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Abstract

The concept of the wave packet is used to obtain some general results on the
propagation of signals in dispersive media. The dispersion of a Gaussian carrier
pulse and a square wave carrier pulse in an isotropic plasma is carried out using
the wave packet concept. A general analysis of transient wave propagation in
isotropic plasmas is given using Laplace transform methods. Solutions are given
in terms of series solutions which may be expressed in terms of Lommel functions.
Integral solutions which can be easily evaluated numerically are derived using the
convolution theorem and using contour integration techniques. The solutions are
useful for skort dispersion lengths.
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1. INTROBUCTICN

The study of propagation of transient signals in dispersive media dates back to
the early years of this century. Following Einstein's publication of his special
theory of relativity, concern arose over the fact that in reg.ons of anomalous
dispersion the group velocity is greater than the free-space velocity of light, c.
Since it was believed that the group velocity was the velocity at which energy is
transy orted by the wave, this condition of anomalous dispersion appeared to violate
Einstein's theory.

This paradox was correctly explained by Sommerfeld (19i4) who showed by
making a high frequency expansion that the very first part of a signal, called the
signal wavefront, arrives at a given point with the velocity of light, c. Sommer-
feld's solution is valid for only a short time after the arrival of the signal wave-
front. By using a saddlepoint method of integration Brillouin (1914) found
solutions which are valid in a certain time interval following the Sommerfeld
region. The signal in this region is called a precursor since it precedes the
arrival of the main signai. This work of Sommerfeld and Brillouin has been
summarized in a book by Brillouin (1960) in which some of the important early
papers have been reprinted.

{Received for publication 17 February 1966)



The arrival of the main signal follows the precursors. However, the standard
saddlepoint method of integration cannot be used in this region since the saddle-
point is approaching a pole in the complex plane. Methods for appropriately
modifying the saddlepoint method under these conditions have been discussed by
Cerrillo (1950), van der Wearden (1350), and Clemmow (1950). These techniques
have been used by Pearson (1953) to describe transient propagation in acoustic
waveguides, which have the same dispersion equation as a lossless isotropic
plasma. Electromagnetic waveguid:s also have the same dispersion equation and
the saddlepoint method of integration has been applied to these problems by
Cerrillo (1948), Namiki and Horiuchi (1952), and Karbowiak (1957).

The solutions discussed so far are approximate solutions that are valid only
after the signal has propagated a long distance through the dispersive med‘a. The
detailed consideration of these types of solution will form the sub‘ect matter of a
second and subsequent report on this topic.

The present report consists of two main parts. In Section 2 the well known
concepts of a wave packet and group velocity are applied to the propagation of
pulses in a dispersive medium. This method has been used to describe the propaga-
tion of a rectangular pulse in a waveguide by Cohn (1952), Elliott (1957), Knop and
Cohn (1963), and Wanselow (1962). The propagation of a Gaussian pulse in a wave-
guide using this method has been described by Forrer (1958). These solutions only
apply to quasi-monochromatic signals. In Section 3 more general solutions which
are valid for arbitrary signals which propagate only a short distance through the
plasma will be considered.

Jaeger and Westfold (1949) have considered both the propagation of an initial
disturbance in a plasma when the spatial dependence is prescribed as well as the
disturbance that is radiated when the time variation of the electric field is pre-
scribed at some position. They have written solutions in terms of convolution
integrals and have studied the Fourier spectra of several initial disturLances. They
have applied their results to the solar corona in an attempt to explain some of the
phenomena associated with bursts of solar noise. Some numerical results based
on convolution integrals will be discussed in Section 3.1. Some of these results
have been given by Case (1985),

Exact integral solutions may be obtained by contour integration. Cerrillo (1948)
has discussed such solutions, and in Section 3.3 two possibilities will be described
in detail and nun.erical results will be presented.

For the case of a turn-on sine wave the exact solution may be written as a
series of Bessel functions. These solutions have been discussed by Cerrillo (1948),
Rubinowicz (1950), Gajewski (1955), Kovtun (1958), and Knop (1964). Cerrillu (1948)
and Kovtun (1958) have expressed these solutions in terms of Lommel functions.
These series solutions will be discussed in Section 3.2,



Finally, the experimental work in which observations of transient dispersive
effects have been observed should be mentioned. As has already been pointed out,
the dispersion equation is the same for acoustic waves in fluid-filled tubes,
electromagnetic waves in waveguides, and electromagnetic waves in lossless,
1sotropic plasmas. Each of these situations has been investigated experimentally.

The transient response of sound pulses propagating through fluid-filled tubes
has been observed by Anderson and Barnes (1953) ancd by Proud, Tamarkin, and
Kornhauser (1956). Similar experiments have ulso been carried out by Walther
(1261), who in addition observes the pulse compression of a frequency modulated
acoustic wave.

Transient signals in waveguides have been observed experimentally by Saxten
and Schmitt (1963), and Ito (1964, 1965). The best measurements are those by
Ito (1965) who measures the transient response of a short Gaussian envelope
carrier pulse. The results show that the theoretical solutions of Forrer (1958) do
not adequately predict the response. However, good agreement is obtained with a
solution based on the method of stationary phase.

The dispersion of pulsed dc and rf signals in plasmas have been observed
by Schmitt (1964, 1965). The response of short unidirectional pulses is oscillutory
in nature with a "ringing' frequency that is characteristic of the plasma
frequency. Such electromagnetic pulses can therefore be used as a diagnostic
tool.

