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ABSTRACT

This report derives from elementary principles the general equations of
motion for a missile utilizing a fixed-plane coordinate system, i.e., a co-
ordinate system with one axis constrained to lie in a given plane.

Included in the derivation are explicit expressions for introducing wind
and an alternate set of equations to be used when singularity conditions
are apnroached. Means are provided for autbmatically converting to the
alternate set of equations so that uninterrupted trajectory simulation can
proceed under all conditions. A complete discussion of initial conditions
is included.

The general equations can be used for flat or spherical, rotating, or non-
rotating earth cases.




INTRODUCTION

This report is part of a continuing program to give Picatinny Arsenal
a complete capability in the flight simulation of all types of projectiles
and missiles, whether ballistic or rocket-boosted, guided or unguided.

Contained herein is a rederivation, from elementary principles, and an
elaboration of the fixed plane coordinate system described in Reference 1,
“Trajectory Equations for a Six-Degree-of-Freedom Missile.” In Refer-
ence 1, a list of only the basic equations unique to the fixed plane co-
ordina‘e system is presented. This report completes this list and includes,
for the first time, a derivation for initial conditions, as well as an alter-
nate set of equations to be used when singularity conditions are approached.
Means are provided for converting to this set during flight simulation.
Finally, explicit equations for introducing wind into the equations of
motion are derived.

This alternate set of fixed-plane trajectory equations was required to
supplement (and, in many cases, replace) the existing equations utilizing
the missile-fixed coordinate system as derived in Reference 1. To be
explicit, the previous equations produced satisfactory trajectories for low-
spin projectiles, but were inadequate for the simulation of spin-stabilized
shells. The most obvious differences were in the large deflections accom-
panying most trajectories for high-spin projectiles, these being three or
four times as large as had been anticipated. Discussion of this matter
with personnel from the Naval Weapons Laboratory, Dahlgren, Virginia,
indicated the existence of a narrow band of permissible tntegration step
sizes (incremental time steps) whereby both truncation and round-off
errors are of acceptable magnitudes. It is possible that when forces and
moments are referred to a missile-fixed coordinate system (as was the case
in Reference 1), and high-spin rates are to be accounted for, this band of
acceptable time increments becomes even more narrow or perhaps non-
existent. Although this is not known with certainty, It provides the im-
petus for studying the fixed-plane coordinate system described in this
report. In particular, this coordinate system has one axis constrained to
lie in a given plane and, consequently, does not rotate with the missile.
To provide a working simulation and to determine whether this new co-
ordinate system alleviates the conditions producing unsatisfactory trajec-
tories, the equations derived in this report were programmed by the

Digital Applications Unit for the IBM 709 computer, Reference 5 contains
a description of the corresponding computer program.
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The equations again consider both flat and spherical, rotating and non-

rotating earth cases, and again make use of the Euler transformacions
(as opposed to direction cosines) to express vector quantities in various
coordinate systems.

As before, guidance factors, motion of the earth along its orbit, launcher

effects, and asymmetric missiles are not included in the derivations.
These represent potential areas of extension of the present equations of
motion.

NOTATION

Unit vectors in each of the three orthogonal directions are represented
by &, s, f. where subscript 1 denote. the coordinate system under con-
sideration. Components of vectors in each of these directions will have
two subsciipis_._ The first subscript (X, Y, or Z) denotes a component

along the i, j, k axis, respectively; the second subscript (I, E, etc.)
denotes the referencing coordinate system. Thus Vyg is the component

of the vector V along the i axis of the E-coordinate system.

Arrows over vector quantities denote vectors of arbitrary magnitude,
bars over vector quantities denote vectors of unit magnitude.

Subscripted vectors other than the subscripts mentioned above are
enclosed in parentheses, i.e. ((3.1.).

Finally ‘i(_)_ denotes time differentiation of vectors relative to the ith
de
coordinate system, while a dot over a given variable denotes scalar dif-

ferentiation with respect to time.
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SYMBOL.S

Vector Quantities

ip ip kg

iE’ iEv kE

coordinate systems

Angular velocity of (H) relative to (I)

Angular velocity of (E) relative to (), i.e., angular velocity of
the earth about its axis

Angular velocity of (H) relative to (E)
Angular velocity of (M) relative to (H)
Angular velocity of (M) relative to ()

Angular velocity of (V) relative to (E)

Vector from center of earth to the current missile CG position
Time rate of change of l; i.e., missile velocity

Vector describing wind

Summation of forces acting on missile

Summation of moments acting on missile

Angular momentum of missile

Vector giving direction of gravitational force exerted on missile

Velocity of missile relative to the air

Thrust malalignment vector

Thrust vector

P P )
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SYMBOL S (Cont)
Scalor Quantities

m mass of rocket

Iy longitudinal moment of inertia

Iy transverse moment of inertia

6,y 6 Vv Eulerian angles

¢ 9 Angles relaring (H) to (V) coordinates
p Density of air

d Diameter of missile

kpyar kye kF Aerodynamic coefficients

kH’ kép‘ k¢> Aerodynamic coefficients

fe Distance from nose of missile o CG

Ay Distance from nose of missile tw normal center of pressure

Am Distance from nose of missile to magnus center of pressure
.

B Gravitational acceleration

Radius of earth

earth
R, Gravitational acceleration at sea level
h Altitude of rocket
6o 8, Thrust malalignment angles
k Portion of thrust devoted to produce et torque
a, fi Angles defining missile position
V! Magnitude of wind velocity
L~ Angle defining direction of wind
A B GH Angles defining initial conditions




SYMBOLS (Cont)

. Denotes time differentiation

Denotes quantities referred to (V) coordinates

> Denotes the vector cross product

PROCEDURE

Several coordinate systems are utilized in deriving the equations of
motion. They are tabulated here for later convenience.

iy i kg

ig, g, kg

iy, lws ky

Inertial coordinate system; origin (O) at the center of the
earth, k| axis coincident with positive spin axis of the

earth, i; axis coincident with 0° longitude, and j; axis so

directed as to form a right-handed coordinate system.

Earth-fixed coordinate sy« em; identical position as
i, ip ky at time equal zero, but coordinates are to be fixed

to the earth.

Azimuthal coordinate system; this coo:dinate system is used
to introduce wind data into the equations of motion. The
origin of these coordinates is again at O, the 1y axis is

directed towards the missile CG, the ky axis is directed
towards the positive spin axis ol the earth, and jy is so

directed as to produce a right-handed coordinate system.

Fixed horizontal plane coordinate system; i_H axis along

missile longitudinal axis is directed from the centroid
towards the nose of the missile, iH is constrained to lie in

a horizontal plane, parallel to the Ty, . plane, and 1‘“ is

directed as to produce a right-handed coordinate system.




iy, jv, ky Fixed vertical plane coordinate system; the iy axis is coin-

cident with the iH axis, the j,, axis is constrained to lie per

pendicular to the i axis (i.e., remain in a specified vertical
plane), and the ky axis is so directed as to determine a right-
handed coordinate system.

iM, iM» kM Missile-fixed coordinate system; the iy axis is coincideat
with missile longitudincl axis, the j) and ky axes are rigidly

attached to the missile to form a right-handed coordinate
system.

The procedure will be divided into several sections, as outlined in the
Table of Contents, each describing a particular aspect of the equations of
motion, with the last section combining all that precedes it and serving
as a summary of the equations of motion. The first section will derive the
general equations of motion, and will include the necessary transforma-
tions between coordinate systems.

The General Equations of Motion

As usual, Equations 1 and 2, the basis for Newtonian mechanics, pro-
vide the foundaticn for the equations of motion.'

- d’ﬁ
IF - m —d-l-r @)
t
s d)
DI _é‘_J. (2)
t

1
Srictly speaking Equation | should read:

. . PR &R,
¥F - 4 mVvy) - m_!.._ + um m 1 4 um (h
de dt a

The latter term, um, involves the amount of mass being expelled from the rocket system,
and the relative velocities of the rocket and the exist gases, (4). This term is known as

the jet reaction and is considered aspart of the thrust, whose total makeup also includes
considerations of nozzle design, operating temperatures, and pressures. FEquation 1" uses
uin place of the scemingly indicaied V because the rocket system itself has not really
been defined in this presentation. The interesied reader is referred to References 2 and

3 for a more complete discussion.
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Here 2F and 2L are summations of forces and moments acting on the mis-
sile, R is a vector from the ceater of the earth to the current CG (center of
gravity) position of the missile, and | is the total angular momentum of the
rocket.

