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THEORY AND APPLICATIONS OF THE NOTION OF COMPLEX SIGNAL

by J. Ville
ABSTRACT

"The present article is @& contribution to the problem of the composite
repregentation of a signal by a two—dimensional distridbution of energy in a
domain defined by two axes, the time axis and the frequency axis. The author
proposes such a distribution, using operators analogous to those usged in
quantum mechanics. He thus obtains & definition of the instantaneous spectrum
of a signel, and of the distribution of the energy corresponding to one fre-
quency. By integration (with respect to time) of the instantanesous spectrum
(which varies with time) the spectrum, in the usual sense of the word, is
recovered. The author &efines the instantaneous frequency of a signal in
the same vay, using the notion of a complex signal (obtained by the complex
extension of the real signal when time is considerad as a complex variable).
These notions of instantanevus frequency and of the instantaneous spectrum
ere introduced to furnish a firm theoretical basis for studles of frequency
modulation, of continuous harzonic snalysis, of frequency compression, and,
in & genersl way, of all the problems for which classical harmonic analysis

furnishes & description which departs too far from physical reality.

j’TLX'. E&E‘:
The term "Analytic Sigasl" is often used where "Complex Signal”
bere appears.
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1. Quantity of information transmitted and complication of a signal.

2. Evalustion of the complication of a signal by the number of appre-
ciable harmonice which e.‘e contained in its Fourier expansion.

3. Necessity of composite expansions in time and frequency, for the
study of certain questions.

L, Preliminary remearks on the concept of instantzreocus spectrum.

5. Gemeral statemest of the problsm of instanmtaneous gpectrum and
instantaneous freguency.

I1I. PART ONE: COMPLEX SIGNAL AND INSTANTANEOUS FREQUENCY

6. Extension of & real signal in the complex plane.

T. Complex aignals. They may be considered as the result of the
modulation of their envelope by a carrier vhich is itself frequency
acdulated. Instantaneocus frequency.

8. Any signal modulated by & sufficiently high frequency may be con-
sidered complex.

IV, PART TWO: GROUP VELOCITY AND INSTANTANEQUS FREQUENCY
9. Group and phase velocity.
10. Group delay of & signal considered as the weighted mean of the
group delay of different frequencies.
11. Mean frequency of a signal considered as a vweighted mean of dif-
ferent instantaneous freguencies.
V. PART THREE: DISTRIBUTION OF ENERGY IN THE TIME-FREQUENCY DIAGRAM.
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of the energy associated with one frequency as a function of time.
FOUR: APPLICATIORS OF TEE CONCEPT OF COMPLEX SIGNAL

Second moment of the signal as a function of time. Amplitude and
phase distortion.

Transfer admittance

Band-pass filters; examples of physically realigeble admittances.
Bell—-shaped admittance curves.

Phase—shifting filter which shifts the eignal into quadrature.

Imaginary signal ané single side-band transmission.

TEE PRINCIPAL SYMBOLS USED

t = timne

s(t) = real signal

g(t) = quadrature signal

$(t) = s(t) + jo{t): complex signal

f = frequency (in cycles)

w = frequency {in radians)

s(w) = spectrum of a signal (frequency expressed in radians)

$(f) = spectrum of a signal (frequency expressed in cycles)

t = mean value of time

? = mean frequency

tf = mean delay associeted with frequency f
ft = instantaneous frequency &t the time ¢

J = imaginsry unit
rAd = z ~ conjugate
u = mean value of u

Ju/ = mobulus of u
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I. BIBLIOGRAPHICAL NOTE

The fundamental articlee which deal with the general theory of variable
frequency circuits are:
J. R. Carsonand T. C. Fry, Variable Frequency Electric Circuit Theory,

Bell System Technical Journal, 1937, t. XVI, p.513

D. Gasvbor, Theory of Communication, Journal of the Institution of Elec-

tricel Engineers, vol. 93, part III, no. 26, Nov. 1946, p. 429

In the first of these articles is studied the behavior of a signsl of
the form Cos[ia(t) at + %} a function of the variable frequency «(t), in
passing through & network. 3In the second, the author decomposes a signal
into a double series of signale, where each of the elementary signals
occupies & certain domain of the two-dimensional time—frequency diagram.
Carson, Fry, and Gabor have also considered composite representsticns,
expanéing the signal in time and on the freguency acale st the same time,
but without giving an exact definition of the distritution of energy in a
similar diagraa, which leaves a certain arbitrariness {n the methods of repre-
sentation that they choose; on the contrery, in the present work we study a

tvo—dimensional distridution of the energy, which assumes nothing about the

form of the elementary signals used to anslyse the given signal.
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II. INTRODUCTION

QUANTITY OF INFORMATION TRANSMITTED AND THE COMPLEXITY OF A SIGNAL

The transmission of communication signals is accoeplished by mears of a
transmission of energy, generally of electromagnetic or of acoustic energy.
In contrast to the case of power transmission, it is not energy itself which
is of interest, but rather the changes in this energy in the course of time.
The aore conélicated the function which represents, as a function of time,
the change in voltage, current, pressurs, or any other carrier, the greater
ia the amount of information carried by the transmitted energy.