2 WAVE PACKETS AND GROUP VELOCITY IN ISOTROPIC PLASMAS

The simplest ideas concerning the propagation of signals in a dispersive
medium involve the concept of a wave packet. A wave packet is a signal which
contains a narrow band of frequencies centered about a carrier frequency. The
frequency spectrum E(w) is then some type of a peaked function and is related to
the time function £(t) by the Fourier transform pair
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For exampl=, for a Gaussian envelope carrier pulse

.

2 iw t
£(t) = Eo e 21 e © (3)

the Fourier transiorm is

2
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where
a = -i (w- wo)
e W (5)

Evaluating the integral in Eq. (4) (see Appendix A) and substituting from Eq. (5)
one obtains

2 2
E T (w-w)
E(w = \G—-—‘L T exp %- = (6)
l

This frequency spectrum together with the cor. esponding time response is shown
in Figure la.

Similarly, for the rectangular envelope carrier pulse shown in Figure 1b the
frequency spactrum is given by

sin (w - wn)’r

o.-t_('w-wo) . (7)

Elw =

Note that in each of these cases the frequency spectrum becomes narrower and
more peaked as the width of the time response increases. Thus the concept of a
wave packet can be expected to break down wher the carrier pulse becomes very
short.
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Now consider the propagation of a wave packet in a dispersive medium.
Suppose that at z = 0 the time response is given by &(t, 0) with the corresponding
frequency spectrum E(w, 0). Then, if the medium is lossless, at some point,z,
each frequency component will have undergone an appropriate phase change and the
resultant time responae will be given by

+90

&t 2) = [ Ew, 0 elwt=iglw, 2) 4 (8)

-0

Fecr an isotropic, lossless, homogeneous plasma

¢lw, z) = k(w z 9)
where
k(o = & VWP -1 (10)

is the wave number and Il is the electron plasma frequency.
If E{w, 0) is sufficiently peaked about Wy then ¢(w) can be expanded in a Taylor
series about w, and gives

Bla) = ) + (= w) ¢y + 3 (w- P ey +. .., (11)

or, keeping only terms up to order (w - wo)z

pro,+Vverdviy (12)
where
Ve w- Wy (13)

Substitution of Eq. (12) ‘nto Eq. (8) gives

ilwt-9) +w Ui "VZ
(] ¢° f E(w. o) ei(t - ¢')V e .% d\,

E(t, z) ='e . (14)



The case of a Gaussian envelope and a rectangular envelope carrier pulse will be

considered separately.

2.1 Propagation of u Gaussian Ensvelope Carrier Pulse

Substitution of the frequency spectrum for a Gaussiun envelope carrier pulse

given by Eq. (6) into Eq. {14) gives

. +00 .
" 1(wot -9, Vo (TZ _1_9_') 9
&(t, 2) = E e ex it=-H)V - | =5 + 2]\ iV
° Var _{c P | ° 2 2 p
. ilwt-@) % .
\ T % () \ 21
&, z) = E e exp aV -pgVv av
°voarn .fm { )
- e
. T gt -9 &3 K] .
&(t, z) = Eo 1/—2__—11' e ‘\/ﬁ e (15)
(see Appendix A), where
a=1i(t-9¢)
8 =Lr?+ign (16)

From Eq. {(16) it is found that

-‘f- 2,4¢

4 ° 7Y
where
2 (t - g1’
LA "y 2] an
2T 1+
()]
1 2
; =z Q (t - ¢')“ (18)




Thus, the solution Eq. (15) can be written in the form

E 2 )
e?  exp -gi(wot - &, -2—° + ;)z (19)

where

6, * tan"! (J-;) ) (20)

From Eq. (19) it is seen that the wave packet has become frequency modulated
while the envelope has remained Gaussian but has decreased in amplitude and
spread out. The maximum of the pulse :nvelope occurs at the delayed time

¢ =z Sk = -2 where
ow v
w, g
y = 2w
/g BK l (21)
“

is the group velocity of the wave packet. From Eq. {10) and Eq. (21) the group
velocity for an isotropic plasma can be written as

2
vg = et -B5 . (22)

A plo* of v‘/c vs 11 /wis shown in Figure 2. For this same plasma we can write

¢ (w,) as i
o |
2

" e e | —
¢ (“’o) w,c n2 3/2 (23)
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Figure 2. The Group Velocity as a Function of the Plasma Frequency

Figure 3 shows the relation between the normalized plasma frequency

n
wO

and the damping factor -‘/ l"' (wo)l plotted from Eq. (23).

2.1.1 APPLICATION TO PULSE DEFINITION AND SEPARATION PROBLEM

The results of the previous section will now be applied to the problem of re-
solving two Gaussian pulses which are close together. Consider a double Gaussian
pulse as shown in Figure 4a. After traveling through a plasma a certain dis*ance
the two pulses may become dispersed to the aegree shown in Figure 4b. This
condition, at which the amplitude of each pulse is equal to e-0.5 at (t - ¢') =

T
-29' , is defined as the condition of no pulse definition. From Eq. (19) and Eq. (17)

this condition occurs when

(-9 s 2 o 1P [“(_%)z]
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or when

4

%"f'\/“ (—@‘) : (29)

v

Equation (25) is plotted in Figure 5 and separates the region of good pulse definition
frora the region of no pulse definition. This figure indicates the critical ratio of
pulse separation to pulse width for different values of -—%— . Values of

