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Abstract

The concept of the wave packet is used to obtain some general results on the
propagation of signals in dispersive media. The dispersion of a Gaussian carrier
pulse and a square wave carrier pulse in an isotropic plasma is carried out using
the wave packet concept. A general analysis of transient wave propagation in
isotropic plasmias is given using Laplace transform methods. Solutions are given
in terms of series solutions which may be expressed in terms of Lornmel functions.
Integral solutions which can be ear.-ly evaluated numerically are derived using the
convolution theorem arid using contour integration techniques. The solutions are
useful for sk.ort dispervion lengths.
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Transient Signal Propagation in
Lossless, Isotropic Plasmas

Volume I

1. INTRODUCTION

The study of propagation of transient signals in dispersive media dates back to

the early years of this century. Following Einstein's publication of his special

theory of relativity, concern arose over the fact that in reg.ons of anomalous

dispersion the group velocity is greater than the free-space velocity of light, c.

Since it was believed that the group velocity was the velocity at which energy is

trannF orted by the wave, this condition of anomalous dispersion appeared to violate

Einstein's theory.

This paradox was correctly explained by Sommerfeld (1914) who showed by

making a high frequency expansion that the very first part of a signal, called the

signal wavefront, arrives at a given point with the velocity of !ight, c. Sommer-

feld's solution is valid for only a short time after the arrival of the signal wave-

front. By using a saddlepoint method of integration Brillouin (1914) found

solutions which are valid in a certain time interval following the Sommerfeld

region. The signal in this region is called a precursor since it precedes the

arrival of the main signas. This work of Sommerfeld and Brillouin has been

summarized in a book by Brillouin (1960) in which some of the important early

papers have been reprinted.

(Received for publication 17 February 1966)
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The arrival of the main signal follows the precursors. However, the standard

saddlepoint method of integration cannot be used in this region since the saddle-

point is approaching a pole in the complex plane. Methods for appropriately

modifying the saddlepoint method under these conditions have been discussed by

"Cerrillo (1950). van der Wearden (1950), Rnd Clemmow (1950). These techniques

have been used by Pearson (1953) to describe transient propagation in acoustic

wavegu'des, which have the same dispersion equation as a lossless isotropic

plasma. Electromagnetic waveguid,'s also have the same dispersion equation and

the saddlepoint method of integration has been applied to these problems by

Cerrillo (1948), Namiki and Horiuchi (1952), and Karbowiak (1957).
The solutions discussed so far are approximate solutions that are valid only

after the signal has propagated a long distance through the dispersive "-eO:a. The

detailed consideration of these types of solution will form the subject matter of a

second and subsequent report on this topic.

The present report consists of two main parts. In Section 2 the well known

concepts of a wave packet and group velocity are applied to the propagation of

pulses in a dispersive medium. This method has been used to describe the propaga-

tion of a rectangular pulse in a waveguide by Cohn (1952). Elliott (1957), Knop and

Cohn (1963). and Wanselow (1962). The propagation of a Gaussian pulse in a wave-

guide using this method has been described by Forrer (1958). These solutions only

apply to quasi-monochromatic signals. In Section 3 more general solutions which

are valid for arbitrary signals which propagate only a short distance through the

plasma will be considered.

Jaeger and Westfold (1949) have considered both the propagation of an initial

disturbance in a plasma when the spatial dependence is prescribed as well as the

disturbance that is radiated when the time variation of the electric field is pre-

scribed at some position. They have written solutions in terms of convolution

integrals and have studied the Fourier spectra of several initial disturbances. They

have applied their results to the solar corona in an attempt to explain some of the
phenomena associated with bursts of solar noise. Some numerical results based

on convolution integrals will be discussed in Section 3.1. Some of these results

have been given by Case (1965).

Exact integral solutions may be obtained by contour integration. Cerrillo (1948)

has discussed such solutions, and in Section 3.3 two possibilities will be described

in detail and numerical results will be presented.

For the case of a turn-on sine wave the exact solution may be written as a

series of Bessel functions. These solutions have been discussed by Cerrillo (1948),

Rubinowicz (1950), Gajewski (1955), Kovtun (1958), and Knop (1964). Cerrillo (1948)

and Kovtun (1958) have expressed these solutions in terms of Lommel functions.

These series solutions will be discussed in Section 3.2.
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Finally, the experimental work in which observations of transient dispersive

effects have been observed should be mentioned. As has already been pointed out,

the dispersion equation is the same for acoustic waves in fluid-filled tubes,

electromagnetic waves in waveguides, and electromagnetic waves in lossless,

isotropic plasmas. Each of these situations has been investigated experimetntally.

The transient response of sound pulses propagating through fluid-filled tubes

has been observed by Anderson and Barnes (195:3) and by Proud, Tamarkin, and

Kornhauser (1956). Similar experiments have also been carried out by Walther

(10161), who in addition observes the pulse compression of a frequency modulated

acoustic wave.

Transient signals in waveguides have been observed experimentally by Saxton

and Schmitt (1963), and Ito (1964, 1965). The best measurements are those by

Ito (1965) who measures the transient response of a short Gaussian envelope

carrier pulse. The results show that the theoretical solutions of Forrer (1958) do

not adequately predict the response. However, good agreement is obtained with a

solution based on the method of stationary phase.