Since Equations 1 and 2 are vector equations in three-dimensional
space, three component or scalar equations are implicit to each. To deter-
mine explicit directions relative to the missile along which forces and
moments can be conveniently summed, consider a coordinate system whose
origin is at the missile CG and whose axes are directed as given previously

by iH’ i_H’ k .. Let & be the angular velocity of this coordinate system
relative to inertial coordinates, where
S =w._ 1 T k
xu'n ¥ @yply * @zyk (3
in terms of the (H) coordinates.

Utilizing the derivation presented in Appendix A, Equation 1 may be
rewritten as follows:

zF:.,,d_ni..mﬁ(in_R a4 ﬁ«_wm) @
de de \dt de de

where all quantities in the right hand side of the equation are understood
to be expressed in (H) coordinates. One may correctly surmise that the
presence of the &~ rerm relates the motion of the coordinate system (H),
to which forces and moments are referred, to an inertial coordinate system
(I) as required by Newton's Laws of Motion.

Rather than differentiate Equation 4 directly, it is convenient to let
d R - - -
_d..LIR;_ + '3 “(R K V VXHIH 4 VYH’H + V?HkH (5)
t

so that Equation 4 becomes

4,V d. .V
st & m(_"_.us‘v)
de de ©)

P N L
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Since V is already expressed in (H) coordinates, (see Equation 5), one
can write
B3
gy . - . - . -
el Vxuin * Wnin * Vzuky (7)
Combining Equations 3, 5, 6, and 7, and performing the indicated opera-
tions, one then obtains the three component force equations, namely:

2"I:)(H = m[VXH + (uYHVZH - QZHVYH)] in the Iy direction
EFYH = mlVy, +(w 21VxH — OxnVzy)l in thej direction (8)

2“FZH = m[{IZH @y yWyn - "’YP}"XH)] in the EH direction

One can treat the moment equation (Equation 2) in a similar manner,
obtaining first

st - W gy )
de

Denoting (&) as the total angular velocity of the missile relative to

inertial coordinates, we can write the angular momentum in the following
form:

] - Lopyyiy + Wylepyyiy * Iwp)zyky (10)

where Iy, Iy are the moments of inertia of the missile about the longi-

tudinal and transverse axes, respectively. Note that the assumption of
rotational symmetry (I = 1y) is implicitly made in Equation 10.

Since ] is already expressed in the (H) coordinate system, the time rate
-
of ] can be expressed as follows:'

dy)

3 lx((:)-r)x“i_n + lY((‘.’T)YHi_H + IY((‘.’T)ZH“.H (1)
t

lAglin. strictly speaking, terms of the following form should be included in the differ
entiation during the burning stages:

oy Ylopyy 'y(@Pzn
Howeve:, for a fairly stable rocket (no tumbling), ‘Y( "’T’YH' and \Y(o).l.) ZH 0 be

neglected. The expression'lx(m-r)x“can be written as follows:

M . d 2 .

Ix(w-r) XH mkz(m-r)x“ ] m((l)r)x“ d_‘-(k ) 2
where k is the radius of gyration. The latter term can be neglected because usually the
buening fuel has lictle effect on k2. In addition, for low-spinning rockets, theb‘(o:iner‘t;nn
also can be neglected. For high-spin rockets, however, m k (MT)).(" is .com ined wit
other terms which comptise the jet torque which acts to produce high-spin rates. The
reader is referred to Reference 3 for further details on this matter.

9
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Appropriately combining Equations 3, 9, 10, and 11 now results in the
component equations for the moments:

yy = Ifdpygy + (@yylfor) zy - wzylylo)yy)

3L YH

gy = Iylapyy + (xy(@pyy - @yylx(op)yy)

Equations 8 and 12 comprise the basic six-degree equations of motion.
These equations are of limited use, however, until one knows explicitly
how the (H) coordinate system is moving with respect to inertial or earth-
fixed coordinates. Further, one often has vector quantities expressed in
earth coordinates (such as wind and gravitational attraction) which mus:
be properly introducedinto the (H) coordinates. Consequently, additional
relationships between the (H) and (E) coordinates must be derived. In
particular, one must know how the (H) coordinate system is oriented rela-
tive to the (E) coordinates, at all times. The orientation of (E) relative to
() must also be known. Although other methods exist, as the Introduc-
tion indicates, the use of Euler angles appears to be the most straigh tfor-
ward for the present study. In this approach, one rotates a coordinate sys-
tem, initially coincident with the (E) system, about selected axes so that
after the rotations are performed this coordinate system will have the same
orientation as the (H) system. One will then have the means for expressing
vectors of one coordinate system in terms of the other.

The reader is reminded that, in performing these rotations, the 1y axis
is to be coincident with the missile axis, while i, remains parallel to the
horizontal g - ig plane.

To accomplish this end, assume the existence of an arbitrary vector,
extending from the origin of the (E) system, to represent the missile axis.

First rotate the (E) system about the k axis by an angle ¢ so that the
i' axis (i rotated) coincides with the projection of the missile axis on

the i-E—i-E plane, as shown in Figure 1 (p 11).

10




k) _— Missile axis

Horizontal plane

Figure 1

One may conveniently express this rotation in matrix form, as shown in
Appendix B.

i costy sint) 0 iE
i"| | -sing cosp o] i (13)
k' o o 1] lkg

Another rotation is yet required about the positive j' axis, (j ¢ rotated) so
tha: i, (i* rotated) is coincident with the missile axis. Denote the magni-
tude of this rotation by 6, leading to the matrix:

Ty cos @ 0 -sin 0| "
gl =10 1 0 i’ (14)
EH sin 0 cos 9|k’

To avoid difficulties later on resulting from ambiguity in the determination
of initial conditions and in other coordinate system transformations, let ¥
be defined from 0° < ¢ < 360° and -90° < 8 £.90°, for all time! Obviously
special attention must be given to the equations of motion when @ passes
through /2 since sharp discontinuities in ¥ will result. Each rotation
matrix is a linear transformation; hence, one may obtain the (H) coordinates
directly in terms of the (E) coordinates by combining both rotations. This
is equivalent to the following matrix multiplication:

TAs an example, Figure 1 would require § to take on a negative value.

11
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iy cosl 0 -sinf cos Y siny 0 ig
iyl = 0 1 0 -siny cosy O 1-; (15)
l_kH sinf@ 0 cosdl| O 0 1l kg
producing
i—H cos @cosyYy cos Osiny -sin 6 1-;:
iH ={-sin ¢ cos ¥ 0 ]_f; (16)
ky sin fcos ¢y sinfsiny cosb|| kg

Note from Figure 1 (p 11) that E (i-: rotated) remains in a horizontal
plane, or is perpendicular to kg. This is reaffirmed in Equation 16 where

the component of j; on kg is seen to be zero.

One may obtain the inverse of Equation 16 to obtain (E) in terms of
(H) as follows:

i cogcy -Sy socy| | iy
e cosy Cy SOsy| | iy (17)
kg -6 0o Co kyy

For brevity cos A and sin A have heen replaced by CA and SA, respec-
tively. It should be noted that Equations 16 and 17 actually represent three

scalar equations. To illustrate this, let us assume the velocity components
of the missile expressed in the (H) system are known and we wish to ex-
press the velocity in the (E) system. We have

Vo= Vynin * Wain * Vzukn * Vxele * Yele * Vzgke (18)

First, obtain i-“, E, E“H in terms of f;:, i:-, E;:. which can be done by using
Equation 16. Thus,
W coc.,/;.'"E + COSYA. - SOk
Sgi v Chig 4 0k (19)

eocw.", ' V)qu; ' cm?E

12
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It then remains to substitute these equations into Equation 18 and equate
the coefficients of ig, ig, KE to Vxg, VyE, VzE, respectively. Performing
these operations will yield:

VXHCOCgb - VYHS¢ + VZHSM:VI

VxuCoSy + Vy LY + V,4S65¢y (2)

Vxe

VYE

This is the required transformation.

Although much has been accomplished with Equations 13 through 20, one
must go further to obtain the rates of change of the angles ¢ and 6 as the
missile position varies in time.