‘ ¢"| may be convenientely determined from Figure 3 for different plasma
frequencies zad propagation distances. Due to the quasi-monochromatic nature of
the wave packet, the pulse definition gi.en by Eq. (25) is only a rough approxima-
tion. A more accurate treatment can oe carried out using the methods of
saddlenoint integration.
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2.2 Propaguiion of a Rectanguler Eavelope Carrier Pulse

Consider now a rectangular envelope carrier pulse which has the frequency
spectrum given by Eq. (7). Using this expression in Eq. (14) one obtains

E, ilwt-¢) = oy i VR
e(t.z)-—'gc o'"% J -'-l%ﬂem oIV e %_ av
-ad

i(w t-¢ ) 1t
e ©° %o Moexp{l(t-qb“*T)V-i-Q! Vz}dv

a(t,z) = 5 1) 7
-
*= exp {ilt-g-TIV -3'—' v} av (26)

- >

-0
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ilw t-¢ ) 1 1
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) v

£(t,2) = . [ (26)
27i _f” v oo (Cont)
where
a, = t'+ T
ay = t' - T
. i¢"
b ==
th = t-¢ 27)

The integrals in Eq. (26) can be evaluated from the results of Appendix B. One

then obtains

E_ i(wt-9) a a
&£(t,z) = —29 e 0 ° erf 1 - erf —2_
2vb 2vo

From Eq. (27) it is found that

1 0-) @+T
YA T

a
2 (-9 -
b -,‘{/- P
Substituting Eq. (29) into Eq. (28) and using the identity

erf [£; (l-i)z] s (1 -1) F(z)

where

z

2
i7u

F(z) = exp ( ) du = C(z) + i S(z)
{ p o

(28)

(29)

(30)

(31)
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is the Fresnel integral function, one obtains

E ilw:-9¢)
et =R2a-be ° ° [FA)-F&y] (32)
where
A, = .._t.'__t_T_
Lol
¢ -T .
Ay = —— . (33)

The envelope of the time response Eq. (32) is then given by

|ett,2)] = j_—: x2 + v2 (34)
where

X = ClA)) - Cay),

Y = 5(4) - 5(a,). (35)

Knop and Cohn (1963) have plotted this enveiope as a function of Et-:f for different

values of 3—@ . Ginzburg (1962) has plotted the envelope as a function of

¢ for different values of I
Vrle'l Vel

The discussion thus far has dealt with the ideas of a wave packet. This notion
requires that the frequency spectrum be narrow and peaked. This is clearly not
the case during the time interval in which the pulse is building up, For during this
time the frequency spectrum is, in general, very wide. Thus, the results of the
previous sections are limited and would not be expected to hold during the initial
arrival and main buildup of the pulsed sigral. In order to study this facet of the
problem, a more general treatment of signal propagation in plasmas will now be

&

discussed.
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3. GENERAL ANALYSIS OF TRANSIENT SIGNAL PROPAGATION

The general method of obtaining the time response of a sigi  propagating in
an isotropic, lossless plasma will be considered. The analysis will be based on
Laplace transform techuiques. The general integral to be evaluated may be
obtained from Egs. (8), (9), and (10) by letting s = i w and picking up a factor ot 27,
and is written as

£t2) = 337 [ E(s, 0) exp zst - £8P +n2:ds. (36)

s

This expression, which is derived '‘ndependently in Appendix C, is just the inverse

z
l.aplace transform of El' , 0) exp ;- ry sz+ l'l2 { where E(s, 0) is the Laplace

transform of the time response at z = 0. The contour Ys is a straight line between
a, - i and o+ i where 9 is to the right of all singularities in the complex
s-plane (s = 0 + iw).

There are very few initial time responses for which the inverse transform
given by Eq. (36) may be found from tables., One such time response whose
solution may be written down is a turn-on Bessel function whose frequency is the
plasma frequency. That is,

E(t, 0) = Jo (1t) U(t), (37)
where
‘0 t <0
U(t) = .
1 v >0

The Laplace transform of Eq. (37) is

E(s, 0) = 1 . (38)

~v~— m’ - -
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Equation (36) may then be written

0 |~

gt,z) = XL {39)
- V 82 + le
which, from tables, is
\ o 0<t< zc
&(t,z) = . (40)
|5 (nq/e- 2 t> 2
o c2 c

A similar solution is obtained when the initial time response is a step H field. To
see this, note from the transformed Maxwell equation

9 E (s,2)

—g— = -ubsH(s,z),

that
-% 52+l'l2 E(s.z)--posﬂ(s.z),
from which
[ s
E(s,2) =\[&2 H (s,2) . (41)
[ ] .2 + nz

Thus for an initial step H field
m(,0)=U(),

H(s, 0 =1,
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so thay, from Eq. (41)

™ 1
E (s, 0) = ra T, (42)
o s“+1

Since this initial transform is of the same form as Eq. (38), the resulting tiine
response will be, from Eq. (40),

s 0<t <;é-
e(t,z) =

0
> . (43)
Ho 2 _z2 ) - Z
? \/':; o \M/¥ - vt

¢/

Other forms of initial time responses which may be of more practical

importance do not result in transforms with known inverses. Therefore, in the

folicwing sections several difierent techniques for evaluating the integral Eq. (i36)
will be investigated.