EVALUATION OF THE COMPLEXITY CF A SIGNAL BY THE NUMBER OF APPRECIABLE HARMONICS
WHICH ARE CONTAINED IN ITS FOURIER EXPANSION

In practice, in order to evaluate the degree of complexity of a function
in a transmission system, one proceeds to harmonic analysis; that is, one
expands the function into sinusoidal components in the form of a Fourier
series or integral. A function s(t) may therefore be considered from two
different pointa of view:

1. From the first point of view, the function is considered
directly; to esch value of t there is &ssociated a value of s,
and complication of the function iancreases with the number
of variations shcwn by the curve which represents 8 as a func—
tion of t . In the case of acoustic signals, this first point
of view is difficult tc specify; on the other hand, in the case
of telegraph signals, which are composed of s series of pulses
of the same length and height, it is easily seen that the
function becomes more complicated directly with the increase

of pulses which occurs in a given intervel of time.
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2. TFrom the second point of view, the function is considered to
be composed of the ruperposition of sinusnidal functions which
differ in amplitude and in phase. The functior becomes more
complicated directly as the number of sinusoidal components
of appreciable smplitude increases. The second point of view
is of interest in the study of distortions; in fact, if the
signal is transmitted across a distorting system which suppres—
ges certain slnusoidal components, there is a certain loss of
information in this deformation which may be evaluated. From this
i1t  is seen that the capacity of a communication channel may
be evaluated; this qQuantity being proportional tc the number
of independent frequencies that the channel can carry. The
consideration of the second point of view is essential in com—
munication theory.

THE NECESSITY OF COMPOSITE EXPANSIORS IN TIME AND FREQUENCY FOR THE STUDY OF
CERTAIN QUESTIONS

There exist some questions where the preceding points of view are insuf—
ficient. Since it ie degirable to use a communication channel to the maxinum,
one 15 led to renounce the integrel tranmmission of & signel; anywey, 4is-
tortions are inevitable. In particular, it is known that if the physiological
impression produced by the superposition of harmonics vere not independent of
the relative phase of these harmonics to a certain degree, no long-—distance
telephone transmission would be possible. 1In the same way, frequency compres—
sion would be physically unrealizable if the relative phase shifts of the
different components had to be naintained in the compression of the frequen~
cies. But this tolerance in transmission ie not admiessalle in certain cases.

If ve consider a continuous note, emitted by an orgen, for instance, we can
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g8hift the phase of the harmonics without changing the sound. Consider a
syaphony; 3£ we expanded the corresponding sound in a Fourier series, vo
would obtain a series of harmonics, heard for the duretion of the symphony,
vhose phases we obviously may not arbitrerily change.

So we see the necessity of going past the harmonic analysis of a function.
We are gnoing to show what general course ve should follow in the particular

case of an acouatic signal.

PRELIMINARY REMARKS ON THE CONCEPT OF INSTANTANEQUS SPECTRUM

On hearing a fragment of music, there is no connection between the physio—
logical impression received at an instant, and the amplitude of the acoustic
signal s(t) considered: the ear reacts only to a succession of values of
8(t). But this does not at all imply that the definition of s(t) in terms of
its sinusoidal components is perfect. If we consider & fragment containing
many messures (vhich is the least that one should ask) and one note, la for
example, appears once in the fragment, the harmonic analysis will present us
with the amplitude and the phase of the corresponding frequency, without
locating the la in time. Now then, it is obvious that in the course of the
fragment there will be instants when the ls will not be heard. Nevertheless,
the representation is mathematically correct, because the phase of the notes
near la acts to destroy this note by interference when la is not heard; and
to reinforce it, aleo by interference, when it is heard; but if there exists
in this concept a cleverness which does honor to wathematical analysis, there
is also s distortion of reality; in fact, when 1a is not heard, the true
reason 1s that ls is not emitted.

It 18 therefore desirable tc search for a composite definition of the
signal, of the kind anticipated by Gabor: at eech inestant a numdber of fre-—

quencies is presented, giving the strength and the pitch of the sound which

— - @ % ey \ﬂ:'- '.OA.?:" -
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is heard; with each frequency there is assuciated a certain distribution in
time which defines the intervals durirzg vwhich the corresponding note is
emitted. This leads to the definition of the instantaneous spectrum es a
function of time, which gives the structure of a signal at a given instant;
the spectrum of the eignal, in the usual sense of the term, which gives the
frequency composition for thr: whole time interval of emission, 18 obtained
by summing all the inastantaneous spectra (in a rigorous wvay, by integrating
with respect to time). In correlating, one is led to the distributicn of
frequencies in time; the signal is recovered by integrating these distribu-

tions.