Let & be the angular velocity of (H) relative to (E) where, in (H) coor-
dinates,

G = wxdu * Ovuin * 9zin (@
Appendix B shows & can also be written as
& = gkg + 6 (22)
Using the matrices already developed, one proceeds by expressing both
kE and j' of Equation 22_in Egmi_of the (H) coordinates a_n_d ﬂua_ting the

resulting coefficients of iy, 1y, kg to the coefficients of iy, jy» ky in

Equation 21. This will produce

wyy = "V
wYH = 0 (23)
wzn + ¥CO

The rates of change of the Euler angles become simply

- _“XH _ “zH 24)
Sé co

0 = wyy

13




One may note that several angular velocities have been introduced into
the equations of motion, namely, & &, and (dt). In component form, this

amounts to nine unknowns, a completely overwhelming assignment for the
three moment equations. Fortunately, not all these quantities are inde-
pendent. It can be shown (see Ref 4, for example) that if a coordinate sys-
tem (H) is rotating with angular velocity & relative to a coordinate system
(E), and (E) is rotating with angular velocity & relative to a coordinate
system (I), then the angular velocity of (H) relative to (I), @, is simply the
vector sum of the individual angular velocities. Thus,

@=-0+ 8 (26)

This can be generalized to more than three coordinate systems. For
example, continuing to use the definitions given in the Table of Symbols,
we are also at liberty to write

@p-0+d-0+a+8 @)

.
It is now necessary to obtain explicit expressions for &, (@), and (o),
each of which is necessary to the solution of the general equations of
motion.

To obtain components of Q in the (H) system, one need only convert kg
into the (H) coordinates, since the k axis was assigned to be coincident

with the spin axis of the earth. Therefore

Q - Qkp - -RSPi, + RCOky (28)

The total angular velocity, (63.r), of the missile is introduced by first
making use of the (M) coordinate system. Since the-f; and T; axes are to
remain coincident at all times, the angular velocity {1 of (M) relative to
(H) is simply;

Q-8 iy quiu (29)

By the use of Equation 27, the total angular velocity can now be written
in component form as follows:

(wp)xy - Qxy + wyxy - ASO
(wp)yy  ©yy (30)

(wp)yy = wzy + RCO

14




One may still sense the existence of too many unknowns, namely, Q, and
the three components of &. Fortunately Equation 23 gives a relation between

two components of &. Eliminating ¢ produces

WyH = —wZHtan 7] (31)

Finally, to obtain explicit expressions for (&) as given in the basic mo-

ment equation, Equation 31 is substituted into Equation 30 and the latter
is differentiated with respect to time. This leads to:

(bp)yy = Dy 9z

tan 0 ~ Wz sec’é’mYH - QCGwYH
(bp)gy = Gzy ~XS0oyy

This completes the discussion. The equations needed to obtain the
actual trajectory are summarized beginning on page 51. The next section
considers the forces and moments which constitute the “‘left’’ side of the
equations of motion (Equations 8 and 12).

Forces ond Moments

This section considers the forces and moments acting on the missile.
Excluding guidance, these forces and moments car be divided into three
categories as follows:

1. Aerodynamic

2. Gravitational

3. Jet

Since the forces and moments are essentially as presented in Reference
1, only a brief account of each will be given here.

Aerodynamic Forces

Three acrodynamic forces are considered. A brief table giving magni-
tude and direction of each is given on page 16.

15
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Force Magnitude' Dirtection

Axial drag pd’(Vr)’kDA Along missile axis

Perpendicular to missile axis
in plane of yaw

Nomal force pd‘(Vr)‘kN

Magnus force pd'(mT)X"(\’r k Perpendicular to plane of yaw?

1 . . . . . .
(V,) is the magnitude of the missile velocity relative to the air.

“The yaw plane is the plane that contains both the missile axis and
resultant velocity vectort.

These forces are illustrated in Figure 2.

Plone of yaw

Normal force
Velocity of missile
relative to air

Axial drag

Magnus force

Figure 2
The axial drag acts along the negative 1y axis. which by definition is

directed from the CG towards the nosc of the mtssile. Explicitly,

(Axial dtilﬂ) -pdl (\'r ) k“‘ (33)

\it A

The normal force components act opposite to the directions of (V)

and (V). . Schematically we have
¢t ZH "

16
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]

(Normal fovce)YH

u
e

W (V)

(Normal force)

Resultant normal force

Figure 3

Knowing the scalar magnitude of the resultant normal force and using
the geometry of Figure 3, one can deduce the component of this force act-
ing along -j_;l, namely

‘sz (vr)sz(VI)Y H

(Nomal force) = -—pd’(Vr)’kN cosa = (34)
2 ] 2
\/(Vr)YH 4 (v')ZH
Similarly, in the FH direction

-pd?(Ve)?k,, (Vr)

(Normal Force),,, -~ ' kN 'zH (35)
2 2

‘/(V')Yn + (V%

17
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The Magnus force acts in a direction perpendicular to the plane of

yaw, as indicated in Figure 4. It should be noted that, for reversed spin,
the Magnus force will act in the opposite direction.

(Magnus force) ZH

VY, + (V)2
Jzu S e L ZH
Resultant
Magnus
force
S

S

(Magnus force)y o,

(V' )YH

Direction of spin

Figure 4

Using the scalarmagnitude and the geometry of Figure 4 above, it is
readily ascertained that in the j,; direction

(Magrus force)yy

~pd’ () (VR p(V)
- —pd* (wpyy(V kg sin @ - o T XM THF ' TZH

(36)

VOVoyn + %)zu

Similarly, in the ky direction

(Magaus force) ZH

pd* (w Pxn(VOIkp(V)yy

(37)

PAVARY ] 3
VO v Yz

Procecding in a similar vein as for the aerodynamic forces, the following
table gives the magnitude and direction of each of the acrodynamic mo-

ments considered:

18




Moment Magnitude Dirscticn
Restoring pd* (V) ky(re = AN) Perpendicular to the
plane of yaw

Magnus pd’(wT)XH(V‘)k e - An) In plane of yaw
Yaw damping pd* (V) V(w 'I)ZYH + (o zZl-' ky Perpendi cular to

f ' missile axis
Roll damping® pd* (V, )kd)p((u-r) XH Along missile axis
Roll? pd’(Vr)‘kd) Along missile uxis

1
k , is used for spin-stabilized missiles, while for fin-stabilized missiles k¢p is

to be changed to k .

2
The roll moment is used ~nly for missiles with canted fins.

In obtaining the components of the above moments, one may use the
relation “'distance x force - moment,”’ applied in a manner consistent
with the geometry of the system. When expressed in vector form the restor-

ing moment equation becomes

(Restoriﬁg moment) = (r- — ’\N)I;{ x [(normai force)YHj_H + (normal force)ZHkH] (38)

This produces, in component form

(rc - AN pd* (V) kn(V ) zh (39)

/ 2 2
vIVDyy + Vzy

(Restoring moment)y

—

in the jy direction, and

: 1 ]
vV vy 0 Yy

(Restoring moment) 7H

in the k,, direction. Note that both magnitude and direction are consistent

with the above table.

Doing likewise for the Magnus moment preduces along the jy axis

~re: = Amdpd” (w P Y, Kl Yy (41
\/(V,);~|| ! (Vf);.’|

(Magnus moment)\."

19
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while along the ky; axis

-A,)pd? V k.. (V
(Magnus moment) . '(rc M)P ((‘)T)XH( r) F( r)ZH (42)

e ity

The yaw damping moment acts to diminish the yaw of the missile;
hence, this moment acts opposite to the lateral angular velocity of the
missile. The components of this moment are readily ascertained to be

(Yaw damping) yy = -pd*(V.) \/(("T)IYH + (op)yy ky cos 8y (43)

(Yaw damping) zy = —pd*(V;) \Rco.r)z\,“ + (“’T)ZZH ky sin ‘SY (44)

where 8y is shown in Figure 5 below.

g

Resultant lateral
angular velocity

(wy!?

Yow TIZH 5 Viohy + (wpiy
damping v >
moment lopiyn -—

"u

Figure 5
Writing cos by in terms of (wy)y, and (wpdyy
Cos By - (v (45)

Vo piy + (wppy

and substituting into Equation 43 leads to the component along iy

(Yaw damping)y, - vpd'(V')(mT)Y"k“ (46)

similarly, for the component alongk,,

(Yaw damping),;  -pd*(V) (wp)yk,, (47)




The roll damping moment acts to reduce the spin; hence, it is introduced
into the equations of motion with a minus sign prefixed.

