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ABSTRACT

The displacement equations of motion for a 6-constant centro-
symmetric cubic crystalline material are developed. Also, the
determinantal equations for velocities of plane elastic waves are
developed. Previously determined elastic constants are used to
calculate the phase velocities in various directions of a cubic
crystal. Normal mode vibrations of cubes and infinite prisms are
theoretically considered. Dilatational modes of these bodies are
determined and they demonstrate that there are no couple-stress

effects in these cases. Normal mode shapes and frequencies for the

equivoluminal modes are obtained but without consideration of couple-

stresses,

Free vibration experiments were conducted on a two-dimensional

model which was considered as a slice of an infinite prism and on a

three-dimensional cubic model. Experimentally determined frequencies

and mode shapes are studied in terms of the theoretical results.



INTRODUCTION

In a previous study {1]1, a physical model of a so-called 6-
constant centro-symmetric cubic crystal was introduced in order to
illustrate the. phenomenon of couple-stresses and to determine the
numerical values of the elastic constants. As concluded from that
work the constants were satisfactorily determined, but it was then
considered worthwhile to perform normal mode vibration experiments
to further explore the theory and examine its completeness. In
addition, it is thought to be useful to investigate the nature of
elastic wave propagation in such materials. For these purposes the
present research has been conducted. Consequently the equations of
motion for the models will be developed and solved for the cases of

interest.

EQUATIONS OF MOTION

The three-dimensional stress equations of motion in terms of
force-stress and couple-stress may be written down directly from the

equations of equilibrium which were previously given [1]:

1 Numbers in brackets refer to references at end of report.
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The couple-stress tensor may be written as sum of deviatoric and

spherical parts

as follows:

(1)

of the force-stress tensor we may write

(2)
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, where qgj stands for deviatoric part and repeated index means summa-

tion. Now the constitutive equations for a six-constant centro-

symmetric cubic material may be written as follows:
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In the case of isotropy, the following relations hold:

and

== =B+ C

The strains and curvatures may be expressed in terms of displace-~

ment functions u, v, w as follows:
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where the w's are the rotations whose components are:
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On substitution of equations (4), (5), (6) and (7) into equation (1)

and after proper grouping the displacement equations of motion are as

follows:
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PROPAGATION OF ELASTIC WAVES

The differential equations of motion (8) can now be used to study
the propagation of elastic waves. The displacements for plane waves in
an infinite elastic media may be assumed to be of the usual form [2],

i %? (fx + my + nz - Ct)

(u,v,w) = (U,V,W)e (9

where U, V, W are the components of displacement amplitude, A 1is
the wave length, C is the velocity of' propagation, (£, m, n) are

direction cosines of the normal to wave front.

On substitution of the displacement functions (9) into equations
of motion (8), we obtain the following three equations in terms of the

amplitude components U, VY, W:
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The condition for nontrivial solutions of equations (10) is that the

determinant of coefficients should vanish,
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Solution of equation (12) for an arbitrary direction (4, m, n)
of the normal to wave front and for nonzero values of the amplitude
components U, V and W is very laborious and unnecessary for present
purposes. In order to investigate the influence of couple-stress on
the wave velocities and to identify the associated nature of deformation
plane wave normals may be chosen in the directions shown in Figure 1.
These directions are those of the -cubic axis [100]}, the face diagonal
[110] and the body diagonal [111]. By appropriate selection of U, V
and W the phase velocities can be determined as definite functions of
the elastic constants. The phase velocities in each of the above

mentioned directions are separately treated for the following cases.

Case (1): Wave.Normal Parallel to Cubic Axis [100]

In this direction,

If we take all the displacement components as nonzero, then there will

be three velocities in each direction.

However, if we consider




then equation (12) will reduce to the following:

2 2 2 ~
Ty = PCI(Ty, = pC) - Ty, = 0 (13)

11 2

from which there results the following relationms,
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where C; aad C, are the phase velocities. Also, another form of

displacement amplitudes which will yield a simple velocity equation is,
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where C3 is the phase velocity. It may be noticed from equations (14)

and (15) that C2 = C

g
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Case (2): Wave Normal Parallel to Face Diagonal [110]

In this direction,

£L=m= -l;-, n=20
2
and for
U # 0
V # 0
W =0

the velocities are given by:

2 811 % 812 * 5,
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Case (3): Wave Normal Parallel to Body Diagonal [111]

In this direction,

11




and for

the wave velocities are given by:

S
ol sy L w L L BEL b2
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and also for
u = -V
and
W = 0
the wave velocity is given by
S S S
pC32 _ 11 12 + 44 + C k2 )] k2 + 5A k2 (19)
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Note that C2 = C3 in this case,

