored in all the equivalent circuits 

oscillates in phase. It is clear then,that if the antenna is assumed lossless, 

its Q (defined in 3.1) is simply equal to 

2o3 EW 

Q = TTf (3-13) 

where we recall that W and P are respectively the average reactive electric 

energy and the radiated power associated with the nth mode. We have assumed for 

the internal circuitry of the antenna (i.e., inside the spherical box of Fig. 1>8) 

the most favorable condition: no electrical energy stored, and magnetic energy 

in the right quantity to make the antenna resonate, i.e., the magnetic energy 

stored in the input network is equal to the sum of all the electrical energy stored 

in the Z equivalent circuits.  In this hypothesis, (3.13) results consistent 
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with the usual definition of Quality Factor for a circuit.  It is easy to check 

that Q can be written 

E, A 2 nlnfli Q 

Q _    " 2n+l :  (3.14) 

, A 2 n(n+l) 

n 2n+l 

where Q *s are given by (3.11) and the dependence upon a is explicitely pointed 

out. The Q so defined,when it is high,can be interpreted as the reciprocal of 

the fractional frequency bandwidth of the antenna. When it is low,however, it 

can be considered only qualitatively as an indication that the antenna is broad- 

band . 

It is possible to minimize (3.14) under the constraint of a certain gain 

and can be shown that the maximum gain which can be obtained with a reasonable 

value of Q is ~ 4a/X. We will consider however the other related question which 

is perhaps more important for omniazimuthal antennas: which is the minimum Q of 

an antenna of a given size when no constraint on the gain is given? Or in other 

words, which is,for a given a, the optimum combination of the model coefficients 

A 's in order to obtain the absolute minimum Q? From the expression (3.14) the 

answer is apparent. Sincethe various Q have different values,and the minimum 

is Q , it results that the antenna generating a field outside the sphere corres- 

ponding to the first transverse magnetic mode (i.e., the field of an elementary 

dipole) is the one with greater broadband potentiality. The gain of this antenna 

is 1.5. , 

3.6 QUALITATIVE DISCUSSION 

The discussion in the previous section has been rather theoretical. We 

have considered an antenna in free space and have seen what the radiation pat- 

tern must be in order to obtain the minimum Q or, equivalently, the maximum band 

of the antenna. We have not considered the effect of the nearby objects which 

will always be present. The only case in which the effect of a physical struc- 

ture can be easily taken in account is when a ground plane is present, and in 

such a case the theory is still valid with only minor modifications. For every 

practical structure the theory is unable to predict the effects, except in a rough 

qualitative way. For example, let us suppose that the antenna current distri- 

bution has been carefully chosen to have a gain higher than 4a/A when isolated 
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(and we do not want to consider here the difficulties of fulfilling this task). 

This means that the antenna has also high Q, and large reactive fields in its 

neighborhood.  If the antenna is in proximity of other structures,these fields 

(and of course the radiation field) will induce currents on them.  The radiation 

pattern will as a result be modified, with a decrease of the gain. 

On the basis of this consideration it does not seem advisable to try to devise 

complicated structures for small antennas in an attempt to increase the gain. 

Moreover, a high Q means also(for every practical structure)very high conduction 

losses, which will reduce the efficiency of the antenna. The general conclusions 

which can be deduced by Chu's analysis are the following: 

-- For small antennas, there is a practical impossibility of ob- 

taining gain higher than 1.5 (the gain of an elementary dipole). 

This does not completely exclude the possibility of modest in- 

crease of directivity at the expense of correspondent increase 

in losses. 

-- The Q of the antenna is the lowest if the antenna generates a 

pure dipole field. This is clearly impossible for practical 

structures, but can be better approximated if complicated 

geometries are avoided. We have to take in account however that 

the "output surface" of a practical antenna is not a sphere. 

For example, for a simple stylus it is a cylinder. Therefore, 

even if outside the sphere (having its diameter equal to the 

maximum size 2a of the antenna) all the waves different from 

the dipole mode are strongly attenuated; nevertheless,the reactive 

field can be very strong in the space between the output sur- 

face, increasing the Q of the antenna. This again suggests use 

of a structure with simple geometries, and avoidance of 

conductors with small radius of curvature . 

Once the maximum size(2a)of one antenna is given, the maximum bandwidth 

of its input impedance (obtained by using a proper matching network) is determined. 

In fact,the Q of the antenna (supposed lossless) is always less than Qj(ka). 