The dispersion of pulsed dc and rf signals in plasmas have been observed

by Schmitt (1964, 1965). The response of short unidirectional pulses is oscill.tory

in nature with a "ringing" frequency that is characteristic of the plasma

frequency. Such electromagnetic pulses can therefore be used as a diagnostic

tool.

2. WAVF" PACKETS AND GROUP VELOCITY IN ISOTROPIC PLASMAS

The simplest ideas concerning the propagation of signals in a dispersive

medium involve the concept of a wave packet. A wave packet is a signal which

contains a narrow band of frequencies centered about a carrier frequency. The

frequency spectrum E(u# is then some type of a peaked function and is related to

the time function t(tN by the Fourier transform pair

4-.

4(t) • f E(a* eiWt dw (1)
-4.

+00
E( f F(t) e-t Wt dt 2

2d. 2
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For examp]l., for a Gaussian envelope carrier pulse

ZT,2 iw~t
e e (3)

the Fourier transform is

" e 2
E +0 T2  i(w -w)t

E(w)M = f--e e dt
-o0

E +00 bt2
E(CA4 = 2 f ea dt. (4)

-00

where

a = -i W-)

h 2 _(5)
2T 2

Evaluating the integral in Eq. (4) (see Appendix A1) and substituting from Eq. (5)

one obtains

ED T 2(W -Wr?
E(( - T exp 2 (6)

This frequency spectrum together with the cori espontding time response is shown

in Figure I&.

Similarly, for the rectangular envelope carrier pulse shown in Figure lb the

frequency spectrum is given by

sin (w - wo)T
EM* E0 sin al- (7)

Note that in each of these cases the frequency spectrum becomes narrower and

more peaked as the width of the time response increases. Thus the concept of a

wave packet can be experted to break down wher the carrier pulse becomes very

short.



ai

e (t) E (W) 1
Joe".0

Tt wo W

FIG. io GAUSSIAN ENVELOPE CARRIER PULSE

E (w)
L (t)

Eo

TT

2T-

FIG. lb RECTANGULAR ENVELOPE CARRIER PULSE

Figure I Frequency Spectrums for Two Types of Wave Packets
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Now consider the propagation of a wave packet in a dispersive medium.

Suppose that at z - 0 the time response is given by4F(t, 0) wiLh the corresponding

frequency spectrum E(w, 0). Then, if the medium is lossless, at some pointz,

each frequency component will have undergone an appropriate phase change and the

resultant time response will be given by

+*o

e (t, z) = f E(w, 0) eiwt-iO(W, z) dw. (8)
-00

Fer an isotropic, lossless, homogeneous plasma

0 (w, z) = k( ) z (9)

where

k W) z T -r- (10)

is the wave number and II is the electron plasma frequency.

If E(w, 0) is sufficiently peaked about wo, then O(W) can be expanded in a Taylor

series about wo and gives

*(W) @ 0 (W) + (W- W) 0,(W) + _I (w- 0o)2 "(w) + .U. (11)

or, keeping only terms up to order (w- w-)2

" 2* o + * 4= v " (12)

where

V * W- (13)

Substitution of Eq. (12) 4nto Eq. (8) gives

i (Wt - 0) +10 1- v2
e'(t, z) - le f E(w, 0) e-(t - ,)V e dV. (14)

-0
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The case of a Gaussian envclope and a rectangular envelope carr;.er pulse will be

considered separately.

2.1 Propagation of a Gausuian Enelope Cuffier Pulse

Substitution of the frequency spectrum for a Gaussian envelope carrier pulse

given by Eq. (6) into Eq. (14) gives

E(t, z) = Ef -14 ei oo exp i (t- 9) V -

V2 i(T o " o)/+ V

e(t,z) E e 0 0 f exp ,VV-v d V

0/2 77T -00

2

, (t, z) E T e (/t/o e (15)

(see Appendix A), where

ai= i(t- -'

(T + i t) (16)2

From Eq. (16) it is found that

4• . _-). 2 + i•

where

2 6t ) 2 (17)

(t - 0) (8)2

2T2
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Thus, the solution Eq. (15) can be written in the form

Z(t z) = 0_____ e 2 exp i(W°t"- 0°'"0 + )(19)V 11+191-

where

From Eq. (119) it is seen that the wave packet has become frequency modulated
while the envelope has remained Gaussian but has decreased in amplitude and

spread out. The maximum of the pulse mvelope occurs at the delayed time

o= -L = -z where

k 1

0

is the group velocity of the wave packet. From Eq. (10) and Eq. (21) tile group

velocity for an isotropic plasma can be written as

2

W%

0

A plot of vg/c vs n / w is shown in Figure 2. For this same plasma we can write

(.)as

(WO -o (23)

0We n2 )~3/2]



I I
Vg

C

0

0

Figure 2. The Group Velocity as a Function of the Plasma Frequency

Figure 3 shows the relation between the normalized plasma frequency

P. r (24)

and the damping factor 1 /'or (jOo)I plotted from Eq. (23).