The direction of the roll moment depends upon the orientation of the
canted fins. If the cant produces positive spin (i.e., a clockwise rotation
of the missile looking from the rear of the rocket), then this term is intro-
duced with a plus sign. Like the roll damping moment, the direction is
along the longitudinal axis of the missile.

It should be noted that, since none of the aerodynamic coefficients
(kp a» kn» kF, €tc.) are assumed to be linear in nature, they are not to be
takzn as slopes to be multiplied by angle of attack. Rather, these coeffi-
cients are point values obtained directly from experiment as functions
both of Mach number and angle of attack.

Table 1 (p 22) summarizes in component form the aerodynamic forces

and moments considered thus far.
Gravitational Force

In evaluating this force, distinction must be made between spherical
and flat earth cases. In the latter case, the gravitational force acts in a
constant direction (independent of the missile position) while in the for-
mer case, the gravitational attraction is directed towards the earth’s cen-
ter from the missile CG. In both cases, specific expressions can be de-
rived: the simpler case will be treated first.

Flot Earth Coase

In the absence of the earth’s rotation,' both the'l(_l and k. axes are

taken as extending in positive vertical direction. The origins of the (I)
and the (E) coordinate systems are both located on the surface of the
“flac’’ earth. Heace, mgy (y being a unit vector representing the direction
of the gravitational force acting on the missile) becomes:

S A (o

1
One should have little desire to refine the model (o include the earth’s rotation and
yet allow the assumption of a plane to represent the earth’ s geometty.
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Replacing ki by its representation in (H) coordinates, similar to Equa-

tion 28, one obtains
mgy = mgSO-i—;l - mgC@E-;l (49)
in a form suitable for substitution into the general equations of motion.
Spherical Earth Case

For this case, the direction of the gravitational force depends upou the
missile position. In particular, let the current missile position be repre-
-
sented by a vector R, where

R = R)\EiE + R\'EiE + Rypkg (50)

as shown ‘n Figure 6.

Center
of earth

Rxe

Figure 6

Dividing R by its magnitude produces the unit vector

R R RXET;Z ' Rygig t Rypke (s1)
|R] VRYE * Ryg ' Rae
Clearly,
mgy  -mgR (52)
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Combining Equations 51 and 52 and obtaining i—é, i—é, E in terms of the

(H) coordinates, there results:

(Gravity force)yy = —mg [RxgCOCY + RypCOSY - R zgSO1]
2
VRxe * Rye * Rze

(Gravity force) YH = “mg [-RxESY + RyCyl  (53)

/ 2
VRYE + Ryg + Rzg

(Gravity force)zy = _me [R xgSOCY + RygSOSY + R zpCH]
2
VR * Ry * RZE

One should note that the gravitational acceleration, g, is a function of alti-
tude. In both cases, one may write

(54)

where

8, ~ acceleration of gravity at sea level,

earth = radius of the earth,

= current altitude of missile

h{ = (R g for the flat earth case)

’:.[R;(E + Ry g + Ry for the spherical earth case.

Since the gravitational force acts at the CG of the missile, there are no
moments associated with this force. Table 2 (p 25) summarizes the results
of this derivation in component form.

Jet Forces

A single jet force is considered, the thrust, which imparts {orward motion
to the missile. Ideally, this force should act along the missile’s longitudi-
nal axis; however, due to imperfections in the rocke. design, the acwal
nature of propellants and other factors, there may be a component of thrust
perpendicular to the longitudinal axis. Since the thrust vector is defined at
a given time relative to the missile body, the thrust components will first
be .cified in the (M) coordinate system (i.e., the coordinate system that
is rigidly attached to the missile).
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Using the symbols presented in Figure 7, one can easily ascertain these
components to be as in Equation 55.

application of
thrust

Figure 7

(Thrust)XM

TXM = TCOS 8’1‘

(Thrust)y g

i

TYM = T sin 51‘ cos ‘SA (55)

(Thrust) = T = T sin 8+ sin O
M ZM T A

It is necessary, of course, to determine the components of thrust in the
(H) coordinate system along whose axes the forces are summed.

Figure 8 shows a typical relationship between the (H) and (M) co-
ordinates.

ky Lateral thrust component

ISA / iM

Figure 8
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Here S is defined as the angle between the—ﬁM and E axes. It is readily

seen that

[ (1 o o | | i_Hq

KA = 0 cosS sin S f; (56)

| ky | 0 =sinS  cosS| |y |

and, from Equation 56,
o= iy
iy = cosSjy +sin Sy (57)
E = —sin S_i; + CoS SIH
Combining Equations 55 and 57 produces the required result:

Tyxh = Tecos it
Tyy - T sin 8y cos (84 + S) (58)
Tyy = Tsindpsin(8a+9)

Jet Moments

Two jet moments exist. One unintentionally arises from the fact that the
line of thrust may not pass through the centroid of the missile. The other
is an intentional jet torque which causes the rocket to spin about its axis

of revolution. To be explicit about the former, one may define a vector?
from the CG of the rocket to the point of application of the thrust at the

nozzle exit. As before, this vector is defined in the missile coordinate sys-

tem, t.e.,
Eootxmim ' TyMiM ¢t FZMKkM

The corresponding jet moment is now given by

(Thrust moment) - ¢ ~ (Thnist)
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which in component form becomes:
(Thrust moment) XM - 'YMTZM - 'ZMTYM

(Thrust moment)YM . ‘ZMTXM - IXMTZM (59)

(Thrust moment) 5, - tymTyMm — rYMTXM

Converting these components into the (H) coordinates and substituting
Equation 55 finally produces

(Thrust moment)yy = T sin ST['YM sin 8, —rzy cos 8,1

(Thrust moment)yy T [rzy cos 1~ txy sin 8 sin 8l cos S
-T [rxM sin 51‘ cos 8/\ - ryy €OS ST] sin S (60)

(Thrust moment),,, T [rZM cos 8T = Ty Sin 5.r sin SA] sin S

b Tleyy sin 8 pcos 8, ~ 1y cos 81) cos S

The final moment, the jet torque, will be assumed proportional to the
thrust. If this moment produces positive spin, this term is to be intro-
duced into the equations of motion with a plus sign prefixed. Mathemati-
cally,

(Jet torque) kT ,; (61)

This concludes the discussion of forces and moments.

One might note that Vr, the velocity of the missile relative to the air,

has not been defined in the presence of winds. In the next section of this
report explicit expressions will be derived for this vector in the (H) coor-

dinate system.
Introduction of Winds

This section derives expressions that can be used to introduce wind
into the equations of motion and thus determine (V,). For the spherical
earth case, it wiii be assumed that wind data exists at preselected points
on the earth’s surface. For a flat carth, i is assumed that wind 1s pre-

sented as a function of range and altitude.

In both cases, if une knows the velocity of the missile (V) and the

and the air velocity (V ), cach relative to the carth’s surface, then the




velocity of the missile relative to the air (V) is given by

+

(V) (Vya) Vg = Va (62)

For the flat non-rotating earth, wind is likely to be given relative to the ground;
therefore, use of the (E) coordinate system 1s appropriate and Equation 62 may
be written as

(V) Vg - (Vdxpdip o+ Wy ~ (Vv ¢+ (Vg ~(Vygpkg  (63)
where (\;W) is the actual wind vector.

It is an easy matter to convert Equation 63 into the (H) coordinates.
Doing so produces

Moy Vyp - (Vg plCOCO s [V = (V) y JOOSY = (Vg = (Vi) 7190
Voyp  AVxg = (VxelSo Wy - (V) y g0 (64)
(Vozu - [Vxe =~ (VXgISOCE + [Vyp - (V) ylSOSY + [Vzi - (Vi) zglCO

Of course, (V) xp. (Vw)y g, and (Vy)zg can be given as functions of

range.

The spherical earth case is a bit more compiicated because of the
geometry. Also, one must account for the motion of the air induced by the
carth’ s totation in addition to wind (i.e., disturbance of the air within

this rotating aii mass).

Recalling that Equation S

dyR - L T v T v (s
~@s R Vet Nyl Y zn®a ()

V ——

de
is the velocity of the missile relative to inertial coordinates (by definttion

of ), one mustalso express the motion of the air induced by the carth’ s

rotation relative to inertial coordinates. By so Joing one can obtain the

air mass, This anll he the

o

cquivalent of Equation 62 referred to incrtial coordinates.