Unfertunately, things are not as simple as they seem at first glarce.

We actually see that we have to envision the continuous harmonic analysis of

a signel; for such an analysis we can:

1. First cut the signal into pieces (in time) by & commutator:

then present these different slices to a system of filters to

anslyse them, or

2. First filter the different frequency bands: then cut the bands

into pieces (in time) to study the energy variations.

Continuous harmonic analysis consists then of the application

of two operators (filtering and commutation).

But these two opergtors are such that either one of them, if it is very
-xact (very short pieces or very narrow hands) renders the other inoperative,

because it deforms the signal considerably (by the introduction of transient

currents for commutation, of a long duration for narrow band filters). The

instanteneous spectrum may only be determined, physically, to some approxi-

mation. But another question is presented us: approximation to what? That

is why we have tried to obtain a precise definition of instantaneous spectrum,
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in order to have a theoretical vasis, non-existent until the present, to guide
rasearch into the specification of apparatus for continuous harmenic analysis,
frequency compression, or any other technigues for which the classical concepts
of frequency and spectrum are insufficient.

After these general considerations, ve shall pose the question 1n more
precise terms,

GRENERAL STATEMENT OF THE PROBLEM OF INSTABTANBOUS SPECTRIM AND
INSZARTANBOUR FREQUEXCY

The difficulties presented by the definition of instantansous frequency
of &« signal ere well known. Thege difficulties stem from the faci thati the
frequency of a sinusoid is defined rigorouely oniy when it exists for an

infinite duration; the spectrum of & signsl s{t), which may be expressed as
(1) 5 () = fa(t) e at

is defined for the signal ensemble, a 4 does not contain time explicitly.
Therefore, in the classical thecorv, neither the instantaneous spectrum at
the instant t cor the instantaneous frequency are susceptible to definition.
This 3till concerns primitive concepts. If, for example, ve consider a low

frequency modulated signal of the form

(2) s{t) = cos (oJo t 4+ -%‘-’-’ sin £1t)

it 18 evident that the "instantsneous frequency” (which is conventionally

defined in the case of frequency mcdulation)

a Ao
(5) Q= :’i-{'.- (wo t+-—ﬁ. sin ﬁt) Q)o'FACO cos nf-

has & physicsl significance, which grows precise as () decrsases with respect

to w.
¢
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Ve here propose to give a definition of instsntaneous spectrum, valid
for a fairly extensive class of signals, to develop certain applicationa of
the considerationa to which this problem will lead us. The definition which
we propose to make introduces conventions which may appear srbitrary, dut
vhich are justified by the coberence of the results and by the paralielism
with the analogous conventions which bave proved so fertile in quantum
pechenics,

Cur point of depsrture is the following: it has been easy to associate
an instantaneous frequenacy with the signal {2) because this signal "may be

considered” as the real part of the signal

L]

(4) \{'{(t) - ej(wot + A.;%J sin o t)

which has a constant modulus. The instantaneous frequency, in radians per

second, ia mereliy

(5) w=£; arg ¥

We need conly, in the case of any signel, plece 1t in the form

(6) o(t) = == [Y(t) +Ye (2)]

in order %o extend !t into the complex piane; and ve shall obtain tke
instantanecus frequency by expression (5); (t) will be called the complex
signal, The first part ¢f the article will be devoted tc the cstzblishment
of the corresponding expressions. In order to justify, from anotner peint
of view, this Jefinition ef instantaneous frequency, we shzll attach the
concept of group vslocity to it, which constitutes a seconl part. We
immediately pass to the comcept of instanteneous specirum, because instentan-

eous frequency defines a sigmal only grossly, and it should be considered as
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the mean value, at & given instant, of the fregusncies of the instantansous

spectrum, We trest this question in Part III, according to the following
prineiples: &« signal mey be considered as being a certain amount of ensrgy,
vhose distribution in time {given by the form of the signal) and in Sregquency
(given by the spectrum) is known. If the sigpal extends through an interval
of tine T and an interval of fregquencies (), we Dave a distribution of energy
in & rectangle of area T/l. We know the projections of this distribution
upon the sides of the rectangle, but we do not xmow the distributicn in the
Tectangle itsel?. If ve try to determine the distribution withip the rec-
tangle, wa rur into the following difficulty: If we cut up the signal on
the time scsle. ve Gisplay the frequeaciez: if we cut if up on the freguency
ecale, ve digplay the times. The distribution cannst be determined by
successive measures. A simultaneous determination must be sought, which has
only & theoretical significance: therefore we must operate either on the
sigral or on the spectrum. But Yor the 3ignal vhere, f6r example, time is

s variable, fraquency is properly speaking an operator (the operator

(1/2 xj)d/dt, for freguencies in cps). We have determined the similtaneous

distribution of t and of<}/2 zj)d/dt, by methods of the calculus of prob-

abilities, which easily leads to the instantansous spectrum {and just as

easily to the distribution in time of the energy associated with one frequency).

