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Abstrad

It is shown that a positive real immittance function F(s) is of one of eight
categories. The category can be recognized by the sign polarities of three test
values that are functions of the coefficients of F(s). If F(s) is of a certain cate-
gory, then 1/F(s) can only be of some other categories. According to the cate-
gories of F(s) and 1/F(s) the immittance function can be realized (1) either by
an RC or an RL network with positive elements, (2) by an RLC network with
exclusively positive elements and an equivalent model circuit, or (3) only by
model circuits. A model circuit is an RLC ladder structure with one negative
branch element. The RC, RL, RLC, and model circuits have several equivalences.
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Categorizations and Realizations of Positive Real
and Biquadratic Immittance Functions

I. INTIIOI)IJ(TION

The problem of realizing electrical networks that have a prescribed positive

real and biquadratic function as driving-point impedance or admittance has been

and is still being widely discussed in the literature. The foremost reason for so

many papers on the same subject lies in the fact that the problem of real'zation

in general does not have a unique solution. Although the order of a biquadratic

function is a relatively low one, we will see in this paper that there are already

a great variety of circuit configurations which can realie such a function; there

ars still more circuits, but we will restrict ourselves to the realizations of the

canonical ladder type. We feel that non-canonical realizations and realizations

of the lattice and other configurations deserve a separate dlscumsior, that is in-

tended for a later publication.

Canonical realizations of the ladder type incorporate resistive (R), inductive

(L), and capacitive (C) circuit elements in a minimum number. The elements

are not necessarily all positive. We will see that there a' 48 ladder configura-

tions, each of which realizes a positive real and blquadra'ic driving-point func-

tiori. There are some groups of realizations that realize the same function; the

circuits of such a group are referred to as equivalent. Those ladder realizations

(Received for publication 7 December 1065)
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that have exclusively positive elements are generally known. As a novel contribu-

tion this paper presents a simple test method by which one can quickly find out

whether or not such a ladder realization, with only positive elemCnts, can be ob-

tained from a biquadratic function known by its coefficients. Ladder configurations

in which one element is negative are also known as "Brune Circuits." This paper

shows that these circuits have several equivalences which -at least to the author's
knowledge -are not yet known. The test method to be discussed also reveals
whether or not such a realization can be obtained for a given function. In order

to apply the test method, we first divide the positive real and biquadratic functions
into eight categories. Each category -as we will show - can be realized by certain
groups of equivalent circuits. Thus, when the test reveals the category to which a

certain function belongs, one can immediately indicate the qualitative circuit struc-
tures without the necessity of developing the entire circuit. This is certainly an

advantage in the realization problem.

Those circuitt that incorporate one negative circuit element (there is only one
negative element on the biquadratic level) cannot be realized, of course, from the
set of only positive elements. It is, however, always possible to transform these
structures further into a non-canonical configuration with only positive elements.

These further transformations are reserved for a future publication. Thus the
paper will present only th.ose canonical structures, which, since they are not

realizable by positive elements but are nevertheless fundamental for a further

transformation, are referred to as "model circuits."
Finally, it is hoped that the present paper offers many ideas which later can

also be applied to the problem of realizing driving-point functions of a higher order

than the biquadratic one.

2. FUNDAMNTA I CONSIDERATIONS ON TiH HIQUAIRATIC IMMITTANCE FUN(TION

2.1 The Immtiunce Concept

Let a two-terminal network (also referred to as a "one-port" ) be generated by
a sinusoidal electromotive source as shown in Figure 1. Assume that the "black
box" in the figure does not incorporate other than linear and passive RLC elements.

The current J excited by the voltage E will then be sinusoidal also. The driving-
point behaior of the black box can be described sufficiently by the quotient between
E and J with no need to consider the circuit in the box, the elements involved,
their number, or their interconnections. The term " quotient" is mathematically

somewhat neutral as long as we do not clearly define what is in the numerator and
in the denominator. A very similar situation is true from the physical point of
view. When we presume that E and J are references to norm units, with only
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+Z- EAJLoa
Source r-J/E I.oad

Figure 1. Voltage E and
Current I at the Terminals
of a One-port

the latter ones measured in volts and amperes so that E and J are normalized,

then the quotient is also normalized. Hendrick Bode (1945) introduced the word

"immittanee" as the neutral physical interpretation of the neutral mathematical

term "quotient" between E and J. The term can either be interpreted as

impedance Z(s) = E/J or as admittance r(s) = J/E. We will denote in this paper

the immittance as F(s). Although there is a great advantage in the use of the

term immittance, the concept has been used very rarely over the years. It is

not listed in many competent technical dictionaries and there are still, from the

author's observation, many engineers and technicians who have never heard of

it. We will base all our discussions of the nature of positive real biquadratic

driving-point functions on the immittance concept.

In general the positive real immittance function F(s) is a function of the

complex frequency variable

s = a+ jW. (1)

In Eq. (1), w = Z wfr, where fr is referred to a norm frequency fN, measured

in cps for instance, so that fr = f/HN i," a ratio with no physical dimension.. The

real component a in Eq. (1) is also referred and can for many discussions be

considered as a "dummy component." With a = 0 the variable s can converiently

be used to avoid the imaginary unit i.

2.2 flrune't, Suteumentm on the Positive Realneiem Applied to the lmmittanee Function

Otto Brune (1031) was the first one to state the necessary and sufficient condi-

tions to be imposed on an analytical function in order that this function represent

the driving-point impedance of a network that incorporates only linear and passive

(not necessarily positive) elements. Such a function Z(s) is in Brune's definition

positive real (pr). With Z(s) pr, r(s) a I/Z (s) is also pr. Therefore Brune's

statements can immediately be applied to the immittance function F (s). In this

concept they are:
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An immittance function F(s) is posit ve real if, and only if F( is rea! f".-r

real s, and . for real and non-negative s F(s) is also real and non-negative,

that is if

Re (s) = 0- -Re F(s) > 0

The condition of positive realness can also be specified in the following way:

the function F(s) can have poles and zeros only in the left half of the complex

s-plane including the imaginary jw-axis. If all poles and zeros are located on the

imaginary jw-axis, then the poles have to alternate with zeros in their sequential

locations, they have to be simple (multiplicity 1), and they have to have positive

residues; at w = 0 there must be a pole or a zero and also at w =+ co. Poles and

zeros can only appear as conjugate complex pairs if they are not located on the

real a-axis. When s is substituted by a + j w with a = 0, then Re F (j() 0

for all E w.

2.3 The Positive Real Biquadratic Immittance Function

A rational function of the intermediate variable x is referred to as biquadratic

when a quadratic polynomial, say ax2 + bx + c, is divided by another quadratic

polynomial cx 2 + ex + f. Thus the function

ax 2 + bx + c a x2 + bx/a + c/a (3)
dxZ + ex + f d xi+ ex/d + f/d

is a biquadratic (rational) function. Evidently, when we are only interested in the

dependency on the variable x, then it is sufficient to consider only the function on

the right side of Eq. (3) without the factor a/d, which is only a positive and real

scale factor. This fraction we call a "normalized biquadratic rational function."

In this paper we discuss the biquadratic immittance functio.

F(s) = s 2 + Nis + N osZ + Dis + D o

We use the notation F(s) further only when it has the ferm presented in Eq. (4).

This means that it is normalized and biquadratic. We presume that the coefficients

NO, N1 (N standing for 'numerator' ), and the coefficients D O , DI (D standing for

'denominator' ) are all positive and real and that none of them degenerates to 0 or 0o.

We also presume that F(s) is a positive real function. For this, positive and

real coefficients N o , NJ , D o , D, are necessary, but these characteristics of the

coefficients are not sufficient to enisure that F(s) is pr. Although the conditions for

_ -IMPMW



posiLve I ah1lZb b a Ul UdaUtLe 1fuHLAI L a-IIe UIOWXI we woud ike to derive them

as follows:

We postulate that

ReF(j = 0 for all*, (5a)

or introducing

= W2 , (6)

we postulate that

ReF = 0 for all + S. (Sb)

Replacing s by j w we obtain:

F (jw) = No - w + jwAN] (7)
Do - woz + jCa L)D

F~ , =DO _w2 + Jc°D1 (7

Since the denominator in the fraction of Eq. (7) is complex, we multiply numerator

and denominator by the factor Do - - jwD 1 and we obtain

F(jc) = Re F(j w) + Im F(jw) , (8)

where

4 + ?(N ID, - No - DO) + No0Re F(j ) = (8a)-D0  NDR 4 +  Z(D Z  213 0 ) + D0 z (8a)

and

ImF(jw) =- jt N (w - DO)D, ( - NO)  (8b)c4 + co(D z 1_ 2D0)+ Do0Z •b

Replacing w2 by Q according to Eq. (6) we get

Re F(j) = MIDI N 0 -D 0 )+N 0 D 0  (9a)Q2 + S(D 2 _ 2D 0 ) + D02

• •nn7 nn n u un
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and

Im F(j) - (N1 - D1 ) + (NOD 1 - NID0 ) (9b)
ri- + O(D 1

2 - 2D 0 ) + D0
2

We are interested only in the result obtained in Eq. (9a).

By its derivation from a square the denominator in Eq. (9a) is certainly posi-

tive for all positive S2. Thus we have only to be sure that the numerator in this

equation is positive for all positive S2. The product N0 D0 is positive by the defi-

nition of the coefficients of F (s) as positive. Thus only the factor (NID - No - D0 )

can disturb the positiveness of the numerator. We do not have to worry when this

factor is positive. But when it is negative, then the numerator is positive only

when he quadratic equation

+ S2(N 1D 1 - No - DO) + N0 D0 = 0, (10)

has a pair of conjugate complex solutions. It is a well known fact in the field of

algebra that in this event the left side of Eq. (1) is positive !or all real P.. Equa-

tion (10) has the discriminant

AS = (N1 D I - No - D0 )2 - 4NoD 0 . (11)

The discriminant has to be non-positive. It evidently can also be written in the

form

A VlIDI-No-Do + 2,[NID] [NIDI-N 0 -D0 - 2K/ 3D
-[NID1 - (4IiO - ,[Do~)2 [N IDI 1- r + ,[Do)] (12)

It can easily be observed in Eq. (12) that A can be negative only if the expression

in the first pair of brackets in the second line is positive and the one in the second

pair is negative. If the expression in the first pair of brackets is negative, the one

in the second pair is also negative; and if the expression in the second pair is posi-

tive, the one in the first pair is also positive. Hence positive realness of the bi-

quadratic function F (s) postulates that

N1D 1 ( - /D0) ) . (13)
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The postulation (13) with its sign of inequality also holds when the numerator in
Eq. (9a) equals (Q + 12a) (SI + nb) with Sla and b positive.

Any biquadratic function for which Eq. (13) holds is positive real. There are

two sub-sets of pr biquadratic functions: for the one the sign >, for the other the

sign = holds. From now on we will use the notation F (s) predominantly for func-

tions of the first sub-set. When we are sure that the sign of equality in Eq. (13)
holds, we will always use the notation

(s)= S? +Nis-N (14)

s2 + Dls + D0

for which

NID = (JF0 - fJDO)2 R 07 + DZ - Z./i-D 0 . (14a)

We refer to the function T(s) in Eq. (14) as a singular pr biquadratic immittance

function. When interpreted as an impedance function it is generally known in the

literature as "a minimum resistance function." A singular function can easily be
recognized as such by the bar notation attributed to the capital letters.

A function

52 + NlS + NO

F(s) =s + NIS + No (15)
52 + D~s+ Do

for which in genera.l

N1D ID > ( vN- Do' ) (1 5a)

is referred to as a non-singular pr biquadratic immittance function from now on.

The real component of a singular function F (s) according to Eq. (9a) is

Z K CD 0 + 'T _
Re (jQw) = S1+ S 2  2B0 )+ (16)

The numerator in Eq. (16) equals zero when n =-A/0D

0 0
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3. CIIARACTERISTICS OF TIIE PR 0!QL!A!PaAT!_ LV "11r-,,

3.1 A Categorization of pr Biquadratic Functions

Many relations between the magnitudes of the real coefficients N0 , Nj , D o , D1

are feasible when we postulate by the equality (14a) or by the inequality (15a) that a

function V (s) or a function F (s) should be positive real. One can predict that we

will be able to distinguish between certain categories such that functions that are

of the same category will show roughly the same dependency on the frequency var-

iable. We categorized the pr immittance functions F (s) according to similarities

of Re F (jc.) in Eq. (9a). First we separated functions F (s) with No > Do from

functions with No < Do . This separation is a division of the class of biquadratic

pr functions F (s) into two main-categories:

main-category (a) is defined by NO > Do , (I 7a)

main-category (b) is defined by No < Do . (17b)

We found that when we plot Re F (jw) vs S1 in the range 0 < S we can distin-

guish between four sub-categories in each main-category. We thus come up with

a total of eight categories (al), (a2), (a3), (a4) and (bl), (bZ), (b3), (b4). We

show the real components of the sub-categories of main-category (a) in Figure 2

and the real components of the sub-categories of main-category (b) in Figure 3.

