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Abstract

This report presents parts of the scientific investiga-

tions carried out under a task program related to the deter-

mination and assessment of surface dynamic soil properties

by laboratory instrumentation. It first reviews the histor-

ical development of the hardness-penetrometer concept and

presents a pilot model for a new aerial penetrometer. Basic

theoretical considerations are then advanced regarding the

stress-strain relationships in axial symmetry and the dynamic

loads associated with a drop-impact penetrometer. The exist-

ing theory of elasticity solutions are then reviewed and the

solutions for a sphere impacting on an ideally plastic and

on an elasto-plastic semi-infinite solid are presented. The

Hertz solution of an elastic sphere impacting on an elastic

half-space is modified by using the elastic-viscoelastic

analogy to find a solution for a sphere dropping onto a four

parameter viscoelastic half-space.

The problem of energy transfer during impact by vibra-

tions is discussed shortly. The data for fifteen test series

carried out with the pilot model penetrometer on natural soils

and on some artificial materials are presented and evaluated.

It is concluded that the principle of the drop impact-

penetrometer is applicable in experiments for assessing the

mechanical properties of a natu'ral soil surface. The proposed



modification of a prototype penetroiweter should also increase

its capability and reliability as a remote sensor for opera-

tional applications. The instrument, as envisaged, will not

only permit determination of mechanical surface properties

on terrestrial soils but should also be extremely useful for

the exploration, by remote techniques, of lunar and other

extraterrestrial surfaces.
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I. Introduction and Definition of Problem

The determination of soil properties is one of the most

important tasks of modern soil mechanics. For its successful

solution one needs, first of all, a clear and rigorous defi.ni-

tion and a thorough understanding of these properties. Next,

it will be necessary to develop suitable methods and instru-

ments for determining these properties and, finally, one will

have to evaluate, interpret and apply the data that are

obtained.

Historical progress in this field followed a more or less

logical development. It began by measuring properties of dis-

turbed soils in the laboratory (e.g. Atterberg consistency

limits, friction angle in the shear box). But one soon recog-

nized that certain soil properties were strongly influenced

and adumbrated by the disturbance that is unavoidable in the

normal soil sampling process. For this reason the measurement

of properties in the laboratory on "undisturbed samples" found

wider and wider acceptance (e.g. the consolidation test and

the triaxial test). It is obvious that the term "undisturbed"

must be understood relatively and merely designates generally

ac6epted standard methods by which soils are being sampled to

achieve reasonably undisturbed samples without undue expense.

The actual method used for sampling and its applicability for

the soil being sampled becomes very important.



Even these methods, however, do not yet constitute an

ideal solution because first, a truly undisturbed sample can-

not be obtained - even with the greatest care, and secondly,

the transport of the sample to the laboratory, the assembly

of the sample in the testing apparatus, the test itself as

well as its evaluation always require a large amount of time

and labor. Moreover, according to Burmister (1957) the soil

properties depend also on the soil environment, particularly

the system of stresses that exists "in situ" in the soil and

this author is in complete agreement with this hypothesis.

For this reason it would be advantageous to develop

methods that permit the measurement of soil properties "in

situ," i.e., in place. The advantages of such methods could

be listed as follows:

1) There is no need for sampling and, thereforg, any dis-

turbance during the sampling process, the transport

of the sample and its assembly in the apparatus is

eliminated.

2) The time lag between sampling and evaluation of the

test results is eliminated.

3) The measured properties are available immediately on

location.

For these reasons developments of new measuriiig techniques

have been directed increasingly towards instruments and methods

that measure soil properties "in situ." Among these instru-

ments and methods are:
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a) The standard penetration test

6 b) The shear vane

c) The Menard-pressuremeter

d) The static penetrometer (e.g. CBR)

e) The drop penetrometer (e.g. aerial penetrometer)

The methods a), b) and c) are mainly concerned to meas-

ure the shearing strength of a soil in a bore hole whereas

methods d) and e) have the purpose to determine the properties

of the soil surface. The mechanical properties of the soil

surface are of importance in the design of highway or airport

pavements, or when it is necessary to judge the trafficabil-

ity of a surface by a tractor, by construction equipment or

by a military vehicle.

The latter problem is a tactical-logistical one of great

military significance which normally is made more difficult

still because often the soil surface to be judged is not

accessible. From a purely scientific point of view this prob-

lem is of great interest also. For example, the design of

the lunar exploratory module (LEM) being developed at the

moment by the Grumman Aircraft Company requires a reliable

indication of the surface properties of the moon.

In the fall of 1962 the author initiated a research pro-

ject sponsored by the Terrestrial Sciences Laboratory, Air

Force Cambridge Research Laboratories (OAR), Hanscom Field,

Bedford, Massachusetts. A part of this project was to
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"2..e..igat. the p ^nil wi would permit the measurement

of mechanical properties of a soil surface by remote methods,

i.e. without requiring the physical presence of an operator

at the surface. The aim was to determine the properties of a

natural soil surface that might control modern aerospace oper-

ations on natural terrain such as landing and take-off of air-

craft and recovery of space vehicles.

The problem then was to develop a method for measuring

those properties of a soil surface which govern the opera-

tional possibilities of natural terrain sites for modern mili-

tary aircraft and other aerospace vehicles. The problem was

not entirely new.

ZA MM
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II. Historical Development

During 1950-1953 an aerial penetrometer was developed at

New York University (Fig. 1; see also Molineaux, 1955, and

Anonymous, 1953) that could be dropped from an airplane and,

upon impact, would release signals in the form of flares,

colored vanes or flags that would indicate the severity of

the impact. The signals could be observed from the plane and

would indicate the hardness of the impacted surface.

In its practical application, this aerial penetrometer

had several flaws. One of the principal difficulties was that

it required an impact with zero horizontal velocity component

together with a perfect vertical alignment of the penetrometer

axis.

In the normal operational case this was to be achieved

by flying the airplane at a constant speed of 180 knots and

ejecting the penetrometer rearwards and slightly downwards

with a speed such that the net difference between the two hor-

izontal velocity components would be zero. Because of wind

and small variations in the forward speed of an airplane it

is most difficult to achieve exactly this condition of Vh = 0.

Even more important, if the longitudinal axis of this pene-

trometer is just slightly off the vertical at the instant of

* impact. part of its energy will be converted into a moment

which tends to throw the penetrometer onto the surface broad-

side and thus a good part of the impact resistance will not

l
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be transmitted through the point of the penetrometer. It was

found rather difficult to stabilize the penetrometer aerody-

namically in such a fashion that it would always hit verti-

cally. Furthermore, this instrument, as developed, cannot

make an absolute measurement. Rather, before being dropped an

estimate must be made with respect to the expected impact

resistance and the observed signal then merely in-dicates

whether the actual resistance encountered was larger or

smaller than the one previously estimated.

Principle of Penetrometer Methods

The development of the aerial penetrometer just discussed

was not at all without precedent but followed in principle the

"cone penetrometer" developed by the Waterways Experiment

Station of the Corps of Engineers, U.S. Army, in Vicksburg,

Mississippi (rig. 2)(WES 1957) which is used to determine the

trafficability of a natural soil surface.

This instrument is a rod with a standard conical tip at

the lower end. This tip is pushed vertically into the soil

surface by a force on the handle at the upper end and this

force is measured by a dial through a proving ring.

The instrument and its operation is described in a Water-

ways Experiment Station manual and is discussed by Hechtl

(1964) in the context of trafficability evaluation. Although

the Vicksburg cone penetrometer is an original instrumentation
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development, it is based on the same principle as other pene-

trometers. in the final analysis all penetrometer methods

have their origin in the principles of hardness measurement

of materials which can, according to Williams (1942), be

traced back to an article by Reaumur in 1722. The more modern

investigations, however, most probably were initiated as a

consequence of the solution of the contact stresses of two

elastic spheres by Hertz.

The idea to use the results of this solution for the

determination of material properties was obvious and led to

the various methods of measuring the surface hardness of a

material.

Hardness Measurements

In measuring the well-known Brinell hardness, e.g., a

steel sphere is pressed by a force P into the surface to be

examined and the diameter of the resulting permanent deforma-

tion is measured. The Brinell hardness is then given by the

ratio of the force P to the curved contact area of the defor-

mation :
P

H B (i)2B -D (D -d22

where D is the diameter of the sphere and d the diameter of

the permanent deformation.

, m I - - • ,= •
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In most cases the Brinell hardness is not a constant

but a function of the load P and the diameter of the sphere.

According to general physical principles one would expect

that for geometrically similar deformations, the Brinell hard-

ness number is constant and independent of their absolute mag-

nitude. This was indeed found to be so.

If, for example, a sphere of diameter D1 causes a defor-

mation d, and a sphere of diameter D2 causes a deformation d 2

then the Brinell hardness number will be the same provided

that the deformations are geometrically similar, i.e. the

central angle 0 (Fig. 3) is the same. This is the case if

d, d2
d 1  D2

According to Tabor (1950) the Brinell hardness is not a

very satisfactory quantity because the ratio of the load P to

the contact area does not give the average pressure over the

contact surface.

If, on the other hand, we use the vertical projection of

the contact pressure p only and apply the equilibrium condi-

tion we obtain:
a •a

P = 2ri, p x dx = wpa2

where a is the radius of the circular indentation at the sur-
P

face and the projected pressure p is given by p = This

measure of hardness, namely:

H 4- (2)M -ffd2

S. . .. k-
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was first proposed by Meyer and is generally known as Meyer

hardness. Meyer also found an empirical relation between the

load P and the diameter of the indentation as:

P = kdn

where k and n are constants of the material. The exponent n

usually being larger than 2.0 lying in the range 2.0 < n < 2.5.

If the load is applied by spheres of different diameters then

the values k and n change also and we get
S"nI n 2 n 3

P = k= k 2 d 2  = k 3 d 3  = ...... (3)

For a large number of tests Meyer found that the exponent n

4 is independent of D but that k decreases with increasing

sphere diameters such that

A = kkD 1 n-2 = k 2 D2 n- 2 = k 3 D3 n- 2 . ...... (4)

where A remains constant. Therefore we may write:

A n A n A nP = Dn-2 d1 - n-2 d2 - n-2 d3 ...... (5)

from which follows that:

- = A (n) (6a)

D2 D

and

P dn
= A() (6b)D 2D

Equation (6a) states that for geometrically similar deforma-

tions (0 .zonstant) the hardness number must be constant
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whereas (6b) indicates that for geometrically similar defor-
P

mations the ratio P must be constant.
D2

That is to say a static load of 3000 kg applied by a

sphere of 10 mm causes a plastic indentation which is geo-

metrically similar to that caused by a load of 750 kg applied

through a sphere with D = 5 mm or by a load of 30 kg with D =

I mm. In all these cases the hardness number must remain the

same.

For the general case one may write:

P = F4d

d2  F) (Dc)

where F is a suitable function expressing the similarity

principle.

In order to avoid the problem of the different geometry
d

for different penetration ratios i which presents itself when

measuring the Brinell or Meyer hardness, P. Ludwik (1908)

chose a conical indenter with an angle cf 90 instead of a

sphere. Thereby the penetration t is equal to the indenta-
d id 2

tion radius -. The contact area is then given by A =
2 4sin450

and the Ludwik hardness number can be computed from:

4 P sin 450  P
HL Tfd 2  = 0.898 d (7)

For a homogeneous material the hardness number of Ludwik

is thus independent of the penetration ratio and geometric

similarity obtains for any load P or any penetration depth t.