It is seen that the formel character of the methed of calculation used is
imposed by the nature of the difficulty emcountersd, which is analogous to
that which occurs in quantum mechanics when non-permutsble operators must be
composed. We shall use many results due to G dor (Theory of Commnication),
and the.same notation, which allows ug to avoid some problems to proceed to
the dsvelopment of ne¥w pointes of view. Finally, Part IV contains some appli-

cations of the concept of complex signal which has been imposed upon us, as we
neve said, in the research into {nstantsneous fraquancy.
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III. PART ONE; COMPIEX SIGHAL AND INSTANTANEOUS FREQUENCY

EXTENSION OF A REAL SIGNAL IN THE COMPLEX PLANE

let us consider the signal
(1) 8(t) = cos wt

He may consider it, either as the real part of

(2) ¥(t) = eI
cr of
(3) y# () = e 9t

Since t takes only real values, there is no reason to chocse oné of the

Zorms rather than the other. This is not sc 1if t takes the complsx values
(L) t= t+389

sincs now Zoxe differences appear. If, irp fact, © teands towerd + oo,
Y tends towerd zero and V# towerd infinity.

If v decide to retain, insofar as possible, only the functions vhich
are regular in‘thc upper half-plane, we then chosse

s (t)

W . s(t)

-

Figure 1. The instantaﬁ.ous frequancy w of & signel coz «t is the angular
velocity of the point of coordimtes cos wt, sin wt (3in wt
is the signal in quadrature with cos wt).

-
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(5) ¥ (t) = o**

Let us take another sixple example:

1

(6) o(8) = -7

We may consider it as the resxl pert of either of two functions

(Ga) e

Only one of these, the second one; is regulsr in the upper half-plans;

therefore we choose

(7) ¥ (t) - I":.‘."'jf

Let us considar a third sxample:

1

. -1l<t<+ 1
(8) o) s

t{«1] vhere t>1

oo

We can consider s(t) as the real part of

1 t -1
(5) ¥ = gy o8 £

with a comveniently chosen determination. Functiocn (9) i1s not wniform; we
meke it uniform in the upper half-plane by excluding the singular points 1 1.
In general, the principlss above lead to the association of the quadra-

ture signal
420
- 5{¥)dT
(10) o(t) = -7 f T-
-2

——n  — - - —— - — 2 L - ot - b
” - - A T TS T -
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and the function

+0

{11) (t) = o) + 3o (1) = L ;Sz&??

~ 20
with s(t).
Equation 11 definees v as & function of the conplex varisble t, holc-

morphic in the upper half-plane. It is known thst, coaversely, for t real

~0
(12) s(e) = 1 f s{7)a?

T-t
-

CONPLEX SIGRALS. mmummmmmrwmmnma

A signal such as ¥ {t) vill be called a complex signal. Ve can define
s{t) by

(13) s(t) = Rs D’V(t)l eJ“SV:-]
Jarg ¥

vhich defines s(t) &3 the result of the modulation of the signal & by
the sigoall V] . I¢ ve comsider |¥| as representing the envelope of s(t),
and eJ&rgV‘u & frequency modulated signel, we obtain for the instantaneois

frequency (Pig. 2)

.1 4 1 weay
(1%4) awdt 8T ThFJ Yy at ¥
For s(t) = cos (ut +@, we obtain
y(t) = e +9)
w0
(15) ft = W

-

- - > S ey N e - - - - Tos YU O Seronge.
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4
ﬁﬂ' w(t)

\/(1’) >

Fig. 2 -- The instanianeous fraguency of the sigual s(t) ia the angular
velocity of the point w(t) = s(t) + Je(t), vhereg(t) ie the
signal in quedrature with respect to s(t)

The instantsneous frequency iz constant for this sigpal. If we con-
sider th2 Bignal’

B(t) - X = R 1

(150) 1. 1.
ve chtain:

e 221
(16) 2wy 4+ t2

1et us now comsider & modulated sinusoidal signal:

(16a) s(t) cos wt cos Nt N 200

then we have

(16») v (%) = _;_ Ed(nq-w)t . e.;(.n. -w )ﬂ
l‘}’(t)l =coswt f = ’é%

The instantaneous freguency is the carrier frequency, and N’I is the

envelope &8 it is usually defined. Kote the importance of the fact that the

coefficients t of the exponentials are positive. KNeglect of this point would

jesd to the inversion of the roles of w and §l, and would produce absurd

results.

-~y

14
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ANY SIOFAL MODULATED BY .. /FICIENTLY HIGH PREQUENCY MAY BE COXSIDERED

L4
R

The fact that in the preceding example the carrier frequency turned out
to bs the instentanecus frequency is not an isolatad coincidence, but rather
results from the following proposition:

For any signal s{t), the function

(a) v (t) = s(t) ed@ot w°>0

vhich in gensral is not complex, approsches the complex signal ¥(t) ({essoci-

ated with s{t) cos wot_J es w increases.