2.1.1 APPLTCATION TO PULSE DEFINITION AND SEPARATION PROBLEM

The results of the previous section will now be applied to the problem of re-

solving two Gaussian pulses which are close together. Consider a double Gaussian

pulse as shown in Figure 4a. After traveling through a plasma a certain distance

the two pulses may become dispersed to the caegree shown in Figure 4b. This

condition, at which the amplitude of each pulse is equal to e-0.5 at (t - 01) =

*, is defined as the condition of no pulse definition. From Eq. (19) and Eq. (17)
2
this condition occurs when

2 2 2

(t - 01) 2 . T 2[1 + (A )



to

1.0

0.1-

.00101 1 0
.O01 .01 .1 1 U I0

Y

Figure 3. Relation between Normalized Plasma Frequency and the Damping Factor

or when

TO. I l+ \i 4 (25)2T +15

Equation (25) is plotted in Figure 5 and separates the region of good pulse definition

frozm the region of no pulse definition. This figure indicates the critical ratio of

pulse separation to pulse width for different values of C-1. Values of

-iI."I Tmay be conveidlentely determined from Figure 3 for different plasma

frequencies ,id propagation distances. Due to the quasi -monochromatic nature of

the wave packet, the pulse definition gl',en by Eq. (25) is only a rough approxima-

tion. A more accurate treatment can ;e carried out using the methods of

saddlepoint integration.
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(a)

lo o10TO t - qp,

DOUBLE GAUSSIAN PULSE

(b)

I I

0 To
2

DEFINITION OF NO PULSE RESOLUTION

Figure 4. Pulre Definition of Two Gaussian Pulses
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1 0 GOOD PULSE DEFINITION

T

0.1

NO PULSE DEFINITION

.01 0 1O1 1' 1O

ro/ 2 T

Figure 5. Regions of Good Pulse Definition and No Pulse Definition

2.2 PmrpaodNe of a Reeta w Envelope Codiw Pulse

Consider now a rectangular en-elope carrier pulse which has the frequency
spectrum given by Eq. (7). Using this expression in Eq. (14) one obtains

+sto

E i(wot-"') s 'i(t-, +

de(t~z) -m2 e 0 f . eiI *i0-)v e d dV

(t )XE 0 e i -0 0 F 00expti(t-0'+T)V-i.iV2 d
E(t,z) 211 L V

+.0 exp {i(t-V'-T)V- i V2 dV (26)
f v ]
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-o0 e [ exp ia ,V-bV dV expia2 V-b V
2 d

• ( ~ ) - 2 9 i V " •v' ( 2 6 )
-iLoJ (Cont)

where

a, = t'+T

a 2 = t' - T

2

t= t - o (27)

The integrals in Eq. (26) can be evaluated from the results of Appendix B. One

then obtains

S(t,z) =-L-e i '0 erfkI.a, erf ( e)J . (28)

From Eq. (27) it is found that

a 1  (1-i) (t' + T

a2 ( - T ) ( 2 9 )
aT -tI I-e

Substituting Eq. (29) into Eq. (28) and using the identity

erf [ I - i)lz ] 1i-i) F(z) (30)

where

Flz) = f exp (-i--) d u - C(z) + i S(z) (31)
0
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is the Fresnel integral function, one obtains

e(t,z) = EQ (1 " i) e (O [F(A1 ) - F(A2 )] (32)

where

A t'+T

-TIT

A2 = t - T (33)

The envelope of the time response Eq. (32) is then given by

S- y2 (34)

wnere

X = C(A 1 1 - C(A 2 )

Y - S(A 1 1 - S(A 2 ). 135)

Knop and Cohn (1963) have plotted this envelope as a function of t for dLfferent

values of -i . Ginzburg (1962) has plotted the envelope as a function of
to for different values of 2 T

The discussion thus far has dealt with the ideas of a wave packet. 'I his notion

requires that the frequency spectrum be narrow and peaked. This is clearly not

the case during the time interval in which the pulse is building up, For during this

time the frequency spectrum is, in general, very wide. Thus, the results of the

previous sections are limited and would not be expected to hold during the initial

arrival and main buildup of the pulsed signal. In order to study this facet of the

problem, a more general treatment of signal propagation in plasmas will now be

discussed.
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3. GENERAL ANAIYSIS OF" TRANSIENT SIGNAI, PROPAGATION

ThL general method of obtaining the time response of a sigi propagating in 4
an isotropic, lossless plasma will be considered. The analysis will be based on

Laplace transform techiiques. The general integral to be evaluated may be

obtained from Eqs. (8), (9), and (10) by letting s = i w and picking up a factor ot 2 7,

and is written as

e(tz) f E(s, 0) exp st -• d s. (36)

YsI

This expression, which is derived .ndependently in Appendix C, is just the inverse

Laplace transform of El', 0) exp I ýs+T where E(s, 0) is the Laplace

transform of the time response at z = 0. The contour ys is a straight line between

(o - i - and 0Cy + i - where % is to the right of all singularities in the complex

s-plane (s = a + i w.
There are very few initial time responses for which the inverse transform

given by Eq. (36) may be found from tables. One such time response whose
solution may be written down is a turn-on Bessel function whose frequency is the

plasma frequency. That is,

E(t, 0) = Jo 0( 't) U(t), (37)

where

11(t) 
-

•I I > 0

The Laplace transform of Eq. (37) is

E(s, 0) a (38)
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Equation (36) may then be written