The figures should be taken as rough sketches only.

Since

Re F(j0) = F(0) N0 /D 0 , (18)

and

Re F(jco) = F(oo) = 1, (19)

the curves that we sketched in both figures start with the ordinate N0 /Do at n = 0

and end with the ordinate 1 at S2 = oo. In both main-categories the curves in sub-

category (1) show no inflections and remain within the ordinates N0 /D0 and I be-

tween the frequency limits 0 and *0. The smallest magnitude of Re F QjW) in cat-

egory (al) is 1 and in category (bl) it is N0/Do. In both main-categories the

ci_-ves show one inflection which is a maximum Nm at SIM in sub-category (3).

Again the smallest magnitude of Re F (j) is 1 in category (a3) and N 0 ./D0 in

category (13). In both main-categories the curves show two inflections in sub-

category (2). the one is a maximum Nm at Rm, the other a minimum Nm at Sm.

Thus the smallest magnitude of Re F (jc.) is Nm in categories (a2) and (b2).
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coisgory (at) category (@3)
Re FJM,) Re ju)

'DN~ ----0 ........

(a) 'C

0 OD 0 l.Ie cD

category (02) category (04)

ReF,(i) R sQojfN)

'rO/D --- ------ --

! ....... J............. .

(b) of R.e, (sm

at•i h caeoie (a) (a) (),b3.Teerencosinsaad

0 _m CD 0 , a, A. CD

Figure 2. Sketches of Re F(jw) vs .2 =w?- for No0/Do > I

Fin both main-categories the curves show one inflection in sub-categories (4)

which is a minimum Nm at m- Thus also in categories (a4) and (b4) the smallest
magnitude of Re F (jwo) is Nm.

We also observe that in the range 0 < 9q < co the ordinazte N O / D o is crossed

once at Sla in the categories Wa), Wa), (bZ), (b-;); the ordinate 1 is crossed once

at 1, in the categories Wa), (a4), Wb), Wb). There are no crossings R2a and f?1

in sub-categories (1), and there is no crossing $la in category (a4) and no crossing

S1 in category (b4).

T'here are now two techniques by which we can find out to which category a

certain function belongs: either we differentiate and identify the differential quo-

tient with 0.

dReF(jJ-) . dQ (20)
d se d

or we search for th~e ordinate crossings Ila and S21 by solving the equations
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COY(b) catgy (b3)

R*F(j-) Re F (i)

(o)~o t"6400 -4 ------

(0) (C).
t Al.

__ _ _ _ __'_

0 CD 0 40

ctWry (b2) category (4)
Re F (i) Re ir (e)

N.
~(b) t. (d

S s 08 i 0

Figure 3. Sketches of Re F (j,)) vs S? = w7- for N01D 0 < I

ReF(ju) =N/Do (21a)

and

Re F(jw) = 1. (ZZa)

Quadratic Eq. (20) yields the solutions Sm and 12. which, according to well
known rules of algebra, have to be identified as the minimum and/or maximum
frequencies. Equations (21a) and (Zlb), however, are linear and have the solutions

l a = D0"--D0 ) -D I (NoDI-NID0 ) (b)

and
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= Do (N-DO) 
(22b)(N 0 -D 0 ) - DI (NI-DI)

When there is a crossing of the ordinates N0 /D0 and/or I in the range 0 < S < co
the solution in Eqs. (Zib) and/or (22b) must be positive. Since our aim at the mo-

ment is to find a "test method" by which we can identify the category of F (s), the

test has to be simple and for this reason we decided to choose the second way.

First according to the definitions of the main-categories in (I 7a, b) we intro-

duce the test value

To = No -D 0 . (23)

If To is positive, we have main-category 'a); if it is negative, we have main-
category (b). Substituting To in Eqs. (21b) and (22b) we obtain two other test

values

Ta = DoT 0 - D1 (NoD1 - NID 0), (Z4)

and

T1 = To - DI (NI - DI). (25)

Since Sla = Ta/To and SII = DoT0/TI, the test values Ta and T1 simply by their
sign polarity identify the respective sub-category of the function F (s). This is

shown in Table 1.

Table I. Sign PoLtrities of ii Test IValues To, Ta, and T 1 in
the Eight Categories

ITest Category
Value (al) (a (a3) (a4) (bl) (b) (b3) (b4)

o + + + - + "

ITa I - + - - +

Ti - + - + 1+ - - +
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Each sign combination appears only once in any colun of Table 1.* and since we

have 3 test %alues, each of them either .- or - , thxere are 23= 8 variations pos-

sible corresponding to eight categories.

In Table 1 and in further discussions in the text we prefer to use the notation.

+ for > 0 and - for <~ 0- The value 0 can always be counted as + or as -.

AM, For istance if No = Do and thus To = 0. the function can be considered as b-

ing of main-category (a) or of main-category (b).

3.2 Miniumn N1 and M.inimum Freqzenci f? in~ ;n- eoi (2) and (4)

By Eq. (20) and using the test values To, Ta. T, defined in Eqs. (23). (24).

and (25) we obtain. the frequency Rm at hihteiium ntesece
in Figures 2 and 3 appears as

P = (To cZ) Do/Ti. (26)

with

c. IT0 ' TT/O (26a)

whenF (s isof sb-caegoy (2), that is. if it is of categor (a-) or Wb).

If F (s) is of sub-caegory (4), thai is, if it is of either category (a4) or (b4),

then,

P- (To -4 c4 ) Do/Tl . (

with

c 4  \Tf+Iai/L~.(27a)

The constants c.> and c_ in Eqs. (26a) an. . ('17a) are Mositive. Test values

and T, are L-oth ositive in Eq. (26) if F (s) is of category (aZ) and both nega-

tive if it is of category (0,2). In Eq. (27) T, is always positive, but To is positive

if F (s) is of category (a4) and negative if it is of category (b4).
Ther.~'-inumfreueny m obtained in Eqs. (26) or (27) must alwaysb

positive.
The minimnum Nm is obtained bry substituting P-M into Eq. (9-a).

Thus
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S.nZ + N 0 D0 ) + P.m(NIDl - No - DO)

N -m2
+ D0

2 ) + lm (Di 2 - 2D0 )

3.3 Soame Other Characteristics of tke Biquadraiic Functions

We are now able to recognize the category to which a function F (s), known by

the numerals in its coefficients, belongs. There are some characteristics that

are of further interest. Assume, for instance, that we keep the coefficients No

and Do constant and we ask: what are the ranges for the magnitudes of the coeffi-

cients N ! and D1 so that the function remains w.rithin its or-iginal categery?

In the denominator of F (s) let us replace

D I = Zr -D 0  (29)

with r as a oosit-ive and real constant. It is always possible to refer D1 in this

.way to Do . Then by Eq. (24)

Ta!D 9 = NID 1 - (4r 27N.0 - T 0 ). (30)

and by Eq. (25)

T, = (D 1Z TO) -NID, . (31)

When we postulate .thp Ta is positive, then

4r2N0 - T o !5<D- = %I < 00, (32a)

and when we postulate that Ta is negative, then

0 < NI S 4r7NO-T 0  (32b)D1

When we postulate that T1 is positive, then

< 4r2 Do  TO0 < N = DI (33a)

and when we postuliate that T 1 is negative, then
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4r 2 D +T N < o. 33b)

Note that for

r2 = 0.5 (34a)

4AfT40 - To = 4r + T o = N o + D o . (34b)

In sub-categories (1) and (2) Ta and T 1 are of the same sign polarities, both

positive or negative. It can easily be shown that in main-category (a) where To
is positive the results of the pair of Eqs. (3Za) and (33a) are contradictory when

r 2 > 0.5, and in main -category (b) where T o is negative the results of the pair

of these equations are contradictory when r2 < 0.5. Similarly the results of

the pair of Eqs. (32b) and (33b) are contradictory in main-catego"ry (a) when

rZ < 0.5 and in main-category (b) when rZ > 0.5. Hence

in categories (al) and (bi) only rz 2: 0.5 is acceptable, (35a)

in categories (a2) and (b2) only r 2 :5 0.5 is acceptable. (35b)

For the other categories any magnitude of rZ is acceptable. (35c)

With D l referred to Do by Eq. (29) we show the ranges of NI in Table 2. It

is interesting to observe that the discriminant 4D0 (r
2 -1) of the denominator of

F (s) is not important in our categorization; thus we do not pay attention to whether

rZ is greater or smaller than 1. We rather observe whether r2 is greater or

smaller than 0.5.

3.4 Tle Sign Polarities of (N0 1D-N 1D0) and (NI-0 1)

For later discussions we are also interested in the sign polarities of the ex-

pressions (NoD 1 - NID 0 ) and (N1 - DI) which are implied, for instance, in the

formulas for the test values Ta and T 1. Assuming a fixed pair of coefficients

N o and D o we show the sign polarities of (NOD1 -NIDO) in Figure 4a for main-

category (a) and in Figure 4b for main -category (b). The sign polarities of (N1 -D1 )

are shown in Figure 5a for main-category (a) and in Figure 5b for main-category (b).

In these figures we have plotted the coefficient N1 vs the factor r?. Cross shading

indicates that the difference under investigation is positive, horizontal shading in-

dicates that the difference is negative.
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We find that

(NoD 1-NIDO) is positive only in categories (al) and (a4}, and

is negative only in categories (bl) and (b3).

(N1 - D1 ) is positive only in categories (al) and (a3), and

is negative only in categories (b1) and (b4).

In all other categories the differences can be positive or negative. Different sign

areas are separated by the dashed lines corresponding to (NOD 1 -N 1D0 ) = 0 and

(N 1-DI) = 0 respectively.

3.5 The Category of the Inverse Function F' (s) = i/F(s)

Assume we have identified the category of a particular function F (s) by the

sign polarities of the test values T 0 , Ta, and T 1 as defined in Eqs. (23), (24),

and (25). It is trivial of course to identify the inverse function

!2
12 NlS + s + DlS + Do

F' (s) = 1/F(s) = S2 + Nss+J= (35)
s z + Dis+ Do s + Njs + N0

in absolutely the same way. Table I can also be applied to the sign polarities of

T6 = Nb - DO ,

Ta = D0T 0 - D 1 (NoDI NID0),

T', = T O - DIl(N'I - D'I).

But instead of determining the categories of the inverse functions individually, we

would rather like to know: is th're a unique relation between the category of F (s)

and that of F' (s) ? Can we say: when F (s) is of this category then F' (s) is of

that one? As a matter of fact, the answer to this question is not trivial.

It is trivial that Eq. (35) reveals

Nb = Do, (36a)

N = D1 . (36b)

DO = No, (36 c)

D' = N. (36d)



211

It is also trivial that 4..

T = T o  (37)

that is, if F (s) is of main-category (a), then F'(s) is of main-category (b), and

vice versa. It is also trivial that

(N6D -N1Do) = - (NOD - N 1 D0 ) , (38)

and ?ha'L

(N-' - D'1) = - (N1 - DI). (39)

Since. hou ever, by these last two relations

T a = N 1 (N0 D1 - N 1 D0 ) - N 0 T0 , (40)

and

T = N 1 (NI - Dl) - To. (41)

the relations between Ta and Ta and between T I and T11 are far less obvious.