15Rft- hr~
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Ludwik used this hardness number mainly to investigate

the internal friction of metals (Ludwik, 1916).

As a consequence of these investigations by Brinell,

Meyer and Ludwik, a large number of methods for measuring

hardness were developed which in detail vary mainly in the

absolute magnitude and shape of the indenters and in the form

in which the loads are applied (statically or dynamically).

Here shall be mentioned only the methods of Vickers and

Rockwell. For dynamic load application a series'of methods

were developed, e.g. the Shore scleroscope and/ the pendulum

by Herbert and that by Kuznetsov. A detai ed description of

all these methods is given by Williams (1942).

We are particularly interested here in to what degree

the principles of hardness measurement have been applied in

the field of soil mechanics.

Hardness Measurement in Soil Mechanics

A surprising number of soil mechanics tests can be traced

back either directly or at least indirectly to the principles

of hardness measurements just discussed. For example, as

direct descendants we may consider: the steel ball test by

Tsytovich, the Swedish cone test, the Proctor plasticity

needle, the California bearing ratio test, the ram penetrom-

eter for measuring the hardness of a snow surface developed

by CRREL (Cold Regions Research £ Engineering Laboratory) of

- |-
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the U.S. Army, the Waterways Experiment Station cone pene-

trometer of the U.S. Army Corps of Engineers and the aerial

penetrometer of the U.S. Air Force. As soil mechanics tests

which have their origin at least indirectly in the principles

of hardness measurement may be considered the U.S. standard

penetrometer and the penetrometers used in the various coun-

tries, e.g. in Denmark, Holland, Sweden, Switzerland and

Germany. The various penetrometer points are shown for exam-

ple by Terzaghi and Peck (1948) and the experiences made with

these various penetrometers are described in the literature.

These latter methods have the purpose of measuring the shear

or penetration resistance of a soil at some depth either in a

bore hole or after the penetrometer has been pushed into the

ground already some depth.

These methods are, therefore, of little interest here.

We are mainly interested in those methods and tests

which we classified as direct descendants of the hardness

measurement principles. In the following we shall give a

short description and discussion of the various methods.

1. The Steel Ball Test by Tsytovich

To investigate the consistency of cohesive soils,

Tsytovich modified the Brinell t6st in the following manner.

A steel ball of diameter D = 9.5 mm is forced by a load P

into the smoothened surface of the soil. The load is chosen

as- -ýi



Sucn tnht the penetration " is between 0.5 and 1.0 mm where

t is measured with an accuracy of 0.01 mm. The apparatus is

shown in Fig. 4. The penetration is read after a load period

of 5, 10, 30, 60 and 300 seconds and the corresponding shear

resistance is computed by the formula:

S = 0.057 P- (8)

Dt

where P is the load in kg, D the diameter of the sphere (cm)

and t the penetration (cm). This formula was derived for

ideal, plastic, i.e., frictionless materials, and is supposed

to be usable for soils with a friction angle of up to 7°.

For soils with a higher friction angle the results must be

multiplied by a correction factor m according to Beresanzev,

friction angle correction factor m

100 0.61
200 0.28
300 0.11

Since the penetration depth t is time-dependent and

increases with increasing load duration this method yields

a shear resistance that decreases logarithmically with the

load duration.

This, indeed, also corresponds to actual clay soil

behavior which exhibits a shear strength that tends assymp-

totically towards an ultimate value as the duration of the

load is increased. It is interesting to note that this

method is one of the few ones which is able to reveal the

rheological properties of a soil.

-4
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Nevertheless, a certain amount of the penetration t may

also be caused by consolidation which will introduce a small

error; however, its magnitude can be determined fairly'well,

if it should be considered necessary.

2. The Swedish Cone Test

This test follows exactly the same principle as that

of Tsytovich except that the sphere is replaced by a cone

with an angle of 600 or 300 respectively. The apparatus is

shown in Fig. 5. The disturbed or undisturbed soil is placed

in the container and the surface is leveled and smoothed.

The cone is then adjusted by a screw such that its point just

touches the soil surface. Then the cone is released and pene-

trates by its own weight into the soil. This penetration is

measured by a micrometer and serves to determine the strength

index H of the soil which is defined as one sixth of the load

producing a penetration of 1 cm of the 600 cone.

From a large number of tests a table could be established

giving the strength index for any penetration and load. The

strength index H is a purely empirical value and serves mainly

to determine the sensitivity of a clay and to compare the

relative strength cl. various soil layers.

If H, and H2 is the strength index in the undisturbed

and disturbed state respectively, then the sensitivity is

- -~-~.-WA
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H,/H 2 . In the range of small indici an empirina! relation-

ship was found between H and the shear strength s, namely:

SH kg /cm 2s - 40--0-

This relationship is supposed to be valid for H < 240.

Although the experiment is evaluated on a purely empir-

ical basis it is claimed to be very useful.

Table 1

Strength Index for Swedish Cone Test

Penetration (mm) Strength Index H
load P 100 grams 60 grams 10 grams

cone angle 300 600 600

2.0 1140 '195 -
3.0 526 100 -
4.0 296 58 -
5.0 189 36.5 -
6.0 140 26.8 4.5
7.0 104 19.7 3.3
8.0 79 15.4 2.6
9.0 62 12.2 2.0

10.0 42 10.0 1.7
11.0 8.2 1.4
12.0 6.9 1.2
14.0 4,9 0.8
16.0 3.6 0.6
18.0 - 0.4
20.0 - 0.3

3. The Proctor Plasticity Needle

R. H. Proctor (1933) proposed to measure the force

necessary to push a plane indenter of circular cross-section

with a penetration rate of about 0.5 inch per second into the

surface of a compacted soil. The apparatus used is shown in
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Fig. 6. Exchangeable indenters with cross-sectional areas

varying from 1.0 to 0.01 squAare inch are pressed by a rod and

handle assembly through a spring into the soil and the neces-

sary force is read off. The necessary force should be around

300 psi. at the optimum water content. Proctor proposed this

test as a construction control test ýo determine whether the

required compaction had been obtained at the permissible

water content. He considered a penetration resistance from

200 to 300 psi. as acceptable. The test, however, has been

replaced more and more by "in situ" density measurements and

is hardly used any longer.

4. The California Bearing Ratio Test (CBR)

In 1940 the U.S. Army Corps of Engineers was suddenly

faced with the task to develop a method that would pe.rmit the

quick and reliable design of airfield and highway pavements.

After months of intensive research the conclusion was reached

that the method developed by the California State Highway

Department was the most suitable. It was therefore adopted

for the design of asphalt pavements and it permitted to take

advantage of the experience already gained with this test in

California. The CBR test is, in principle, a penetration-

shear test which determines a bearing strength modulus. This
e

bearing strength modulus then determines, according to a

purely empirical relationship, for a given wheel load the

__Or___ ___ __ __ ___ __ __
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required pavement thickness. For the design of airfield pave-

ments the design curves of the California State Highway Depart-

ment were extended and confirmed by measurements on existing

airfield pavements. This method then was used extensively

during and after the second world war and probably is one of

the most successful methods of modern soil mechanics.

The equipment for the CBR test is shown in Fig. 7. In

this test a circular steel cylinder of 1.954-inch diameter is

pressed into the soil surface by a hydraulic piston and the

load-penetration diagram is found. In the normal case the

stress corresponding to the penetration of 0.1 inch divided

by the stress corresponding to the same penetration (0.1 inch)

for the standard material (crushed rock) is the CBR value:
Osoil

CBR = standard. Since the stress for the standard material

at 0.1 inch penetration is 1000 psi., a soil stress of 300

psi. at 0.1 inch penetration would give a CBR value of 30%.

This method has found wide application in the western

hemisphere and is being used with great success. A detailed

investigation of the method was carried out in 1945 by the

Waterways Experiment Station in which the soil deformation

chare-,ýAristics below the piston were carefully examined also

(see Fig. 8). The CBR test is thus surely that test method

in which the principle of hardness measurement has found its

widest application in modern soil mechanics.

I

i
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5. The Ram Penetrometer

This instrument is a steel rod with a conical point

that is driven into a material surface by the repeated impacts

of a falling weight and the penetration is then related to

the impact energy. In principle this method is therefore

related to the pile driving formulae. There are a number of

ram penetrometers in existence and as a typical example we

may just mention that developed by the U.S. Army Cold Regions

Research ard Engineering Laboratory.

The equipment is shown in Fig. 9. A steel block of

weight W falls through a height H onto an anvil. The result-

ing impact drives the conical point of the rod into the mater-

ial surface and causes a penetration s. A detail of the con-

ical point is shown in Fig. 10.

The ram hardness R is then determined from:

R WHt W + Q (9a)
s

where Q is the weight of the peraetromete- rod. Since it is

often difficult to determine the penet,,ation s for a single

blow, one often determines the tot.-l set from a heat of n

blows and finds

nWH )sn
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where sn now is the penetration after n biows. The results

obtained with the penetrometer shown were compared with uncon-

fined compression tests which yielded a linear relationship

between the unconfined compression test and the logarithm of

R according to:

Qu = 4.078 In R - 14.72 (kg/cm ) (10)

A series of experiments and the scattering of the results are

shown in Fig. 11.

it is interesting to note that in this case the load is

applied by impact, i.e. dynamically. As one can see, equa-

tions (9a) and (9b) have the same structure as the various

pile driving formulae and, therefore, are subject to the same

criticisms and reservations that were made with respect to

those by Cummings. Especially the assumption that the pene-

tration resistance remains constant throughout the penetra-

tion process along the distance s is of questionable validity

and the further assumption that the various energy losses may

be neglected shows that these formulas at best have an approx-

imate value.

6. The U.S. Army Corps of Engineers Cone Penetrometer

This instrument was developed by the Waterways Exper-

iment Station of the U.S. Army Corps of Engineers in Vicksburg,
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Mississippi and has been used for several years to determine

the shear strength or the trafficability of a soil surface

for given cross-country type vehicles. The apparatus was

already shown in Fig. 2 and consists mainly of a conical

point having an opening angle of 300 and an area of 0.5 in 2

connected by a steel rod and proving ring to a handle. The

cone is forced by hand into the soil surface and the force

required is read off from the proving ring dial. This dial

is calibrated in such a fashion that one reads directly the

ultimate bearing pressure. This figure is called the "cone

index." Hechtl and Herbst (1963) described the application

of this index in more detail.

7. The Aerial Cone Penetrometer

As we have indicated earlier, this instrument is the

logical follow or to the U.S. Army Corps of Engineers pene-

trometers. It was developed particularly for those situations

where, for practical or military reasons, the Corps of Engi-

neers penetrometer cannot be used. The instrument (see Fig.

1) essentially is a long aluminum tube having a conical point

with a spike at the lower end. The cone is connected through

a spring-firing pin assembly to a cartridge that sets off a

smoke signal, flare or color vane when it is fired. If the

impact of the penetrometer is hard enough the cartridge is
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set off and the resulting signal may be observed visually

from the air. An infrared bulb may also be lighted. As the

spring of the firing pin can be varied, one can use stiffer

and stiffer springs until one is found which no longer permits

the firing pin to fire 7he cartridge.

The instrument has a number of l5miting characteristics

and disadvantages. For one, the severity of the impact will

depend on the impact velocity. This velocity therefore must

be measured independently or, at least, it must be estimated.