Consequently, the instantaneous frequency wo/a may be attributed to
a(t) cos wt, for very large values of «.

The propositicn vhich we shall ccome Lo use is itself an immediate con-
seqence of the fact that & complex signal is characterized by the psculiarity
of having & spectrum vhose amplitude is zerc for negative frequencies. Now,
modulating s{t) by e""é?t amounts to causing the spectrum of #(t) to be trans-
lated by ths amount wo. Foy a.large enough value of s the spactrim liea
entirely in the region of positive frequencies, and s(t) ed%t becones come

pl,ex.l

lﬁus is the rsal reason that Gabor uses ball-shaped modulated signals.

,:-.a.‘.cv-,am—p . - - oy - V- G ” -~ - 4 - - o
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IV. PART TWO: GROUP VELOCITY ARD INRTANTAMEGIE FREOUENCY

GROUP AKD FHASE VELOCITY

It 18 well knowa that if 2 signal has s phase velocity V,, its growp
velocity is

’ vs - dw
It 4s shown in this formule that the simpls charscteristics are ths in-

verses of the group and phase velocities, i.e., group end phese propogation
delsys for e given distance.

GROUP DELAY OF A SIGNAL, CONSIDERED AS THE WEIGHTED MEAN OF THE GROUP DELAY
FREQ

Let us nov consider a camplex signal ¥, and let 9. be its spectrum;

1l

then ve have:

(2) v(t) = j@(f)ea ML 5o
- 2Nt
(3) &¢) - fvme &
(4) (-1 ¥n tPpat e $ {g}ﬁ g—,;: nw.t
f@'f“édf - fee[ 2 2] e
(5) 23 &t |

Let us try to evaluate the delay of the signal. We may consider the
enargy of the signal as being expressed in the dsnsity ¥ #Yduring the in-
terval dt. For the dslay this gives us the mean value:

lwe shall ml% aceoxrding to the situaticn; the notation < or £ for
frequency, measured in rad/sec or cps, respectively. Ths corresponding
spectre are s{w) and §(2).

W.- R
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fume ¥ at

fVo Vat

ot

(6)

8ince this delay was determinsd by emergy consideratioms, it will be
called the group delay. Hov using Bq. 4, we obtain:

# 2 gar
o for &o
(7) Wlﬁf@* ® ar
Let us examine the modulus and the argument of ¢
14 1 4 4
{78) e AT YRk AN Al L

Since t is resl, we obtain:

- 1 f@‘“ﬁ%a.rswif
t =
- S o wpar

(8)

Let us consider now that the energy o: the aignal is distributed con
the frequency scale with a density 09 #; we see that %, the group delay with
respect to the signal as a vhole, is obtained by taking the weighted mean of
the quantities:

1

{9) Ef---é—nfad?arSQ

which ve consider as the group delays of the different frequencies. We see

that the powsr essociated with & frequency f may be considersd es being pres-

ent at the mean instsnt ..

Let ur now reverse the role of £ and t. We see that the mean frequency

of the signal, defined by

D i 2 racaaalt] - - oy S Wige v wms  ATESTPYATeTTTewOrw S a——— o perage,

- -

~ o
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(a) “ b i

(v) 7.l ¢ i 4

that is, &3 the weighted mean of &r instantsneous frequency:

(10) Iy = é'-ﬁai‘% axrg ¥ {1n eycles per/sesond)

We shall ccme across this expression again.
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V. PART THREE: DISTRIBUTION OF ENZRGY IN THE TXMB FREQUENCY-DIAGRAM

CHARACTERJYSTIC FURCTION OF THE EMERGY DISTRIBUTICON
¥e shall now define the distribution of the energy in time and in

frequency, of the form: (Pig. 3)

(1) p (¢, £) 4t af

<

- e - e
- e

L ZZZZZ:Z@;X:?E

*{¢, £) at ar

OV bk e e A o e wn e

<
.-n]u-.mo---nuua
1
"

Fiz. 3--To the alemant dt af, in the tims-frequeacy diagram, corresponds an
energy p{t, £) dt df. The distridution of thage ensrgies in & ver-
tical strip gives the ingtantancous apectrizmn at an instant t;, ina
horizontal sirip we obtain the energy carried by one frequency as a
function of time. By projection on the axes, we get the signal
(time axis) and its spectrum (freguency axis).