Eat, ) .ay [ C - 1
.;~ s2 + Tr[2

which, from tables, is

0 0 < t < z/c (40)

A similar solution is obtained when the initial time response is a step H field. To

see this, note from the transformed Maxwell equation

8zE (s = z) s H (s.z)

that

. s 2 • +n1 E E(s,z) -- 0oSH(sz),

from which

E (u,Z)) a H (sz). (41)

7hus for an initial stop H field

W,(t, 0) U (t)

H (a. 0) 0
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so that, from Eq. (41)

E(s, 0) . #S/ (42)
Vto Vs+1

Since this initial transform is of the same form as Eq. (38), the resulting tiLae

response will be, from Eq. (40),

0 / t -.0

Other forms of initial time responses which may be of more practical
importance do not result in transforms with known inverses. Therefore, in the

follcwing sections several difierent techniques for evaluating the integral Eq. (36)

will be investigated.

3.1 Convolution IntegiIs

The Laplace transform of a function f(t) is

F(s) r. [ f(t)] s f f(t) es-t dt (44)
0

and the inverse Laplace transform of F(s) is

f(t) a X' 1  F(s)] a-I f F(s) ct ds. (45)

"The convolution theorem states that if F(s) is the Laplace transform of f(t) and G(s)

is the Laplace transform of g(t), then

t
X F(s) G(s)) f f(t - t') g(t') dt'. (46)

0



18

Applicati-m of this theorem to Eq. (36) by using data from tables (for example, see

Erd~lyi et al, 1954), which show that

z-E exp2"4 • ) z z (1 ))
e p c + nc c V1 4 7 )

gives

,6(tz) f -(t-t 0O) c(t c' dt'

tt,2 J[J
or

c cZ/C t,2 z 2

As an example of the use of Eq. (48) let the time response at z = 0 be a step-

carrier sine wave given by

e(t.O) a E0 sin Wot U(t).

l(t.0) - Im I Eo * i Ulpt ] (49)

where Im means "the imaginary part o'. Using Eq. (49) in Eq. (48) one obtains

-1 W~t / 29(t,z) -Im E o 0 c e Z

,/C U(t-z).

cc (50)
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Normahlzing all quantities to the signal frequency wo, one may write Eq. (30) as

i(T~ ~ Pi 1 1  ( uy n2) dul
Elf. 0) =Im oE i- 0i Ci J U (T-1) (511)

where

"T = Wot.

Wz

C

p= . 02)
0

The form of the solution Eq. (51) is interesting. First, propagation of the signal

front or wave front proceeds at the s,)eed of light in free space. The solution con-

sists of two terms. The first term represents the propagation of a plane wave in

free space. The second term represents the dispersive properties of the plasma.

The two terms combine to give the total or dispersed wave that is propagating in

the plasma.

Equation (51) has been evaluated numerically and several typical results for the

overdense case are presented in Figure 6.

In order to investigate the effects of a finite rise-time on the dispersion of a

carrier pulse, let

,(t.0). a ° ( -Iat sin to.t U(t).

e(tO) a Im E0  - e-awt) e oj U(t). (53)

Substituting Eq. (53) into Eq. (48) and using Eq. (52) one obtains

F('1T') * Im Eo0  ei(lr') - e(la'i)(Tl') - Pq eiT f jeUJ 1  (p7 ) du

11 
1/u2 _ 172

( ) 
...

(0-07- j 
2 Ul l.)

+ P7e'a0 ePVý 1 du] U(7r1). (54)
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(a)(b
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Figure 6. Propagation of a Sine Wave Electric Field in an Overdense Plasma

Eq!iatlor (54) has boen evaluated numerically and the results are shown in

Figure 7.

As a fur twer example consider a step E field turned on at z 0 0, that is,

$(t,0) a Eo U(t). ())

Then, from Eq. (48), the time response at z will be given by

( - dtj U(t-.:). (56)
0Z/c j,2..

e2
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(a) (b)

0 1 0

St /. / /
-i, !'-*'0

6-/ PO £ * ~,i ~/ 2,o
4

ii 2' 7/I

0o -- ... . .• • •--- 0 -- • - -

5 5 25 35 45 55 65 15 25 35 45 55 65 75 at 95

Figure 7. Envelope Response for the Pro,)agation of a Sine Wave Electric
Field with a Finite Rise 'lime

This expression has been evaluated namerically and typical cases are shown in

Figure 8.

3.2 Series Solutions and ,*omiel Functions

It is possible in the case of a lossless, isotropic plasma to obtain an exact

solution for a step carrier sine wave input electric field. The procedure hinges on

several known inverse Laplace transforms and several identities involving IBesse]

functions. Let the time response of the electric field at z = 0 be given by

010) = E sin w t U(t). (57)

The transform of Eq. (57) is

E(sO) - -to(tO)] - Eo 0 ao (58)
a + W

and the time response at z is then given from Eq. (36) by

Lr(t, Z) = (-Es, 0) exp • -Z NJ n"
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Figure 8. Propagation of a Step Function Electric Field in a Plasma
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If the expression for E(s. 0) given by Eq. (58) is used in Eq. (59), the inverse

transform of the resulting expression is not known. However-, it has been found

previously that the inverse transform of a.n input step Bessel function with argument

nIt is known (see Equation (40)). This suggests the possibility of synthesizing

sin wot from a sum of Bessel functions with argument UIt. To this end the well

known identity is used (see Abramowitz and Stegun, 1964)