Secondly, every impact cnly gives a relative indication,

namely whether the resistance encountered by the penetrometer

was greater or less than the one required by the chosen spring;

thus a determination of the actual magnitude requires at least

several, if not a large number, of impacts to bracket the true

value with sufficient accuracy. One of the most severe dis-

advantages, however, in the practical application is the aero-

dynamic instability of the instrument and the geomei:ric

requirements for its perfect operation.

In order to give perfect results the aerial penetrometer

should impact upon the horizontal soil surface not only in

perfect vertical alignment but also without any horizontal

velocity component. In practice, however, the aerial pene-

trometer would most likely have a small inclination a. Such

an inclination not only reduces any resisting force trans-

mitted through the pin by the factor cos a but also causes

77~ ~ T% 0-ýT7
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the impact energy to be transmitted to a small degree only

through the conical point while most of it is converted into

a moment causing the penetrometer to impact broadside. Even

in a perfect vertical alignment impact such a moment may

develop, namely if the penetrometer has a horizontal velocity

component different from zero.

For the normal operational case it will be practically

impossible to eliminate all these sources of error and achieve

a perfectly vertical impact vith zero horizontal velocity com-

ponent and an accurately known vertical component.

The Princeton Impact Penetrometer

Because of these difficulties the author, in the fall of

1962, began a research project sponsored by the Terrestrial

Sciences Laboratopy of AFCRL to investigate the feasibility

of methods measuring the soil properties of interest without

the disadvantages cited above such that aircraft trafficabil-

ity on a soil surface in terms of predictable deformations

could be evaluated.

The important practical as well as theoretical consider-

ations for developing such a method are discussed belov.

Also, a description of a laboratory instrument (Fig. 12) t-c

check the design concept is given as well as the results sf

several series of tests that were carried out with the instru-

ment.

V -.77
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The instrument itself was designed by the author and

manufactured in the central machine shop of the School of

Engineering and Applied Scien.ce of Princeton University. Mr.

Christian Hechtl, research assistant, assembled and calibrated

the electronic equipment and during the summer and fall 1963

carried out a first pilot test series mostly on disturbed,

artificially prepared soils in the laboratory. These pilot

tests had the purpose to confirm, in principle, whether the

chosen concept and system was satisfactory, to find the most

favorable shape of .he nose for the drop capsule and to find

the influence of water content and dry density on the test

results. The results of these pilot tests were presented in

February 1964 by Mr. Hechtl as his Ph.D. dissertation.

The bulk of the results presented in this report were

carried out jointly by the author and Dr. Hechtl during the

summer of 1964 mostly on natural, undisturbed soil.

It is the purpose of the remainder of this report to

present first the basic, theoretical considerations for this

type of remote testing and then analyze the test results and

discuss the possible further improvement and development of

the impact penetrometer and its operation.

I - Z!
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iii. The Drop Capsule Penetrometer

1. Test Principle

One of the main difficulties encountered with the

aerial penetrometer is measuring, or at least estimating, the

impact velocity since the square product of this quantity

determines the impact energy. A small error in determining

this velocity, therefore, causes a rather large error in the

kinetic energy at impact.

An attempt, therefore, was made to consider techniques

which would permit a direct measurement of the velocity.

This would have been possible perhaps with microwave radar

techniques using the Doppler principle. However, it was

feared that this would lead to rather complicated electronic

equipment. On the other hand modern solid state technology

had developed a series of accelerometers using piezo-electric

crystals (which had already found wide application in ordi-

nance and rocket development) which were uniquely suited for

our purposes.

If one attaches an accelerometer (measuring the deceler-

ation as a function of time) to any instrument impacting on a

target, one can apply Newton's law and write:

F(t) =ma(t) (1

'k,__ _ __ _ _ Y

~ . C Z~'~Z~a LA
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and the accelerometer signal variation with time corresponds,

except for the mass m, to the variation with time of the

force exerted by the target material on the instrument which,

however,due to a second law by Newton must be equal to the

force exerted upon the target material. Moreover, since the

final velocity of a missile after impact without rebound is

equal to zero one can obtain from the acceleration-time sig-

nal a(t) not only the velocity v(t) but also the distance

traveled s(t). Because,according to an elementary rule of

differential calculus:

v(t) fa(t) dt + c. (12)

and

s(t) =IJv(t) dt + c 2  (13)

If we designate the instant of initial contact as t = 0,

the velocity at this instant with v(O) and the total period

of the force exch. ,ge with T, then according to (12) we may

write:

v(0) = a(t) dt + cI 0 + cI (l1a)

Ta

v(T) = a(t) dt + v(O) = 0 (14b)
Jo

thus

v(O) = - a(t) dt - A (T) (14c)

That is to say the impact velocity can be obtained as the

area under the acceleration-time diagram. Furthermore, we

S... . ..... ... ....... .... ... .. ..... ..... .. ... .... . ...... ... ....... .... . .... . .. .. ... .. . ...... ..... ...i ..... .... .. ... ... ..: ..... ..... ..... .. ... .... . ... ..
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observe that for t = 0 tile penetration s(O) must be zero,

i.e. c2 = 0 and the final penetration s(T) must, hence, be:

s(T) = Jv(t) dt (15)

Assuming, for the sake of argument, the acceleration-

time signal could be represented by the first half of a sine-

curve, then:

a(t) = a sin r t_ (16)
m T

which would then yield:

oT t = 2

v(&) amJ sini r -dt - am T (17)

and:

s(T) - mT2  (18)

Once the deceleration-time signal during impact is known

one also knows the variation of the force with time. The

impact velocity as well as the final penetration can then be

easily obtained by integration cf the siglal.

The choice of an instrument that gives an electronic sig-

nal corresponding to the deceleration upon impact thus avoids

all those difficulties which stem from the complicated meas-

urement of the impact velocity or its erroneous estimate.

It was mainly for this reason that the piezo-electric

accelerometer capsule was chosen. Here we have to mention,
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however, one difficulty that presents itself, namely, that of

the velocity components. A piezo-electric accelerometer, of

course, gives only the acceleration along its piezo-electric

axis. if, therefore, the instrument impacts with a velocity

component normal to this axis, the deceleration in this direc-

tion does not give any signal. For the prototype of a piezo-

electric penetrometer this problem can be easily solved by

using a triple accelerometer with their respective axes

mounted along the axes of a cartesian ccordinate system. The

maximum component can then be found by superposition:

a =a 2 + a2 + 2 (19)amax x y z

Since, for our laboratory experiments, accelerometer

axis and impact velocity component in most cases could easily

be made to coincide we avoided the complication of using three

accelerometers. This was also in the interest of economy

since the instrumentation per channel cost about $4,000-$5,000.

However, for the prototype of an aerial penetrometer a triple

accelerometer or possibly a directional stabilization would be

necessary.

2. Instrument Capsule

The instr'iment was designed as a hollow, circular

chromium steel cylinder of 75 mm diameter having an

7 ;!# i



28

exchangeable tip which was either conical, hemi-spherical or

flat. The accelerometer is attached by a thread to a small

anvil inside the tip in such a fashion that the axis of the

accelerometer and that of the cylinder coincide. The total

weight was 1.573 kg. In Figs. 12 and 13 a photograph and a

section of the instrument respectively are shown.

A shielded cable transmits the signal through an ampli-

fier system to the screen of the oscilloscope. The hori-

zontz-r beam velocity of the oscilloscope could be varied

widely. Thus, the time axis of the signal could be arbi-

trarily extended or compressed which permitted a p:oper

choice for the best readability of the signal.

For the test series used so far the signal was photo-

graphed by a polaroid camera which permitted to make a judg-

ment within a few minutes whether a test had been successful.

Of course, the signal could have also been stored on a meg-

netic tape which for a prototype operational penetrometer

appears more suitable and practicable.

The first experiments with this instrumentation were

carried out by Christian Hechtl under supervision of the

author in the summer of 1963. They served above all to con-

firm the applicability of the testing principle, to calibrate

the instrument, to test the equipment and collect first exper-

ience with it in the laboratory and to find the most important

parameters that determine the target response. Above all, we

S- - - ~ ________________________
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wanted to find the most suitable shape for the tip of the

capsule.

The results were reported in detail by Hechtl in his dis-

sertation. They were summarized by the author in November

• 1963 in Status Report No. 4, Contract No. AF(19)-628-2427,

submitted to the Terrestrial Science Laboratory, and the ten-

tative conclusions were:

1. The drop penetrometer, in principle, is suitable for

the determination of soil properties.

2. The magnitude of the maximum deceleration permits

the determination of the strength f' the soil in the range of

the impact velocities used (up to 15 m/sec).

3. First tentative comparisons between the Hertz and

the Meyer theories of impact showed that the results were

closer to that by Meyer. This comparison was made by Hechtl

using rather severe simplifications.

4. The most important parameter for the laboratory tests

appeared to be the dry density of the soil, a second one the

water content.

5. For clay soils with a higher than Proctor optimum

water content smooth curves resulted with a monotonously

increasing and then decaying signal.

In very dry soils and in sand and gravel we observed cer-

tain vibrations of very high frequency which correspond to

the eigen values of the vibration of the capsule and are
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superimposed on the target response signal. In the normal

case these superimposed high frequency oscillations have no

influence on and do not prevent the evaluation of the response

signal.

Over and above these characteristic frequencies excited

by firm targets there also appear certain softening and

rehardening phases during the impact period, especially in

sends. These should be further investigated.

Later experiences with the drop penetrometer - especially

outdoors - led to the conclusion that it will be impossible

to stabilize the penetrometer against any lateral forces or

movements in such a fashion that the instrument will always

impact vertically and without any horizontal velocity com-

ponents. To minimize any error due to these influences, we

chose for all future tests the hemi-spherical tip.

Among the thirty test series reported by Hechtl there

were, howcver, only IXfuiu- tcdried out with hemi-spherical head,

namely the series No. 12, 15, 19 and 22. The rest had mostly

been carried out with a conical head because it gives a defor-

mation that, as already observed by Ludwik, always maintains

geometric similarity for any penetration depth. This initially

appeared advantageous for the theoretical evaluation :f the

results.

The above mentioned experience and the consequent conclu-

sions led to a second test series in which the hemi-spherical
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head was used exclusively. Initially, the penetrometer was

to be tested with various target materials which, in contrast

to most natural soil deposits, had uniform, well defined prop-

erties that were either known or could be easily determined.

For this purpose we chose two greases of varying consistency

and two paraffins of different hardness.

Further tests were then carried out on natural soils.

Before we discuss these tests, however, it will be advan-

tageous to consider theoretically the state of stress and

deformation that occurs in the target material during the

impact process.