The air mass rotates as a whole with the carth; this s shown physically
by noticing that the rotation of the air mass is not apparent te one on the
carth' s surface. The velocity of this r?ta(ing air mass at the current mis-
sile position (specified by the vector R) is simply
(- R) (65)

;
Rot. air maxs

2V




© amgn o

The velocity of the missile relative to the rotating air mass therefore
becomes

vM/Rot. air mass V - (ﬁ x R) (66)

One must now account for the wind itself. For the spherical earth case,
winds may be conveniently introduced into the equations of motion by use
of the azimuthal coordinate system (W). This coordinate system is de-
scribed on page 6 and is illustrated in Figure 9 (p30), where the origin of (W)
has been translated to the carth’ s surface at 0' for viAsual purposes. The
wind can be considered to be a function of the height h, of the missile CG
above the earth’s surface, (see Figure 9). One method of designating the
wind in the (W) coordinates is to specify wind magnitude and wind direction
measured from North at given altitudes. It will be assumed in this report that
the wind ve<tor, Vy(h), has no vertical component. Thus at a given altitude
\7w (h) shou.d be expressible only in the Tw—kyw plane, as presented in
Equation 67, using the geometry of Figure 9.

North Current missile
CG position
P g

Typical wind /\
rw

vector
_ 1
ly Ty +
R

IR "’
o ZE

P
m

Figure 9
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(Vo) = Vg sin ¢y + Vgl cos dky = (Vedywiw + (Vi) zyky  (67)

The presence of emphasizes the dependence of wind on alticude. The
point 0' on the earth’s surface is definea by a and y where

-1 | Ryg
a tan —————
Rk
(68)
4 R7E
)/ - tan
R TR
VExE T VYE
where if
Ryg -0 ) o
Ryp <0 270° < a < 360
Ryp>0 90° <a<180°
Ryp~0 o
Ryp 0 1807 <av 270°
and
20"y = 90"

[t remains to obtain the wind components 14 the (H) coordinate system
and add the results to Equation 66. This is done by first obtaining jy
and k_\; in terms of (E) and then (by the now overworked Equation 17)

obtaining (E) in terms of (H).

Rotating first about l\-l through the angle a and then rotauing about j°
through the angle B (8 -y in Fig 9), one can see that the resultant co-

ordinate system will be coincideat with (W),

Performing the indicated operations results in

Ny [cpca Cpsa -sp n_:
vl ]S Ca 0 " (69)
K, SBCa  SfiSa (?ﬁJ K
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Combining Equation 69 with Equation 17 completes the transformation.
Thus,

23 'H (70)

iy CBCa CBSa -SB CHCY -Sy SOCY i
iwl = |S« ¢ca 0 COSYy Cy SISy "
ky S8Ca SBSa CB L_so 0o Co l—‘_HJ
leading to
Kv All 12 13 l-}-\{1
iw = Azl Azz A )
kW

where
. = CBCaCOHCY + CBSaCHSY + SBSH

2 - ~CBCaSy + CBSaCy
i - CBCaSOCY + CBSaSHSY ~ SBCH

A
A
A
A,, - -SaCHCY + CaCOSY
A,;  SaSy + CaCy

Ay SaNMICU - CaSHSO

A,y SBCACOCY + SPSaCHSY - CBSI
A, ~SECaSy + SBSaCyy

A, SACASHCY + SBSaSASY + CACH
Clearing up the remaining threads, we have

(‘;w) Oy Vo ke sy - Moyl s Vdzaky D)

where the usual algebraic manipulation results in the necessary equation

NVadxn My A Vo A

(Vw)\'n (v\v)w' Ay (vw)’/.w A (72)
\ Y (v

( w)'/.n ( ' )\'\r A (\w)zw A




Finally, the sought after vector is
(V) V=@ <K)-(Vy (73)

Note again that Vi prescribes the wind velocity relative to the rotating

air mass. Thus, for a missile moving on or above the surface of the earth
with a velocity of @ ~ R (stationary orbit or fixed syrface point), in the ab-
sence of winds would cause the relative velocity, V; to be zero. Writing
Equation 73 in component form yields

(Vg = Vxn =~ RCORyy — Vwyn

(Vv  Vyn  RCORyy + RSRzy - (Vwdyw (74)
M Vo FRSOR - Vglay

where, of course, the magnitude of (\7,) is

i' o\ '3 T ]
Vel VOt Wy Y gy

This completes the analysis of winds.
lnitial Conditions

Initial conditions for the spherical earth case will be derived first.
Initial conditions for the flat carth are immediately obtainable upon spe-

cializing certain of the parameters.

ln order to start the trajectory, a complete set of initial conditions must

be provided. Thesc are tabulated below for convenience.
Ry Vxu v fxy
Ryp Vyn M@ wyy
Ryp Vin w7H

Those conditions that depead upon a coordinate system for representa-
ms of other coordinate systems, if desired, as long

tion can be given in ter
h coordinate systems.

as known transformation cquations exist between suc

the missile orientation expressed in

Of the conditions stated above, .
known, per se. But the following

terms of ¢ (0) and #(U) 15 not usually

measurable quantities are (or at le~ -t <hould be) known:
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Longitude of the launch point A°

Latitude of the launch point B°

Azimuthal heading of the missile G® (This will be defined more explicitly
iater in this report.)

Angle of declination of the missile
from the local vertical H°

It is possible, as will be shown, to express ¥(0) and 6(0) as a function
of the variables A°, B°, G°, and H°. To do this, one rotates a coordinate
system initially (t - 0) coincident with (E) through the above measured
angles. Upon completion of the rotations, the resultant coordinate system
is identical in orientation with the (H) coordinate system at launch. The
(H} system is also defined by simply specifying ¢ (0) and 6(0). Each of
the resultant rotations can be expressed in matrix form, one matrix contain-
ing the four known variables and the other matrix containing the two un-
known variables. One is then at liberty to equate corresponding terms of
the two matrices, since each actually represents the same coordinate sys-
tem. A particular notational schem~ is used to distinguish the several
rotations performed. Attached to each unit vector is a series of primes, the
number of which denotes the number of rotations already performed.

The purpose of the first two rotations is to locate the 1 axis so that,
when extended, it passes through the CG of the missile at time t = 0.
This is done by first rotatirg about -II: through the angle A° so that the
i' axis lies on the sarie loagitude as the missile CG and, secondly, by
rotating about i through the angle BY, the latitude of the missile position.
These rotations are used in the same order to obtain the position of the
azimuthal coordinates; hence, one may use Equation 08 with « and B

replaced by A and B, respectively. Thus

] CACB SACB  -SB| ] TE1
A -SA  CA 0 TE (79)
i | | <ASB sAsB cB kg
The purpor¢ of the next two rotations is to orient the i axis so that it

becomes coincident with the missile axis.

In particular, the third rotation is about i'' through the angle G”, so
that after this rotation is performed -k''* coincides with the projection of
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the missile axis on the j''' = k''' plane. In matrix form, we have
)

-

-i-'_ﬁ-: l 0 O ML

1
il o <6 sG o (76)
k' 0 -SG CG k'

The fourth rotation is about j''"' through the angle H® so that i*''"' is
finally coincident with the missile axis. Upon examiring the geometry of
these rotations, H° is seen to be the angle of declination the missile makes

with the local vertical i''.

Mathematicaliy,
i'll' CH O _SH il'l
jllll 0 1 0 j“' (77)
kl'll S!.i 0 CH kll.

it bn bn bn iE
e - by by by, lg (78)
k't bu bu by, kh‘ -

where

b,, CHCBCA - SHSGSA - SHCGSBCA
b,, CHCBSA 1 SHSGCA - SHCGSBSA
b,  -CHSB - SHCGCB

b,, - -CGSA + SGSBCA

b,,  CGCA « SGSBSA

b,, SGCB

b,, SHOBC A - CHSGSA - CHOGSBC A
byy  SHOBSA  CHSGC A+ CHOGSBSA
by,  ~SHSH « CHOGOR

Although one may feel that a sufficient number of rotations have already

been performed to obtain 1 coincident with the missile axis, there is
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yet no assurance that )'*'"" will lie in a horizontal plane, as required. This

situation is remedied by performing a fifth rotation about 1 *''* through an
angle L such that the resultant position of j''** lies in thehorizontal
plane. In matrix form

— 1 [ — |

iH l O 0 illl'

iH = 0 CL SL i"“ (79)
ky 0 -SL | |k

The magnitude of L is as yet unknown. Substituting Equation 78 into
Equation 79 produces the matrix

. _
i by, by, by, i
i b, ,CL + bySL  b,,CL + b,SL  b,,CL + by,SL i
?,;J l—b“SL ¢ byCL  -b,,SL ¢ b,,CL  =b,,SL + b,,CL kg

which enables one to convert from (H) to(E) coordinates. Equation 16

T - 1 [ =1
0 COCY CHSY -6 i

i -Sy Cy 0 i (16)
Ky, |socy sesy cal | kg

also relates the (H) and (E) coordinates. Sincc these sets of equations
are equivalent at the start of the trajectory, one simply compares corres-
ponding terms, from which one obtains L as well as 4 (0) and #(0).