00

sin(z cos 0) r 2 Z (_,)n j 2n+ (z) cos U(2n+l) 06 (60)
n=o

By letting

z - U~t

Cos a - 0 n

cosh a a 'n: U n (61)

where 0 = ia for w >ý 1. one can write Eq. (60) as
0-

sin Wot = 2 ý (_ )n An j2n+1 (Ut) (62)
nuo

where

Scos (2ni-l)9 8' wo I

fcosh (2n+l) a Ž-W (63)

Now, from tables

J~n+ I(nt) ut) n ) 2n+ 1 64• -- (64)

so that, from Eq. (62) one may write

". [ sin t U(t)1 " n°2 (l)nAn U 2n+ 1 (65)
s72+n2nuo + ,5 0" )
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One therefore obtains from Eqs. (59) and (65)

Lr(t,z) = e-I E 0 Z (-l)n An 1(66)
Snio +J

Since the series in Eq. (66) is uniformly convergent, one may interchange the

inverse and summation operations. If this is done, and if the transform pair

(see Erdilyi. et al, 1954),

.•1 ~ 2 n•exp -"s2-+n-'2} s+ • 2n-: 11

-22

2n+ 1

i (n t7:'Z2 ~t -1).(67)

is used one may write Eq. (66) as

2n+1

t (t.z)2 z (l (68 ) /t2 )U ( 68)

Normalizing Eq. (66) to ao by using the relations in Eq. (52) one obtains

*(q) 220 WU-t-q) (- A. J2n+I (P 7 (69)

where

• cos (2n+l) 0 P > I

A caS! cosh(2n+1) a P•<1 (70)
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and

Cos 0 zf P -> 1,

P

cosh a = AL P < 1 (71)P

It is seen then that the electric field rcsponse for this case can be represented as

a convergent infinite series in terms of Bessel functions. This result has been

obtained by Knop (1964). Similar results have been obtr.ned by Cerrillo (1948),

Rubinowicz (19.50), and Gajewski (1955).

Foi- the underdense case of propagation it is possible to write Eq. (69) as

the sum of two Lommel functions of order one. The Lommel function of the first

kind UV (w, z) is defined by Dekanosidze (1960) as

La,

U (wz) 1) ()n (-) n (z). (72)
nfo

For the underdense caseP 5 1, the An in Eq. (69) is equal to cosh (2n + l)a,

where

a = cosh"1 (1) (73)

P

or, noting that

ea . cosh a + sinh a.

one may write

If one lets

1+ (74)
P

then

a In ey
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and

(2n + 1) a In 2n+l) (75)

Using Eq. (75) one can write

cosh O2n + I)a = 1 [ e (2n+l)a + (nI~a

or

cosh (2n + I)a = I~ [exp I In £Y(2n+ 1) 1+ex a2n1j

and finally

•(2n1) •-(2n+l)
A = cosh (2n + l)a a 2 + 2 (76)

The general term of the series in Eq. (63) then becomes

Using the identity

one can write the general term as

2j P )(L" 2n+l 1

/_) P r'~ 2n+1 p
+ ()f 2n+i 1 7 (77)
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One defines the following quantities

p p22= [ 1Y+v ] (T-?)

P = P ?• (78)

where Eq. (74) has been used. Using Eqs. (69). (72), (78) and Eq. (77) for the

general term of the series one may write the solution as

E'• U(r-7) [* U1 (wl, z) + UI (w 2 , z) (. 79)

Lommel functions of two variables have been tabulated by Dekaiosidze (1960) so

that Eq. (79) may be '-eadily evaluated for a given P, q and I.

In a similar way it may be shown that Eq. (79) is also the solution for the

overdense case, P > I if wI and w2 are defined by the new relations

S(+ -? ). (80)

The arguments of the Lommel functions are complex for this case and since

these are not tabulated the usefulness of this representation is somewhat limited.

3.3 Cmfmw IstNokes

The solution to the problem of transient signal propagation in an isotropic,

lossless plasma is given by Eq. (36), namely

e(t,z) . L f E(s,0) exp st .1 I ds, (81)

where the contour y lies to the right of all singularities as shown in Figure 9a. If

the contour is closed in a large semi-circle of radius R to the right (see Figure 9b)
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(a) (b)

Figure 9. The Complex Frequency Plane

so that s > > rn. then the exponent in Eq. (81) becomes s(t-z c) anid for this case

the integral along this large semi-circle goes to zero as R -- c when t < z/ c.

Since the integral around the closed contour in Figure 9b is zero by Cauchy's

integral theorem, ther. the integral Eq. (81) will be zero, so that

e.oZ) - 0 <2 (82)

as has been found previously. Thus no -ignal can arrive at a point z with a speed

g: eater than that of light in free space.

For t > z/c the contour will have to be closed in a large circu1nr arc to the

left in order to make the contribution along this circle vanish. However, when this

is done singularities will be encloved in the complex plane which will contribute to

the value of the integral in Eq. (81).