We deal here with a typical case of central symmetry for

which the use of a cylindrical coordinate system is most suit-

able. We will, starting from the theory of elasticity, con-

sider the interplay of forces and the deformation using an

ideal plasticity theory. Finally, we will derive relation-

ships for a viscoelastic half-space under the influence of a

dynamic load applied through a spherical surface.
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IV. Basic Theoretical Considerations

1. States of Stress and Deformation with Axial Symmetry

In any state of stress or strain being symmetrical

to a rotational axis one uses, as is well-known, the cylindri-

cal coordinates r and z. We follow here essentially a nota-

tion and treatment given by Nadai and consider a volume ele-

ment with the sides rd4, dr, dz (Fig. 14) and designate the

displacement components of the point P in the radial and ver-

tical direction with u and w respectively. The resulting

normal strains can then be expressed as follows:

-- ; C = (20)r ar ; t r z az

and the shear strain in any vertical plane is given by:

au = 
(21)

The volume change (dialation) is then:

au u aw
S=r +t C + -r + z (22)

If we designate the stress components in the radial, tangen-

tial and axial direction with ar, at and az respectively ard

the corresponding shear stress with Trz = T the equilibrium

conditions for the volume element of Fig. 14 may be stated

(ignoring body forces):

aar arat a- + + •=0 (23a)
a r z_
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a z + 3r + = 0 (23b)

For an elastic material the stresses can be computed from the

strains using Hooke's stress-strain relationships:

Cy 2 u+ VE )(24a)0r = 2 G (.-r + 1 - 2v

t = 2 G + -2v) (24b)

oz=2 G (aw VC) (24c)
az G z 1 - 2v

= aw)
zG ( + -) G Yrz (24d)

az ar

where G is the shear modulus and v Is Poisson's ratio. If we

introduce the stress-strain relations of equations (24) into

the equilibrium conditions (equations 23), we get:

(1 - 2v)(Au -u_-) + = = 0 (25a)r2 ar

and

(1 - 2v) A w + - 0 (25b)a z

where -
2  - + - is the Laplace operator. Accord-whr Ar rr az

ingly the volume change

1-2v ( 1-2v
S= 2(1+v)G (Cr + at + az) - E (ar + ct + z) (26)

must automatically satisfy the Laplace equation

a2! a0 a2c
AC - +- + -0 (27)

3r2 rar 9z2

••+ , _• <• • • ---.--+ --: '• .,..,+,,+- . .- +-++-+, • .'+'++-i i ,x• =.++ - -• _i . ... ",-.t ... ++ PR



34

By using the relationship (27), the equations (25) can be

:ransformed into the differential equations of the displace-

ment components u and w:

(A - L)(A u- u__) = 0 (28)r2 rN2

A A w = 0 (29)

Let us consider now the problem of an elastic half-space

z 1 0 which has on its surface z = 0 a given distribution of

the normal and shear stresses or of the deformation components

u and w. We restrict our considerations to the case of sym-

metry with respect to a vertical axis. A problem of this type

can be solved by various methods especially by using potential

theory. General solutions are given, e.g., by Riemann-Weber

(1910). However, we consider here only some partial integrals

of equations (28) and (29) which can be used to express arbi-

trary functions of r, either as infinite series or as definite

integrals. These functions can be made to satisfy the pre-

scribed boundary cond±:.ions on the surface of the half-space

z = 0 as it is often done analogously with trigonometric ser-

ies or Fourier integrals.

A double pair for each partial integral of (28) and (29)

for u and w respectively would be:

u e±z Je 1 (ar), u2 = z e±z J 1 (ar) (30)

u 1 e±6z Jo(or), u 2 = z e J 1 (6r) (31)
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where J o(r) and Jl(ar) are Bessel functions of the first

kind and of order zero and one respectively for a real vari-

able, a and $ being real constants. These functions J (x)

and J,(x) as is well-known are the solutions of the differ-

ential equation.

dx2 + x dY + (x 2 - n 2 ) y = 0 (32)dx2 d

for n = 0 and n = I respectively which are regular at the

origin x = 0.

They may also be expressed as infinite series which are

convergent for any value of x:

Jo(x) +1 (x/2) 2  (x/2) 4 (x/2) 6 +(0 t)2 + . .
(2 1)2 (3 1)2

J (x) X (x/2) 3 + (x/2) 5  (x/2)7 +
2 1!2 2!3! 3!4!

for very large values of x, i.e. for x ÷ •, these series con-

verge assymptotically to:

Jo(x) = sin (x + 2) (33)

0 14X 4

J (x) = sin (x - i) (34)

whereby the following rules of integration and differentia-

tion apply:

dJo
dx 0
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dJ 1
J_ = J -j

dx . 0 x

fJIdx =- J

fxJ dx xJ 1

J J(x) dx = JJ4 (x) dx =1
00

I J (x) dx = 1

2. Surface Stresses on the Elastic italf-Space

We consider the half-space z > 0 iaving stresses

Oz= p(r) applied on its surface z 0 which are symmetrical

with respect to the vertical axis r n with the shear

stresses at z = 0 being zero.

This includes also the case where the normal pressures

p(r) act within the circle r S a and vanish ::or r > a.

For such a case the stress components ar, (it az and T

must all decay to zero for large values of z. Therefore, the

values in the vicinity of the loaded circle wculd be of main

interest.

We introduce the displacement components cf the half-

space:

u (A + Baz) e-Oz JI(ar) (36a)

__________________
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w (C + Daz) e-az Jo(ar) (36b)

where the values A-D are constants of integration and u and w

are solutions for (28) and (29) respectively. The constants

A-D are, however, not independent of each other but must be

chosen in such a way that the conditions (25) are satisfied

simultanecusly. Besides these conditions the shear stresses

on the surface must also vanish which means that for z = G

Du + -w = 0 (37)
az 3r

If we carry out the differentiation of the displacements (36)

according to (37) we obtain

C =-A + B (38)

If we further carry out the operations with u and w

which are required by equations (25) we obtain

B = D = A (39a)
1 - 2v

2(1 - v)
C = - 1 - 2 v A (39b)

This means that except for the constant A all other constants

are determined and the displacement components (36) can be

given as:
-s

u = A (1 - 2v - az) e-az J (ar) (40a)

w = -A 2(i - v) + az e- 0 (car) (40b)

I , ýO

f*~



•7 38

The constant A must now be found by a second boundary condi-

tion, namely either by prescribing the distribution of the

normal stresses or that of the displacements u and w at the

surface. Let us assume that A is a function of a parameter

a: A (a). if we multiply the right-hand side of equations

(40) by da and integrate from a = 0 to a = - we can express

the displacements by the definite integrals:

u = f A(a) (I - 2v - az) e- z J1 (ar) da (41a)
0

w = A() [2( - v) + az] e at J0 (cr) dc (41b)

which yields the displacements at the surface z = 0:

u = (1 - 2v) f A(a) J 1 (ar) dc (42a)

w = -2(1 - v)joo A(a) J0 (ar) da (42b)

By using the expressions (41) we can again compute the

volume change:

su r = a + u + 2(1-2v) JA() e J (ar)ada (43a)a r r a z r

which for z = 0 yields:

a) c 2(1 - 2 0)Jr A(c) J 0 (ar)ada (43b)

b)

-KWO Z, F i=_R z
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To evaluate A(a) we consider the case where the no-i,,aJ• strcscc,
0z are a prescribed function of r and apply the boundary con-

ditions for z = 0.

According to Hooke's law:

= 2G (aw + ) (24c)Oz az I - 2\,

we get:

S= - p = f(r) - 2G ro A(a) Jo(ar)ada (44)

A comparison of (43b) and (44) shows that:

1 - 2v (j(5)
G

This means that the volume change is directly proportinnal to

the pressure p. According to the theovy of , ssel functions

an arbitrary function f(r) may be expressed as a Fourier

integral:

f(r) =f Jo(ar)ad f f(X) do(aX)XdX (46)

By comparing equations (44) and (46) we see that the function

A(c) is determined by the definite integral:

A(ca) - p(X) J o(aX)XdX (47)

accordingly the displacements u and w of the surface of the

half-space are given by:

022
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u - 2 -2v p( )dX ' Jd(ar) Jo(ctX)dct (48)2G J( P( j00
J - p(o)Xd Jo ) Jo(Mk)da (49)

The interior integral of (48) is nothing but a discontinuity

function of the variable X which may be omitted if we replace

the upper limit of - by r and hence we get:

U 1 - 2v r p(X)XdX (50)
2 G rjf

Because:

J1(ar) Jo(MA) = - for o L X L r (51)

=0 forrLXL

We introduce an average pressure " of the pressure p(r) within

the circle of variable radius (o L r L

- 2 tr
j p(X)XdX (52)

The displacements of the surface z = 0 becomes:

I - 2vu 4 G p r (53)

The displacements w, however, cannot be determined so easily.

At the origin r = z = 0 we get, according to (49):

W p(-) Xd (czX) da (54)
Woo ) jo o

_______
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But from:

�j� ja) da• Jo(

we get:

0 G V] p(X) dX (55)

Thus, on the surface the displacements u and the volume change

are known. According to (24) we may, therefore, compute the

surface stresses and get:

Oz = - p(r) (56a)

1

V = - p(r) + 1 (1 - 2v) p (56b)

a = - 2 vp(r) (1 - 2v (56c)

which are valid for every point of the surface. At the

origin z = r = 0 we get:

az = - p(o) (56d)

ar = %' + 2-) p(o) (56e)

3. The Stress Distribution after Hertz

Hertz investigated the uistribution of stresses and

displacements of two elastic sphercs which are pressed

together by a force P whose line of action intersects the
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centers of both spheres. If the radius R2 of the second

sphere approaches very large values, we get the problem of

a sphere pressed upon the half-space. The pressure on the

surface is then given by:

z P - P o  - (r/a)2 (57)

That is to say within the circle of contact with radius a,

the pressure is given by (57) for all values of r > a the

pressure on the surface vanishes. If we would plot these

pressures as ordinates above the corresponding radii, we

would get an ellipsoid of revolution. The resultant force

P which is equal to the volume of this ellipsoid would be:

P Po (58)
_3 p

According to (52) the average pressure is:

p 2 p r d r (59)
r 2Jf

hence:
2Poa E2) 3/21

S- a3r2  - - 2 for o E r • a (60)

2poa
2

p = f 2 Tor r > a (61)
3r 2

The vertical displacements according to Frieppi (1920) will be:

1- v3PR2)

1 - " 3 P (a - .) (62)G 8 a2 2a
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The highest indentation occurs at the central axis r = 0:

I-•3P
Wo I ------ -- - (63)0 G T8a

and at the edge where r = a: wa w

The radius of the circle of contact is given by:

3 1 - t 1/3
a PR 1 6)"

The direct application of these results is not possible

because practically in all experiments with the penetrometer

the elastic limit is exceeded. However, as will oe shown

later, the Hertz solutions can be used when applying the

elastic-viscoelastic analogy and it is for this reason that

the elastic solutions are discussed in such detail.

4. Stresses and Deformation with Axial Symmetry in the

Plastic Range

As already indicated, the main part of the deforma-

tion of the soil surface during the penetrometeo test takes

place in the plastic range. Therefore, an investigation of

the deformations due to a sphere penetrating into a plastic

body is necessary.

The plane strain problem of a plastic deformation of a

half-space by a punch was investigated by Prandtl (1921) and
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Hencky (1923). Hencky also considered an approximate solu-

tion for the penetration problem with a symmetrical axis and

noted that the radii of the slip lines varied only by 12.5%

from those for the problem of plane strain.

in his considerations Hencky used the assumption of

Karman-Haar, namely, that in the plastic range two of the

three principal stresses are equal and that the third prin-

cipal stress is different from the two first ones by the

moment 2k. That is to say, it differs by an amount corre-

spo;kcing to the yield stress. He thus used a statically

determined system of stress as follows:

a1 = 2k + a2 = 2k + a3

Prandtl gives an ultimate beari" pressure of ps

2k( +&9) whicl, for the half space with 9 = 7/2 gives p5 =

2k x 2.57. The considerations of Hencky yield a variable

pressure (see Fig. 15) with a value of 2k x 3.33 in the

center and 2k x 2.52 at the edge of the punch. The average

pressure is 2k x 2.83.