Therefore,assuming this value for the Q and assuming an equivalent circuit as 

in Fig. 60, is a conservative hypothesis. A theoretical study on the possibility 

of broadbanding a given bipolar network by using a matching quadripole was made 

by Fano [58]. Based on its computation Chu gave a curve, valid for an antenna 

It is well known, for example, that a thick dipole is more broadband than a 
thin one, and a biconical antenna is more broadband than a dipole. 
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1 

having Q ■ Q (ka).  Fig. 62 shows the fractional bandwidth, for an assumed 

allowable reflection coefficient, as a function of the size of the antenna, 

when the antenna is optimally matched (i.e., is connected to the generator 

through a passive lossless network which gives a constant amplitude of the 

reflection coefficient throughout the band).  This curve can be very useful 

in determining an upper bound on the frequency bandwidth to be expected from 

a given antenna. For example, consider a short dipole with length 0.1X, 

and assume an allowable reflection coefficient of 0.5 (which corresponds to a 

SWR. of approximately 3 and an efficiency of about 75%).  In this case we ob- 

tain from the graph of Fig. 62 

2  AB , 
-— T log 

which gives AB/f «* 25%. From the curve it is seen that the band decreases very 

fast with the size.  For example, for an antenna whose size were 0.01X, in 

absence of conduction losses, the band for the same maximum reflection coefficient 

is approximately .022%.  However,for antennas of such a small size the theory 

is hardly applicable since very large reactive currents and very high conduc- 

tion losses also occur.  For example, antennas for VLF (which are always elec- 

trically small) can have conduction losses ranging from 80% to 90% of the input 

power. 

3.7 NETWORK THEORETICAL APPROACH 

In the previous section the problem of the minimum Q (and therefore of the 

maximum bandwidth) of a lossless antenna of a given overall size has been inves- 

tigated.  Chu's theory allows to predict an upper bound of what can be expected 

from a small antenna. A practical antenna will have a model structure different 

from the ideal antenna having Q ■ Q .  The configuration of the field will cer- 

tainly be more complicated with a doublefold effect:  to increase the reactive 

energy and also to increase the power loss because of the currents on the struc- 

ture. As a consequence of these two contrasting effects, it is not clear which 

will be the overall effect on the Q of a structure.  The present state of the 

theory clarifies what we cannot expect from a certain structure but it is not, 

however,able to predict the actual behavior of a practical antenna given its 

physical configuration, or to suggest which configurations can be recommended in 

order to have a behavior close to the theoretical limit. 
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Instead of attempting to design an optimum structure, a less ambitious pro- 

gram can be followed: designing the antenna on an empirical or semiempirical 

basis, taking measurements of its input impedance behavior with frequency, and 

then from the knowledge of these data, rationally designing the "best" network 

(in some sense).  This sort of approach, in other words, does not investigate the 

electromagnetic behavior of the structure and reduces the question to a network 

theoretical type of problem [59], 

The input impedance of a lumped element circuit can be analytically de- 

scribed, as it is well known, by a rational algebraic function.  Distributed 

systems on the other hand can be described, in general, by meromorphic functions. 

To show this point in a simple way, (related to the treatment of the previous 

section), we can say that for an arbitrary structure in general the mode ex- 

pansion of the field will contain an infinite number of terms; therefore, 

the equivalent circuit of Fig. 58 will be constituted by an infinite number of 

bipolar networks.  Consequently, the input impedance function will contain an 

infinite number of poles; i.e., will be a meromorphic function.  The idea in 

Ref. [59] is to approximate the actual impedance function with a rational 

algebraic function (or equivalently to substitute the distributed circuit with 

a lumped one), and then to match it with a quadri-polar lossless network. 

As a first approximation of the impedance, the simple rational function 

C,P
2
 + C P + C 

|i(p)"-| 1  (3.15) 
p + c4p + C5P 

can be chosen where the C,'s are constant to be determined and 

p = a + ja 

is the complex frequency. 

The first requirement for this function is to be "positiv? real" or in other 

words to represent a physical network. Furthermore, the real part must be 

evidently zero at zero frequency.  These are general requirements which impose 

constraints on the C.'s.  The determination of the C.'s will be then completed 

by requiring that (3.15) behaves as close as possible to the actual antenna 

impedance. Without reporting here the details of the method which the authors 

of Ref. [59] used, it can be said that essentially the modulus of the difference 

between the reflection coefficient (amplitude and phase)obtained by actual mea- 

surement and that one calculated from the expression (3.15), (with the C.'s still 
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unknown) is minimized with respect to the C.'s. When (3.15) is so determined, 

network theory allows finding the optimum matching quadripole given a certain 

value of the maximum allowed reflection coefficient on the operating bandwidth. 

We will not consider here this last problem, which is essentially a network 

theoretical problem. 

The authors give some example of the application of this method, showing, 

for example, that with a proper matching network a slot backed by a cavity 

has a band of about 50% narrower than its "end loaded" version (which is the 

magnetic equivalent of the capacitance loaded dipole). 
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IV.  CONCLUSIONS AND RECOMMENDATIONS 

4.1 CONCLUSIONS 

The overall size is perhaps the physical quantity which most strongly constrains 

the characteristics obtainable from an antenna.  The frequency band of an antenna 

"electrically small" is always very limited, even if the theoretically opti.raim input 

network is used.  Its actual value, of course, depends upon the size. Practical small 

antennas are generally linearly-polarized and the directivity is that of a small dipole. 

Logarithmic spiral and logarithmic periodic antennas are different from all other 

antennas because of the peculiar property of being "active" only in a limited part of 

their structure, in such a way that their electrical size, so to speak, remains con- 

stant in terms of wavelengths for a wide band of frequencies.  In theory, the frequency 

band can be made as large as wanted, just by increasing the overall size of the antenna. 