Two types of singularities are generally encountered. The first are poles of

the function E(s, 0) which will give rise to the steady state solution. The second

are branch points which arise from the double-valued nature of the function

s/? , 112 . The branch points of this function occur at tifl and in order to carry
out the integral in Eq. (81)the complex plane must be cut in such a way as to make
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the function Vý2 n2 single-valued. It will be found that the ititegration along thu

branch cuts gives rise to the transient solution to the propagation problem. S.%. Ci al

ways o: !aklng the branch ciuts are possible and two of these ways %kill tie in\'t.-stiated

in detail.

3.3.M BRANCH CUT ALONG IMAGINAHY AXIS FROM -in TO -inl

The first step in evaJuating the integral in Eq. (8 0 is to study the double, v-%ti¢d

function

f(s) 1;+ 21

One wishes to form two Riemann sheets Ly cutting the complex •-plane a.onrý the

imaginary axis from -iFn to *inl. In order to properly define theste t!o shects oit.!

considers f(s) to be the product of the two double-valued functionas

,Vs -- I: =/-j y e 0 / 2

and (34)

V,7- 01/2

i',)r each of these fuactions one takes the braach cuts shown in Figure 10. 5htc4t I

of -s --- • Is defined in the interval < 01 < and Sheet 2 in the interval1 2

3 -< 0, <I" Sheet 1 of -ITinis defined in the interval : <_ 0. IT2 - 1 2 2 - 02<2

while Sheet 2 is nefined in the interval 37 < 2 < .Using these branch cu1,,
2 - 2 . sn hs bac us

one kIoks at the product of the functions W/a-iVnd %/as 4 !rl to determine the

S.gn distribation for the function f(s) a -V 2 . The Riemann sheets for f(s)

must be defined with respect to both 0, and 02. Sheet I of f(s) is defined by the

intervals of 01 and 02 given by

17 
3 ,

"72> <2 < .2
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ivl

S .2
SSr

Figure 10. The Complex Frequency Plane for a Branch cut from -inl to +ifl

which are obtained from the product of Sheet 1 of %s- if! and Sheet I of 1, S 4 inf.
These conditi~ns are identical to the intervals

31 
72 - 02 < 2

which are obtained from the product of Sheet 2 of IsT-ii and Sheet 2 of v/s+ n.
The second sh,-at or Sheet 2 of f(s) in given by the intervals

2 .- 2

311 71
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or by the intervals

3T 
71

2 <- 01< -2

02 <~~ 2

which are obtained hy tal.izig the product of opposite sheets of v/s - i and

Vs + i1l . With these definitions of the Riemann sheets of V/2 2 one may

determine the sign distribution of

12 i
2(• -/ 2 -2 (01 + *2)

f(S) V. n PI P2 e *

f(s) u * i v. (85)

The sign distribution of u and v for each of the two sheets is shown in Figure 11.

iW i
- 4.

-+ U+

+ + v

+ +

+ +.

I+

+~ +. VF . T .. 0 ÷

o •

SHEET I SHEET 2

Figure ii. T[he Sign Distribution on .. ach Riemann Sheet for the Branch Cut
of Figure 10
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The integration on Sheet I will now be carried out for a step sine wave input

along the contour shown in Figure 12. For this case

E (s,0) E0  -s - (86)S0 O) Eo 2 + W02
4

C I +-iWO

-"+in

C -
- lug

I Ys

Figure 12. The Contour for the Branch Cut in Figure 10

One may readily show that as R -- v so the integral along the large circular are C

vanishes. The two integrations along the negative real axis cancel and as the

radius of the two small circles c+ and c. around each branch point goes to zero

the contribution to the integral from these smill circles also vanishes. Thus the

only contributions totheintegralin Eq. (81) come from the residues of the poles and

from the integration along each side of the branch cut. Therefore

f + f - 21ri Z Residues. (87)
Ys Branch

Cuts
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Along the branch cut

p1 =n- w

P2 1= + w. (88)

Using Eq. (88) in Eq. (85) together with the sign distribution of Sheet 1 in Figure 11

one sees that on the right side of the branch cut f(s) a + • T _ while on the

left side f(s) - - From Eqs. (81), (86) and (87), one can then write

E w +in exp { 5t + AV L2 }
d(t,z) - 0 0 f s2 + 0

2  ds

SW -i11 exp ost-'-in2 2I
+ -#I n 2 dsw 21i I Residues,+ifl + °o

or, letting s = i w

E + nr iWt ý 2 In
l(t,z) + 2 f-re2- -e Cdw

= 2 ii Residues,

which becomes, after evaluating the residues,

d eiWthi 2 27

8(t~z) aE sin (ft- d w a.
Sn /-"(89)

The integrand of the imaginary part of the last term in Eq. (89) is an odd function

and therefore integrates to zero. One can then write Eq. (89) in normalized form,

using Eq. (52), as

vIT,q) - Eo sin 'r.17 E p f coo uT snh 1 P 7  du. (90)
0 1 f-u

-p
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It is evident that the total solution is the sum of a steady state term and a

transient term. The integral representing the transient term is not particularly

suited for numerical integration since the integrand oscillates rapidly for large i.

In order to overcome this difficulty the solution based on a different branch cut

will now be examined.