Density of the model is assumed to be the ratio of total mass of

the unit-cell to the volume of unit-cell. The value for the model under

_ 2325 X 10"4 1bs. sec. 2

h in.4

consideration is, p where h (3 inches) 1is

the center to center distance between the blocks. For the case of
M = h , the wave velociti..s are tabulated in Table I. If the couple-
stress effect is neglected all the velocity expressions reduce to those

of the classical case for a cubic crystal [2].
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NORMAL MODE VIBRATIONS

Now consideration will be given to the normal mode vibrations of
the crystals. The vibrating body is assumed to have stregs-free boundary
conditicns. Theoretical studies of normal mode vibrations of an infinite
prism on the basis of plane strain equations and of a cube on the basis

of three-dimensional equations are considered.

1. Plane Strain Vibrations of Infinite Prisms

The displacement equations of motion (8) for plane strain reduce

to
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a2 123y 2 3% oy
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Taking the origin at the center of the model, we may write down
the stress-free surface conditions which should be satisfied at

X =+a and y =+ a as follows;
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where £, m, n are direction cosines of unit normal to the surface
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(a) A Dilatational Mode

Since the dilatational mode consists only of extension and con-
traction of principal line elements of the material, the frequencies
are not influenced by couple-stress. Displacement functions which will
satisfy equations (20) and (21) for the case of vanishing Poisson's

ratio are found to be,
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with m representing the odd integers. The above functions will describe
symmetric modal shapes with respect to the coordinate axes, Asymmetric

modes are given by
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with m representing the even integers.

The frequency equation corresponding to functions (22) and (23)

are found to be,

oo’ = s, (2% (24)

where m =1, 2, 3

J ) J

(b) An Equivoluminal Mode Without Couple-stresses
Without consideration of the couple-stresses, the differential

equations of motion (20) and boundary conditions (21) reduce to
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Displacement functions which will satisfy equations (25) and (26)

for symmetric modes are seen to be the following:
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with m representing the even integers.

The frequency equation corresponding to functions (27) and (28)

are found to be,
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2. Vibration of a Cube

. All three displacement functions u, v, w are involved in this
case and the equations of motion are equations (8). Considering the
center of the cube as origin of the coordinate system, the conditions

of stress-free surfaces at x = ta, y=+a and z =+ a are the

following:
’ d d -~d
3 3?3t &
¢:x£+'rsm+'r§xn+—1—(qxz+ ¥z, 22 | )m
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d d d
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d d d —d
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where 4, m, n are direction cosines of unit normal to boundary
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(a) A Dilatational Mode of a Cube

In the case of zero Poisson’s ratio, displacement functions which
will satisfy equations (8) and (30) are the following:
iot
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with m as odd integers. The above functions will describe symmetric

mode shapes with respect to the coordinate planes. Asymmetric modes

are given by,

T i
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with m as even integers,

. The frequency equation corresponding to functions (31) and (32) is

as follows:

2 mit 2
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where m =1, 2, 3, ...
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As in the two-dimensional case the frequencies of the dilatational

modes of the cube are not influénced by couple-stress,

(b) An Equivoluminal Mode of a Cube
Without considering the effect of couple-stress, the equations of

motion (8) reduce to the following:
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and boundary conditions (30) reduce to:

S S S
Txxz + Tyxm + szn = 0
s s s _
'rxy.Z + 'ryym + szn = 0 (35)
[
= 0

S S S
T L4 T m+T n
Xz vz 2z

Displacement functions which describe symmetric modes with respect
to the coordinate planes and which satisfy equations (34) and (35) are

the following:
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2 1
2a 2a 2a
with m as odd integers. Asymmetric modes are given by
u = cosCEEL)x[A sin(ﬂEL)y - A sin(EHL)z]elwt
3 2
2a 2a 2a
v = cos(EEL)y[A sin(EEL)z - A sin(EEL)x]eubt 37
1 3
2a 2a 2a
w = cos(Eyz[A, sin(T)x - A sin(EEL)y]eiwt
2 1
2a 2a 2a

with m as even integers.

Frequency equation corresponding to equations (36) and (37) is

seen to be:

2
2 _ - Jnat

where m =1

> ) 2
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EXPERIMENTAL STUDY OF FREE VIBRATIONS

Using the experimentally determined elastic constants, one can use
the solutions of the equations of motican to predict the normal mode
shapes and corresponding frequencies of the models. It is thought to
be of considerable value for the development of the theory of couple-
stresses to have knowledge of the actual vibration characteristics of
the physical models, The experiments and results will now be described

in some detail,

1. Experimental Method

The experimental models used in the vibration experiments were sus-
pended by flexible strings from rigid steel frames which were bolted to
a massive reinforced concrete base 3 X 3 X 10 feet, The freely suspended
models will give the stress-free surface conditions for free vibration
of solids, Mounting of models and necessary electrical connections to

excite the models are shown in Figures 2 and 6.