In particular,

Sin (0" -b,, (81)
Sin U(0) _._b'_'_.._.._
Cos 6(0)
(82)
Cos () _Du
Cos }(0)

16

(80)




and by using

b,y cosL + by, sinL=0

(83)
b,; cosL 4+ b, sinL = Cy
one obtains for L
Cos L = 'bn C‘/’
bz: bsz - bn bzz
(84)
Sin L = b,, Cy

bzz b:z "'bn bzz

Although L need not be explicitly used in determining ¥ (0), 6(0), L com-
pletely describes the missile orientation at launch.

Since ) was restricted between +90°, the quadrants of each angle are

uniquely determined in the preceding equations.

The initial linear and angular velocities may be given in terms of either
the (E) or the (H) coordinates, although & is usually most easily expressed
in the (H) coordinafe system. Perhaps it would be best at this point to
illustrate the theory by a brief example.

Let us suppose that it is desired to launch a rocker as pictured in Fig-
ure 10 (p 38). We make the following assignments:

A = 30° (Longitude)

B = -40° (Latitude. Note the negative rotation about j' for the Northern Hemi-
sphere; hence, the minus sign).

G = 10° (190° - 180° so that the negative k™' axis will coincide with the
line 0* P).

H - 35° (Angle of declination from the local vertical).

¥ (0) and 0(0) can then be determined by use of the equations up to and

including 84.

Let us now introduce a 5° yaw angle in a plane containing the local
vertical, measured towards the north, as pictured in Figure 11 (p 39). From
the geometry of Figure 11 (b), one can obtain the components of the mis-
sile velocity in the (E) system and use the transformation Equation 17 to

obtain V V,.,and V Q is simply the spin of the missile as

XH’> "YH ZH’
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Diagrem lllustrating Initial Conditions (Il)

North
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Initial velocity vector

R Missile axis

Locd vertical
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Figure 11
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observed in tie (H) coordinate system. wyy and w,y are the lateral

angular velocities of the missile as observed from the surface of the earth.

Sketching the rotat:ons in sequence before numerical values are assigned
to these quantities can be helpful.

We will now specialize the results so that they are appropriate to the
flat earth case. As has been mentioned previously, the vertical is to be
the E axis, while the 1_[: axis will be taken as downrange. One conveni-
ent way of ascertaining initial conditions is to first obtain the 1" axis
coincident with the kg axis; then, with G° and H® known, compute ¢ (0)
and 6(0). Referring to Figure 10 (p 38), we replace the 30° with 0° and
the ~40° with —90° {or 270°). The ' axis thus achieves its first desired

orientation. Mathematically,
A - OD
B 270°

Our matrix Equation 78 for arbitrary angles G and H now becomes

— r—
[ o [ SHCG  SHSG  CH P

] -sG G 0 ie (85)
P ~CHCG  -Chs3G  SH kg

When the aporopriate quantities are substituted o quation 83, L. be-
comes zero. Using these results to obtain ¢ (0) and 6(0) for the flat earth
case gives the following:

@ G
#(0) H-090 (86)
L o
foe
A 0"
B 70"
The other quantities Vi . ... @y are, as before, treated 2ualogously,
although R y o Ry and R, may (if appropriate) be assigned values of

“Cro.
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canas »




castea®s 8oam

This concludes the section on initial conditions. More information will
be provided on "'is subject when the alternate set of equations, as derived

in the next sec..un, is used.
Singularity Conditions ana an Alternate Set of Equations

This section presents an alternate set of equations to be used when
singularity conditions are approached and, equally important, the means to
convert to this set during flight simulation.

As indicated under the General Equations of Motion, speciai atcention must
be given tothe equations of motion when ¢ approaches + #/2. As hadbeen antic-
ipated, the term o, tan f in the cquations of motion approaches infinity as # ap-
proaches 90 . Furthermore,  becomes indeterminate when this singular condi-
tion is reached. Unfortunately, # 90 occurs whenever the missile axis be-
comes vertical, the occumence of which cannot beignored. To avoid this condi-
tion, the (H) coordinate system will be replaced by a new fixed-plane sys-
tem labelled the (V) coordinates. As outlined in the beginning of the pro-

cedure, j is consuained to lie perpendicular to the i axis (i.e., to lie in
a specified fixed vertical plane) while iy is to be cotncident with the mis-
sile axis. This change necessitates redefining the Euler angles, and deriv-
ing equations ot transformation between the two coordinate systems,

To satisty the conditions imposed upon the (V) coordinate system, the

rotations tadirated below are made.
1. A rotation about i, of mzgnitude y.

Y A rotation about i' of magnitude @, so thati'' iy becomes the

-

missile axis.

To avoid ambiguity, the following angle testrictions were observed:
0_¥ W0
0-6 180
In matrix form

W (8 o -8 1 o 0 o

\P

N o 1 0 0 C¥ sV Ve (87)

\

Vo § o0 8 o sV ¥k,
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After multiplying, we have

iy C® sBs¥ -seCY iE
iv] =1o cY sY iE (88)
ky s@ -ces¥ cecy kg

Note that, as required, jy has no cdmponent along ig.

Rather than introduce new notation, a prime over a given ‘‘omega’ will
denote that the particular angular velocity that was previously referred to

in (H) coordinates will now refer to the (V) coordinates.

Continuing in a manner analogous to the horizontal coordinate system,
we can write

o =¥+ 07T =V(CcOT, +0k,)+ 0T, (89)

or iii component form

wyy = Yce
W)y, = ) (90)
w.ZV = ¥Ys@
and for later purposes
W,
why = Y D
XV tan 0

Note that, when © = 0°, a singular condition is again present; however,
investigating the geometry of the rotations for ¥ and @ will show that this
occurs when the missile axis is horizontal rather than verucal, a situation
for which the previous set of equations is applicable.

The angular velocity of the earth in the new coordinates becomes

D- Qi = (-RSBCY + Qs¥j + QCOCY 92
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Letting Q' be the angular velocity of the (M) coordinates relative to

(V) coordinates, we can write
TR TN RN (93

or, in component form (after using Equations 91 and 92),

w
). = ZV_ _qsecy

WPxv ™ xv' 1 @
(w'T)YV - w.YV + Qs¥ (94)
(W) 5= ©hy + QCcecY

Differentiating Equation 94 yields

! - A ) “zv - Q [COCYO - sasYY
()yy =y~ 250+ Lo -2lc S@sYY]
(Op)yy = @4y + RCYY (95)
()5 = aly, ~Q[SOCYE + COSY Y]

One may note that Equations 8 and 12, the basic component equations
of motion (as well as most forces and moments), were derived without
first specifying the orientation of the (H) coordinate system; hence, they
are equally valid in t_he (V) coordinates. Therefore, using the '‘omegas”’
and the “‘omega-dots’’ derived above, along with the new transformation
equations, produces an alternate set of equations valid for vertical orien-
tations of the missile.

Since both sets of equacions have their own singularity conditions, it
it necessary not only to have both sets of equations available but it
should also be possible to convert from one system to the other as the
need arises. [t is the purpose of the next few equations to establish this

conversion.