By Eqs. (24) and (40) we can relate

Ta = -[NTa + (NoDI NlDo)To]JD1, (42a)

or

Ta = -[D1Ta + (NODI NIDO)To]NI ,  (42b)

and

Ta = -[TaNO + (NOD1 -N 1 D 0 )2]/D0 , (42c}

or

Ta =-[T'aDO + (NoD1 -NlDO)z]/NO. (42d)

a*

x.,

Its
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T = N 1 TI - (N1 - DI)TO /D1 . (43a)

or

T,= -[DITI - (NI - D!)T 0 j/Nl, (43b)

and

T = (N I  D1 ) - TI, (43c)

&or

T1 (114 - DI)? - T'I. (43d)

It follows from Eq. (4Zc) that Ta is certainly negative if Ta is positive. It

also follows from Eq. (43c) that T1 is positive if T1 is negative. By Table 1 wre
r~cognize that we can make

Statement 1
If F (s) is of category (a 3), then F'(s) is of category (b4), and if F (s) is of

category (b3), then F'(s) is of category (a4).
We are able to show that if F (s) is of category (al), then F'(s) cannot be of

either category (bZ) or (b3). According to Table 1, To is positive and T1 negative
in this case. Figure 5a shows that (N1 -Dj) is positive. Hence, by Eq. (43a) the

test value T l of F(s) is positive. This, however, contradicts the information

given by Table 1 that in categories (b2) and (b3) the test value T, has to be negative.

On the other hand, if F (s) is of category (al), then F(s) can be either of

category (bl, or (b4). In these categories T11 is negative according to Table 1 as
well as according to w.-hat we found in the preceding paragraph. The test value Ta

is positive when F'(s) is of category (bl). When F(s) is of category (al) then the
test value Ta is negative. In this category, according to Figure 4a and by Table 1,
(NOD,-NID 0 ) and T 0 are both positive. Hence, by Eq. (42b), 7;j is positive as it

should be. If F'(s) is of category (b4) and F(s) of category (al), then Ta has to

be negative. Since Figure 4b allows both polarities for (NoD 1 -NID0 ) in category (b4),
Ta negative can be obtained according to Eq. (42b). Thus we can make

Statement 2:
If F(s) is of category (a 1), then F'(s) can be either of category (b1) or (b4).

If F (s) is of category (bl), then F'(s) can be either of category (al) or (a4).

The second part of Statement Z can be proved in a way similar to the proof of

the first part.



We are able to show that if F (s) is of category (a2), then F'(s) cannot be of

either category (bh) or (b3). In this case Ta is positive. Then, according to

Eq. (42d), Ta is negative. But Table 1 postulates that Ta is positive in cate-

gory (aZ). This is a contrad.ction.

On the other hand, if F (;) is of category (aZ), then F'(s) can be either of

category (b) or (b4). For b-th categories Ta must be negative according to

Table 1. Figure 4b allows both polarities for the difference (NoD 1 -NID0 ) in

categories (b2) and (b4). According to Eq. (4Zb), Ta can be positive as it should

be. Figure 5b allows both polarities also for (N1 -Dl). In category (aZ) T1 is

positive. According to Eq. (43a) T 1 can be negative and according to Eq. (43b)

T 1 can be positive. We can make

Statement 3:

If F (s) is of category (aZ), then F' (s) can be either of category (b) or (b4).

If F (s) is of category (b), then F'(s) can be either of category (aZ) or (a4).

Again the second part of Statement 3 can be proved similarly to the proof of

the first part.

We can show that if F (s) is of category (a4), then F' (s) can be of category (b4)

and vice versa. According to Figure 4a the difference (NoD 1 -N 1 D0 ) is positive for

F (s) of category (a4). When we eliminate this difference in Eqs. (42a) or (42b), we

find that it has the opposite polarity of Ta and Ta which are both negative for cate-

gories (a4) and (b4). We get the same result by Eqs. (4Zc) or (42d). In categories

(a4) and (b4) T, and T'l are both positive. Hence T1 + T! is positive. This is

verified by Eqs. (43c) and (43d). Thus if F (s) is of category (a4), then F'(s) can.

be of category (b4) and vice versa. Statements 1, Z, and 3 prove, however, that

if F (s) is of category (a4), then F'(s) can also be of one of the categories (bl),

(b), or (b3); and when F (s) is of category (b4) then F' (s) can be of any of the

categories (al), (aZ), or (a3). Hence we can make

Statement 4:

When F(s) is of category (a4), then F'(s) can be of any of the four sub-categories

in main-category (b). When F (s) is of category (b4), then F'(s) can be of any of the

four sub-categories of main-category (a).

We summarize the four statements in Tables 3a and 3b.
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Tablc 3a. Cairgories oi ( s) for Certain
Categories of F (s)

I-t
If F(S)is thenFV(s) =I/F (s) is of

tfcategory I either one of the categoriesI(al) (bl), (b4)

(a 3) f(b4)
(a4) I (bl), (b2). (b3). (b4)]

Table 3b. Cate ores of F (s) for Certain
Categories of FM(s)

If F (s) is ' then F'(s) = IIF(s) is of
of category I either one of the categories

(1,1) (al), (a A1) 1

(bZ) Wa),. (a4)

Wb) (a4)

4. THlE DECOIIPOSITON OF POSIE REAL l~ITANCE FUNCTIONS

4.1 Terminology and Pttrpose of a Dec&mposifio.

'When we present a pr immittance function as a sum such that each member

of the sum is again a pr immittance function, then we refer to the sum as a
decomposition. A sum of pr imimittance functions is always a pr function; but

conversely, the decomposition of a pr function does not necessarily have mem-

bers which are all pr. Thus, in decomposing a pr function. we always have to

make sure that the members cf the decomposition are all pr.

The purpose of decomposing a pr ixnmittance function is to obtain a sum in
which the members are in some way simpler than in the un-decomposed function.

In this paper we decompose the biquadratic functions first into two members; the

first one is a positive constant. A constant can be considered as a degenerated
pr immittance function of the most primitive form. It is pr since it is defined

as positive. Thus, the first member in the decomposition certainly is simpler

than the biquadratic function since it does not depend on the vailable s. T-he

second member is a pr frequency function in the following decompositions.
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4.2 The Decomposition of the Biquadratic Immittance Function Fis)

Let us return for a moment to the sketches in Figures 2 and 3. Obviously, in

all these presentations of Re F (jo) we are able to shift the abscissa axis upward

and in parallel up to a certain limit, without hurting the postulation that Re F (jw) > 0

for all positive S2. This limit in categories (al) and (a3) is 1, in categories (bl) and

(b3) it is N0 ID0 , and in categories (a), (a4), (b2), (b4) it is Nm. Thus

if F (s) is of category (a!) or (a3)

F(s) = 1 + Fak(S) (44a)

if F (s) is of category (bl) or (b3)

F (s) = No / D o + Fbk (s) (44b)

if F (s) is of category (a), (a4), (b2), or (b4)

F(s) = Nm + (I - Nm)F(S). (44c)

When in parts (a) and (c) in Figure Z we shift the abscissa up to I on the ordi-

nate, then the real component becomes zero at S2 = am Hence according to Eq. (44a)

Re Fak(jw) = 0 for S2 = c.

But since

F(a = 1,

then

Fak(o) = 0 and Im Fak(j) = 0 also.

Hence Fak (s) is no longer a biquadratic function.

When in parts (a) and (c) in Figure 3 we shift the abscissa up to the ordinate

NO/ID0 :. then the real component becomes zero at 1 = 0. Hence according to

Eq. (44b)

Re Fbk(jw) = 0 for 12 0.

But since
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F() = NO/D 0 .

then

Fbk(O) = 0 and Im Fbk(JO) = 0, also.

Hence Fbk (s) is also no longer a biquadratic function.

When in parts (b) and (d) in Figures 2 and 3 we shift the abscissa up to the

ordinate Nm, then the real component becomes a double zero at S2m. Since

neither F (0) nor F (wo) degenerates to 0 or x, they will both be finite. Thus

the component (1 - Nm) P (s) in Eq. (44c) wi]) still be a biquadratic function.

But, as we saw at the end of Section 1. 3, F (s) will be singular.

It is the aim of the next three sections to investigate the functional compo-

nents Fak (s), Fbk (s), and ( - \) F (s) in more detail.

4.2.1 THE FUNCTIONAL COMPONENT Fak (s) IN A DECOMPOSITION OF
A FUNCTION F(s) OF CATEGORIES (al) OR (a3)

By Eq. (44a) we obtain

Fak(s) = (NI-DI) s + (N0 -D0 )/(NI-D1 (45)s?- + Dls + D o "

Evidently Fak (s) is no longer biquadratic. Let us make sure that it is pr. A

necessary condition for this is that all of is coefficients must be positive.

The coefficients Do and D 1 are positive by their definitions. The difference

N0 -D 0 is positive since F (s) is of the main category (a). The difference N1 -D 1

is positive in categories (al) and (a3) according to Figure 5a. Thus the numerator

coefficient (N 0 -D 0 )I(NI -D 1) in Eq. (45) and also the factor (N 1 -D 1 ) in front of the

fraction are positive. It is easy to find that

Re Fak (s) = DoT 0 - (46)
IZ+ n (DI 2 - 2D0 ) + DO.

The denominator in Eq. (46) is the same as in Eq. (9a), hence it is positive for all

positive (S. Table I shows that in categories (al) and (a3) the test value Tj that

appears in the numerator of Eq. (46) is negative. Hence the numerator in Eq. (46)

is also positive for all positive fS, and thus the component F-k (s) is pr.

Consulting Table 2 we find that for categories (al) and (a3) the square constant r Z

is allowed to be greater than 0.5. Thus it may also be greater than 1, in which

event the discriminant of the denominator



27

AD = DI2- 4 = (rZ- I14%0  (47)

becomes positive. Then introducing

ao2 = J'iiO (r - 4 2-), (48a)

al-= [5-0 (r + \!,r2- ). (48b)

b I" = To /( 1 -DI), (48c)

we have

Fak(S) = (NI-DI) s +b 1 z (48)
(s + ao0 2 ) (s + aiZ)

Note that this situation is a possible, but not a necessary one. It may also happen

that between the positive constants a0
2 , al?-, and bjZ the condition

a0Z < b12 < a1
2  (48d)

holds. But note that this additional condition (48d) is not a necessity always coex-

istent with a positive discriminant AD and with Eqs. (48a. b, c). But if all Eqs.
(48a, . . .. d) hold, then Fak (s) as represented in Eq. (48) is a function with two

poles -a0Z- and -a 12 located on the real a-axis with a zero -blZ between them.

Thus, with poles and zeros alternating in their location on the a-ax-is. Fak(F in

this case is a particular pr function. It is one of the class of pr inmpedance and/or
admittance functions that can be realized by either an RC or an RL network. These

functions have been discussed in an earlier scientific paper of the author [ Haase

(I 963a)]. Since in the present one we shall verv often refer to this other paptr.

its respective tables have been reprinted and included as Tables A-1, .... A-11I

in the appendix.

The function in Eq. (48), for which all Eqs. (48a. .... d) must hold. is a func-

tion of the type

Q4_ s+ bi 2  (seeTal -intepedx)
M~s +a 0 Z)(s +al abe:?' n h )Jn~

for which

k = IRN 1 -Dj). (48e)
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If Eq. (48d) does not hold for the function Fak(s) as it is presented in Eq. (48),
or if rZ < I1, so that Eq. (48) does not exist, then we propose to decomnpc-s the u-

vrelu uehion 1 i~~ak (s) as fo'lows:

l /FakS s 2 + DIS+ Do
ak() (NI -DI)[Is + T0 -/(N I- D )

-k 1 s + k2 j+ aL2 (49)
s + bj2

By the second right side of Eq. (49)

1 /Fak (S) = k S (kz/ki + bi'z)s + aj-k
s +

Comparing the coefficients in the numerator and the denominator and the factor in
front of the fraction with the first righit side in Eq. (49) we obtain:

j=I/ (NI -DI). (49a)

k2 = DI (Nj Dj) T - -Tj (49b)
(N i D 1)(NI-D') 2

a z. D0 (N1 -Dj) (490)

(49d)

The function Fak(s) is presently supposed to be of category (al) or (a3). Thus

To, -71 . and NI-D, are all positive. Hence all right side n Eqs. (49a, .. .' d)
are positive. Both components in the second right side of Eq. (49) are pr functions.

The first componeiit k1s is of the :ype

Q1=kls (see Table A-3 in the appendix),

where kj is given in Eq. (49a).

Provided that

a12 > b1
2 , or a12 

-bl
2 is positive, (49e)

__ I' --~~j:.-k
- ~ (.~ -~ ___
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the second component is a function of the type

P 3 = k? s+a (see Table A-2 in the appendix).
s + bl Z

We proved that the second component is pr. But we now must prove that it is

of the type P 3 with its zero a 1 left of its pole bl Z on the negative a-axis. This

has to be the case when the discriminant AD given in Eq. t47) is negative, and/or

when the discriminant AD is positive, bLft the zero bl 2 is not located between the

zeros a 0
2 and a1 Z in the same form as in Eq. (48).