Because the investigations by Prandtl and Hencky were

made for a rectangular punch, one might assume that -or a

spherical penetrometer they are not applicable. However, if

we compare Figures 16a and 16b which show the slip li -, pat-

terns for a rectangular and for a spherical punch respec-

tively, we recognize that this assumption is not justified.
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It happens that in both cases a conical wedge directly

below the punch is forced into the material and the angle at

the apex of this cone must be 900 in both cases. This wedge

of material is practically in a hydros':atic state of stress

and may be considered as being part of the penetrometer thus

making the actual body penetrating into the material identi-

cal. The only difference is that for the cylindrical punch

the loaded surface remains constant while for the spherical

indenter the loaded surface increases with increasing pene-

"tration. Iterson (1947) analyzed the spherical indenter for

the hardness test in detail. Using the same assumptions as

Prandtl he came to the result that the ultimate bearing pres-

sure for a spherical penetrometer is also ps = 2k x 2.57 as

found by PrandUl for the cylindrical punch. Iterson also car-

ried out experiments io check Hencky's observation that the

radii of the slip lines for the three-dimensional problem

differ only by 12.5% from those of the plane problem (see

Fig. 15). He found that the plastified zone D at the surface

of the materidl (Fig. 17) in the plane strain problem was

equal to three punch diameters: D a 3d. For the three-

dimensional problem he found, from several series of tests

with different loads, different sphere diameters and penetra-

tion, an average D/d = 2.76,

An exact, theoretical analysis using the hypothesis of

Karman-Haar was carried out by Ishlinsky (i944). He utilized
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some mathematical results obtained earlier by Sokolowsky

which differs from that shown in Fig. 15 cnly by the fact

that the straight lines have a very small curvature. More-

over, Ishlinsky comes to the same result, namely, that the

yield stress is approximately 0.34 to 0.36 times the average

pressure. This observation agrees also with the statement

of Hencky who gives the yield stress as 0.35 Pav"

The solutions by Hencky and Ishlinsky have been criti-

cized by Symonds (1948) who claims that the hypothesis of the

two principal stresses being equal have nelther a physical

nor a mathematical justification. This may be formally cor-

rect, however the application of the Mises yield criterion

carried out by Symonds shows that real solutions exist only

in a few special cases and for the problem of plane strain

the solution is identical with that of Prandtl-Hencky.

In summary we may state that according to the theory of

plasticity, a relationship can be established between the

statical hardness test value and the yield stress or the

shearing strtength of a material. Hence, a spherical pene-

trometer can be used, in principle, to evaluate the strength

of a material. Accordingly, a number of authors have inves-

tigated the relationship betweein Brinnel hardness and the

yield stress or tensile strength. For example, Foster (1936)

gives the empirical relationship between tensile strength a t

and Brinnel hardness H B for non-ferrous metals as:
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Ha B - (in tons per square inch)

t 4

For steel and steel alloys the same authur gives the yield

stress as:

C 0,21 to 0.23 HB

y 

B

The value 0.22 HB is also cited by Hencky as the one

found from experiments that correlates yield stress and

Brinnel hardness. The discrepancy from the theoretical

value (0.35 HB) is explained by Hencky as follows: "Accord-

ing to the Brirnel 'hardness test, the yield stress wou be

0.22 times the average bearing pressure. According to our

calculations it should be 0.35 times The average pressure.

However, we can hope to find agreement with the Brinnel test

only if we assume the penetrated surface of radius AO ...

exactly as it results after plastic equilibrium obtains. We,

therefore, have to solve first for different penetraticns of

the sphere, the equations (14a) and (14b) as well as equa-

tion (12). Only then a comparison with the experimental

results will be possible.

"If we assume the penetrating punch is bounded by a

conical surface, we see from equation (15) that the pressure

below the tip increases logarithmically toward infinity.

Furthermore, we note that from the sector OBC the part from

0 = - j450 to *= 00 is vanishing more and more whereby the

integral dz changes its sign and yields a positive contri-
b r

bution to the exterior (negative) compressive stress.
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"The relationship between yield stress and average bear-

ing pressure (based on the projected surface), therefore,

cannot be constant but depends on the penetration and the

shape of the penetrating body. According to equations (12)

and (14) one couid, at least approximately, determine the

relationship between yield stress and average bearing pres-

sure for any penetration and any penetrometer shape end would

then have to compare this with the experimental results. By

such a comparison one shculd also be able to determine the

influence of strain hardening which at present cannot be

taken into account theoretically...."

How far these statements suffice to explain the rather

considerable discrepancy between theory and experiment we

may leave open at this time. It is obvious, however, that

if a significant strain hardening of the material takes place

during the plastic penetration, the resulting hardness number

HB or, according to Hencky, the average bearing pressure Pav

will be larger than it would be without strain hardening.

This means that the value Ly will become bigger if no strain
HB

hardening occurs and may well approach the theoretical value.

Experiments with materials that clcsely approximate the

stress-strain relationship of an ideal plastic body could

clarify this point.
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V. Dynamics of Load Application for the Drop-Impact

Penetrometer

All considerations so far were made for static or quasi-

static loads. However, the drop penetrometer has a basically

different load application because the exchange of energy

between the penetrometer and the target material takes place

during a very short time interval. The loads are therefore

applied very rapidly and decay ii, the same fashion, i.e. we

deal here with a dynamic, impact type of load.

1. Stereo-Mechanical Impact

The classical theory of impact is principally based

on the conservation of momentum theorem for rigid body and

leads to a simple mathematical formulation. The application

of this theorem, however, does not permit the determination

of any stresses of forces during the impact process. One can

merely determine the initial and final velocity components

and compare them with the applied linear or angular momentum.

Also, the classical theory is unable to describe any local

deformations at the point of impact and, moreover, assumes

the part of the kinetic energy that is transformed into vibra-

tions to be negligible. This assumption is said to be valid

for the impact of two spheres (Raleigh, 1906) or for that of

a sphere with a huge rigid mass (Hunter, 1957). For an
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ideally elastic impact a second condition can be found by

using the conservation of energy theorem which permits the

determination of the final velocities.

If the impact is not completely elastic and permanent

deformations do occur, one introduces a coefficient of resti-

tution "e." This coefficient describes the degree of energy

exchange such that for e = 1.0 the impact is ideal elastic,

for e = 0 it is fully plastic. The value e may also be found

as the ratio of the velocity components normal to the contact

surface before and after impact:

Vfinal
e = Vinitial

Frictional forces that may appear on the contact surface

can be taken into consideration by a dynamic friction factor
/

f. This factor is usually assumed purely on an empirical

basis.

Let us consider a mass point of mass m moving with the

velocity V along a path that may be described by the radius

r. The equation of the motion can then be written as:

-- 1 --
mI r = M v = P (65)

where P is the force causing a change in velocity. After

integrating once with respect to time for the time interval

T we get:

m(V - 7o) = dt Q (66)
JO
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where the product mV is the momentum. The time integral ofT
the force JPdt Q is called the impulse. A further inte-

gration yields:

S(F- FO - VoT) =fTdt=Gr (67)

where G is the mean value of the integral Qdt. Equation (66)

is the impulse-momentum theorem. If we determine the scalar

product of !(V + -o) with both sides of equation (66) we get:
2 0

1 -2 2). VQ V 0m (v - vo ) 2 (68)

This means that the change in kinetic energy is equal to the

scalar product between the impulse and the average velocity

before and after the impact.

If we multiply equation (66) scalarly with V and note

that:
(-2) 12 ( - 1 (V 2V) (69a)

it follows that:

1 2 m (V - V - - (69b)

For a rigid body the last term of equation (69b) is usually

zero if there is no friction and no external forces, i.e.:

1 (V2 V2 ) 2 (70)
T hn o2

This is the well-known theorem of Carnot.

'Ala-
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If we designate Vi and Vi the velocity of the particle mi

before and after impact respectively then the principal equa-

tions of the classical theory of impact for perfectly elastic

conditions are:

Plivi - mini (71a)

and

Zm(:•J mi(FiVi (71b)

Equation (71a) postu-ates the conservation of momentum and

(71b) that of the moment of momentum. Hence, for the normal

impact of two bodies the following equations apply:

t I

mlv1 + m2 v2 = m1 v1 + m2 v 2  (71c)

' 2 2)

ml(v1) 2 + m2 (v)2 = mv 1  + yi2 1.2 (71d)

The terminal velocities may thus be determined from:

t 2m 2  2m 1
Vi = V- m1+m2 (v -v 2 ); v 2 = v 2 I mt+m -2 kv 1 -v 2 ) (71e)

while the magnitude of the force at impact according to (66)

will be:

P =m 1 (vl-V1 ) =- m2 (v2-v 2 ) :- 1.,2 (v 1 -v 2 )

2m(m 2 v
-mlm2 (v I-v 2 ) 

(71f)

_______________________ 1 2 1: j~ < ~ ~ ' ~
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2. Ideally Elastic Impact (Hertz Theory)

The consideration of the contact stresses between

two elastic spheres were extended by Hertz also to the case

of a dynamic load. He made the assumption that all the

energy during impact is being exchanged twice, i.e., that

the energy wh 4.ch is transformed into vibrations of the impact-

ing bodies may be neglezted.

For the impact of an elastic sphere impinging vertically

on an elastic half-space we combine equations (58) and (64)

and instead of the radius of the contact circle we introduce

the approach of the two masses a. Then the load deformation

relationship yields:

P = k2, a 3 /2 (72)

where a is the sum of the elastic deformation of the surface

of the half-space w, and the shortening of the sphere radius

w2 and k9 expresses the elastic properties of the sphere and

the half-space. Thus:

a = wI + w2 (73)

If, instead of the half-space, we first consider the

impact of two spheres with the radii R and R and the masses

m1 and m2 respectively then the equation of motion can be

written as follows:

m1 m2
P m1 w= m2 w2 - ww 2 a (74)

_No
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From (66) follows that:

X w= + w2  (75)

r -0

XV 0

By combining equations (72) and (74) and integrating using

the initial conditions ;(O) = v(O); a(0) = 0 where v(O) is

the relative impact velocity at the beginning of contact,

i.e., the sum of the velocities of the two spheres: v(0) =

v1 (O) + v 2 (0), one obtains:

•. mL+m2 3/2 3/2
a = - mIm2 k2 =a k 1 k 2 a (76)

and

I *2 k k22 5/2 (77)
(a~~~~ vO - kk 2 a

The ciaximum approach occurs when a= 0 consequently:

m 5 v(0)212/5 (78)

am = 1 4klk2 j

The approach Q at any time t is given by:

t = a da (79)

S_() -T k 1 k 2 a5/2

Since the deformation process is assumed to be perfectly

reversible the maximum approach occurs exactly at the mid-

point of the contact period. This contact period may be

found by integrating equation (77). For this purpose we

introduce a dimensionless variable Z 2- and obtain:am

M4

-. - r 0" 1 isle
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fI2/12T dt 2f aL ca

0 02 _ kk 5/2

(80)
2 (m1 d Z
7 - O v( T V° - z5/ 2

The solution of the integral yields:

2Sr(s) am am
T = 2.943 v(O)Sr( 9) v(o)

(81)

2.943 5
v(o)1/5 4 klk2T

where r is the gamma function.

Hunter (1957) gives a simplified approximation for the

relation expressed in equation (79) as:

a a sin 1,058 v(o)t (82)am

Thereby the force P becomes a function varying with time

according to a sine-curve:

1.140 v(o) 2 sin 1.068 v(o)t <_t____a__
klam am T1.068 v(o)

P 0 ; t > 1.068 v(o) (83)

If we let the radius of the second sphere R2 become

infinitely large, we have the impact of a sphere on a half-

pace instead of the impact of two spheres.