From an engineering point of view, however, in this way only the lower limit of the 

frequency band is determined.  The upper bound is determined by different factors, such 

as structural mechanical problems and fabrication tolerance considerations. The geo- 

metrical and electrical requirements which must be satisfied are the following: 

(a) The antenna must be geometrically self-congruent after an expansion with 

respect to an infinite discrete (in the case of log periodic) or continuous (for log 

spiral) set of expansion ratios. 

(b) The current must decay along the structure faster than the inverse of the 

distance from the feeding point. 

These antennas are not small in terms of wavelengths.  Their size is always of 

the order of magnitude of the largest operating wavelength.  The gain is small or mod- 

erate and the polarization can be either linear or circular. 

The theory of log periodic and frequency independent antennas is not well developed; 

we have seen that the only approach having thus far been developed is the analysis of 

the periodic counterpart of the structure,  it this analysis can be accomplished, the 

Brillouin diagram can be used in an approximate way for the slowly-tapered structure. 

The analysis of the simplified problem is still very difficult.  The array of dipoles is 

the only practical structure which has been solved [40].  In this case, the solution 

was only approximate and was found by considering the coupling of each radiator with 

the closest elements only.  The approximation is good for large spacings but degrades 

for spacings smaller than a wavelength. This degradation of solution accuracy is un- 

fortunately the case for log periodic arrays of dipoles, since the ratio between spacing 

*In Table 2, some of the characteristics of these broad classes of antennas 
considered in this report, i.e., frequency independent, log periodic, and small antennas 

are indicated. Of course, the table has only indicative values. 
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and wavelength in the active zone is usually smaller than 0.1.  It would be desirable 

to find a method by which the approximation improves with decrease in spacing. A 

promising method based on the use of Fourier Analysis is described briefly in the 

following section. 

4.2 RECOMMENDATIONS FOR FURTHER STUDIES 

Because of the general nature of this survey and the Army's broad interest in 

antennas for many applications covering the entire frequency spectrum (i.e., all fre- 

quencies of use to communications and radar) and a wide variety of antenna characteris- 

tics, the recommendation is for a theoretical study which has the purpose of developing 

a better understanding of the behavior of wideband antenna structures.  The body of 

this report clearly indicates the lack of adequate theoretical treatment. This recom- 

mendation for further studies leaves open the approaches which may be considered; 

obviously, this must be nature of research studies in order to allow generation and 

evaluation of new concepts. However, to show that further meaningful research in this 

area may be conducted, a rather specific approach to the solution of periodic-like 

structures is outlined below. 

The use of Fourier Transforms in certain types of electromagnetic problems can 

be often very convenient [59, 60],  It has been used to determine the driving point 

impedance of a phased planar array of dipoles in a rectangular arrangement [62], and 

in a general periodic arrangement [63].  It has not been used to the author's know- 

ledge to determine the surface waves or the leaky waves in an (either bidimensional or 

linear) array of dipoles (similar to Fig. 30).  To indicate how this method can be 

used for this problem, consider the following approach:  It is possible to determine 

an expression of the impedance of an element complex in the form of a series, the terms 

of which are proportional to the square of the bidimensional Fourier transform of the 

current in the single element with respect of the coordinates in the plane of the array, 

sampled at certain points depending upon the unknown complex propagation constant. We 

can equate this impedance to the opposite of the impedance looking into the feeding 

line (Fig. 30 and 32). A "Transverse Resonance" equation is thus established in a form 

of a series whose terms contains the unknown propagation constant. The various solu- 

tions are the propagation constants of the various modes. An interesting feature of 

this equation is that it simplified as element spacing is decreased; it is possible to 

show that the number of non negligible terms cf the series increases with the spacing. 

Following this Fourier Analysis approach, it may be possible to achieve new steps 

in the development of the theory of log periodic antennas.  It is highly desirable that 
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further theoretical work be done. New insight on the behavior of these interesting 

and peculiar structures is very important to put the design criteria on a sounder 

theoretical ground.  Further work on this field could include the following tasks: 

(a) Analysis of the modes in a structure composed of an infinite number of 

dipoles fed by a line (Fig. 30).  This could be done, as mentioned previously, by 

using a Fourier analysis technique.  It would be very interesting to compare these 

results with those obtained for the same problem as described in Ref. [40]. 

(b) With the analytical results of task (a), it is believed that solutions to 

the "source problem" can be achieved.  In other words, to consider not just the free 

modes on the structure (without excitation), but Lhe radiation when an element is 

driven. 

(c) Research in a different direction could be an attempt to use the method out- 

lined above to analyze a periodic structure of a more complex type (e.g., the periodic 

counterpart of the sawtooth structure of Fig. 25).  The results of this analysis as 

compared with the results concerning the array of dipoles would clarify how the nature 

of the single element influences the behavior of the array.  These results would be 

extremely useful for design purposes. 

(d) A fourth (and more ambitious) task will be to seek a method for treating 

not the simple periodic, but the actual log periodic array. Although it can be anticipa- 

ted that the fulfillment of this task will be very difficult, there are hopes that the 

use of some special functional transform can be a first step toward the solution of 

this challenging problem. 
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