3.1 Convolution Integ:als

The Laplace transform of a function f(t) is

©
F(s) = 2 [f0] = [ ) e at
(+]

(44)
and the inverse Laplace transform of F(s) is
1 = 2! [Fe)) x5dr [ Fle) o as. (45)
?,

The convolution theorem states that if F(s) is the Laplace transform of f(t) and G(s)
is the Laplace transform of g(t), then

t
=1 [Fe) Gla)] = [ £t - 1) gt ar.
[o]
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Application of this theorem to Eq. (36) by using data from tables (for example, see
Erdélyi et al, 1954), which show that

[ [ ,2
Jl\ﬂ -—2- U(t'-)
.r‘"[ exp g-% s2+n2§] s At - _)__z_éq_ °2 (47)
2 2
t - —
c2

gives

/ 2

2 2 \ z
I J, /% <« S | Ut' - %)
: z. zIl 1( c2/ ¢

£lt,2) = { E(t-v,0) | o(t'-%)-22 — dt'
v -5
(&4
or
2
3, (nv d - %)
ft2) = | £x-L0)-Z0 f &(t-1',0) =~ at'| Ut-%). (48)
zfc 2 22
t! -7
[+

As an example of the use of Eq. (48) let the time response at z = 0 be a step-
carrier sine wave given by

&(t,0) = E, sin Wt U(t),

iwt
£(t,0) = Im [ao e ° um] , (49)

where Im means "the imaginary part of'. Using Eq. (49) in Eq. (48) one obtains

-1w°t' . 2 ,

1w (t-5) fwt t ¢ 1 t _‘Z dt
etz =ImE | e © © .20 "0 f utt-5).
z/c 2

c (50)
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Normalizing all quantities to the signal frequency W, one may write Eq. (30) as

e.m.!1 (P\/uz - "2) du
2 nz

Ulz-m  (51)

gr.m=1mE_| T Mopy 7 |
n

o
u
where
T = wt,
W 2
(6]
n==c-
P (52)
(o]

The form of the solution Eq. (51) is interesting. First, propagation of the signal
front or wave front proceeds at the speed of light in free space. The solution con-
sists of two terms. The first term represents the propagation of a plane wave in
free space. The second term represents the dispersive properties of the plasma.
The two terms combine to give the total or dispersed wave that is propagating in
the plasma.

Equation (51) has been evaluated numerically and several typical results for the
overdense case are presented in Figure 6.

In order to investigate the effects of a finite rise-time on the dispersion of a

carrier pulse, let

~aw t

()
&(t,0) = Eo (l -e ) sin wot u() ,

-awot iwot
£%,0) = Im Eo l-e e u(t). (53)

Substituting Eq. (53) into Eq. (48) and using Eq. (52) one obtains

T =iu 2 - 2
RIS I e-(a-iXT-n) Py el? f e 9 (P u® -7 )

5 ¢u2 - "2

du

&7, = Im E,

T _(a-i)1 ( 2 _ 2)
-(a-i)rf i Jy\Pvu -7

n 2.1

du | U(r-m). (54)

+ Pne

[~
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Eqnuation (54) has bren evaluated numerically and the results are shown in

Figure 7.
As a furtner example consider a step E field turned on at z

£(,0) = E  Ut).

Then, from Eq. (48), the time response at z will be given by

2
¢ J (n etz
711 ! c2 ' 2z
etz = E, |1-2= [ at' [ uee - %)
zjc AT 22

= 0, that is,

{50}

(56)
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Figure 7. Envelope Response for the Propagation of a Sine Wave Electric
Field with a Finite Rise Time

This expression has been evaluated namerically and typical cases arc shown in

Figure 8.

3.2 Series Solutions und L.ommel Functions

It is possible in the case of a lossless, isotropic plasma to obtain an exact
solution for a step carrier sine wave input electric field. The procedure hinges on
several known inverse Laplace transforms and several identities involving Besscl
functions. Let the time response of the electric field at z = 0 be given by

£(,0) = E, sin wt u(e) . (57)

The transform of Eq. (57) is

@
E(s,0) = 2[€(t,0)] * E =y (58)
8

+
wO

and the time response at z is then given from Eq. (36) by

&(t,z) = ! [E(s,O) exp :- -(z; \/52 +m? :] . (59)
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If the expression for E(s, 0) given by Eq. (58) is used in Eq. (59), the inverse
transform of the rcsulting expression is not known. However, it has been found
previously that the inverse transform of aa input step Bessel function with argument
It is known (see Equation (40)). This suggests the possibility of synthesizing
sinw t from a sum of Bessel functions with argument IIt. To this end the well
known identity is used (see Abramowitz and Stegun, 1964)

[- ]
sin (z cos §) = 2 Z -0 g

2n+1 (z) cos {(2n+1) 8/ . (60)
n=o
By letting

z = [It

w

\ z -

cos @ I W, <n

%

cosh a = I w, >n (61)

where § = ia for w, > I1, one can write Eq. (60) as

sin w_t = 2 5 D" A ay,, (T) (62)
nzo
where
. s cos (2n+1) 6 w, S n
° ' cosh (2n+1) a W, 2 n (63)