Experimental method that has been used is similar to the cne dis-
cussed in a paper by Hoppmann [3]. Normal mode vibrations were excited
in the solids by an electromagnet mounted solidly at the appropriate
location. Since the experimental models are partly made out of aluminum
blocks, it was necessary to attach a laminated iron piece to the model
at a suitable point to facilitate the magnetic excitation. The response

of the model was picked up by crystal-type phonograph pick-up.

The magnet is excited from an audio-oscillator which feeds

through a resonant type RC circuit in order to increase the driving
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force. On account of the nature of the magnet, the frequency from the
oscillator is one-half the frequency of the driving force of the magnet.
The output from the oscillator is connected to one set of plates of a
cathode ray oscilloscope and the magnetic drive is comnected across the
other set of plates. Since the frequency ratio is 2 to 1, a figure
eight Lissajous is shown on the screen of the scope, Crossing a nodal
surface with the pick-up turns the figure eight Lissajous into a horse-~
shoe shaped figure on one side of the surface and inverts the figure on
the opposite side. So by moving the crystal-type pick-up over the
models the nodal surfaces and hence the nodal patterns were determined.
This is a precise method for the determination of the modal shapes. It
is important to determine the mode shapes and their corresponding fre-
quencies simultaneously, especially since the spectrum of frequencies
may be closely packed for any elastic body of the nature under investiga-

tion.

2. Experiments on Model in Shape of a Slice of an Infinite Prism

The two-dimensional model was considered as a slice of an infinite
prism. The model was freely suspended (Figure 2) from the solid frame
by means of two flexible s.rings so that no constraint was introduced.
The model was excited so that motion out of the plane of the model was

prevented. The vibrations are then approximately those of plane strain.

A schematic diagram of the experimental apparatus with some details
of model and electrical connections is shown in Figure 2. The magnet
was mounted on the solid frame and was easily movable in any directionm.
The model was excited at different points and the mode shapes and fre-

quencies were determined.
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After determining the mode shapes, an attempt was made to classify
them. It is well-known tnat the complete classification of normal mode
vibrations for elastic solids has never been accomplished. Some attempts

have been made with some degree of success as discussed by Ekstein and

Schiffman [4].

On comparing the experimentally determined mode shapes with the
theoretical shape functions it is considered that they represent the
dilatational, equivoluminal and face-shear types. In the classification
of Ekstein and Schiffman [4], the fundamental medes of dilatational,
equivoluminal and face-shear type are referred tc as the breathing,

longitudinal and shear modes, respectively.

The face-shear type modes were the lowest in frequency. The fre-
quencies of the equivoluminal and dilatational modes were rather close
to each other. The mode shapes along with the corresponding frequencies
are shown in Figures 3, 4 and 5. It was found that the experimental
nodal lines shown in Figure 3 were approximately the same as that given

by shape functions,

u = A sin(ﬂHL)y
2a
v = A sin(Ehyx

2a

for odd values of m and
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A cos (—“—‘-’-t—)y

el
[

2a
v = A cos(EELﬁx
2a
for even values of m . ccordingly, the mode shapes are sketched from

these functions., Calculated and experimental frequencies are tabulated

_ 401 X 107% 1bs.sec.’
a h in.4 7

in Table II. The average density, p of the

model was used in calculation.

3. Experiments on Three-Dimensional Model

The model was freely suspended from a solid frame by means of three
inextensible strings. The method of exciting the model was similar to
that discussed previously. A photograph of the apparatus is shown in

Figure 6.

The frequencies and mode shapes were determined by exciting the
model at different points. An attempt has been made to classify the
mode shapes. Besides the analogous shapes of two-dimensional models
there were certain modes which were not identified. The classified
mode shapes and frequencies are shown in Figures 7, 8 and 9. The un-
classified mode shapes and frequencies are given in Figure 10. Theo-

retical frequencies are calculated on the basis of average density of

4 1bs.sec.2

- 263 X 10 A . Calculated and experimental

h in,

the model, P,

frequencies are shown in Table III.
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DISCUSSION AND CONCLUSION

For the models which were studied, it has been found that the wave
velocity shows dispevsive effects because cf couple-stresses and as the
wave length becomes indefinitely decreased the phase velocity becomes
unbounded. Also, it was found that the velocity of a purely dilatational

wave is uninfluenced by the couple rigidity characteristic of the model.