First let us assume that AD is negative, that is that r Z defined in Eq. (29) is

smaller than 1. Then the difference alZ -bl? that has to be positive is, by

Eqs. (49c, d),

=D o (NI-DI) + TOT (50a)
al-l I (T 1) (lN1I-D I1)

The denominator in Eq. (50a) is positive since -T I and NI-Dj are both positive
k

in categories (al) and (a3). The numerator of (al 2 -b 1
2 )/D 0 is

(N1 -D1)Z - (N 1 -D 1 )T OD 1 /D o + T 0
2 /D0 . (50b)

The quadratic polynomial in N1 -D 1 , presented in (50b), has the discriminant

A = ToD 1 /D 0 - 4T 0 2/D 0 = TZ AD (50c)D0

Thus, if AD is negative, A is also negative and the difference al 2 -bl 2 is positive.

Secondly let us assume that AD is positive, but Eq. (48d) does not hold; the

zero bl 2 in Eq. (48) is not located between the poleb a0
2 and a 1

2 . This is only

possible when

b1
2 < a 1 z and blZ < a0 Z , (50d)

since D] = a 0
2 + a 1

2 and D 1-bl? has to be positive. But then the pole b 1
2 in the

function of type P 3 is right of the zero a, 2 in this function and our assumption that

the second component is of the type P 3 is true also in the secund event.

There is another fact that we want to point out: Suppose the decomposition

Eq. (44a) with Fak (s) of the type Q4 - 1 is possible. Then all Eqs. (48a, .... d)

hold. By Eqs. (48a, b, c) we obtain

-..
- ~ ----
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D = a0
2a l2, (51a)

D 1 = a0
2 + a1

2 , (51b)

To = (N1-DI)bl
2 . (51 c)

By Eq. (25)

T 1 = (N 1 -D 1 ) b1
2 - (a0

2 + a 1
2 ), and is negative by (48d).

By Eq. (43c)

T Ad(N1-D1) 2 - T, and is positive when T1 is negative.

Hence T1 and (-T 1 ) are positive.

Note that

NOD. - N1D0 = T0 D1 - (N1-D)D 0 = (N 1 -D 1 ) (blZD1 -D 0 ). (51d)

in Eq. (51d) the difference N 1 -D 1 is positive. The second factor in this equation

by Eqs. (51a, b)

bl2-D - D o = al 2 (bl 2 - a0
2 ) + a 0

2 bl 2

can only be positive when condition (48d) holds. Hence according to Figure 4a the

function F(s) must be of category (al) with Ta negative. According to Table 3a

the inverse function F' (s) = 1/F(s) can be of category (b1) or (b4). Note that for

this function

NbDil - N'1D0 = - (NOD - N1DO).

It follows by Figure 4b that only when F'(s) is of category (bi), NbD' -NjDb is ex-

clusively negative, and N0 D1 - N1 Do is exclusively positive. Therefore we can

state:

If the function F(s) is of category (al) and the inverse function F'(s) = 1/F(s)

is of category (b1), then the functional component Fak (s) in the decomposition

Eq. (44a) is of the type Q 4
-1 . If F (s) is of category (al) and F'(s) of category (b4),

or if F (s) is of category (a3) and F'(s) necessarily is of category (b4), then the

functional component Fak (s) in Eq. (44a) is of the type 1/(Q1 + P 3 ) -

• - , _ - - -" - - - I I I -..... - ' c . - ,, -,, = '- --, - - : . -
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4. 7. 2 'PTE FTW1 KA T IM~ T IZS% T I A -%~

-- - - - - __ L . - bk %~ I A" r I AW.IW %j1

A FUNCTION F (s) OF CATEGORIES (b I) OR (b3)

By Eq. (44b) we obtain

Fbk(S) = T s + (NoD 1 - NIDo)/T 0  (52)

D o  s 2 + Dls + D o

First we recognize that Fbk (s) is no longer biquadratic. Let us find out

whether it is pr. Since F (s) is of the main-category (b), the test value T o is

negative. Thus the factor in front of the fraction on the right side of Eq. (52) is

positive. Consulting Figure 4b we find that in categories (bl) and (b3) the differ-

ence NoD 1 -NlD 0 is negative. Thus, with T o negative, the coefficient in the nu-

merator of the fraction is positive. The function Fbk (s) satisfies the postulation
that all of its coefficients and the factor (-T 0 ) /D o are positive. We compute

Re Fbk(jw) fl I T Ta-T D0o (53)

We know that ihe denominator in Eq. (53) is positive for all positive S1. According

to Table 1 the test value Ta is positive in the considered categories (bl) and (b3).
Hence, with the negative T o the numerator in Eq. (53) is also positive for all posi-

tive S2, and consequently Fbk(S) is pr.

According to Table 2 the square r 2 can be greater than 1 in both categories (bl)
and (b3). Thus, if r? > 1, the denominator of Fbk (s) can be factorized as in

Eq. (48) and with

a0
2 = r (r - %F--), (54a)

aZ = "40 (r + 4 "-i), (54b)

b1
2 = (NoD 1 -N 1 D0 )/T 0 , (54c)

F = ' s+ bl 2

Fbk (s) = - (54)
D o  (s + a0

2 ) (s + alZ)

Note that a0
2 and a, 2 are the same in Eqs. (48a, b) and (54a, b); but b1

2 in Eq. (54c)

is different from b1
2 in Eq. (48c).

It is possible, but not necessary that

a 0
2 < b 1

2 < aI 2 . (54d)
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Then, with all Eqs. (54a, .... d) true, the function in Eq. (54) i of the iype

P4 = s (s + b l z ) (see Table A-3 in the appendix),

k(s + a 0
2 ) (s + a 1

2)

for which

k = D0 /(-T 0 ). (54e)

If r- > I but Eq. (54d) does not hold, or if r? < 1, then let us, for merely

formal reasons, name the former b1
2 now al 2 , thus defining

a1
2 = (NOD 1 - NID 0 )IT 0 , (55a)

and let us propose the decomposition

__ Do(Do + sD1 + s 2 )

Fbk(S) s(-T0 ) (a1
2 + s)

D +blZ] (55)

s(-TO) [a, s+ al-J

where

b1
2 = - D0 /a 1

2 . (55b)

Then

I = I + s + b1
z  (56)

Fbk(s3 k 1s kZ(s + a1
2 )

where

kl = -(NOD 1 - NID 0 )/D 0
2 , (55c)

and

kZ = (-TO)/Do. (55d)
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Note that bi2 in Eq. (54c) equals a,? in Eq. (55a), but b 1 2 in Eq. (55b) is of

course different from bl 2 in Eq. (54c).

The first component in Eq. (56) is a function of the type

Q1 - 1 = 1/kjs (see Table A-Z in the appendix).

The second component in Eq. (56) is supposed to be a function of the type

P 3 - 1 = (s + bl2)./k2 (s + a 1
2 ) (see Table A- 3 in the appendix).

We have to prove that the second functional component in Eq. (56) is a function

of the type P 3-1 where a 1
2 > b 1

2 or .il2-bl2 is positive. For this purpose let us

compute

a1 2-b 1 Z = (NoD1 -NID 0 )/T 0 - D1 + DoT(D1-N1D 0 ) ,

hence

T O (NoD1 -N I D0 ) (a, 2 -b 1
2 ) = (NoD 1 -N 1 D0 )2 - (NoD 1 -NjD0 )D 1 T0 + DoT0

2 .

The left side of 'Iis equation is positive when (al 2 -bl 2 ) is positive, since in cate-

gories (bl) and (b3' the test value T 0 and the difference NoD 1 -N 1 D0 are both neg-

ative. Thus we have to prove that the right side of this equation is positive.

The right side is a quadratic polynomial in N0 D 1 -N 1 D 0 . Its discriminant is

A = D1T02 - 4DoT 0
2 = T 0

2 (D1 - 4D0 ) = T 0
2 AD,

with AD defined in Eq. (47). Thus A has the same polarity as AD. if r 2 < I

then A and AD are negative and then the right side is certainly positive. This is

true in particular when F (s) is of category (b3) where rZ < 0. 5.

Now assume that r 2 > 1 and that then in Eq. (54) the zero b1
2 is not between

the poles a 0
2 and at 2 ; but remember that for Eqs. (55), (55a, ... , d), and (56)

we redefined b 1
2 as alI-. With a 0

2 , a 1
2 , and b 1

2 defined in Eqs. (54a, b,c),

Ta = T0 (D0 - bl2Di ) and has to be positive with negative T o in categories (bl)

ard (b3). Thus

D lb1 2 - D o = (a0
2 + a, 2 )b, 2 - a02al 2

has to be positive. This is ensured when b 1 2 is not between a 0
2 and a 1

2 if

b12 > a 1
2 . Thus, when the poles and zeros in Eq. (54) do not alternate, the zero

• -- $ - -- i • $ • win m mm$ m mm mumm w • 1 - •
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bt -............ d... "A t L p aind then our assumption that the second

component in Eq. (56) is of the type P 3  is correct.
Similarly, as in the discussion of the function Fak (s) we can also find that a

function Fbk(s) of the type P 4
- I can only be obtained when F (s) is of category (bl)

and F'(s) = I/F(s) is of category (al). Otherwise I/Fbk(s) is of the type presented
in Eq. (56). Thus we state:

If the function F(s) is of category (al) and the inverse function F'(s) = 1/F(s)

is of category (al), then the functional component Fbk (s) in the decomposition

Eq. (44b) is of the type P 4- 1 . If F(s) is of category (bi) and F'(s) of category (a4),
or if F (s) is of category (b3) and F'(s) necessarily is of category (a4), then the

functional component Fbk (s) in Eq. (44b) is of the type 1 /(Qj -1 + P3-1 ).

4.2.3 THE -UNCTIONAL COMPONENT (I-Nm) F (s) IN A DECOMPOSITION
OF A FUNCTION F (s) OF CATEGORIES (aZ), (a4), (b), OR (b4)

By Eq. (44c) we obtain

F(s) = (F(s) - Nm)/(l - Nm) z + N I s + -p (57)
s + D1 s + D 0

where since F (s) is a singular function

N (4 o - 4 o)Z .  (57a)

The constant Nm < 1 is obtained by Eq. (28) where depending on the category of

F (s) the frequency S~m is obtained by Eq. (26) for categories (a2) and (bZ) and by

Eq. (27) for categories (a4) and (b4). In Eq. (57)

b o = D o , (57b)

-D1 = D 1 , (57c)

No = (No- NmDO)/(I-Nm), L57d)

N1 = (N 1 - NmD.)/(I-N m ). (57e)

It is necessary to compute Nm with high accuracy; if the accuracy is not sufficient,

a considerable error in Eq. (57a) will occur even though the computation does not

involve any other error. As the tool for the computations we used a FRIDEN desk
calculator Model SRQ 10. In dealing with biquadratic functions it is sufficient to
get the results to 6-figure accuracy to the right of the decimal point. Equation (57a)

has been more than sufficiently satisfied by increasing the accuracy to 9 figures to

* 7 -6 jTZ W-7 7
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racy is not sufficient, then Nm can be corrected in the following way:

According to Eq. (57a) the constant Nm must satisfy the quadratic equation

AZNm 2 + AINm + A0 = 0, (58)

in which

A z = D1
2 (D1 Z - 4Do) .  (58a)

A1 = -2 (Dl1
- 2D0) (N 1 D 1 -N 0 -D 0 ) - ZD 0 (N 0 +D 0 ), (58b)

A0 = (NIDI-N 0 -D 0 )2 - 4NoD 0 . (58c)

Ar approximation of Nm is known by the insufficiency. This approximation can be

improved by instructions giveu in (Haase, 1963b).