Now, from tables

[ () n] A I et (64)
x| J m) ve) | = 4
2n+t

" Vlz+tl2 (s+ w/az+ﬂz)

so that, from Eq. (62) one may write

hut n A 2n+l
x| sin Wyt u(t)] = — - Z (-1 A, ( ) . (65)

mn'o z!'r\/;z-—l'l2
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One therefore obtains from Eqs. (59) and (65)

elt,z) =271 2E

exp%-—:- 52+H2$ by

— Y -10ta —r )hﬂ
- (66)
° s2+n n=o "’ 8 + Vs2+n" J

Since the series in Eq. (66) is uniformly convergcnt, one may interchange the

inverse and summation operations. If this is done, and if the transform pair
{see Erdélyi, et al, 1954),

ex {'
21 P

0 I

'\/s2 + e

2ntl
2

8 + Vsz +n2

is used one may write Eq. (66) a8

-«
etz =2E, J (1A,

n=o

®
e(r.n) = 2E, Ult-n) J

where

A

n=o

‘ cos (2n+1) @

' cosh(2n+l) a

an+l

c
¥ 1
t*c

(1" A, (T’_-;z-

P>1
P<L1

J2n+l

)‘"i‘

t-2 / 2
[ 2 2z z
" J2n+1 (l‘l t —2 ) Ut "E)'
t +E- c

(67)

2
(n \/t2 -3-5 )U(t-%). (68)
[

Normalizing Eq. (68) to w, by using the relations in Eq. (52) one obtains

/2 2
J2n+1 (P TN )

(869)

(70)
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and
cos 8 =

cosha =

i
P

L
P

P< 1. (71)

It is seen then that the electric field response for this case can be represented as
a convergent infinite series in terms of Bessel functions. This result has been
obtained by Knop (1964). Similar results have been obts ned by Cerrillo (1948),
Rubinowicz (1950), and Gajewski (1955).

Foi* the underdense case of propagation it is possible to write Eq. (69) as
the sum of two Lommel functions of order one. The L.ommel function of the first
kind Uv (w, z) is defined by Dekanosidze (1960) as

> n o w, ™Y
U, w,2) = n%o G0t & 3y, @, (72)

For the underdense case, P < 1, the An in Eq. (69) is equal to cosh (2n + 1)a,

where

a= cosh-l (%) (73)

or, noting that
a

e = cosh a + sinh a,

one may write
‘.m[%+‘/$ .l]am -L:_Q .
If one lets
o= P (74)

then

azlnao
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and

(2n + 1) a = In o2,

Using Eq. (75) one can write

~N

cosh (2n + 1)a = i [ e(2n+1)a * q2n+1)a ]
e

or

cosh (2n + 1l)a =

2

and finally

(2n+1) 1
exp {In o % + g
[ : 3 exp {ln Gmﬂ)}]

c,(2n+1)
An =z cosh (2n + 1)a =

~(2n+1)
Qa
3 +

2

(76)
The general term of the series in Eq. (€) then becomes

Using the identity

1 % -1 (\/‘T:T:_%) (2n+1) . (p /2. "2) [a(znﬂ)w-(zmn] z _
" b /,a -

one can write the general term as

L) e (mmz.)"‘”,, (e
) cor (2o, (o)

P (1-1) 2n+1 ,
+ (1" <P\‘/,_':—:n_;> Jpins (P\hz-nz)% .
1 -

17

(75)
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One defines the following quantities

1 aP(r-n) = [1+ 1-P2] (1-7)

3
[

Wy = -2(7'71) = -[-' Pz——] (r-n)

1+ l—P2

~N
]

P \/12 - 7)2' (78)

where Eq. (74) has been used. Using Eqs. (69), (72), (78) and Eq. (77) for the
general term of the series one may write the solution as

elr,n) = Eo U(r-n) ['Ul(wl,ZH Ul (w2, z) ] . (79)

Lommel functions of two variables have been tabulated by Dekaosidze (1960) so
that Eq. (79) may be readily evaluated for a given P, 1) and 7.

In a similar way it may be shown that Eq. (79) is also the solution for the
overdense case, P > 1: if wy and wg are defined by the new relations

[1+ivb2-1 ](7'm.
p2

[1+x¢92-1

The arguments of the Lommel functions are complex for this case and since
these are not tabulated the usefulness of this representation is somewhat limited.

Y1

W2=

] (r-n. (80)

3.3 Contour Intogrations

The solution to the problem of transient signal propagation in an isotropic,
lossless plasma is given by Eq. (36), namely

&(t,z) = -2-}; f E(s,0) exp ‘st -% a2+

|

[ -]

' ds, (81)
f
8
where the contour Vg lies to the right of all singularities as shown in Figure 9a. If
the contour is closed in a large semi-circle of radius R to the right (see Figure 9b)
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Figure 9. The Complex Frequency Plane

so that s > > I1, then the exponent in Eq. (81) becomes s(t-z;¢) aad for this case
the integral along this large semi-circle goes to zero as R —s < when t < z/c.
Since the integral around the closed contour in Figure 9b is zero by Cauchy's
integral theorem, ther the integral Eq. (81) will be zero, so that

&(t,2) = 0 v < (82)

oln

as has been found previously, Thus no signal can arrive at a point z with a speed
g: eater than that of light in free space.