3.3.2 BRANCH CUTS IN LEFT HALF PLANE

A different branch cut which better lends itself to numerical integration will

now be considered. If the s-plane is cut as shown in Figure 13 then the integra-

tions along tVe branch cuts will be over negative values of the real part of s. One

might expect the resulting integrands not to oscillate as much as if one integrated

along the imaginary axis.

-W

_01*

Figure 13. The Contour for Branch Cuts in the Left Half Frequency Plane

Let the initial time response be an exponential function of the form E0 ei Wot

and take the imaginary part of the result to give the response to a sine wave input.

The integral to be evalitated may then be written from Eq. (81) as
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._•exp ,st - T n d2 (1
0(t.z) -= 2i f s ds. (91)

The integration will be carried out on Sheet I of Figure 13, defined by the

relations

s-ill =pe 1  - < 01• <

i02
s+ ir =p 2 e - V_< 02 < 1 (92)

One must now determine the value of

Vsý-- - --- 2(0 1,_11 2  s-il = p P2  e (93)

for each of the four sides of the branch cuts in Figure 13.

Consider first Side (D of the upper branch cut. Along this side 01 + I÷ and

12 = + 4 where (-!, tan") . One then obtains from Eq. (93)

or

.7••Tz = (- a+ ib) (Side • (4

where

a P2 cosI+ sinC

b + cos.- sin+. (95)
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Since 0 • *< -. sothat 09 <-Ltisseenthata > 0andb>0.
In a similar manner one can readily show that for Sides G ) C and ®

one obtains

2 1 (a - i b) [Side CD

2 + )/iiPiiPii (a + ib) ISide C

2 V+P[2 j2 (-a-ib) [Side 0 ]. (96)

For each of the four sides it is also noted that

PIP 2  (97)

Consider again Side () . Along this side s a+in and the integralin Eq. (91)

becomes, using Eq. (94)

2+in-i& exp 2(a+in)t--!v r- (.a + i b) da

0 0
I•w ox Io A - 11B- at) da (98)

where

B V b -I 1 /-.~ i * (99)

Similarly, one can evaluate the integral along the other three sides of the branch

cuts and obtain for the total contribution from the branch cuts
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f= f + j+ f + f
Branch® © G
Cuts

E f exp ICA - i B)1 - ex, -(A-i
2 i -a T I ( n - (eo )

Eoe:ilt I-

+ E0 exp I(A+ i B)I -exp I-(A + i B)l -"
-2i f + (-7+ w) e dOa. (100)

0 L0J

Noting that

l ; a -- (n T- w )

a + ) 2 + (n; w)2
0 0)

e(A;iB), e-(A+ i B) 2 [cos Bsinh A;isin Bcosh A] (101)

one can write the imaginary part of Eq. (100) as

Jm f E con nt E !in nt

Branch
Cuts

where

I," W a+p(+w 0'9t do

o 02 + (U+ W)I

12 + - e0t do

o o2 + (n- W%)2-e• a~+ W)

033 ff( 0)~ d
o V2 +(nl+W 0 )2

v P - a (n .- W a
14 a f + (i dor (103)

o•+(11.%)2
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and

a cos B sinh A

au sin B cost. A (104)
-A

As in the previous section it can readily be shown that the contributions to the

integral from the large circular arc in left-half plane and from the small circles

around the branch points vanish, so that the total response to a sine wave input is

found from the relation

E'(t.z) + Im f Im [29i ZResidues]

Branch
Cuts

or

e (tz) Im E exp ( t - !V- 7n• •f/2)]fh . (105)

Cuts

Normalizing all quantities to wo according to Eq. (52) one obtains by substituting

Eq. (102) into Eq. (105)

.F,~)- E0 I MR [,rV V4I - ~ ~ i p+*(~j (106)

where

N , II3-141

e - tan'I * (107)

and where the integrals IV 121 13, and 14 are given by the following relations
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. f X 2+ P (P + 1) e-TX dx
o x + (P + 1)

i2 = f 2 e-Xdx
o x + (P - 1)

x -V (P + 1) e-TXdx
[3 f 2 2 e d0 x2 + (F + 1)2

oO x

a- (P - I) e-TXdx (108)
[4 f 12 7. d (08

o (P

where

aff cos B sinhA

= sinBcoshA

A 1= (CS sinEX +)4p

B 7 i( Cos.~ sin VI x 4p

= tan"- ( (109)

The integrands in Eq. (108) derPay exponentially for large T and for large x.

They therefore lend themselves to numerical integration since the upper limit of

integration can be cut off at somie iarge value of x without appreciable error. These

integrals were evaluated numerically by cutting off the upper limit at a value

x x 15/(0 - 1). The results are shown in Figures 14, 15. and 16. Figure 14 is a plot

of the transient envelope + N2 as a function of r. The total transient solution

%/M2++ N2 sin I P 7 + 0) is plotted in Figure 15. Note that it is a phase modulated
oscillation about the plasma frequency. The total response found by adding Figure

15 to the steady state solution is shown in Figure 16.