There is an alternative which at first glance may seem to be very trivial: we

can also write Eq. (44c) as

F(s) = Nm + (59)
U(lNm) TF' (s)

when we define

(1 - Nm)' = 1/(1 - Nm), (59a)

and

F'(S) = 1 (s). (59b)

Then b-y Eq. (59)

l -Nm s z + is +(60)

(F(s) - Nm) s 2 + + "0 + ()

where also P(s) is a singular function so that

=( 1fN4, - (60a)

0 N- a --l ---- -z =11 --ll - - -s l -, -%
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The coefficients in Eq. (60) are

f = (No NmD0)/(1-Nm), (60b)

D'I = (N 1 - NmDI)/(I-Nm), (60c)

= Do. (60d)

= D 1 .  (61e)

The difference between the decompositions Eq. (44c) and Eq. (59) is mentioned in

the next section when we interpret the immittances. By Eq. (44c) for instance

Impedance F(s) = Impedance Nm + Impedance (1 -Nm) F(s),

and by Eq. (59)

Impedance F(s) = Impedance Nm + 1
Admittance (1 -Nm) , F' (s)

Similarly by Eq. (44c)

Admittance F(s) = Admittance Nm + Admittance -l n. j) F(s),

and by Eq. (59)

Admittance F(s) = Admittance Nm + 1
Impedance (-Nm) '"(s)

We have shown in Tables 3a. b that a non-singular function that is of the cate-

gory (a4) or (b4) allows inverse functions F'(s) that can be of any of the four sub-

categories in the other main-category. This does not hold for singular funt.tions

F(s) and P' (s). These functions can only be either of sub-category (2) or (4).

Thus for sLngular functions Tables 4a, b are true:



Table 4a. Categories of F(s) for-Certain
Categories of F (s)

If F (s) is then F'(s) = 1/F (s) is of
of category either one of the categories

(a) (b2) or (b4)

(a4) (b2) or (b4)

Table 4b. Cate ories of F (s) for Certain
Categories of F (s)

If F(s) is then F'(s) = I/P(s) is of
of category either one of the categories

I (b) (a) or (a4)

(b4) (aZ) or (a4)

It also follows from Tables 4a, b that a singular function P (s) cannot be of an odd

sub-category (1) or (3).

When the function F(s) is of an even (odd) sub-category and the function F'(s)

is of an odd (even) sub-category, the decomposition of F (s) is clearly distinct

from that of F (s). The one has the functional component Fak (s) or Fbk (s), the

other the component (1 -Nm) ' (s). But when F(s) and F'(s) are both of even sub -

categories, then both functions have the functional component (1 -Nm) P (s) in their

decomposition. In order to avoid too many notations, we will agree that in this

event we decompose F (s) as it is, and by the decomposition we will obtain one set

of Nm, (I -N), (-Nm)*, F(s), and F'(s). Then we decompose F(s) with D's

interchanged with N's and get a second set of decomposition constants and

functionals.

Consider now the singular function F(s) in the notation of Eq. (57). Such a

function can be written in the following form:

vx(n-l) 26(s)4'(s) + vzn 6(s)C(s) + xzn(s) (61)
vO (s) + xn"(s) + zn C(s)"

In Eq. ,61) v and n are real constants of the same sign polarity (when v is

positive n is also positive, and when v is negative n is also negative); x and z

are real and always positive constants. The notations 6(s), O(s), and C (s) are

normalized positive real-frequency functions such that one of them iz s, another

7--. , - .
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one I /s, and the third one !. There arp .i. nnas 1i I ri, ins , ,r te d,siribuiion

of these particular frequency functions over' 6(s), O(s), and C(s) as we show in

Table 5:

Table 5. The Six Possible Distributions of s. 1 /s. and I
over t (s), 4'(s). and C (s)

Function
Notation Selections

4(s) = i/s, C(s) = 1,
46(s) = s,

Fs)(s) = 1, s) = 1/s,

IFb 4 (s) =s, s)=Z

I (ds) = 1/Is,

c 1z(s) = s, -(s) = lI/s,
¢(s) =z

PCX IP (s)= I /s, '(s) = s.

The functions Fa and Pax have the selection 4 (s) = s in common; the selections

of the functions I Is and I are interchanged. The situations are similar in the
function pairs Fb, F1 and Fc, Fc- We want that

Fa = Fax = Fb = Fbx = Fc = Fcx = F (s). (62)

Substituting the selections according to Table 5 we obtain:

Fa zl s 2 + sx(n-1)7-zn2 + x /vn (63)
s z + szn/v + xnv

where

zn z = I. (63a)

Pax= x(n-l)7 sZ+ sznz Ix(n-I)-' + zn/v (n-I)Z (64)s Z + sxn + zn/v
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where

x(n-l) z = 1. (64a)

F s?+ sv(n-O)Z/zn + v-n x (65)
b =  zz + sz/x + v/xn

where

z = 1. (65a)

s 2 + svn/x + v(n-lJ)/zn (66)

bx + sx/z + v/zn

where

x =1. (66a)

C= v(n-l)2  s? + sznlv(n-1)2 + zn/x(n-1) 2  (67)n s7-+ sv/xn + z/x

where

v(n-l) - (67a)
n

S2 + sxl n + x(n-1)71zn -  168)Fcx =n - s z + svizn + x/z

where

vn = 1. (68a)

Equations (63a, .... 68a) follow from the fact that F (s) = I for s--- .

Since all the function variations are the same according to Eq. (6Z) we can

make comparisons between the coefficients N0 . D0 , NI, D1 and the respective

expressions in Eqs. (63 .... 68) and we thus obtain the results in Table 6.
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Table 6 also contains the constants

u = v(n- 1) (69)

and

w = v(70)

These constants will be of interest later. But note that

1 /u + I/v + I/w = 0, (71)

which .akes it necessary that one of the u, v, w be negative, whereas the other two

are positive in the sign polarity. Thus, when v and n are negative, then u and w

must both be positive. But when v and n are positive, then either u or w must

be negative. The sign polarities depend only on the main-category of F(s) which

is the same as the main-category of F (s).

Table 6 also shows that although when we want to obtain the constants n, u, v, w,

x, z of all six variations, only half of them have to be computed. The constant u

is the same for Fa and Fax, for Fb and Fbx, and for Fc and Fcx. The con-

stants v and w interchange between these pairs, also the corstants x and z. As

is indicated by the , -ners of the triangles L and the respective constants n

are vice versa and inverse. But note also that

n in Pa = 1/u in Fc, (72a)

n in Fb = u in Pc, (72b)

n in Fc =-u/w in F.. (72c)tC

Also:

n in Fax = - w/u in Fc, (7 a)

n in Fbx = w in Fc, (73b)

n in v'cx = I/w in F c . (73c)

Thus when the constants u and w in P. are known, the constant n can be easily

computed for all variations o" P (s).

Table 6 also holds, of course, for the inverse function F'(s) when the coeffi-

cients D0 , D1 , N0 , N- are replaced by the coefficients Do, I'1, Nj, N1 as de-

fined in Eqs. (60b, .... e).

-!
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For convenience we give in Table 7 referent-i- frn the~ respectivc cquatzoii'S to'

be used when decomposing the function F (s).

Table 7. Decomposition Table

F (s) of Category (al1) or (a 3)

Decomposition F(s) = 1 + Fak(s)

W(s) of (a I) Fak(S) Of type Q4 -I

F'(s) of (bi) see Eqs. (48) and (48a, .. ,e)

F (s) of (alI) (a 3) Fak (S) of type I/(Q I+ PI)or
F'(s) of (b4) (b4) see Eqs. (49) and (49a, .. ,d)

F (s) of Category (bi) or Wb)

Decomposition F (s) = No /Do+~ Fbk (s)I

F (S) of (,A1) Fbk (S) of type 1P4 -1

F (s) of (al1) see Eqs. (54) and (54a, .. ,e)

F (s) of (b1) or(b 3) Fbk (s) of type 1 /(Q 1 1+ P3-1)
F* (s) of (a4)o (a4) see Eqs. (55) and (55a, ... , d)

F Its) of Category (aZ), (bU), (a4), (b4)
IDecomposition F (s) = Nm + (I -Nm) P(s) =Nm + (1l-Nm) /P'(s)

F (s) and P(s) of Get Nm by Eqs. (26) and (26a)

Wa) or (bZ)

F (s) and F;(s) of Lie, Nm by Eqs. (27) and (27a)

(a4) or (b4)

F (s) and P (s) of Get coefficients bo , 1 1' , , 1 ofF'P(s)
(a2), Wh), (a4), (b4) by Eqs. (5Thb. . .. , e)

Get variations Pa, e~Fx

directly by Table 6

F I(S) of Get coefficients 5 , 15'1 ' , 1 Of T(s)
(a2), Wb). (a4), (b4) by Eqs. (60b, .. ,e)

Get variations F,.. ex
by Table 6 with all capitals primed.

- ;~~-]P
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5. REALIZATIONS OF I)RIVING-POINT IMMITTANCE FUNCTIONS F (s)

By "realizing" an immittance function we understand that we are looking for a
network structure such that the driving-point immittance measured at its terminals

(see Figure 1) is F (s). If we propose F (s), we will always obtain two classes of

networks: one class has the driving-point impedance identical with F (s), the other

has the driving-point admittance identical with F (s). Each class usually has sev-

eral equivalent networks. But each network in the one class has a dual network in

the other. When the networks are of the ladder type, then the dual network is found

simply by drawing the graphic representation of one network; then by drawing the

dual graph representation (each series branch becomes a shunt branch and vice

versa). Both graphs are topologically related. Then the element combinations in

the first graph have to be replaced by the dual element combinations for each topo-

logically related branch; this means that if each branch implies only one element,

for instance, a resistance, an inductance, a capacitance in the first graph become

a conductance, a capacitance, an inductance in the second graph.

Practically, however, the situation is usually such that we are confronted with

the proble.m of realizing a network that has a prescribed impedance function Z (s)

or a network that has a prescribed admittance function F(s), where Z (s) and re-

spectively r(s) are pr biquadratic-functions. Thus Z (s) or F(s) is proposed

and not F (s). Hence we can adjust F (s) to the proposed function. if Z (s) is pro-

posed we make Z (s) S F (s); but then necessarily F (s) - F'(s) and these two iden-

tities yield two classes of networks which of course are not dual; but each network

in the one class may have some structural similarities with a network in the other

class. Similarly, when F (s) is proposed, we make r (s) = F (s) and then

Z (s) -- F'(s).

5.l The Impedance and the Admittance Interpretation of F(s)

As a neutral concept the immittance function F (s) can be deliberately inter-

preted as an impedance Z (s) or as an admittance r(s), or the immnittance func-

tion F (s) can be deliberatey adjusted to an impedance 7 (s) or z.n admittance r(s).

It makes no difference whether we stick to the first or to the second formulation.

In the third section we have decomposed F (s) in wo or more coinporents and we

,leterimined that these components are pr and of lower rank (Fak ts) and Fbk (s)

and the constants 1 and N 0 /D 0 respectively), or we have determil-ed that the

functional component implied a singular function whereas the nc : )mposed F (s)

was non singular. Of course, when F (s) is interpreted in one _y or -he other,

the interp.-etation also holds for the components. Say, we interpret F is) a Z (s)

as an impedance, and assume that we decomposed
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F (s) F, (s) + F-,(14

where F1 (s) and F 2 (s) are pr. Then

impedance F(s) = impedance F1 (s) + impedance F 2 (s). (74a)

But with

I1/F, (s) = F'1 (s) and 1 /F 2 (S) = F'2 (s)

we can write Eq. (74a) also in the forms

impedance F (s) = I I+7b
admittance F1 (s) admittz ice F 2 (S)'(7)

= impedance F, (s) +I17c
admittance F 2 (S) (7c

- amitanc F' (s + impedance F 2 (s) .(74d)

When a component Fj (s) is of the type Pi ,Qi, Pi , or Qi - as listed in the

appendix, then impedance Fj (s) equals exactly 1 /admittance F (s) since

Pi=1!PA and Qi = I/Qi-l . (Note that a coz-stant can be considered as a func-

tion of the type Pi1 . Table A -2 or as a function of the type PI 1 , Table A-3.)

Hence there is also no difference in the circuits realizing impedance F4 (s) or

/admnittance F i (s). But if Fj (s) = (1 Nm)P (s), then a circuit realizing the

irmpedance Fj (s) is different from a circuit realizing I1/admittance F (s) az- we

will see in Section 5.2. 3.

5.2 M.iA 4:ir-*uits Realizing F (s) in [lot Interpretations

Since we know the decomposition of F (s) as compiled ini Table 7, we know

also its realization as sznon as the realizations of the decomposition components

airc krown. The decomposizions are sums. In the impedance interpretation the

component circuAs hiave to be linked in series, in the admittance interpretation

they have to be linked in par.Alel. As far as the components are of the types Pi. Qi
or their ret iprocals, 'heir realizations are communicated in Hiaase (1 963a) with the

respect'..ve tables reprinted in the appendix. Realizations oi T; (s) will be giver. in

Sez:tion 5.2. 3.