For t > z/c tae contour will have to be closed in a large circular arc to the
left in order to make the contribution along this circle vanish. However, when this
is done singularities will be enclosed in the complex plane which will contribute to
the value of the integral in Eq. (81),

Two tvpes of singularities are generally encountered. The first are poles of
the function E(s, 0) which will give rise to the steady state solution. The second
are branch points which arise from the double-valued nature of the function

Vs?' + ﬂ2 . The branch points of this function occur at +iIi and in order to carry
out theintegralin Eq. (81) the complex plane must be cut in such a way as to make



. 2 . n2 . . . ,
the function s8° +11° single-valued. It will be found that the jntegrution along the
branch cuts gives rise to the transient sclution to the propagation problem, Several
ways o: raking the branch cuts are possible and two ol these ways will be investipated

in detail.
3.3.! BRANCH CUT ALGONG IMAGINARY AXIS FROM -ill1 TO +iN

The first step 1n evaluating the integral in kq. (81)1istostudy the double-valued
function

-).
1(s) = ,'92 + 0= (83)
One wishes to form two Riemann sheets Ly cutting the coinplex =-plane along the

imaginary axis from -ill to +ifl. In order to properly define these two shects one
considers f(s) to be the product of the two double-valued functions

Vs-iI:= \/[; eiqsl/2

and (84)

/ol

i'or each of these fuactions one takes the braiach cuts shown in Figure 10, Sheet |

“

Vs 4l

of Vs - il is defined in the interval :;- < 9 < 221 and Sheet 2 in the interval

38 < ¢, <LF. Sheet1of Vs + il is defined in the interval 3 < o, < 2,

while Sheet 2 i8 defined in the interval :“5-2—’ < L) < 7—21-' . Using these hranch cuts,

one luoks at the product of the functions Vs - ill ead +/8 + :71 to determine the

- ign distribation for the function {(s) = -\/sz + ﬂ2 . The Riemann sheets for {(s)
must be defined with respect to both ¢, and ¢,. Sheet 1 of {(s) is defined by the
intervals of 1Y and ¢, given by

1
ECTEY
IA

. 3w
¢ <3

L]
[V E
2
N g
A
oy
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r]-in

Figure 10, The Complex Frequency Plane for a Branch Tut from -ill to +ill

which are obtained from the product of Sheet 1 of -\/s - ilT and Sheet 1 of v s + ill .

These conditicns are identical to the intervals
3 1%
7 S8 < 7

3z 1%
2 $9 <3

which are obtained from the product of Sheet 2 of Vs - ill and Sheet 2 of Vs + ill,
The second shcet or Sheet 2 of 1(8) is given by the intervals

4 3%
"2" < ¢1< -3

3 n
7 S %<3
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or by the intervals

30 T
2 S ¢ < 3
LA Y
T3 5 % S T3

which are obtained by tal.ing the product of opposite sheets of Vs - iJI and

st il . With these definitions of the Riemann sheets of \/sz + 1'12 one may

determine the sign distribution of

i
TS —_— 5 (0, + 0,)
VANt -\ 5 0y Q2 712 .

h

f(s)

f(s) = u+riv. (85)

The sign distribution of u and v for each of the two sheets is shown in Figure 11.

lw iw
- +
¢4 -
- + u : - o
B
- - ttt b e [ 4 L XXX X 2 --- ] o
el I A *P4F moece-
i D¢ -
-6 4 te:
-4

SHEET SHEET 2

Figure 11. The Sign Distribution on ..ach Riemann Sheet for the Branch Cut
of Figure 10
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The integration on Sheet 1 will now be carried out for a step sine wave input
along the contour shown in Figure 12. For this case

w
E(s,0) E_ ~2— (86)
o 2 2
87+ w

-+i]]

Figure 12. The Contour for the Branch Cut in Figure 10

One may readily show that as R —» » the integral along the large circular arc C
vanishes. The two integrations along the negative real axis cancel and as the
radius of the two small circles ¢, and c_ around each branch point goes to zero
the contribution to the integral from these small circles also vanishes. Thus the
only coatributions to the integral in Eq. (81) come from the residues of the poles and
from the integration along each side of the branch cut. Therefore

J+ J = 27i ), Residues. (87)

Ys Branch
Cuts
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Along the branch cut
pp = - w
Py = n+ w. (88)

Using Eq. (88) in Eq. (85) together with the sign distribution of Sheet 1 in Figure 11
one sees that on the right side of the branch cut f(s) = + V II2 - w2 while on the
left side {(s) = - V n? .- w2 . From Eqgs. (81), (86) and (87), one can then write

+MN { £ 2. 2}
o% exp | st+ o n w

ds
27i am s2+w02

&(t,z) +

-i 2 2

E w ill exp {st-z- n -w} .

+ _igﬁ g 5 ds = 27i ), Residues,
.’in S + wo

or, letting s = iw

w M it 53/!!2-03 -1‘/1‘12-0}2
0 0 e c c
Et,2) + =7 f 53 e -e dw
-1 Uo -

= 27%i 2 Residues,

which becomes, after evaluating the residues,

w,2 né E w *H eiwtsinhiy/nz-wz '
£t,z) = E sin (ot -—— 1 -—5] - %2 [ 5 dw.
“ -1 o (89)

The integrand of the imaginary part of the last term in Eq. (89) is an odd function
and therefore integrates to zero. One can then write Eq. (88) in normalized form,
using Eq. (52), as

l=-u

E,Z P /o2 _ 2
E(TJI)’EO sin (7.1, \fl-pz) --'2 f M&_ﬁn_h_%_l’__&_du. (90)
-P
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It is evident that the total solution is the sum of a steady state term and a
transient term. The integral representing the transient term is not particularly
suited for numerical integration since the integrand oscillates rapidly for large 7.
In order to overcome this difficulty the solution based on a different branch cut
will now be examined.

3.3.2 BRANCH CUTS IN LEFT HALF PLANE

A different branch cut which better lends itself to numerical integration will
now be considered. If the s-plane is cut as shown in Figure 13 then the integra-
tions aiong the branch cuis will be over negative values of the real part of s. One
might expect the resulting integrands not to oscillate as much as if one integratead
along the imaginary axis.