56

The equations (73) through (83) do not change except

that the impact parameters ki, k 2 , a, a, um, and T are

simplified considerably. A tabulation ,-f these parameters

for the two cases in question yields the following values

(Goldsmith, 1960).

Table 2

Elastic Parameters for the Hertz Impact Theory

impact centric impact of two elastic normal impact of an
param- spheres with radii R1 and R2  elastic sphere with
eter radius R, on the elas-

tic half-space

ml + m2 1 3

1 mm 2

2 3 61+621RI+R2 3r_61+62

3a RIR 2  37r
4 R1 +R 2 (61+62) P R1 (61+62) P

CE 2 R1 +R2  3nS a 2 =RIR 2  4a (3 1 +6 2 )P R1- 4a 6 1 + 2 )P

OL1f5rv(o) 2 ."61+62)mlm2 2/5 I+R2) / 15nv(o) 2(61+62)101 2/
m 16(ml+m2 ) R2 16/

im .5T(o)__+6 )mlm22/5 m l' o1/5 I(61+6 2 )m1 2/5

T 4.53 m+m 2 v(c, )R1R2) 4.532)J
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The values 6i and 62 designate the elastic constants for

3 the spheres I and 2 respectively for the Hertz impact problem

"and are determined by:

6 = 2 (84)

where E = Yo, ;'s modulus, v Poisson's ratio.

As statel initially these relationships are valid if the

vibzration energy is negligible. According to Hunter (1957)

the ratio of vibrational energy Ev to total energy E0 foe the

impact of a sphere on the half-space according to (83) is

given by:

Ev _2.7 f3v( 0)3](5 S(85 )
Eo gc3 [ 4,7f1g)

where g is the gravitational acceleration and c the velocity

of sound in the half-space. The vibrational energy, hence,

is very small as long as the impacy velocity is smaller than

C.

The second basic assumption for the Hertz impact problem,

namely complete elasticity and reversibility of the deforma-

tion, is much farther off the mark. If we compute e.g. the

resulting impact force according to (72) with the correspond-

ing values of Table 2, we get:

at.P ~4 1 c (86)
7r a 2  312 6  + + 62 RI

which according to (78) gives the maximum value of the result-

ing stresses:
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rmax 1 -3 2- /5
P ra2  - R1 _1 [301(6 +62)mv(o) 1P m - ira 2 3 2 6 1 + 22 ) 1.

(87)

If wo let a sphere drop on the half-space and introduce

e.g. the values of a steel sphere of 10 mm diameter and com-

pute the height of drop which is possible without the yield

stress being e~ceeded in the half-space material, we get the

following values:

Table 3

Critical Drop Height for Elastic Impact

Brinell critical height
half-space material hardness HB plastic deformation (mm)

soft copper 55 0.0033

A-7 carbon steel 125 0.182

high strength steel alloy 320 3.5

It is thus obvious that for most practical cases the ass',mp-

tion of complete elasticity and reversibility of the deforma-

tions is far from realistic.

3. Impact on the Plastic Half-Space

Because of the limited applicability of the Hertz

theory and equation (72) an attempt was made to formulate
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relationships that would hold in the plastic range. As in

the case of the Hertz theory we begin again with the static

load-deformation relationship and return to the results

obtained by Meyer who found empirically:

P= a n (3a)

where a is again the radius of the permanent crater and k as

well as F are constants of the half-space material which,

howev-r, as we renember, are also dependent upon the radius

R, of the impacting sphere. If the crater is sufficiently

shallow, i.e., for penetration depths a < R/2, we may replace

the crater radius by the crater depth according to the approx-

imation (see Fig. 3b):

2
a = 2Ra (88)

Then equation (3b) mae be rewritten:

P = kan (89)

where k and n are now different quantities. Equation (89) is

valid until the process of restitution starts. The latter is

assumed to be elastic and the relationship tween the force

and the deformation during this restitution process is given

by

P = P m-ar ; am ! a • ar (90)

where ar is the permanent crater depth and am the maximum
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penetration. if the restitution is assumed to proceed accord-

ing to Hertz, the exponent s assumes the value 3/2,

Equation (89) may be assumed exact if the elastic defor-

mation is negligible and if, moreover, the plastic flow pres-

sure P. is acting uniformly over the entire contact surface

and remains constant throughout the penetration process (no

strain hardening occurs). For this case

k :: 2 n R po and n = 1.0 (91)

This means the load-deformation relation corresponds to
/

that predicted by the theory of plasticity. In the general

case, however, these idealizations are not satisfied because

of strain hardening, the flow of the displaced material dur-

ing the impact process and, finally, because of the particular

stress-strain velations that obtain for the high strain vel-

ocities during impact. For these reasons the values k and n

of equation (89) will in general also depend on the penetra-

tion velocity a.

For the plastic penetration of a rigid sphere with radius

R into a soft target material as shown in Fig. 3b, one can

establish the following simple relationship:

P = 7 poa 2  2 r Po R a - m d 2 a (92a)dt 2

or:
S27tRpo

p + a 0 (92b)
m

- .~- R -4
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"The solution of this simple differential equation with

1the assumption that the flow pressure p. is constant and

S• independent of a yields:

a = v(o) sin t 92c

The maximum crater depth occurs at the end of the impact

period, namely when:

+ ± v(o) cos 2 t = 0 (93a)

i.e. for:

=2rR T!.; T- (93b)

m 2 2 2 rRp0

Thus the maximum crater depth becomes:

amax = v(o) m (94)27rRpo

Introducing (94) into (93b) yields:

T r 57 ail (95)

2 v(o) v(o)

As a comparison the Hertz theory gives a contact period of:

a
T = 2.943 W-- (8i)

and a maximum approach of:

5v(o)2 12/5 (8

amax 4klk2 ]25(78)
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The formulations of equations (92) to (95) assume that

the dynamic flow pressure p0 is a constant. They are there-

fore subject to the same reservations that were made already

earlier.

4. Elastic-Plastic Impact

Tabor (1951) considered the impact of a rigid sphere

on an elastic-plastic half-space. Assuming that the sphere

of mass m falls through a height h, onto the half-space and,

after impact, rebounds to the height h 2 leaving a permanent

crater with radius a, one can calculate the total energy as

El = mgh, and the energy of restitution E2 = mgh 2 . If one

assumes, as before, the vibration energy to be negligible,

the energy used to form the crater E 3 must be:

E3 = E, - E 2 = mg (h, - h 2 ) (96)

But the energy of restitution can be computed also from the

theory of elasticity because it describes a purely elastic

process and one may write:

3 2
E mgh2 = a it (61 + 62) (97)E2 = 2m7h2a=1 2a

The volume of the crater, in first approximation, is given by:

V= na (98)

. n4-

Sn ý*
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S2 is here the radius of curvature of the permanent crater

which because of restitution is larger than the sphere radius

U,•/•; P". If the flow pressure is again assumed constant the energy

E 3 is given by:

7ra4

E3 = Po V = p I-r mg (h, - h 2 ) (99)

Expressing R2 as a function of R1 by using the Hertz relations

one gets:

1 - 1 _ 3 L (61 + 62) (100)
R2  R1  4 a3

which gives:

E 3 = Po a 21 (6 1 + 6 2) (101a)4R 1  16 a

The first term is simply poVs where Vs is the apparent volume

of the crater which would result if the crater had the same

radius R, as the sphere. The second term is nothing else but

E2 as a comparison with (97) reveals at once. Therefore:

8
E3= PoVa - ~E bb

from which one gets for the flow pressure:

mg (h.- - h2 )
Po vs (102)

It is obvious that for small values of h2

-ho = -- (103)
Vs
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This result was already observed experimentally by Markel

(1895).

For the derivation of equations (96) through (103) again

a constant flow pressure was assumed. For the case of a vari-

able flow pressure one can again return to the relation

obtained by Meyer:

P Kd n-2(6a)p - d 2 - Kd(a

where n is a value between 2.2 and 2.5. Then the encrgy of

plastic deformation would be:

E 1 4
E3 =n + 2 pV (1.04)

where now p is the average flow pressure at the end of the

deformation process.

2n - 1
- n + 2 h. - 2(n + 2) h2 (105)

4V

This formula yields values about 10 to 12% larger than those

computed from equation (102).

77111117M----~
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SVI. I__act of a Sphere on a Viscoelastic Half-Space

1. Principles of Rheology

The theory of elasticity and that of plasticity

determine the solution of problems of stress or deformation

by assuming idealized stress-strain laws. However, most

engineering materials follow these laws only approximately.

Moreover, these solutions have an additional deficiency,

namely they completely ignore an additional dimension - time.

These theories assume that upon lead application a state

of strain is attained instantaneously and, thereafter, with-

out a change of the load no change of stress or strain can

take place. Unfortunately, real materials do not behave that

way. Time-dependent deformation (creep) and, often combined

with it, changes in stress (relaxation) do take place and

these occur in every material under any state of stress. In

some cases, fortunately, stress relaxation and creep are

negligible (as for example, for steel at normal loads and

temperatures). For softer materials as e.g. asphalt, plastics

and especially for soils these time-dependent deformations

however make up the major portion of the total deformation.

For this reason a consideration of these time-dependent pro-

"cesses becomes necessary.

The relatively young branch of mechanics that deals with

the time-dependent deformation of solid bodies is rheology.

~- - - - -NO2
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As the theory of elasticity rheology formulates idealized

stress-strain-time laws. With these idealized laws of mater-

ial behavior solutions for a given problem are found which

now are time-dependent.

To visualize the conditions prevailing one often works

with rheological models which are built in such a way that

the equations describing their deformations have the same

mathematical structure as the stress-stra.Ln-time laws of the

material under consideration. As building blocks for these

models the following elements are used:

element symbol deformation equation description

Hooke G Iii = G-Tij elastic body

Newton y Tij = n ýij viscous fluid

St. Venant Iij = 0 ;ij < k rigid plastic

(T.=-k) n jij Tij > k body

CombiDation of the Hooke and Newton elements in parallel

yields the Kelvin model with the deformation equation:

T G + nij (106)

combination in series on the other hand yields ,he Maxwell

model with the deformation equation:

r

i = 1/n i + 1/G Tj(107)
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By combining Kelvin or Maxwell models in parallel or in series

very complicated material behavior can be described (see Fig.

18). The corresponding deformation equations can be found by

the proper combination of equations (106) and (107). In

general form the deformation equation of these various models

can be given as:

(n d1Z + ----------- -- - -+ P, d ±p) T
( dn nn-1 d

dn+1 dn_
(qn 1 d + q+n d --------- q.q d + q.)

dtn+l dtn dt (108a)

or

R(T) = S(f) (108b)

where R and S are polynomials of the operator d/dt with con-

stant coefficients. As can be seen, derivatives with respect

to time appear in the deformation law which means that in the

solution of a problem partial derivatives with respect to the

time as well as with respect to the coordinates x, y, z will

appear.

For certain special problems, namely if the time-

dependence is linear, the problems may be solved by intro-

ducing a Laplace cr Fourier transformation. By this method

-•@ the problem is "translated" into a simpler problem in the

Laplace or Fourier domain which is now time-independent. The

solution is then carried out in this domain and is generally

1!
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much simpler but the results later have to be translaLed back

into the real domain and in this translation the time-

dependence reappears. This method is used frequently for the

simplification of complex mathematical problems (Doetsch,

1937) and was applied by Lee (1955) to the determination of

the stresses and deformations of viscoelastic bodies.