5.2. 1 REALIZATIONS OF IMMITTANCE FUNCTIONS F (s) OF THE CATE-
GORIES (al) AND (a3)

An immittance function F (s) that is of categories (al) or (a 3) has the decom-

position of Eq. (44a). The first component I in the decomposition is a resistance

R0 = 1 in both interpretations of F(s). Block realizations for the impedance inter-

pretation of F (si are shown in Table 8a; for the admittance interpretation they are

shown in Table 8b. If Fak(s) is of the type Q 4 -I, then an impedance 0 4 -1 is in

series with R0 = 1 in the impedance interpretation (see upper part of Table 8a)

and an admittance Q 4
-1 is in parallel with R0 =1 in the admittance interpretation

(see upper part of Table 8b). As it is shown in the lower part of Tables 8a, b, if

Fak (s) is of the type I /(QI+ P3), ther an admittance (QI+ P-,) is in series with R0

in the impedance interpretation, and an impedance (QI+ P3) is in parallel with R0
in the admittance interpretation. The tables show only part of the realization possi-

bilities, since we are also able to realize 1/F (s). But for these realizations we do

not have as yet sufficient information since 1 /F (s) is of category (bl) or (b4). We

also want to postpone going into the detail of the box structure.

5. 2.2 REALIZATIONS OF IMMITTANCE FUNCTIONS F (s) OF THE CATE-

GORIES (bl) AND (b3)

An immittance functio . F(s) that is of categories (bl) or (b3) has the decompo-

sition Eq. (44b). The first component N0 /D O in tne decomposition is a resistance

R0 = N0 /D0 in the impedance interpretation and a resistance R0 = DON 0 in the

admittance interpretation. In the latter interpretation we could also call it a con-

ductance G o = N0 /D0 ; this would be more systematical, bu we prefer :o use only

the term "resistance. - Block realizations for the impedance interpretation of F (s)

are shown in Table 9a, for the admittance interpretation in Table 9b. If Fbk (s) is

of the type P 4
-1 , then an impedance P4-1 is in series with R0 = N0 /D0 in the

impedance interpretation of F(s) (see upper part of Table 9a). and an admittance
P4 1 is in parallel with R 0 = D0 /N0 in the admittance interpretation of F(s)

(see upper part of Table 9b). As shown in the lower parts of rabies 9a, b, if

Fbk(s) is of the type 1/(Q1 l-1 + P 3 - 1 ), fn the impedance interpretation an admit-

tance 1/(Ql 1- + P3 -1 ) is in series with R0 , and in the admittance interpretation

an impedance I /(QI-1 + P 3 - 1 ) is in parallel with RD in the admittance interpreta-

tion. Also these tables do not exhaust all of the possibilities of realizing F (s),

since we can also realize 1/F(s). This, however, together with the information

about the circuit striactures in the boxes, we will postpone.

I -'lim
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5.. 3 REALIZATIONS OF IMMITTANCE FUNCTIONS F (s) OF THE CATE-

~~GORIES Wa), (b2), (a4), OR (b4)

An immittance function that is of any of the categories (aZ). (bZ), (a4), or (b4)

has the decomposition Eq. (44c). The first component Nm < I in the decomposition

is a resistan, -. R0 = Nm in the impedance interpretation and a resistance R0 = i/N m

in the admittan-e interpretation. Again we prefer to avoid the conductance term

G= Nm in the latter interpretation. Block realizations for the impedance inter-
pretation of F (s) are shown in Table 10a and for the admittance interpretation of

F (s) in Table IOb.

For the impedance interpretation in Table 10a we find one structure where a

box one-port with the driving-point impedance (l-Nm) F (s) is Ln series with the

resistance R0 = Nm and another one where the box one-Dor has the driving-point

admittance (1-Nm) 'P' (s). For the admittance interpretation in Table !Ob we also

find two arrangements: in one a box one-port that has the driving-point admittance

(I-Nm) F (s) is in parallel with the resistance R0 = I Nm, in the other a box one-

port, with the driving-point impedance (-Nm) '' (s). is in parallel with this resist -

ance. Let us forget for a moment the numerical factors (1-N m ) and ( -Nm)' and

let us ask: is there a circuit structure that has Z (s) F (s) as driving-point im-

pedance, or another structure that has I (s) F (s) as driving-point admittance?

The function P (s) in these interpretations is a normalized and singular biquadratic

function. We can restrict ourselves to the function F (s), since F' (s) is nothing

more than a formality in the notation.

In fact, there is such a structure. In the impedance interpretation of F (s) it

makes use of "a perfectly coupled and shunt-augmented T1" that has been discussed

in an earlier paper of the author (Haase, 1965). In the admittance interpretation of

P (s) "a perfectly coupled and shunt-augmented PiP has to be used instead, since

the admittance interpretation is the dual of the imnedance interpretation. At this

point let us discuss the realizations of F (s) in a structure where we represent the

branch immittances by boxes.

Consider the one-port shown in Figure 6a. It consists of a T that is terminated

by the branch Z. The T has the series branches U and W and a shunt branch that

is composed of the branch elements V and X. The branches U, V, W make a cou -

pled unit, thus we may say that X is an augmentation in the shunt branch of the T.

Let all capital notations in Fig--ure 6a be impedances. Let f.rther

I/U + l'V + 1/WV = 0. (75)

Then the driving-point impedance of the terminated T in Figure 6a is

(s)= xu + W) + Z(U + V) + XZ (76)(V+ W) + (X + Z)

I
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.z .W re Impedances

Figure 6a. The
Terminated Per-
fectly Coupled and
Shunt-Augmented T

Let

U =uqk(S) =v(n-l)( (s) , (77a)

V = V40(s), (77b)

W = w ( (s) V, -)6(s), (77c)

X = X4 (s), (77d)

Z = z (s). (77e)

then

Z (S) F(s) (78)

where TF(s) is as in Eq. (61). WIth Eq. (76) of course Eq. (71) is also true.

Consider next Figure 6b. It consists of a Pi that is terminated by the branch Z.

The Pi has the shunt branches U and WV and a series braru.ch that is eomposed of the

branch elements V and X . The branches U, V, W make a coupled unit; thus we miay

say that X is an augmentation in the series branch of the Pi. Let all capital nota-

tions in Figure 6b be admittances. Let Eq. (75) be true. Then the driving-point

admittance of the terminated Pi in Figure 6b is

I's (UX + W) + Z(jU + V) + XZ
:4 (V + W) + (X + Z) (9

- - - - ..
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U. V, W.
are Admittonces

Figure 6b. The
Terminated Per-
fectly Coupled and
Series-Augmented Pi

Let the U, V, W, X, Z which are now admittances be determined as in Eqs. (77a,

e), then

I(s) = p(s), (80)

where T(s) is as in Eq. (61). The right side of Eq. (79) is the same as the right

side in Eq. (76) since the structures in Figure 6a and Figure 6b are vice versa dual.

By Eq. (75) one branch element of the U, V, W i3 necessarily negative. We will

see later that in dealing with biquadi. "-. functions each branch element contains

only one R, L, or C circuit element. But quite generally, no m'tter how the

branches are composed, the negative branch contains RLC elements that are all

negative. Thus the circuits represented in Figure 6a and Figure 6b cannot be re-

alized from the set of positive R, L, C elements. We refer to them for this reason

as model circuits. They can be realized as such by using negative circuit elements

as far as necessary. They also can be expanded (as already mentioned in the In.ro-

duction) to circuits with exclusively positive elements, however this has to l-- paid

by additional elements. The model circuits are canonical, the expanded circuits

are not canonical. Realizations by using negative circuit elements and the expan-

sions, however, are considered to be beyond the scope of the present paper.

5.3 RLC Ladders %,ith Exclusively Positive Circuit Elements for the Real-zations of lm-ittaace
Functions F(s)

All immittance functions of the types Pi' Qi, Pi - ' and Qi - 1 are realizable

in canonical form as RC structures in one interpretation of the function and as

RL structures in the other interpretation. More precisely, Pi and Qk - 1 (k = or -#i)
are RC (or RL) structures and Pi -1 and Qk are RL (or RC) structures in the same

interpretation of the function. In the other interpretation of the function, Pi and

N2

-- - ~~ - -~- - -
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Qk - 1 are RL (or RC) structures and p.-1 and Q. ar eR I,- rR af.t......

Therefore realizations of the types Q4 - and P4 - 1 appesr when F(s) and V(s)
are both of the sub-categories (1). The realization is either (depending on the in-

terpretation of F(s) ) RC or RL structures, But when the decomposition implies

the function (Q1  P3) or the function Q1 + P3-1), then the realization can only

be a RLC network.

Realizations of the functions of the types Pi, Qi, , and Qi - 1 are listed

in Tables A.-4 ..... A- in the appendix.

Table A-4 is provided for i 1.

Table A-5 is provided for i = 2. We do not use this table' re. This one and

Table A-1 have been taken into the appendix more for the reason of a systematical

completeness.

Tables A-6 and A-7 are provided for i = 3. In this case each realization for

Table A-6 has a correspondent equivalent realization for Table A-7.

Tables A-8, .. , A-11 are provided for i = 4. In this case each realization

for one table has a corresponding equivalent realization for each of the three other

tables.

At the top of each of the Tables A-4, .... A-II we find six circuit realizations

A 1 , B 1 , C1 and A*, Bj, C 1 , and so forth. The asterisk indicates duality. Below

the circuits in the respective circuit columns we find the impedance and the admit-

tance interpretation of the type of function under consideration. Finally, the lower

part of each table gives the formula for computing the circuit elements based on the

function parameters.

Let us now get a merely qualitative picture of what kind of circuit realizations

we get when we interpret F (s) = Z (s), and when F (s) is of the odd sub-categories

(1) or (3).

Let F (s) be of category (al) and F' (s) of category (bI). Then by the upper

right part of Table 8a we are advised to link the impedance Q4 - in series with the

resistance R 0 . This impedance has four equivalences, the circuits B:, ... , B-

on Tables A-8 .... A-11. Thus we obtain the circuits D 1 ... D4 on Table 11.

Each of these four circuits is equivalent with any other.

Let F(s) be of category (a10) or (a3) but F'(s) of category (b4). Then by the

lower right part of Table 8a we are advised to link the inverse admittance (Q1+ P 3 )

in series with the resistance R 0 . We find the admittance Q, as circuit B1 on-

Table A-4 and the admittance P 3 as circuit C3 on Table A-6 and as circuit C 4 on

Table A-7. These admittances must be combined in parallel. Thus we obtain the

equivalent circuits D5 and D 6 on Table 11.

Let F(s) be of category (bi) and F'(s) be of category (al). Consulting the

upper right part of Table 9a we are advised to link an impedance P 4 
- 1 in series

with the resistance RO. We find four equivalent circuits with the impedance P 4
- I



55

as circuits C 5 , ... , Ci on Tables A-8, A-11. Thus we obtain the four

equivalent circuits D7 1 .... D10 on Table 11.
Let F (s) be of category (bl) or (.3), but F'(s) of category (a4). By the lower

right part of Table 9a we -re advised to link the inverse admittance (Q1-1 + P3 - 1 )

in series with the resistance R0 . The admittance Q 1-I is found as circuit C1 on
Table A-4. The admittance P 3 

- 1 has the two equivalent circuits B 3 on Table A-6
and B4 on Table A-7. The admittances have to be linked in parallel. Thus we ob-
tain the two equivalent circuits D 1 and D in Table 11.

Let us now interpret r (s) = F (s) and assume that again F (s) is of the odd sub-
categories (1) or (3). Evidently, we have to obtain the dual circuits. It is up to the
reader to check that the following statements are correct:

if F(s) is of category (al) and F'(s) is of category (bl) we obtain the circuits
D1  ... , D4 on Table 12 which are all equivalent.