By definition the i axes of the (H) and (V) coordinates are co:ncident;
hence, if an additional rotation is made about the i, axis so thxt j

rotated lies in a horizontal plane (as determined by _1: and T:) then the

(V) coordinate system will become coincident with the (H) coordinates.
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Let us denote this additional rotation by ®, whose magnitude is yet un-

known. In matrix form

iy 1 0 0 iy
inl=10 co seo v (96)
ky 0 -sb Co l ky

Combining the inverses of Equations 88 and 96 eventually produces

i ce seso seco i
T | = | s8s¥ c¥cod - ces¥se -C¥sh - cas¥ce iy | N
kg -SOCY  SYCO + COCYSP ~-SUSO + c@c\Pcd)J | %y |
Comparing this with Equation 17 yields explicit expressions for ob-
taining ¥, ©, and @ in terms of V and 6, as follows:
Cos ® - cos fcos ¢ (98a)
SinW - cosfOsingy. os @ - sin 6 (98b)
sin sin ©
and
Sin® - =sin Y . cos® - sinfcos ¢ (98¢)
sin @ sin ©

Again no ambiguity results from the restrictions made earlier on © (i.e.,
the quadrants of @, ¥, and ® are uniquely determined).

Knowing ¥, ©, and @ and, of course, ¥, 0, ¥, and 6, we are now in a

position to determine the angular rates of change, ¥ and ©.

This is accomplished by differentiating Equations 98a and 98b, producing

n SOCYH + COSYY:
el Y
@ (99)
and
u o SOI-SOSYH + CHCYY ] - CHSYCOR
i [~SHSUA + COCYY | - COSYCOO (100)
C¥sin? @
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if ¥ happens to be either 90° or 270°, one can differentiate the second
equation (98b), obtaining instead of Equation 100

\i) _ -S8CHh + S6CO0 (101)
SY sin?@®

to eliminate the singularity.

Once these derivatives are known it follows, from Equation 90, that

Wy = ¥ sin ©
_ (102)
[} = @
“yv
To obtain QY ,, one need only equate the two expressions for (wp)ys
obtaining

(4]
Ry + taf\(:) -QSBCY = Q- wy tan§-QS9  (103)

or, since SOCY = S4,

“Zv
tan

To complete the transformation, Equation 96 again comes into use. We
have for the invariant vectors (force, moment, and velocity)

= F

XH Lxv = L

Fyv

XH
Fyy = FyyC®-F,, s Lyy = LyyCP-L,,S0
F,,, = F,,S0+F, Co L,y = LY“S¢+LZHC¢
(109)
v = Vxu
Vi -V cb-v SO
YV YH ZH

V! =V S¢+V CO
YA YH ZH
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Other equations required for using the fixed vertical plane are

Vxg V)'(VCG) + V}‘VSQ

(Gravity force), = mg SOCY (flat earth)

(100)

2 - 2 [RXEC@ + RYESGS"P - RZESGC\P]
\/RXE PRy Rz (Spherical earth)

—mg

(Gravity force)xV =

with similar expressions (tabulated in the Summary of Equations, page 51)
for the j and k directions.

Concerning winds, we use the two matrices shown below

iy CBCa CBSa -SB co 0 SO iy
iy | - |Se Ca 0 sos¥  c¥ -cosy iy | (107
ky SBCa  SBSa CB -sOcY sY cecy ky

which produces, in a manner analogous to a previous result,
Mxv = VdywAz + (Vw)zyds,
where now

A;, - -5aCO + CaSOSY
(108)
A}, - SBCaCO | SBSaSOSY - CRSACY

This result and the other two components are tabulated in the Summary of
Equations (p 51). Needless to say, (Vr) is determined from Equation 72

written in terms of the (V) coordinates. Wind for the flat earth case is
analogous to that of the (H) coordinates. The resulting equations are also
tabulated in the Summary of Equations section.

Before leaving this section, three derivations are yet required. These
involve expressing the thrust and thrust moments, specifying new initial
conditions in the (V) coordinates, and converting from (V) back to (H).
We begin with the thrust equations.

Since ® is defined as the angle between the-rv and T; axis, Figure 8

(p 26) may be modified as follows:




R

=]

L oteral thrust
component

Figure 12

from which it is clear that the thrust components expressed in the new co-
ordinates are given by Equation 58 with S replaced by S'. Thus,

TXV =T cos 5.1.
Tyy=Tsindpcos(5,+5') (109)
TZV =T sin 8.1. sin (5A+ SY)

7 .
At changeover (i.e., when converting from (H) to (V) coordinates), angle
S is defined by

S=9+8S (110)
after which the following is used

S'=f" Qde+ s

t changeover |t changeover

Use of these equations implies that there is no reorientation of the (M)
coordinates; hence, all quantities previously referred to these coordinates
(such as 8,, 8 ry\y fyys fzy) remain constant when changing from (H)

to (V) coordinates.

One similarly replaces S by S' in Equation 62 to obtain the thrust mo-
ments in the (V) coordinates.

This completes the transformation equations pertinent to the thrust terms.
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Initial conditions must be provided in the (V) coordinates, because of
the possibility of ‘‘vertical launch.’”’ Actually, much that has already been
derived in the section on initial conditions can be used here. The enly
real change is that angle L has to be redefined relative to the (V) coordi-
nates. Angles A, B, G, and H are defined as before. Let L' denote this
new angle. It is determined by noting that Kl— is to have no component

along -i_g, in place of E This is effected by equating Equation 80<(with
H’s replaced by V’s) with Equation 88 (instead of with Equation 16 as
was done before). Mathematically, we have

Cos €X0) - b,,

sy b cy . -bu (112)
=) ®
We have for L
L' . - b,, C¥

bZI bu - bn bzz
(113)
SL! b, ¥
bz 1 bu - bn bzz

where b,,, ..., by, are dclined as before.

For the flat earth case, again setting A - 0°, B 270°, we.have

Cos &0)  SHCG

Cos W0) -¢H (114)
S@
Sin Y0) - 36
in ¥(0) %

Finally, it is necessary to determine expressions for converting from
(V) to (H) coordinates. To obtain these expressions, one can proceed in a
manner similar to previous derivations.

An angle D' is defined such that when a rotation of this magnitude is
performed abour iy, the J, axis will then lic in the horizontal planc (i.e.,

parallel to the equatorial plane). This rotation expressed in matrix form
will yield Equation 96, with ® replaced by ¢
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Postmultiplying the mnverse ot Equacion 88 by the inverse of Equa-

tion 96 produces -
i 0 sOsd SO iy
iE SOSY  CYCd - COSYSD  —CYSD - COSYCE' iy
kg ~SACY  SWCD  CACYSD  -SO'SY .+ COCPH'CY K,

Comparing Equation 119 with Equation 17 below

i CHCY =Sty SHCY iy
ﬁ | cosy Cy o sesy m (17)
kg -S0 0 o kp,

results in the following transformations:

cp LBy, SOSY
Co co
(116)
sor TSY cer G
SO Se
No ambiguity results, since -g T _:

To obtain the angular velocitics, one differentiates Equation 116,

obtaining
G CHCPE - sasYy 0
o
D COLCOSYE - SOCYY] |« SesYsor)
¥ (118)
Cuicos? 0
If y 15 90" or 270", onc can use

G LS00 - COso (119)

Syrcost 0

Equation 104 completes the transformation of the angular velocities.

19
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Solving for Qyyleads to

)
Qxn  Qbv + 0oy tan A + —2Y. (120)
XV ZH tan ®

where both Wy 4y and wgzy are defined by Equation 23.

When Equation 96 is used, the forces, moments, and velocities can be ex-
pressed in (H) coordinates, given their representations in (V) coordinares.
These auxiliary equations are tabulated in the following section of this
report.

This, therefore, completes the transformation from the (V) to the (H)
system. A complete tabulation is presented in the following section.

Summary of Equactions
The equations of motion as derived in the preceding five secticns are

summarized below. In the writing of the equations, the primes have been
dropped when working in the (V) system. No ambiguity should result.
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RESULTS AND DISCUSSION

The final equations resulting from the derivation are tabulated in the
preceding section. There are, however, many aspects of the equations that
have not been discussed. It is the purpose of this section to consider
briefly some of these aspects and limitations and to mention what is in-
volved in incorporating certain refinements in the equations as presently
derived.

One might begin by noting that a typical rocket trajectory consists of
several flight phases. Explicitly, these phases, typical for a two-stage
rocket, may be tabulated as follows:

1. Acceleration of booster and main stage
. Coasting of booster and main stage
. Separation of booster and main stage
. Coasting of main stage

. Acceleration of main stage

[« NV - " I S ]

. Free flight of main stage.

These phases are in direct correspondence with those used in the six-
degree-of-freedom digital computer trajectory program at Picatinny Arsenal.
The user is thus able to run any or all of these phases. Phase 3 is effected
by imparting a short thrus: tu the main stage, simulating the actual booster
separation.