In doing this Lee founa that the viscoelastic problem in

the real domain always was reduced to the purely elastic prob-

lem in the Laplace domain. This means that problems solved by

the theory of elasticity can be retranslated into viscoelastic

problems provided the method of Lee is applicable in principle.

This requires that the stress-strain law be linear and permit

superposition as follows:

If the stress oa(t) yields the strain el(t) and G2 (t) the

strain C2 (t) respectively, then the stress-strain law is said

to be linear if and only if upon application of al(t) + 0 2 (t)

the strain at any time will be c 1 (t) + e2(t).

As in the case of the linearity postulated by Hooke's

law in the theory of elasticity real materials will probably

satisfy this linearity condition only approximately. Never-

theless, the elastic-viscoelastic analogy has been found to be

a versatile and powerful tool in recent years for the solution

of viscoelastic problems.

114-5- .***~** - ~ J 7: M~
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2, Solutions by the Elastic-Viscoelastic Analogy

In 1957 Lee himself applied his method to the con-

tact problem of Hertz and found for the contact stresses of

a sphere on a half-space subject to a sudden force Q accord-

ing tc (108a):

R [p(r,t)] 4 S va - r (109a), RA

and

R [p(t)] - 8 S(a3 (109b)

As one can see, the operators R and S act on the load 3nd on

the deformation respectively. For a body behaving like a

iMaxwell model equation (108a) yields:

R = ; S (110)
0 YJ atd at=

A comparison with (107) shows that po and p, G.
n

For a suddenly applied load Q which thereafter remains

constant, equations (109) yield:

3 3
a - 8 RIQ (p1 + po t) (111)

The solution follows after the translation back into the

real domain which is very simple in this case:

4~ 2 t e f(t-T) '
p(r,t) - irR1G - Ge a..r 2

(112)

-i -

*40p. .^! V~
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The resulting stress distribution is compared with that of

Hertz in Fig. 19.

For the half-space behaving like a Kelvin model the

relationship was found in a similar manner and gave:

33 RJQ Gt
a 18 G ( - e n ) (113)

The solutions just found still have some important deficiencies

which do not permit their application to the drop penetrometer

problem. First, the Maxwell or Kelvin models are still too

simple to describe a somewhat complex material behavior and,

secondly, Lee assumed for his solution that the load Q was

applied according to a unit stOp function and remained con-

stant thereafter. Both these conditions are different in the

drop penetrometer experiment, although one might consider the

results (112) and (113) as rather elementary and rough approx-

imations.

Below we will derive a solution for a mors complete rheo-

logical model for the half-space and for a force that increases

and decays monotonously with time, i.e. one that varies as a

sine curve according to equation (83).
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3. Impact of a Sphere on the Four-larameter Half-Space

Inspection of equations (106) and (107) shows at

once that for a constant load on a Maxwell model, e.g. the

deformations increase linearly with time without any limit.

Upon unloading there is an immediate elastic rebound which

corresponds to the instantaneous deformation exhibited when

the load was first applied. The Kelvin model on the other

hand does not have any permanent deformation upon unloading

and merely exhibits delayed elasticity. The Kelvin body

requires, however, a certain time until all the deformationIs

are recovered.

Since the mathematical difficulties increase very

rapidly with an increasing number of model elements - as we

shall see shortly - it is advantageous to choose the simplest

model that still is able to represent the material behavior

adequately and with sufficient accuracy. The simplest model.

that satisfactorily expresses the mechanical behavior of a

soil is the four-parameter model (Fig. 20). It may be con-

sidered as a combination of a Maxwell and a Kelvin model in

series or a model according to Fig. 18c with Kelvin elements

in series and n = 3 where the first and last element are

degenerated.

The differential equation of the four-parameter model is:

2 GG 1  G1 G2 2 G1 G2  2 + (114)D T (+- + - + -) D- = - GIDT -D
Tl n2 n2 n r12 n2

P . , , . .....
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and its Laplace transformation is given by:

s2f - sT(o) - t(o) + (1 G2 -f G1 22y--T + +- + 2) [s- - •(o)] + •
nj n2 n2 T1 In)2

G,. [s2i- s(o) _ j(o)] + G -- G2 -(o)1 (115)nl2

If we introduce the initial conditions:

T(o) = T(o) = 0; hence, also r(o)(o) : 0

we get:

S+ (G - + G2 s + G G ! G S2 + G1G (I I )

n1 n 12 T12 n. n2 1n2

Then the viscoelastic analogy yields:

S= 2 v(117 )

where the viscoelastic analogy modulus p is given by:

n G2
G+ -s + 

GGI n2

' 2 2 (2.+ G1  +G G2 (118)s + (- -- -2 s +
n1 n2 '12 n1 n12

We now return to the elastic problem of Hertz and rewrite

equation (62) as follows:

1 (1 V) P 3 Pr 2

Ga " (1 - v) -Ga3 (119)

By introducing Lame's constants X and v:

-... . .. . .. . -.. -. ,. . o -. . . . ;4 ,
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G=

V= 2(X• + ii)

equation (119) is rewritten as

3 X + 2p P r2
w -16 p(X + P) a2 (a - (120)

At r = 0, the total penetration of the drop capsule can be

obtained as

3 X + 2 P P
16 P(X + P.') a

For a spherical shaped head of the drop capsule

=/w(R - .1) (122)
4

It is thus obvious that a non-linear relationship exists

between v and P such that the Laplace transform cannot be

applied directly. However, we can introduce a quantity, say

b = wa, which varies linearly with the force P:

3 + ?p
b w 16 w(X + ?U P (123)

If P varies with time as indicated by (r3), P = Pm sin wt,

we have:

b - +2 P sin wt (124)
16 upX + Vj) ~m sn

Then the viscoelastic solution in the Laplace transform

domain is
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- 3Pm A+ 2p
b(s) 16 - (X + i) ý tsin wt" (125)

Letting

+ 2i (126)

and int' oducing
2

X = K (127)

we obtain

A + 2v
s) -7( + 7)

2 1 1(14r -3r (wl+kw 2 )s + wIw2
s + (1 w + w2 )s +

1+r 1+r
[(•01 +kw2 )S+ww 2 ] [(1+4r)s 2+(wl+ 2 +kw 2 +4rw2 )s+w 1 w2]

2 wl+kw2 WWs(s+w2 )[s 2 + G + w2 )s + -2

l+r l+r

(128)
where

G, G, G, G2r - 6K k - 2,WI- 'e -
6Kn n2

and K is the bulk modulus introduced earlier instead of X.

The inverse Laplace transform yields:

2(t) - 11 1 (1+4r)6(t)+(1+F)(wl+kw 2 e-w2t+ 1 e-i3-+ 2e 4)

(129)
where

1 ( 1 4fW~(Wk) 2 2
WL3  I l 2 iT(wl'+kw2)~ ± W + - 1wS - 2+-+-r(22•+I-(l+k2)] I+T1

Mm
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1 ( 1+2r+4r 2 k+ 281 - l+ ' l l+r -+ 2-3 I'
1 1+r I~. 2 ':3

1 c +2r+4F 2  ki 2  -1I

a2 1+r i+r + W2 -3 4

w12-w1 C 3 -k L' 2 "w 3

WIW2-wl'0 4 -kw2w4

=a2 =3-w

By using the convolution theorem, the inverse Laplace trans-

form uf equation (125) gives the viscoelastic solution in the

real domain:

3P ft
"b(t) - m-0 (t-T) sin WTdT

02

3P__ kw 2___ ___
3m f I+4r k2 ýIw3 82w4si wS[I + + , + 2 + I2---• sin ,t

ki r 2 2  2 2 2 2
3 4

- [- + + ]
( w 2. + 2 + W2 +(J3 2  12 + 2

23 W+ 4

+ ýL1 + kwe2 -w 2 t + e'-33t + e2 -w 4 tw •2+2 e,)+ 2w2e +

(130)

From equations (122) and (130), the viscoelastic deformation

w(t) can be calculated. Since the equation (!30) involves a

complex combination of the elementary model. parameters G1 , G2 ,

nI, n2, K, it has to be calculated by an e±ectronic computer.

z
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The principal difficulty is that the material parameters do

not appear in linear form or combinations only. Thus it is

nct at all certain that a unique, real solution exists and

it is possible that several different sets of parameters

will satisfy the experimental data with sufficient accuracy.

M.- 7 -- ~ - --
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VII. The Vibrations of the Half-Space due to Im act

1. Basic Equations

For ai. isotropic, homogeneous and ideally elastic

body the equations o,- motion for the propagation of an impact

wave can be given by the equations of motion (131) below.

For a soil the first two conditions are satisfied frequently,

at least in a statistical sense, whereas the latter (ideal

elasticity) surely is an approxi'cation only. These equations

are:

_E 2 2u
( P) + V U 2 Xt 2  (131a)

3 V2 32v
( + P) a + iV2v + Y = if (1312)

(A + ]1) T + iV 2 w + z = '02 (131c)

where u, v, and w are the elastic displacement components in

the cartesian coordinate system x, y, z; and c being the

volume change as in equation (22):

•u •v 3w
au + + " (132)
;x ,ay , z

a2 +2 _2 )21
- _+ + -- + (133)
-x 2  3y 2  az 2

is the Laplace Operator, Y the density; X, Y, Z are the com-

pornats of the body forces while X and p, as before, are the

Lac,.e constants related as follows:

S4 .,, . . . . . . . . . , a" .., . -1 .. - . . . -,
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V 2
A = (1+v)(1-2v) ; E = K -0 G - 2(1+v) E = G

(134)

In an elastic material with infinite dimensions in all

directions a dyaamic disturbance causes two types of waves

independent of each other such that the total displacement of

any point may be considered as the sum of the two independent

displacements:

u = uI + u 2 ; v = v + v 2 ; w=w + w 2  (135)

The components of the first wave are irrotational, i.e.,

satisfy the conditions:

=- - 0 (136)
ay 3 z az ax 8 y

which means that they are determined by potential functions:

_ -2 ; v = " ; W a (137)Ul ax I y ;Y w! z

The components of the second wave are without dilation, i.eo,

they satisfy the condition:

au 2  av 2  3w 2

2 - + y + z- 0

Thus the total displacements become:

ax 32 +y 2 ;- + w2  (139)

Substituting these values into the equations of motion (131)

yields:

77- ý - --
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a2

a 2 V2 (140)
at2

a U2  2
ar2 2  u (2 l2 2a)at 2 2

a 2 v 2  = 2b)

at 2  2

a 2 w2  = b 2  V2 w (141c)

at 2  2

where

2 X + 2 2 1 '
a S ; b

The deformations according to equation (140) are pure volume

changes according to

C = V2 (142)

For this reason the wave given by equation (140) is often

called dilatational or longitudinal wave. The second type of

wave because of equation (138) is free cf any dilatation.

The propagation of this wave yields only relative displace-

ments whose components are given by:

aw~2 av 2
2 u2 -ay ;z (143a)

-ju 2  aw 2
2 v 2 - az ax (1 3b)

2  av 2  au 2  (143c)
2 ax ay

46~
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For this reason the wave given by equations (141) is

calied a shear wave. Irn a dilatational wave the movement of

a point is in the direction of wave Fropagation, in a shear

wave it is normal to it. The equations (140) and (141) are

not coupled which means that the two motions are entirely

independent from each other.