If F (s) is of category (al) or (a3) and F(s) is of category (b4), we obtain the

two equivalent circuits Df and D on Table 12.
If F(s) is of category (b1) and F'(s) of category (al), we obtain the four equiv-

alent circuits D7 , ... , Dj 0 on Table 12.
If F (s) is of category (bl) or (b3) but F'(s) is of category (a4), we obtain the

two equivalent circuits Dll and D*2 on Table 12.
Assume now that we consider the interpreted function as the predominant one

in the particular event that the function and its inverse are both of the sub-category (1).
Let Z (s) = F(s) be of category (al) and r (s) of category (bl). Then Z (s) can

be realized by the four equivalent circuits D1 S ..... D4 on Table 11 as we have
found. But it can also be realized by the four equivalent circuits D7 . .... Di* on
Table 12. Thus there is a total of eight circuits for the realization of Z (s).

Let Z (s) = F(s) be of the category (bl) and I(s) of the category (al). Then
Z (s) can be realized by the four equivalent circuits D1 . .... D* in Table 12 and
also by the four equivalent circuits D7 , .... Die in Table 11. Thus also in this

event there is a total of eight circuits for the realization of Z (s).
'Note also that the circuits D1 , .... D4 in Table 11 and the circuits Di .

Dj 0 in Table 12 are RC circuits, and the circuits D7 , ... , Die in Table 11 and
the circuits D*. ... , D* in Table 12 are RL circuits.

When Z (s) - F (s) is of category (al) or (a3), but r(s) of category (b4), we
obtain the circuits D5 and D6; when Z s) - F(s) is of category (bl) or (b3) and

r (s) of category (a4), we obtain the circuits D1 and D 1 . Both pairs of circuits
are RLC structures and are found in Table 11.

When r (s) = F (s) is of category (al) or (a3) and Z (s) is of category (b4), we

obtain the circuits D;: and D*-; when r (s) - F (s) is of category (bl) or (b3) and
Z (s) is of category (a4), we obtain the circuits DI, and DI 2 . Both pairs of equiv-
alent circuits are RLC structures and are found in Table 1Z.



56

Table 11. RLC Realizations with Exclusively Positive Circuit Elements (Duals of
the Circuits in Table 12

D, D2 D3 D4 R,
Ro R, R2  Ro C, C; R R2  -

LiR 1  2

R"zF 1-c RRf C a  G R2:

DS Do

RTo, L

a0  1 L R0  R, R"D7 Do D9 Djo

RI0o , L 2 R R , Fl : L R R o 0

SDI, De

Ro R, RZ Ro C,

7i£ Table 12. RLC Realizations with Exclusively Positive Circuit Elements (Duals of
the Circuits in Table 11

V2 D D; D4

LI  LZ  RI  R L, RL

-R, R2  L, C,

D; D; D; CSD* CoR
CRc, , R ,

Cl L, C, R, R2Efl;E-J__
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Right now we are not yet in the position to give the other model circuits that

exist besides the circuits D5 , D6 and DiI, DI2 and circuits D*, D* and D *, D1 2 .

These model circuits will be developed in Section 5. 4.

For convenient use in realization problems we summarize the instrctions to

obtain the circuits in Tables 11 and 12 and in the following Tables 13a, b. Table 13a

is devised for the impedance interpretation, Z (s) F (s) and Table 13b for the ad-

mittance interpretation r (s) a F (s).

Table 13a. Realizations of the Impedance Interpretation Z (s) F (s)

I Circuits D 1  ... , D4

Z(s) of (al) R0 = 1,

r (s) of (bl) RI" R 2 , j see Tables A-8, .... A-1

ClC 2  for circuits B*, .... B_

Circuits D5 and D6
5 6

Z(s) of-(al) o-" (a3) C1  see Table A-4

r(s) of (b4) for circuit Bf

R 1 , R 2 , see Tables A-6 and A-7

L[ for circuits C; and C 4

Circuits D7, .... D10

Z (s) of (bl) R0 = D0 /N 0 ,

Ir(s) of (al) R 1. R2,) see Tables A-8 ..... A-lI

L1. for circuits C, .... C

Circuits DI, and D1R0 = D0/ 0-- .

Z(s) cf (bil) or (b3) L 1  see Table A-4

r (s) a4) for circuit C1
R1. R?, I  see Tables A-6 and A-7

C 1  for circuits B 3 and B 4

Remarks:

-. 11 circuit diagrams of the circuits DI, .... DIZ are on Table 11.

L, in circuits D 5 and D = A. in circuits C* and C,

C1 in circuits Dil and D = C2 in circuits B 3 and B 4 .I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _!
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T able 13b. Realizations of the Admittance Interpretation riis) aF (s)

I Circuits D*. ...

A~ r(s) of (alI) j 0 =
Z (s) of (bi) I RIP H2 , see Tables A-8, .... A-1I

I LIP L 2  for circuits C5 , ... N C8

ICircuits D::and D6

r(s) of (al) or (a3) LIsee Table A-4

Z (s) of (b4) for circuit C1

RIP Re, see Tables A-6 and A-7
C1  for circuits B3 and B 4

£ Circuits 13: D

r (s) of (b I) R0 = NOIDO,
Z (s) of (al) RIP RZ,~ see Tables A-8,, A-1 I

I C1 . CZ forcircuits B5 , B8

I Circuits Djj and DI2
R0 = NODo

rxs) of (bi) or (b) fsee Table A -4
Z (s) of (a4) for circuit Bi

RIP R1 see tables A-6 and A-7

___ ___ ___LI for circuits C and C',

Remarks:

-All circuit diagrams of the circuits D*. .... D* are on Table 12.ICi in circuits D*and D*= C2 in circuits B3 and B4 ,
Lin circuits Dj* and Dj* = L? in circuits C* and Ciii

5.4 Meodel (:ircits in RLC Ladder Structure '%ih One Neggative Element for thme Realizations of
Immiliance Froctions F(s)

We have show:: in Section 5. 2. 3 that when an immittance function F (s) is of

one of the categories (aZ), Wb), (a4). or (b4) and consequently in tile decomposi-

tion Eq. (44c) the singular function T (s) is of the same category, and if F (s) is

interpreted as an impedance Z (s) aF (s) , then the driving-point ivipedance of

the circuit in Figure 6a is 2 (s) a (s). We also have shown that when F (s) is
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of one of the categories mentioned above, and when F (s) is interpreted as an ad- -

mittance r (s) - F (s), then the driving-point admittance of the circuit in Figure 6b

is r (s) - P (s). In ,he decomposition Eq. (44c), however, the singular function P (s)

is multiplied by the factor (I -Nm). But this means only that ve have to multiply the

U, V. W, X, Z by ihis factor to obtain the impedance (I -Nm) Z (F1 and the admittance

(I-Nm) r(s) respectively. We now give circuits realizing this impedance and

admittance.

In deriving the function variations Fa Fb, Fc and Fax, Fbx, Fcx in See-

tion 4.2.3 we used the normalized pr functions s, l/s. and 1. It follows from

Tables A-2 and A-3 that these functions are of the types P 1 (or Pf 1 ). Q 1 and

QjI- It follows from Table A-4 that

in impedance interpretation in admittance interpretation

s - inductance L = 1 s a capacitance C = 1

1 capacitance C = 1 1 inductance L = 1
5 5

I resistance R1 -- resistance R= I

By Table 5 and Eqs. (77a, .... e) in impedance interpretation the U, V, W are

inductances In Fa and Pax,

capacitances in Fb and Fb:..

resistances in FC and FCX

X is a capacitance in Fa and Fcx"

an inductance in Fb and Fc,

a resistance in Fax and Fbx.

Z is a resistance in Fa and Fb,

an inductance in F x and PCX

a capacitance in FC and Fax

Also by Table 5 and Eqs. (77a, .... e) in admittance interpretation the U, V- W are

capacitances in Fa and 'ax"

inductances in Fb and Fix ,

resistances in F... and Fcx-

X is an inductance in Fa and F"

a capacitance in Fb and Fc.

a resistance in Fax and Fbx.

Z is a resistance in Fa and F-

a capacitance in FPb- ad and ,

an inductance in Fc and F-

These results are merely qualitative.

F
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When we know the coefficients of F (s), then Table 6 gives us the constants

u, v, w, x, and z. We only have to multiply these constants by the factor (I-Nm)

to get the branch impedances and branch vdmittances respectively; by the qualita-

tive results above it is easy to obtain the sizes of the elements. Instructions for

this are given by Table 14.

In the upper part of Table 14 we find the circuits F 1 .... F 6 with the driving-

point impedance (1-Nm)F(s) and the dual circuits F .... F6 with the driving-

point admittance (1 -Nr)F (s). The lower part of the table gives the RLC elements

as the products or the inverse products of the constants u, v, w, x. z multiplied

by the factcr (1-Nm).

Ai these circuits in Table 14 are model circuits since one of the circuit ele-

ments in the group of U, V, W is negative. The negative element is indicated by
an encircled (), resulting from the main-category (a) of F (s) and by an encircled

ID, resulting from the main-category (b) of P (s).

We have shown in Section 4. 2. 3 that besides the decomposition Eq. (44c), the

decomposition Eq. (59) is also nossible. i this decomposition the functional com-

ponent is I/(I-Nm) 'P' (s). Thus the immittance function (I -Nm) 'V(s) has the

opposite interpretation of P (s). The factor (1 -Nm)' is defined as the inverse of

( -Nm). When we know T (s), we also know F(s): we have only to interchange

Do with N0 and Di with NI . By Table 6 we obtain the u,v,w, x, z for P,(s)
using the primed coefficients defined in Eqs. (60b ... e). Then we apply

Table 14; but instead of the factor (I-Nm) we have to use the factor (U-Nm)"

1/(1 -Nm). To be correct, he impedance and admittance functions in this table

also have to be read as primed notations in this application. Thus for any cir-

cuit F 1 ..... F 6 derived from F (s) there is also an equivalent circuit F .... F

derived from F' (s) and vice versa. This is also verified by Tables 10a, b.

We are able to give the complete model circuits of immittance functions F (s)

that are of any of the categories (aZ), (bZ), (a4), (b4). As soon as P (s) is obtained

as summ --ized =,a Table 7, it does not matter which one of these four categories is

under consideration.

According to Tables 10a, b and Eqs. (44c) and (59)

F(s) = Nm + (l-Nm)F(s) = Nm + _ (81)
(I M) '(s)

Thus for the

impedance interpretation Z (s) - F (s)

Z (s) = RC + impedance ( -Nm) F (s), (82a)

or
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Table 14. Model Realizations of the Impedance (1 -Nm)F (s) and the

Admittance (1 -Nm) F (s)

F. F2 F3o @ @ fta

,- L3 I 3 R3

2C2

C L

F4s) F5 F F61771 OTb

L, @L3 1 C C3 R, R3

2R 5  R C
* -, F* - r

L1 --- = 1:6= V.= = v
I

L -

c R CL2 R R2

'cRLL C 1113 . C Z

nib L @)z
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Z(s) = + (82b)
admittance (-Nm) (s)

In Eqs. (82a, b)

R0 = Nm. (82c)

Talking in terms of circuitry

Eq. (82a) means

circuits F 1 , .... F 6
resistance R0 in series with derived from (83a)

' (s) with factor (1-Nm)

Eq. (82b) means

circuits F*, ... , F 6

resistance R0 in seris with derived from (8 3b)
I '(s) with factor (1-Nm)I

The complete model circuits for (83a) are found as circuits M 1 .... M6 in

Table 15. The model circuits for (83b) are the circuits M ... M* in Table 16.

All these twelve circuits are equivalent.

For the

admittance interpretation I(s) = F (s) of Eq. (81)

I(s) = -L- + admittance (1-Nm)F(s), (84a)R0

or

I (S) = +5 (84b)
R0  impedance (1-Nm)'F'(s)

In Eqs. (84a, b)

R0 = I/Nm. (84c)

Talking in terms of circuitry

Eq. (84a) means
Icircuits F 1 , ., F*

resistance R0 in parallel with derived from (85a)
(s) with factor (I-Nm)
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Table 15. Model Circuits M 1., M6 and M*,., Mj* (Duals of the Circuits
in Table 16) 71

R0 C1  R03 R

L2 C2 .R 2

R C -CR R0 R1  R

M*R R

44

ROT 2 ORRO L ;R R2
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Table 16. Model Circuits M*, ... , M* and M7, ... , MI (Duals of the Circuits
in Table 15)

M7  M8  M9
L, L3 , C R, R3

L2 R

R: 0 :Ro fJR OR_=c

C L L
I0

M1O0 ~ M12

L, . L 1 R

MIO~~~ 
RR2 M2

°, 
t -' -" I

m
7

R oRoR

C2 R Z RR



I

Equation (84b) means

circuitsF 1, ... , F 6
resistance R0 in parallel with derived from (8 5b)TF(s) with factor (I1-Nm).