As is well-known, the classification of normal mode vibrations for
elastic solids is incomplete. Ekstein and Schiffman (4] have attempted
to classify the modes of isotropic cubes by using group theory, but only
with a modest degree of success. Classification of the modes for centro-
symmetric cubic crystals with or without couple-stress has never been
attempted so far as is known. 1In the present paper some attempt was

made to classify the modes on the basis of experimental and theoretical

results.

As would be anticipated from analysis of normal mode sibration the
dilatational modes are unaffected by the couple rigidity factor. Equi-~

voluminal and face-shear type modes do show couple-stress effects,

Since the experimental model is inhomogeneous on account of the

manner in which its structured form and mass distribution have been de-

signed, the vibration experiments, in relation to the theory, can only
be expected to be meaningful for wave lengths which are longer than the
size of a typical cell unit. Also, for the higher modes it should be
expected that there will be some influence of rotatory inertia of the

discrete blocks which does not arise in the theory of continuous media.
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From the vibration experiments which were conducted, it was found
that the face-shear type modes fall into a lower set of frequencies,
the highest of which is about 250 cps, and the dilatational and equi-
voluminal modes are in a higher frequency set which starts at about
1100 cps. Also, it was seen that the experimentally determined fre-
quencies of the lower modes check the theoretical values to within 5%.
As expected, the frequencies do not check that well for the higher modes

for the reason given above,

Unfortunately, since it was not possible to solve the equations of
motion for those free vibrations of the models which would be expected
to show couple-stress effects, it was then not possible to predict the
influence of couple-stress on the frequencies of vibration. However, it
is interesting to observe that there was close agreement between experi-
mentally determined modes of vibration and the theoretical modes of

vibration which obviously do not involve couple-stresses.
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TABLE I

PHASE VELOCITIES OF WAVE PROPAGATION IN VARIOUS
DIRECTIONS OF THE PHYSICAL MODEL
[100) Direction: £ =1, m=n=20
Displacement U#0, V£0, W=0 U=0, V=0, W#0O
: S U ST
1 12 P
= 5310 ft./sec. 5
Velocity 1 J' 1 44 2 3012 P 2 N
=1zl % 2 3?")
C, =¢C
= 3 2
344#0,c 0| S, #0, C#0
A = 3"
471 ft./sec. 4270 ft./sec.
. . 1 1
[110] Direction: Z =, "=fF ., b= c
Displacement U#0, V#0, W=0 U=0, V=0, W£0O
¢ -1 J 1 ST S
1 12 2
S 2 2
= 3780 ft./sec. SR S I SRR T ¢ ST W 0
Cy = (—+ 5+ 7)
2 12 p 2 2?4 2
Velocity C. = _}_J 1 (5. + 2Cx )
2712 2p 11T 32
cC=0 C#0 C=A=0 |[C#0, A=0 C#0, A#0
S1 # 0 81 # 0 S4 * O 4 * O Sge 70
A o= 3" A o= 3" A = 3"
3760 ft./sec.|5680 ft./sec. | 471 ft,/sec 3050 ft./sec 3060 ft./sec.
1
111] Di t b o= = = ——
. [ ] Direction m=n G
Displacement U=V#0, W#0 U=-v, W=0
1 S
¢, = =
o) 3
= S S, . 2
#0, S,,#0, A=0]S))£0,5,,#0,A#01 . 1 |1 (cAL | Thd  20xC  Shr,
N 3712 {p 3 6 N2 6\l
. 3110 ft. /sec 3120 ft./sec,
Velocity S Vi /i
11 S44 202 5Ml | ¢ ¢
o Tt tarter)| 2
sllf-o, 44#0 S 1#0, 5,4#0,1811#0, 8,410,
C=A=0 C£0, A=0 C#0, A=0
>" = 3" )\’ = 3"
3080 ft./sec|3680ft./sec.|3690 ft./sec
spse gl SR e T W i

z;?ﬁ




TABLE II

FREQUENCIES OF TWO-DIMENSIONAL MODEL

(a) A Dilatational Mede

m Frequency (cps)
Experimental Theoretical

1 1150 1195

2 1880 2390

3 2900 3585

4 3600 4780

(b) An Equivoluminal Mode

m Frequency (cps)
Experimental Theoretical

1 1110 1195

2 1960 2390

3 2740 3585

4 3450 4780

e i e




TABLE III

FREQUENCIES OF THREE-DIMENSIONAL MODEL

(a) A Dilatational Mode

m Frequency (cps)
Experimental Theoretical
i 1 1520 1610
2 2800 3220

(b) An Equivoluminal Mode

m Frequency (cps)

Experimental Theoretical

1 1460 1610

2 2640 3220
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