Since the aerodvnamic coefficients, ccntess of gravity, pressure, etc. are
not necessarily identical for all phases, several sets of such data are
often required to simulate a complete trajectory. The equations in the pre-
ceding scction of thi. report a.e used ror a1l phases.

To numerically solve the differential equations of motion, a modification
of the third order Runge-Kutta technique is used (Runge-Kut-1-Gill). This
numerical scheme appears to be adequate for both low - and high-spin pro-
jectiles, although inclusion of thrust malalignments remains to be investi-
gated. As is indicated in the Introduction. however, i: appeared that th's
numerical scheme was not satisfactory when high angular rates oi change
were implicit in the equations themselves. This condition pertains to high-
spin projectiies for which the fixed-plane coordinate system is rigidly
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attached to the missile (as was originally done). This is an advantage of
the present coordinate system.

Other aspects of these equations, such as the use of thrust modification
factors, the atmospheric model (ARDC Atmosphere of 1959), etc., will be
discussed in a forthcoming report.

Some of the refinements of the equations are discussed below.

1. Introduction of an ellipsoidal earth model. This modification has
far-reaching effects on the equations. For example, the direction and mag-
nitude of the gravitational attraction (consistent with the earth model)
would vary with missile position. Additional coordinates would have to be
specified on the surface of the ellipsoid to properly introduce wind data.

In addition, an iterative scheme is necessary to compute the altitude of the
missile if it is naturally defined as the shortest distance from the missile
CG to the earth model. Initial conditions would also be modified accordingly.
For increased ranges and accuracy requirements of trajectory simulation,

the ellipsoidal earth refinement may well become necessary.

2. Treatment of asymmetrical missiles. Asymmetrical missiles can
arise from two sources. The more severe situation is present if the ex-
ternal missile configuration does not possess rotational symmetry. For
this case, the transverse moments of inertia could vary about the fixed-
plane coordinates as the missile rotates. Also, specific data relating the
resultant point of application of the acrodynamic forces would have to be
provided for accurate results. A second asymmetrical condition can occur
for externally symmetrical missiles when the missile CG is offset by a
prescribed amount from the longitudinal axis of the missile. This obviously
modifies the lever arms in the moment equations and may also introduce
time-dependent moments and products of inertia.

3. Other refinements could include guidance and launcher effects, both
of which can play prominent roles in trajectory analysis.

In addition to the limitations listed earlier, two assumptions were im-
plicit in the derivation. The first is that the motion of the earth about the
sun was neglected; for most sub-orbital trajectories this phenomenon can
be ignored. The second assumption is that the rate of change of inertias
was neglected (i.c., i terms during the thrusting periods). For missiles

67




possessing excessively high burning rates with large angular velocity com-
ponents, the magnitude of these terms should be investigated.

A final word about the equations is that there is no estimate of the dis-
persion of the missile. This requires the computation of several trajectories,
each for a slightly different initial condition, with appropriate statistical
combinations of the various ranges and deflections from a fixed standard.
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APPENDIX A
Rotating coordinate systems

It is the purpose of this Appendix to express the rate of change of a
vector relative to fixed coordinates, in terms of rotating coordinates. Briefly,
this analysis answers the following question: ‘‘Given a particle whose
motion is known, how would the particle’s motion appear to someone
situated on a coordinate system thar is itself in rotation?”’

Obviously, one must know the motion of the rotating coordinates relative
to the fixed coordinates. To be explicit, let (I) denote fixed coordinates
and (H) a rotating coordinate system, whose origins are both coincident.
Further, let & be the angular velocity of (H) relative to (I). This motion
might be as depicted in Figure A-1, where the three dotted discs represent
the paths of each axis of the (H) system for the given constant &.

Fig A-1
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Let Rbe an arbitrary vector. Clearly, R has a representation in the (H)
system as foliows:

iy + Ryyiy + Rz ky (A-1)

R = Ryy

To determine the rate of change of R relative to the (I) coordinates in terms
of the (H) coordinates one must account not only for th_e ch_;anging magnitude
of R, but also for the variation of the unit vectors iy, jy, ky (which help

represent R)relative to (I). Mathematically:

4R 1 = 1 = o+ - dig _  dijn diky
A = Ryyiy + Ryy iy + Rop kyy + Ry — + + Rzy—
. XH'H* "YHI)H * "zH*H * RXH a0 YH ZH d

(A-2)

The first three terms of Equation A-2 define simply how R itself is changing
independent of any moving coordinates. The latter three terms describe the
motion of (H) with respect to (I). It is noteworthy that the I subscript de-

notes differentiation with respect to the (I) coordinates. To elaborate fur-
ther, if I were replaced by H then Equation A-2 would read

-

d R

H _ . - | - . - AL
= Renin * Ryy iy * Ry ky (4-3)

since, for purposes of the differentiation, ;H' 1H» l-(-H would be fixed.

->

dik
The task remains of obtaining expressions for -%:—ﬂ, ceey Jd_tH To do

this, let us “isolate” the i vector as presented in Figure A-1, and define
some new quantities as given in Figure A-2. Further, let




N,

-i-H (t + At) denotes the position of TH at time ¢ + At. Clearly, by the defi-

nition of a derivative,

de A0 At

and from the geometry of Figure A-2

-i-H (t+ At)‘TH (t)= A-i-H =TH sin 6 [wAt]

we may write

TH sin 6 wAt
At

!dl iy
I de

=

and in the limit

d i i, sin @ @At -
_.._l H = Lim ——-—-...-_ll‘l s = iH sin Qo
dt| Aes0 At

(A4)

(A-5)

(A-6)

Equation A-6, however, is very reminiscent of the cross-product, namely

-
dy iy
de

- -
= |J@x1

and, if one examines the directions, one can indeed state

dy iy
—_— X i
de H

4 -

(A-7)

(A-8)

Since T" is typically representative of each coordinate axis, we also have
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It is natural to substitute Equations A-8 and A-9 into Equation A-2. This
produces

dli ¢ - . - . - - -
5 = Bxu i * Ry iy + Rzp by + Ryy @x iy

+ Ryy @x ) + Rzy @x ky) (A-10)
which one may write as
%?:f’_dﬂ_tg»f&x Ryp igg + @ x Ryg j 1+ @x Rz ky (A-11)
or finally
IR 4R o g (A-12)
t de

which, in the text proper, is the basis for Equation 4.
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APPENDIX B
Matrix representation of rotetions

Assume the geometry of Figure B-1, where a rotation of magnitude ¢ has
been performed about the k. axis, producing new vectors i* and j*.

A ;E' :'

Fig B-1

Clearly the projection of i* on the ig axis is i* cos ¢ = cos ¢
(all vectors shown are of unit magnitude). Continuing in like manner for
all possible combinations, one may form the following table:

| l-e :e
i’ cos ¢ sin Y 0
i-‘ ~-sin ¢ cos Y 0
K 0 0 1

Here, for example, ~sin ¢ is to be interpreted as being the projection of i—'
on the ig axis.

1f we now choose to represent i' in terms of its components along i £’ is.
and kg, we write
i -cosdars+sin¢i~s4ois (B-1

3
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Though matrix multiplication, we can write not only i', but also j* and

k', not separately as in Equation B-1, but together in one matrix similar

to the given table. Thus:

- - - -

i cosy  siny 0 [ iE

' = - sin Y cos Y 0 ig (B-2)
' 0 0 1] ke |

or Equation 13 of the text.

It might be mentioned that this development is not intended to be rigorous;

however, it should enable one to obtain these rotation matrices without
difficuley.

Finally, let us complicate the above and now assume that i* and j' are
rotating about kg with some angular velocity o,. Clearly w, is directed

along the I.t;: axis, and further, in time At we have the relation

. Ay

i M === At (B-3)
At

or, in the limit, as \t approaches zero

o« d
lw.? = —d—(—- (8'4)

Finally, combiring both magnitude and direction, we can write
‘:’a ' c’k-li (B-5)

We can do likewise for a rotation about ' . obtaining, for example,

w, Ay (B-6)

where 6 is an angle defined analogously in the i* - k* plane as () was de-
fined in the i-E - ’-l- plane.

Since angular velocities may be added. we can combine Equations B-$
and B-6 and write

@ w o w Ukg e B (B-7)

which, in the text, is Equation 22.
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