The complete model circuits for (85a) are found as circuits M*, ... , MZ in

Table 15. The model circuits for (85b) are the circuits M 7, ... , M 12 in Table 16.

* ( All these twelve circuits are equivalent. The asterisks verify the duality between

the impedance and the admittance interpretation.

For convenience in solving realization problems we summarize instructions

for obtaining the circuits on Tables 15 and 16 in Tables 17a, b. Table 17a is deviscd

for the impedance interpretation Z (s) - F (s), and Table 17b for the admittance in-

terpretation I (s) - F (s). The function F (s) is of sub-category (2) or (4).

When the immittance function F (s) and its inverse F'(s) are both of the even

sub-categories (2) and/or (4), then we can obtain model circuits only in one or the

other interpretation. Such a function has a to'tal of 24 model circuits. They are

all equivalent, but none of them is identical with any other. Such immittance func-

tions are possible according to Tables 3a, b.

Whe .ither the immittance function F (s) or its inverse F' (s) are of the even

sub-categoi. (2) or (4), bUt the immittance function F'(s) or its inve-se F(s) is of

the odd sub-categories (1) or (3), then we obtain only 12 model circuizs (either

MI M6 andM ... M* or M, ... and M7 , ... M) andinaddi-

tion to these equivalent RLC ladder structures with exclusively positive circuit

elements. Such immittance functions are also possible according to Tables 3a, b.

Thus we close a gap which we left open at the end of Section 5. 3. The ladder struc-

tures can only be the circuits D 5 , D6 , or DII, D12 in Table 11 or the circuits

D5, DZ, or Djj, DfZ in Table 12. The reason is that the circuits D1 , ... , D4 and

D 7 , ... , DI? in Table 11 and their duals in Table 12 postulate that F(s) and F'(s)

are both of sub-category (1).

5.5 The Total of All Realization Possibilities of pr Biquadratic lmmittance Functions in Canonical
Ladder Form

Since we are able to adjust the immittance function F (s) either to the imped-

ance function or to the admittance function, we can decide that in the following in-

vestigation the function F (s) shall always be of the main-category (a). By the

interpretations Z (s) - F (s) and r (s) =_ F (s) we cover all possibilities. This

decision, however, is in general not necessary.

Summarizing the contents of Tables 13a, b and 17a, b it is easy to establish

Table 18. This table makes it convenient to get an immediate orientation on what

kind of canonical circuitry one has to expect from an impedance function Z (s) or
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Table 17a. Realization of the Impedance Interpretation Z (s) F (s)

Category of F (s): (a2), (b2), (a4), or (b4)

(1) Use the coefficients Do , D I , No, N- and the factor (I-Nm).

Apply Table 6 to get the constants u, v, w, x, z.

Apply Table 14 with these constants and the factor (I-Nm)

to get the circuits Fl, .... F 6 .
The first group are the realizing circuits M I .... M 6 in Table 15.

Resistance R0 = Nm,

all other circuit elements as obtained for circuits Fl, .... F 6 by Table 14.

(2) Use the coefficients D0, 151, , I and the factor (1-Nn) = /(1-Nr,)

Apply Table 6 assuming that all D and N are primed

to get the constants u, v, w, x, z.

Apply Table 14 with these constants and the factor (I -Nm)
to get the circuits F*, F.. *;

The second group are the realizing circuits M2 ... , M* in Table 16.

Resistance R0 = Nin

all other circuit elements as obtained for circuits Fj, F* by Table 14

Table I1b. Realization of the Admittance Interpretation r (s) F (s)

Category of F (s): (a2), (bZ), (a4), or (b4)

(1) Use the coefficients D0 , 15' N0' N1 and the factor (-N m).

Apply Table 6 to get the constants u, v, w, x, z.

Apply Table 14 with these constants and the factor 01-N m )

to get the circuits F*, ... , F .

The first group are the realizing circuits Mj, .... , MZ in Table 16.

Resistance R0 = 1INm

all other circuit elements as obtained for circuits F*, ... , F* by Table 14.

1(2) Use the coefficients V6. -Dj, N, N and the factor (l-Nm)' = 1/(l-Nm).

Apply Table 6 assuming that all D and N are primed
to get the constants u, v, w, x, z.

Apply Table 14 with these constants and the factor (1-Nm)'

to get the circuits Fl, ... , F6.

The second group are the realizing circuits M 7 ,.... MI2 in Table 15.

Resistance R0 = IINm ,
all other circuit elements as obtained for circuits Fl, .... F 6 by Table 14.
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an admittance function r (s), recognized by the numerical values of its coefficients.

One has only to identify the categories of the function and of the inverse function by

the test values T 0 , Ta , and T 1 for both functions and then one is able to find the

realizations qualitatively in Table 18. In this respect the table is novel and a highly

valuable source of information.

Table 18. All Realization Possibilities of pr Biquadratic Functions

Impedance Admittance

F (s) F'(s) Interpretation j Interpretation

Z(s) - F(s) I (s) - F(s)

D I. -. D4  Di,. .-- D4

(al) (bl) D

D 1 ,..., Dli D., D

D, Df D D "

(a4) (bl) or (b3) MI ..... M M, M

M., ... 9 M 12  MV ....

(al) or (a3) (b4) M .... M 1 ... , 6

M. .. M....

M 1 ... I M6 M ..... M
(a2) or (a4) (bZ) or (b4) 12  7 1?

M7 5 ... T. .... # M 12

Remarks:

Note that F (s) is adjusted and not the same in Z (s) and 1(s).
Find circuits D1, ... Di on Table 11

D*., DI *on Table 12

M1 . . M6 on Table 15

M, ..... M *on Teble 16

M ... M12 on Table 16

M7 .... . Mf on Table15
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Some remarks seem to be proper as to the row in the table where F (s) is of
category (a2) or (a4) and F'(s) of category (bZ) or (b4). In this case the circuits
M.. M and M7 .... M12 result from the decomposition of F(s) and the
circuits M1 ... , M6 and M ... M * result from a readjusted F(s) where the6 7' 12
D s are interchanged with the N's; by this all 24 circuits M 1 , . Ml and
Mi .... M are qualitatively obtained for the realization of Z (s) and of r (s).

As we recognize from Table 18 a pr biquadratic function of any constellation
of categories offers quite a number of possibilities of realizations. In each inter-
pretation we get a total of 8 RC or RL ladder realizations whet the function and its
inverse are of sub-category (1); there are two RLC ladder realizations with only
positive circuit elements besides 12 model circuits when either the function or its
inverse is of an even sub-category and the inverse or the direct function is of an
even sub-category. There is a total of 24 model realizations, but no RLC realiza-
tion with positive elements when the function and its inverse are of even sub-

categories.
From the engneering point of view one may prefer one or several of the offered

equivalent realizations and disregard the others. There is such a great variety to
be judged that we do not intend to discuss eventual advantages of one circuit o- er
others. This judgment is too dependent on the particular technical situation. But we
want to point out thatin particular among the circuits D 1, ... D12 , D*, .... D*
and among the circuits M1  ... I M ...... . there are usually some whose

12'2
circuit elements have acceptable dimensions and others that are not acceptable.

5.6 OIiscriminating Four Types of pr Functions

,.. regard to their realizations Table 18 suggests the discrimination of four types
of biquadratic and pr functions. When F (s) and F'(s) are both of the odd sub-
category 1, then the realizations are ladder networks in both interpretations. We
will refer to this type of function as "T ,pe A/A." When F (s) and F'(s) are both
of the even sub-categories 2 and/or 4, then the realizations are model circuits in
both interpretations. We will refer to this second type of function as "Type B/B.
When a function is of the odd sub-category 1 or 3 and its inverse is of the even
sub-category 4, and when we realize the function, we will refer to it as "Type A/B";
if we realize the inverse function, we will refer to it as- nType B/A." Evidently,
there is not much difference between the types A/B and B/A. The fraction notation
orilv indicates that in the one interpretation the realization is a ladder network, in
the other it is a model circuit. The type of discrimination thus is very general
and not restricted to functions of the biquadratic rank.
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6. PLANS FOR FI;RTIIER STUDIES

We have decomposed and realized nine different numerical examples, each of

them dealing with one typical constellation of categories of F (s) and F'(s). We

felt that these results should be published separately. A separate publication is

justified partly in order to avoid having the paper become too ambiguous, partly

because we have also elaborated computation programs by which the realization

of any pr biquadratic function can be performed rapidly and in a schematic way

that necessitates only the use of a desk calculating machine. It is anticipated that

this work will be published shortly after the appearance of the present paper.

Somewhat later we intend to publish a paper that deals with the further trans-

formations of the model circuits into non-canonical RLC circuits without trans-

formers but with positive elements.

I

i-
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Table A2. Immiittance Functions Pi and Oi-1 (i 1, 2 3.4)
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Table A3. Immitlance Functions PCIand Qi (1 1, Z, 3, 4)
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Table A4. Realizations i = 1

IA, B, C,

o~r-o ,,-vw-V,, R - ,

I R

A B, C, A, B CIRCUIT

S PS Qp" Qf' IMPEDANCEI_ Q_ __ FUNCTION

S-1 P- Q" S, Q, P ADMITTANCE

FUNCTION

L R L C C ILk k
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Table A5. Realization~s i =2

A2 B2  C

L CR CLR

A2  B? Cz A2  2  C CIRCUIT

S2  P, 0, 9s' 02- P~r' IMPEDANCE
FUNCTION

Fr P' Q~S 2 P2  ADMITTANCE
FUNCTION

L R L c c k

C C L R LR k,(12

1 R L I R a2
LC RC L LC RC L 0______
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Table A6. Realizations i = 3

A3  B3 C3

Tj R° -i'c L, L'z

A3 3

221L1C2C, 2 R2_

A3  B3  C3  A3 B3 C3  CIRCUIT

S3  P3  Q3  S- -Q p;1 IMPEDANCEFUNCTION

S;' P' Q S3  Q, P3  ADMITTANCE
3 3 - -S FUNCTION

L R, L, C2  C _ k
R, k

C2  C2  1/ LI R 2 L2  I I

R- - - -

I I R 2  __ 2
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Table A7. Realizations i = 3

A4 N C 4

V I- 2 R 2 s L2

A4  4 4 C2

It to

A4 B4 C4 A 4 d4 CIRCUIT

S3  P3  Q3  S3' Q3  p IMPEDANCEFUNCTION

S-' P' Q' $3 Q3  P3  ADMITTANCEFUNCTION

L= R, L, C1 C1 I  It_1
R, C, I
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.. Cz Ra Cz I- L2 CR2 CRaC2 _1
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Table A8. Realizations i 4

s B3 CS

C ITcI C,T z T I

i L2 RCR

A5  B5  C5  A B C5  CIRCUIT

S4 P4 Q4 S4' 0' P' iMPEDANCE
FUNCTION

S4' Pp Q S, Q p4  ADMITTANCE
FUNCTION

C- R1 L , Cl C, I k

C, C, I L, R, L I b
R, kd'I+p)

L2  R2  L2 C2  C2 _--._

I2 C L2 R? L2 .I
C2 C 2 I-t.= d (I +p)p

. - - I - R 2  0_(I+p)

LC R,C, L, 1,C, R,'Ci L, IF
I I R2 I R2 plf

L.C"' RC2 "L2 LA-Ce R2Ca L2  I+P

d~ ba+ a?)-(b, ,I-
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Table A9. Realizations i = 4

A B C6 a C CRCI
C1 C2 1 R! R2

$411 P 4 c04CRcur

S4 P4 4 S4  e0Q4 ' IMPEDANCE
FUNCTION

Si' P 0' S4  Q4  P4  ADMITTANCE
FUNCTION

.-...- ..-,

Rl 1- C,
,,

L. , k) a C I_
-•- -k- - -

L2 Ra L.2 C2 C2 k- 4~b
4

C2  C. . L2  R2  L2  0b1 O
R2 k (a4 + b,4P

IeC21 R2(-. 1.2 L R2Ci L2, b;

4 4 2
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Table Al0. Realizations i = 4
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arITrk
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Table All. Realizations i = 4

A, 80 C.

i -- i-

F A, B Ce As Be Ce CIRCUIT

$4 P4  Q4  S' Q4 P;' IMPEDANCE
FUNCTION
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