_+ill

=il

Figure 13. The Contour for Branch Cuts in the Left Half Frequency Plane

Let the initial time response be an exponential function of the form F oei wo!
and take the imaginary part of the result to give the response to a sine wave input.

The integral to be evalnated may then be written from Eq. (81) as
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P N {ot-2 i2on?)

2ri s-iwo

s

ds. (91)

The integration will be carried out on Sheet 1 of Figure 13, defined by the
relations

ig
s-in=p1e 1 -ug¢1<u

ig
s+in=p2e 2 -1:592(". (92)

One must now determine the value of

i
5(9, + ¢,)
'\/82+H2 =\/;in \/S+in =Jplp2 e2 ! 2 (93)

for each of the four sides of the branch cuts in Figure 13.
Consider first Side @ of the upper branch cut. Along this side ¢1 =+ 7 and

99 =-2’l + Y where y = tan! (T'g) . Ome then obtains from Eq. (93)

37
i i
s2+u2= '\A)lp2 e ¥ e%

» g%ﬁ_)_g (-14-1) (con-*#ﬂuin%)

V2 [ (ot ) 1 o § - o d)]

or

\/»2”12 --\/-p-*z—‘32 (-a+ib) [Side @ ] (94)

where

a = cos-g+ -in*
b = cos#- sin-g. (95)
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Since 0 SY < ¥, s0that 0 ¥ < L itis seenthata > 0.andb> 0.
In a similar manner one can readily show that for Sides @ , ® and ®
one obtains

\A’m"’-ﬂ%& (a-ib) [Side @ ]
‘/;z,,nz:\/f%iz_ (a+ib) [side @ ]

Py P
s%n"’-\[—lz—% (-a - ib) [side @ j. (96)

For each of the four sides it is also noted that

/Py P2 lolv gl + 4nn 2
-5 = \/ ) . (97)

Consider again Side @ . Along this side s = o+ill and the integralin Eq. (91)

becomes, using Eq. (94)

E, ¢ P, P
Q. 1 z 172 .
281 _-L ovin-iaw, P {(‘”im‘ eV "““b)} do

B T ° -o+1(u-w°) exP{A°iB-0t}d0 (938)

where

W NI
B'bi'\,:s!! . (99)

Similarly, one can evaluate the integral along the other three sides of the branch
cuts and obtain for the total contribution from the branch cuts
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«iMt o T
E e . .
o exp {(A+iB) -exp |-(A+iB) -0t
+ S fo .._P__.__» T+ o) e da. (100)

Noting that

1 =+a-1(r!+ “’o’

Povimia) P+ (¥ g)?

e(A+iB)-e"A+iB)'2 [cosBsmh A;isinBcoshA] (101)

one can write the imaginary part of Eq. (100) as

E_ cos It E_sinnt
m [ sefe— 1, - 1] - 2 [1- 1] (102)
Branch
Cuts
where
® ga+f(i+w)
1, =f % ¢ Tago
1 )
° ?+(n+q,)
ca+B(N- w) .ot
x = ———i [ ] dc
2 @+ (M- o)l

gp-alll+ w)

o2 +(n+ w )3
of-a(ll- wo)

do

e % 4o (103)

w"‘
[ ]
o8 o*—8 o*—38

o+ (- wo)2
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and

o = ¢cos B sinh A
8 = sin Bcosh A . (104)

As in the previous section it can readily be shown that the contributions to the
integral from the large circular arc in left-half plane and from the small circles
around the branch points vanish, so that the total response to a sine wave input is
found from the relation

€(t,z) + Im f = Im [2 Ti ZResidues ]

Branch
Cuts

or

£(t,z) = Im (E  exp [i (wot -2 ]/woz -n"’)] - . (10%)

Branch
Cuts

Normalizing all quantities to w according to Eq. (52) one obtains by substituting
Eq. (102) into Eq. (105)

#r,m) = E, {sin [f-a Vx-p’] + M3+ N2 oin [Pr+ 6 (1)]%. (106)

where

6 = unt M (107)

and where the jutegrals ll' lz. 13. and [, are given by the following relations
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at
L. ’f ax + f(P+1) e T dx
t ()

x +(P+1)

a0

12=f ’§+ P-1 e Xdx
o x“+(P-1)
L]

13=f x2—1 P+l -7x 4.
o x"+(F+1)
@0

,=f B""’(P'i)- e T¥dx (108)
o L, +(P-1

where

o = cos Bsinh A

= sin Bcosh A

2 2

A = ﬂ(cos%**s'm%) X ""’24!’
B = 7 (cos¥ - sm.g) /x Vi + 4 p?

¥ = tan} (;’fp)- (109)

The integrands in Eq. (108) deray exponentially for large 7 and for large x.
They therefore lend themselves tc numerical integration since the upper limit of
intagration can be cut vif at some iarge value of x without appreciable error. These
integrals were evaluated numerically by cutting off the upper limit at a value
x = 15/(7-1). The results are shown in Figures 14, 15, and 16. Figure 14 is a plot

of the transient envelope “2 + Nz as a function of 7. The total transient solution

VM2 + N? sin [P7+ 6] is plotted in Figure 15. Note that it is a phase modulated
oscillation about the plasma frequency. The total response found by adding Figure
15 to the steady state solution is shown in Figure 18.