We shsll suppose that, in the following, we are cousidering & normale

ized signal, for vhich:

(2) -defufqr*thal
vhich does not et all rzstrict the gensrality. p possesses the properties

of & probubility distribution functicn, and we shall deturmine its charac-

terietic function:




- ————— - - e -

(3) F(u, v) = [ re““t +VE) e, £) at af

JJ

ut £'24
We have to calculate the mean value of e'j( * )

; but to do this wve
heve only the function ¥, vhich does not contain f, and the function § ,
which does not contain L. We must then consider either £ or t as an oper-

ater, If we work witad, we will arrive at the equation

Hut + ¥ 2 )
() Flu, v) = J¥® e 2 4 Ty (e at

v

Let us see vhat results from this expcnential operatar, applied to v,
If we 3plit the expression into two parts, we ontain, according to the order

in which we consider the fectorsz:

(ka) Mag FEvE - v R
o
(1v) X £ o™ty et D)V (b T)

4

}

These eguaticrs are unscceptable, being incompatible with the relaticn:

(be) ¥ (u, v) = F ( -u, ~v)
which follows from (3) (for real u, v).
Let us consider the gecmetiric meanl of the two resulis given by the

preceding equaticns;

‘e forn {5) of the operator considered is that which results from the
power geries expansion of

: (ut + X 437

273 dt
maintaining the order of the terms.
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J ¥ d) Ju v ¥
e ut P i w—— ew t) = @ t LR —, ov t oarars
(5) ( ong dt ( ( u;;) ( +21)

We chtain {with a slight change in notation):

v ,3ut
(6) F(u, v) =fw'(t S ICY CR AT

vhich is an acceptable form of F(u, v).

DISTRIBUTION CF ENERGY. INSTANTANEOUS SFECIRIBI, THE SECGRD MOMENT (F THE
oC WITH ONE UBNGL AS A T'UNCTICR OF TDE.

The presence of the factor eJut indicatse that the characteristic func-

tion of £ vhen t is known ig none other than:

(7) (t -...) g,/t?...> ¥1°

from which the d¢ -ribution function of £ vwhen t is known:

p,(2) =

(@) e (t - ﬁ%/ (t N ,-) e 9V%ay

2
8ince the distribution function of t is |¥ (t) |, we finally obtein:

(9) (s, ) = L f;w (2= 3 ol %) &

The medulus ¢. the insuant«aueous spectrum is given by Eq. 8; in an

2uly

analogous manner, the distribution of the energy associsted with ome frequsncy

would be

. 1 Jut
(20) pe(t) = m go (f + ,;7,/6 ( m)e e

llt does not seem possible to compute the phase of the insiantaneous
spsctrum.
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VI. PART FOUR: APPLICATIONS OF THE CONCEPT (F COMPLEX SIGHAL

The duality vhich ex{stz between time and frequency permits the clari-

ficatica of certain phencmens; ve shall trest scme typical examples,

DISPIAY OF THE SIGRAL AZ A PUNCTION OF TINE. AMPLITUDE AXD PEASE DISTORTICH

1ot ¥(t) be a complex signal. If we consider the frequency, we sce
thet the signal has an envelope | ¥(t) | which modulstes & signsl with e vard
eble instantaneous frequency. Then in the determination of itha firequencies,
weé zhould expect two terms toc appear, ons representing varietions of instan-
tanscus frequency, the other, variations of the amplitude envelope. Analyti-
cally, suppos# that we had teken the mean frequency f, the mean of the in-
stantaneous frequencies, as ths frequency origin.l Then we have:

(l) 4 u/;*Vftdt = 0

The second moment of the frequency will be:
r
(2) ? c/@‘f f2 ¢ df
and the second nmoment of the instantanecur frequancies:
(3) tf - vefya

Forming ths difference and expregsing ag & func3ion of

. a d 2
(&) ?-:t--é-éﬂ_ri*;gww (a-;argv> Y| at
Where
(ka) Y u lyl e328Y

]'He stil)l essuxme that the signal iz normalized.
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The differemtiatica produces:

o e 2
14, 4 (d L() — (ﬁ lW\I + ete...
() Y a2 w2 \&F 2 \ &

2
Substituting the expression of $ -é-é- ¢ in (4), and kesping only the
at
real texrms,

pr-
(he) t b,uz LR wlj at

fraa whnich we obtain the final expression for f

-3 1 r 2
2 & 1 fl
(5) £ .“?hu w«l(——dt axg¢) t e —-:; ¥yl | at

The tvo previous terms are seen to appear, one depending on the second
momsnt of the instantanecus frequencies, and the other on the amplitde vard
ation of the enve]:ope.

It we considsr the gecond moment in time, we obtain, taking the mean

time for the time origin:

“ - jwr-—m) () e

We re-encountar familiar concepts here: in fact, if we assune that

the signal was yroduced by the pasaege of a Dirac impulse through a filter

+<

with the characteristic ﬁf), ve vill £ind in t© the two ealemenis of dis-

tortion--the first term resulie from phase distortion and the second from
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amplituds distortion. We note that the phase distortion hers intrcduced is
& distortion of the group tims of propagation (delay diatortion).