All of the numerical results discussed thus far in this report lose their useful-

ness for very large values of q. This is due to the fact that under these conditions

it is necessary to take the difference of two very large numbers in order to obtain

a small number. Thus the errors can become very large. However, it is just in

this region of very large 17 that asymptotic solutions to the transient propagation

)rnblem work very well. Asymptotic solutions to the transient wave propagation

problem will be considered in a second and subsequent report.
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4. CO•CLUSION

In Section 2 the propagation of wave packets in dispersive media was discussed.

The wave packet is a useful concept since it enables one to define the group velocity.

The group velocity definition is given by Eq. (21). Two typeat of wave packets, the

Gaussian envelope carrier and the square pulsed carrier, were investigated. The

wave packets were found to propagate in the plasma with the group velocity. The

second derivative of the wave number with respect to freluencY gives rise to a

distortion of the wave packet. This distortion places an upper limit on the maxi-

mum rate at which repetitive pulses can be transmitted and distinguished in

dispersive media. A crude method for estimating this maximum rate for Gaussian

pulses in an Isotropic plasma was presented. The treatment in Section 2 is limited

to quasi-monochromatic signals.
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Figure 15. The Total Tranr4 .mt Solution Obtained by Integration Along the
Branch Cuts

In Section 3 a more exact trcatmetat of the propagation of transient waves in

isotropic plasmas waq given. Laplace transform methods were used, and the

problem was reduced to eveluating an inverse Laplace transform. The problem

of a sine wave electric Z. turned on at t i 0 in an isotropic plasma was investi-

gated in detail. The solutLon can be expressed as a series of Bessel functions, and
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Figure 16. The Total Solution U~ a Promapting Sine Wave Electric Field

tb.s solution can be expressed as tMe sum of two Lommel functicais. The solution
cam also be given as a convolution integral representation. By using methods of
contour integration, still other integral representaticnin can he obtained, and two
such representations were derived. Resultfi from numerical e'valuation of the
integral solutiona were presented. Due to limitations in t.he numerical methods of
integration, ** integral solutions are 'iset'ul only for relatively artiall values of
the parameter q. *for larger values of 11, asymptotic solutlonu can be obtained,
and this will be the aubjt of a subsequent report.
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Appendix A

(a

.UD

Consider the integral

I z f eat-bt2 dt. (Al)
-00

If one completes the square in the exponent of Eq. (AI) and makes the change of

variables y rb (t - *1 one obtains

Iu f exp I -b (t k)2x f c"y dy.-. -÷4

from which

IIexp (A2)
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Appendix B

Evoluatiom nf1 2 o -I -bV

Consider the integral

12 _ 00 exp liaV-bV 2}
1 2 - i f V dV. (HB)

Letting V • and X one can rewrite Eq. (BI) as

e, 6U -U. 2,• du (32
2 f du. (2111

Noting that

X eiUX
f elux m e

C)iu iu-



B2

so that

euX . + X e WX dx
U U

0

one can write Eq. (B2) in the torm

0 - u 2  X

' f e du+ f+ dx f exp ixu-u 2 . du, (B3)
-00 0 -00

where the order of integration has been interchanged in the second term.

The first integral in Eq. (B3) can be evaluated by using Cauchy's integral

theorem and integrating around the pole at u = 0. One readily finds the vy Iue of

the integral to be equal to 1/2. In the second integral in Eq. (B3) the integral over

du is equal to V17 exp (- 4) from the results of Appendix A. Therefore,

X x2

12=2 + f e"T dx. (B4)

Making the change cf variable w = x/2 and using the definition of the error function

erf(2j e•-w dw (Bb)

ove obtains

I ahI +/- er /

from which, since Xa /r,

I2' [1+ erf (B6)
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Appendix C

Derivation of Integral Expression for 64t,z)

Maxwell's equations which describe the propagation of electromagnetic waves

in an isotropic plasma are

a&curl! e atu

curl W-, J 4 to - (C 1)

where

J -Ne v. (C2)

N is the electron number density and v is determined from the equation of motio.,

ev e

Consider the one-dimensional problem in which £ is linearly polarized in the

x-direction and is propagating in the z-direction. The x-component of e (t, z) will

be written as f(t, z) and the Laplace transform of e (t, z) as E(s, z). If one then

takes a Laplace transform in time of Eqs. (CI), (C2) and (C3) and solves for

E(s, z) setting all initial conditions equal to zero, one readily obtains the equation
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a2 E(s. z) -- I (s2 + r12) E(s. z) - 0. (C4)
z c

The object is to determine the time response &(t, z) in the semi-infinite region

z > 0 when the time response C(t, 0) is prescribed at z = C. The solution of

Eq. (C4) may then be written as

E(s, z) = E(s, 0) exp i-1/ V + n (C5)

wfiere E(s, 0) is the Laplace transform of e(t, 0). The time response e(t, z) is then

obtained by taking the inverse of Eq. (C5). That is,

e(t. Z) f E(s, 0) exp st - n ds, (C6)

ws

which is Eq. (36) in Sectton 3 of the text.
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carrier pulse and a square wave carrier pulse in an isotropic plasma is carried
out using the wave packet concept. A general analysis of transient wave
propagation in isotropic plasmas is given using Laplace transform methods.
Solutions are given in terms of series solutions which may be expressed in
terms of Lommel functions. Integral solutions which can be easily evaluated
numerically are derived using the convolution theorem and using contour
integration techniques. The solutions are useful for short dispersion lengths.
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