All of the numerical results discussed thus far in this report lose their useful-
ness for very large values of 7. This is due to the fact that under these conditions
it is necessary to take the difference of two ve.ry large numbers in order to obtain
a small number. Thus the errors can become very large. However, it is just in
this region of very large 7) that asymptotic solutions to the transient propagation
srnblem work very well, Asymptotic solutions to the transient wave propagation
prob'em will be considered in a second and subsequent report.
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Figure 14, The Amplitude of the Transient Envelope
4. CONCLUSION

In Section 2 the propagation of wave packets in dispersive media was discussed.
The wave packet is & veeful concept zince it enables one to define the group velocity.
The group velocity definition is given by Eq. (21). Two types of wave packets, the
Gaussian envelope carrier and the square pulsed carrier, were investigated. The
wave packets were found to propagate in the plasma with the group veloeity. The
second derivative of the wave number with respect to {requency gives rise to a
distortion of the wave packe:. This distortion places an upper limit on the maxi-
mum rate at which repetitive pulses can be transmitted and distinguished in
dispersive media. A crude method for estimating this maximum rate for Gaussian
pulses in an isotropic plasma was presented. The treatment in Section 2 is limited
to quasi.-monochromauc signals.
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Figure 15. The Total Trane’ ont Solution Obtained by Integration Along the
Branch Cuts

In Section 3 a more exact trcatmeut of the propagation of transient waves in
isotropic plasmas wae given. Laplace transform methods were used, and the
problem was reduced to eveluating an inverse Laplace transform. The problem
of a sine wave electric <. turned on at t = 0 in an isotropic plasma was investi-
gated in detail. The solution can be expressed as a series of Bessel functions, and
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Figure 16. The Total Solution cf a Proragating Sine Wave Electric Field

this solution can be expressed as the sum uf two Lommel functicas. The solution
cam algo be given as a convolution integral representation. By using methods of
contour integration, still other integral representations cun be obtained, and two
such representations were derived. Results from numerical evaluation of the
integrai solutions were presented. Due to limitations in the numerical methods cf
{ntegration, Ww integral solutions are :'seful only for relatively small values of
the parameter 7. ¥or larger vaiues of 7), asymptotic solutions can he obtained,
and thiz will be the subject of a subsequent report.
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Appendix A

@

2
Evaluation of ll = / & b dt

-

Consider the integral

2

o0
at-bt
L= [ e dt. (A1)

- a0

If one completes the square in the exponent of Eq. (Al) and makes the change of

variables y =vb {t - -,.5) one obtains
2
© 2 2 exp | &= ® .2
l,' f exp %‘b(t'ﬁ) "'"Lb'%dt. fb—‘ f cy d)’.

-9 - o
from which

Il *1/-;— exp 3

(A2)

&P
B
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Appendix B

o Y

by

), 20
1 1ieV-bV
Eveluation of I2 " — f "’—.w—-—-'dv

2ni v
Consider the integral
1 . exp Iiav-bvz}
= - 1
L=5a7 J v dv. (81)
-0
Letting V = 7% and X = 7‘- one can rewrite Eq. (Bl) as
1 £ exp {iXu-uzi .
Leae J . du. (B2)
-0
Noting that

X iuX
fux « & .l
[, e dx = =@ iu




B2
so that
iuXx X .
e N
u u

(o)

one can write Eq. (B2) in the form

00 _u2 X o0
S . iy - uel .
12 * T f a du + 57 f dx f exp '1xu u“ 'l du, (B3)
- a0

[
o -0
where the order of integration has been interchanged in the second term.
The first integral in Eq. (B3) can be evaluated by using Cauchy's integral
theorem and integrating around the pole at u = 0. One readily finds the veiue of
the integral to be equal to 1/2. In the second integral in Eq. (B3) the integral over

2
du is equal to V7 exp (— 5—) from the results of Appendix A. Therefore,

3
2 1 -
12-2+2ﬁ{e dx. (B4)

Making the change <f variable w = x/2 and using the definition of the error function

X/2 2
erf(%—‘)= —'v%'_ j; eV dw (B5)

one obtains

[2 = %— + %- erf (¥).

from which, since X = a/s/g.

I = g [1 +ert (—2—'}/—:-)] (B6)
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Appendix C

Derivation of Integral Expression for £{t,2)

Maxwell's equations which describe the propagation of electromagnetic waves

in an isotropic plasma are

2x

cur1£=-ub Y
2¢
curl & = J + eoa—;’

where

d=-Ney.

«n

(C2)

N is the electron number density and y is determined from the equation of motion

v e
5t "m &

(C3)

Consider the one-dimensicnal problem in which £ is linealy polarized in the
x-direction and is propagating in the z-direction. The x-component of & (t, z) will
be written as £ (t, z) and the Laplace transform of & (t, z) as E(s, z). If one then
takes a Laplace transform in time of Egs. (C1), (C2) and (C3) and solves for
E(s, z) setting all injtial conditions equal to zero, one readily obtains the equation



Cc2

2 .
d :.(s, z) __Li (s + %) E(s, z) = 0. (C4)
z c

The object is to determine the tirne response &(t, z) in the semi-infinite region
z > 0 when the time response £(t, 0) is prescribed at z = C. The solution of
Eq. (C4} may then be written as

Els, z) = E(s, 0) exp %- 2z s’ { (C5)

where E(s, 0) is the Laplace transform of &(t, 0). The time response €(t, z) is then
nbtained by taking the inverse of Eq. (C5). That is,

2 |

2
elt, z) = 5—,1,-{ 'yf E(s, 0) exp 3st-% s+ s ds, (C6)

which is Eq. (36) in Section 3 of the text.
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