Introducing logarithms, we obtain for the standard deviations of tims
end frequsncy

1
L2 J
2 1 é de
T = [ |#®  logd af = — ar
(7) yul dar dfl

Assume & transfer admittance Y(Jo). If w is complex, the decaying cur-
ot

S have & positive imaginary pert. Then Y(Jw) i3 regu-
lar in the lower helf-plane. Referring tc ths properties of a complex sig-

rents of the farm e
nal, we see that it is possible to pass from the form of =n admittance to
the form of a cozplex signal by the chexnge of variasble

(8) Wwe «%

If ¥(¢) 1s complex, from it we caa dsdues & transfer impadence by the

squation
(9) 2w) = @ = w)
The impulse admittance associated vith y(Jw) 1s
(20) B(t) = ._1..] y (o) % aw
2%
Hence the spectrum of YW(t) 4is

1 - &
(11) 8(w) = 7 ) e ¢ (t) dt = B (w)
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B(t) is zero for negative values of t, and so 8(w) 13 zero for negative
values of W. The only nev restriction is that 8(%) be reel, which entails
that w(t) be a symmetric complex signal, i.e.

{12) O ( -t)=pet) (for t real)

Under condition 12, there is a perfect correspondence bstween tranafer

adnittances and analytic signals, and between spectra and inmpulse adzittances.

BAND-PASS FILTERS; EXAMPLES OF PHYSBICALLY REALIZASLE ADMITIANCES

The formation of the transfer edmittance of a filter is analogous, a8
ve have seen, tc the formation of & complex signal. But to form a complex
signal it suffices to extract some s(t) from a signel and to form its spec-

trum, from waich:
r
(13) s(t) = JB () ¥ 0B ( -w) - 8% (v)]
and coansequently, upon doubling and keeping only the terms which correspond

to positive frequencies, thie leads to

(14) ¢(t) = 2 fo 8{«) 9% a0
o
In order not to cut into this spectrum (by the neglsct of the negetive
frequency terms) a shift to the right by a suitsble modulation may be made,

The corresponding procedure for forming a transfer edmittance is the
following:

(15) By (t) = 517—(- f'tl (§0) 3% aw
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Bl(t) doss not disappear for t <0 (it is this which shows that Y, is
not physicaily reslizeble). Bl(t) 18 shifted to the right snd cut off at

the left such that Bl(t) = 0 far <0,
o

- Jut
(16} (<) = 6/!3(1:) e dt
if T is the amplitude of the translation vhich Bl(t) undergoes, we
obtelin:
00
- Jut
(262) M3w)= [ Bt -Te at

o

It Bl(t) is symmetric; the tail of the signsl may be cut off, which
recults in;

- Jo%
(17) r(Jw) = /i(t-r) e  at

This last admittance has the advantage of not causing any phase dis-

tortion. But there is an amplitude distortion. For instance, let:

‘. (1forw (wuwamd - v o9
. 1 0 cutside the ebove intervals
Bl(t) . sin tit - 8in 01_1_'._
(g - gt
. z(,gu)afm’m“’E(t"m)'em“L(t'T)
(18) 3 w(, - “‘i) (¢ -~ T)
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Y(Jw ) has JuT for its argument; there is nc phese distortion. In fact,

as T tends toward infinity, |Y!| tends toward the characteristic of an ideal

band-page; but in the naighborhood of w, and . oscillations due to the

1 2

Gibbs phencmenon &re present.

GAUSSIAR ADMITTANCE CURVES

Gaugsian edmittence curves avoid this difficulty. It is vwell knowm

that the signal:

(19)

heg the specirum

(20)

hencs, for the signal:

(21)

ve obtain as the spectrum:

(22)

8(«w) = e e

w -
If we modulate by e'J ot - %) ( woD 0}, we displace the spectrum of ©y

and therafore:

(23)

_{t-to)
1 2 J“’o(t 'to)
y(t) = e 2c e
o J2%
2{U_w 22
- - t
8(w) = e : e et

— - 5 - APe =T SRy« e A p——— <~ =
-
- -
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For wo>g » S{w) may be considered to be situated in the region w>0.

To the signal:

(t - t5)°
(2b) 6(t) = 2 _ e 20°

ef2 W

cos w (t - tg)

there corresponds the spectrum:

2 z 2 2
o {w= ) o (w+w))
) e 2 + e 2

8(‘0) = € %

(25)

For t >3, we can consider S(w), given by (25), as a transfer admit-
tance. Por u°> 3/ , we need comserve only the first term in the pareathe-
ses in (25). It is easily shown that if the cosine of (24) is replaced by

a sine term, (25) is replaced by:

o

a’a(ﬁi - %)2 62((9 + wo)2

- - -~

o1 . 2 e 2
2

- Jot
(26) 8{w) = § e

Suppose we wish to specify the pass-band (ul, we). We will choose
>3, t >3 >9/@1, and we will integrate with respect to @ from <

to 02, which results in {adding tue sppropriate coefficients):

- Jut _ aa(u' %)2
Y(j) = 8) = e | 2. T dwy
vVar "1
(t - t,)°
s{t) = B(t) = 1. T T 2e2 sin &(t - ty) - sin oy(t - th
({4
(27) t -t

r
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e 4

A low-pass filter would be charactexrized by:

&
1l 2
Jm _ 6'2(“"- wo)
Y(JU) = e ° g e 2 dw
V2 -w, °
- (t - to)a
B(t) - Le 202 Sin @ {t - t )
(28) T T -t

PH/SE-SHIFTING FILTER, SEIFTIRG THE SIGRAL INTO QUADRATURE

If, instead of (25), we start with the spectrum (26), and we integrate

between zero and W) we obtain a filter of & fairly special kind, character-

ized by:

ot @ 02(m - mo)a cre(w+ “’0)2

Y(Jw) = - § e °__f:Lj . 2 e 2
2
o
(¢ - t;,;,)"Z
R - 202 l-cos:;(t-to)
s(t):B(u)«we %

{29) )

If «» and ¢ tend towerd infinity, we see that by suppressing the factor

e~ 49 %, e obtain a transfer impedance of the form {for real w):

{30) Y(Jo) = § Sigmal




The srrevalavw adomal e
=18 comnloX algnal:

{20\ aa faN _ _fa\ . a.faN
\Jw] Y\'u} - D\bl g JU‘D]

is then transformed into:

(300) a(t =) - 4 s(t - to)

Therefore, s(t) is transformed into o(t): the filter defined by Eq. 29

has the property of transforming a real signal into the quadrature signal
o(t), to a certain approximation which improves as the time of propagation
through the filter increases.,

The filter (29), for large w and t, causes u distortion not in ampli-
tude but in phase. Ite interest lies in the fact that it provides, it seems
to us, the simplest theoretical meamns of causing the gsignel to appear in
quadrature; this signal never occurred previously except as a computational

convenience.

QUADRATURE SIGRAL AKD SINGLE SIDE-BAKD TRANBMISSION

We shall recover the quadrature signsl by another procedure, based on
experience. It is known that the quadrature signal appesars as a parasitic
signal in single side-band transmission- the considerations developed here
permit & clear explanation of the phenamenon.

Consider & real signal s(t), which occupies the frequency band from - <y

1
With this new signal, let us modulate another carrier, cos fLt, and we shall

to w . With this signal, let us modulate & ctrrier cos {Qt, where .O.>ul.
filter using { -, £1L) as the pess-band. Then we obtain the signal:

(31) s(t) . Cose QL t = % s(t) [1 + cos 20t

which, after filtering, results in -Jé’- s(t). This is the ideal case of double~-

side band transmission (suppressed cerrier).
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Now let us ussume that the second cexrrier is shifted with respect to

the first; let cos ({1t + @) be this second carrier. We would obtain the

second signal:
(32) s(t) coslt cos (Lt +¢) = % 6(t) [cos ¢ + cos (20t +¢)7]

which, after filtering, rssults in %— s(t) cos ¢. The phase shift is trems-
formed into & gignal attenuation.

If we operate with 2 single side band, ve must insert a filter between

the two modulations, which obliges us to insert w(t). Let 8{w) de tha spec-

trum of v (t). After the first modulation, the spectrum beccmes:

(33) %[S(u -Q) + 8(w +0)]

We keep only the lower band, and continue to the secornd modulation (Pig. 4).

If the second carrier is in phase with the first one, we recover the original

spectrum; but if it ie not in phase, Z.e., if we multiply by

(34) %i— ¢ L +0) | -y(0n *‘-")]

ve sae that the right half of the gpectrum s multiplied by e'j(;3 ; and the

left half by e P mhe £inm signal has & spectrum

(353 for w D> O Sl(“’) = %—CJ‘P 8(w)
35; -
’ forew < O 81(“"):11[3

The correspcending complex signel is then:

1 J®
(36) "Sl(t) =5 e $(t)

- - v - ——— - .-
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Pig. be-The spectrum of the signal is shifted tc the left and to the right

by the first modulation. The filtering supprecses the high frequen-
cies (correeponding to the originally positive frequancez of the
right spectium and the originally negative fregquancies of the left
spectrum). The second modulation, if it is in phage with the first,
restores the originsl spectrum; putting the positive and negative
fruqusncies baciz into place., I it ia shified in phase with res-
pect to the first modulation, the positive and negative frequencies
are out of phuse themselves, whence comes the appearance cf & signal
in quadraturs.

N
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Misaﬂuaﬁﬁoft(t),mﬁuawawdﬂf

{s introduced. We have precisely:

(37) 8,(6) = & [a(t) cos 9 - o(t) sin ¢

T-92 ;,3’,
8-1 -ZS {}

-
b
L4

\

\

We nov see the difference betwsen the double side band and single side

band modes ot transmissiom.
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