2. Propagation Velocities

Integrals of equations (140) and (141) can be written

in the following form:

1 F (t - r) (144)
r c

where r is the radius vector of the point under consideration,

F is an arbitrary function which satisfies the initial and

the boundary conditions. The propagation velocity c = a for

the longitudinal waves and c = b for the shear waves. Using

equation (134) these can be computed from:

a 1-v E_ ý2-v)G (145)
j, (li-y)(1-2v) f L~ (1-2v

b - (146)

from which follows that the propagation velocities depend

only upon the elastic constants.
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The ratio of the velocities

b 1-2v

is, hence, always larger than unity. Barkan (1948) gives the

following values for these velocities:

Table 4

Wave Propagation Velocities in Soils

Soil density a b
Type kg sec 2 /1cm4 10-6 m/sec m/sec

Moist Clay 1.80 1500 150

Loess (nat. water cont.) 1.67 800 260

Dense Sand & Gravel 1.70 480 250

Fine Sand 1.65 300 110

Medium Sand 1.65 550 160

Miedium Gravel 1.80 750 180

3. Vibrations Due to a Point Load

Assuming that we deal with simple harmonic waves

originating from a point source we will attempt to find solu-

tions of equations (140) and (141) by introducing the follow-

ing functions:

iwt
= e i (x'Y'Z) (147)

and

k4

- A
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iwt iwt iwt
U2 e U ; v 2  e V ; w2 = e Z (148)

where w is the exciter frequency. Introducing these functions

into the wave equation the following conditions must obtain:

(V 2 + h 2 ) • = 0 (149)

and

(V2 + k2) U (V2 + k2 ) V = (V2 + k 2 ) W = 0 (150)

Moreover, because of (138) the functions U, V, and W must

also satisfy:

aU + -V +W = 0 (151)
ax y az

The solutions for equations (150) can be found by the

substitutions:

2 2 2 2
U xA- V W + k (152)

Introducing these values into (150) reveals that ' must

satisfy:

(V 2 + k 2 ) 4 = 0 (153)

Let us now consider a cylindrical coordinate system for

the half-space with its origin at the surface such that:

x = r cos 9 ; y = r sin 9 ; z = z

for which the Laplace operator becomes

2 a ) 1 a
V + 2 r + 2 (154)

3r2 rz
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and designate the displacement in the direction of the radius

vector r by q, then

x=- ;v=
u U ; q r q (155)

Thus, according to (139) and (152), we geT:

q= + • ; w=: + k k 2  (156)ar arzz z Z2

We now introduce a dynamic load Pz:

Pz - P Jo(ar) (157)

(z = 0)

which is applied at the surface z = 0. J (ar) is, as before,

0

a Bessel Function.

Again we assume a solution for (149) and (150) analo-

gously to (36):

-az -Bz
4 A e Jo(ar); =B e Jo( ,r) (158)

where A, B and E are arbitrary constants which can be deter-

mined from the boundary conditions:

aFZ2  2 '
- 2- - 2 l-a 2 %(159a)

ar2 
(irbz

- rz B2 2 3_*

S- I araz - k - 2 aZ 2 (159b)

which yield:
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A -2ý2 _ k2 P B 2 P (160)
F( ) -V F( ,) ds

F(ý) = ( 2 - k)2 4&2 C.(16)

Hence, the displacement components at th._ surface (z 0) cain

be computed from (156):

go _ (2_k 2_ _l(_ P (162a)

N

Sk J ,)P (162b)

Let us now examine the case that P have the form:

F e i.e.
v

PvP Y - - Edý
2 Tr

Introdicing this value into (162) and integrating we obtaiL.

the displacements of the surface of the half-space:

PvZ E2(2&2-k 2-2aB)qo - 2-ff F(E) Jo(ý,,r) dý 1 3 •

and P v w•k 2 E

Wo 2-- f° F(4 ) JO(E,r) d4 (163b)

The int•grals (163) annot be evaluated directly because

F(N) is zero for certain values, e.g., for - "" ± !- .

By introducing a new variable, rearranging and using

series approximation Shekhter (1948) succeeded in finding a

solution for smill values of P kr:
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W Lk P iWt (f + i f 2 ) (164)

where the functions fI and f 2 depend on Poisscn's ratio. For

v = 0.5 Shekhter obtained:

135

f - 1.00196 + 0.05981 - 0.00607y' + 0.000243 5 -

f2 =0.0571 Jo (1.047) + 0.0474 - 0.00647'y2 + 0.000264 4

and for v 0.25:
1 3

f1 = - 0.119 T + 0.08953- 0.0104 •3 + o.o00466 -

f2 = 0.0998 Jo(1.0877 7 ) + 0.0484 - 0.00595 2 + 0.00240y 4

In general the vertical component in the vicinity of the

exciter force can be given in simplified form from (164):

w - Ao , (I) sin (wt -•) (1c.5a)

where
P

A° -U (165b)

/f 2 + (165c)

and f5

tan = (165d)

The function *(f) for Poissonle ratios of 9 0, 0.25 and

0.5 are shown in Fig. 21.

Sauter (1950) evaluated the integrals of the displacement

components for the surface of the half-space due to an
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4) aperiodic impact and obtained the following result for a

purely normal impact:

or
1

wo b 2  (166)
2rfb 2(1 - )t

a

where 01 is the impact stress.

If we introduce the values given by Barkan for dense

sand (S = 1.70, a = 480 m/sec, b = 250 m/sec) and for moist

clay (S 1.80, a = 1500 m/sec, b 150 m/sec), then we get:

w = 0.0002 6- for sand (167a)o

S= 0.0004 -t- for clay (167b)

-he

4. Damping, Dispersion and Distortion

ý.5a)

If there are also frictional forces active in the

55b) half-space in addition to the elastic forces that tend to

return the body to its original shape, then damped vibrations

i5c) result. If these frictional forces are assumed to be propor-

tional to the point velocity, the following equation describes

55d) this type of vibration:

2•_ a 2  , 2-• -(168)L = a V2f + 26(18

at 2  at

ient where 6 is the damping factor which is always negative. For

the sake of simplicity we may consider a one-dimensional
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vibration according to (168). It is advantageous to exchange

the variables by substituting:

Uert (169)

Introducing this into (168), we obtain:

U 2r + a 2 12U + 2r 6U + 26 •U (170)
at 2 at x 2

If we introduce r = 6, the terms with the first deriva-

tive vanish and we get:

a 20 "; a U 2o
2 2

As one can see, the solution of this equation is given

by:

U = A sin (rx - st) (172)

provided that:

s 2 r 2 - 62 (173)

This means that the damping factor is a function of the fre-

quency from which follows that different frequencies are

damped in a different way. This phenomenon is called dis-

tortl. . Thus the wave front is changing as it progresses.

Let us consider the solut'ion:

U = U eWt (174)

where U is a function of x only. Then, according to equation

(168), we have:
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S2U U w2 2iw6

ax2 a2

This equation "-s two SOluwLions of which, however, only

one has a practical signif-i4ance, namely, the one that does

not yield infinite values for u for large values of x. If we

put:

2
w - 2iw6a 2  = (a ± i+ ) (176)

the solution becomes:

U = Be . iB)x (177)

which, according to equation (174), yields:

-Ox i(ax - wt)u=B e e (178)

Since 0 is also related to the damping factor, both a as well

as a are functions of the frequency and are relateu by:

2 - 2 )2 and aB a- (179)
a a2

When a is a function of the frequency, the phenomenon is

called dispersion, when B is dependent on w, it is called

distortion. When both phenomena occur simultaneously, the

wave energy is slowly dispersed while the shape of the wave

front is continuously changing.

-,7-- I NO-
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5. Group Velocity and Phase Velocity

Considering two wave trains determined by:

2 2
t2-aI1 x (180a)

2 t ax2

a 28t a2 a2 u (180b)

at 2  x2

where a and a2 are two different propagation velocities, then

these trains may be considered to be of the form:

= A cos [pl(1a-x - t) + E1 ] (181a)

u = A cos (p2 (-1- - t) + E2 ] (181b)
2

whref k1l P 2

where f, =fw2,L2are two different freq1 ..Lencies. Super-

position of the two frequencies yields:

u = uI + u2 = 2 A cos A (fl + l) _ t (f1 + f2) +E+E2
. a2  a2 2 2

• cos • x (2 7 t (f - f) + • 1
(182)

This equation describes two harmonic motions, one with a fre-

quency and propagation velocity of:

f 2 (183)
2

and
ala 2 (f 4 + f2)

fla 2 + f 2 al

respectively, and the second with:
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f fl - f2(185)
- 2

and

a' = aja 2 (f 1  f (186)
f a2 - f 2 al

We note that for the case of f 1  f 2 ' equation (182)

gives a harmonic motion that slowly changes amplitudes. If

the maximum displacement of the point x = 0 occurs at time t,

then that of the point x occurs at time t + x and returns
at1

with a period TT An interesting characteristic of this

motikn is the continuously changing wave front and the recur-

rence of the maximum amplitudes in certain intervals.

If we consider two motions with frequencies that lie

within a narrow band, say within f and f + Af, we have the

phenomenon of dispersion. The xalue of a' of equation (186)

is the so-called group velocity, while the "a" given by (184)

is the wave- or phase-velocity. To determine the former we

introduce into (186): a 2 = a, a = a + Aa, f 2 = f and

f = f + Af, and determine a' in the limit as Af approaches

zero. Then:

at a da (187)
1 - f/a d-

According to the binomial theorem and neglecting higher ordýer

terms, we get:

a t  a (I + f/a d ) (188)
df
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If we introduce also the corresponding periods, T, and

T + AT and the wave lengths L and L + AL, one can easily

deduce from (188) that:

a' T (189)
1

The group velocity is of primary technical interest

because it determines the propagation of the maximum displace-

ments. The situation is demonstrated in Fig. 23. There a

train of waves is propagated like an energy packet traveling

with its group velocity without essentially changing its

shape.

However, because of dampening and dispersion the ampli-

tudes gradually become smaller and the frequencies lower.

The velocities a and a' thus become also dependent upon fre-

quency or wave length. In water, for example, long waves

travel faster than short ones and the group velocity a' is

half the phase velocity a. In elastic rods, on the other

hand, short waves run faster than long ones and the group

velocity is twice the phase velocity. The group velocity

can thus be larger as well as smaller than the wave velocity.

Moreover, Lamp (49,04) has shown that the two velocities a

and a' need not run in the same sense: the wave trains may

be running toward the right with such a velocity that the

center of the group moves toward the left.
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6. Impact with High (Ballistic) Velocities

If a projectile impacts on a body with very high

(ballistic) velocities, a crater develops whose volume

depends on the kinetic energy of the projectile and the

properties of projectile and target. This is a classic

problem of ordinance research that has been investigated

extensively for some time. The impact of a meteorite is a

problem of a similar nature. Some recent results that

especially also discuss the penetration of projectiles into

sand, rock and sod are reported by Rinehart (1954), Goldsmith

(1960), McCarthy and Carden (1962), and Kornhauser (1964).

Since our experiments were carried out at relatively

low velocities (maximum 15 m/sec), the phenomena encountered

at high velocity impact fall outside the scope of our con-

siderations.
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VIII. Description of Test Series

The idea of measuring the deceleration upon impact of

an instrumented capsule by a piezo-electric accelerometer was

proposed by several people independently at about the same

time. Hechtl (1964), for example, states in his dissertation

that such experiments were carried out on sand and rock at

the Jet Propulsion Laboratory of the California Institute of

Technology. Their instrument was to be used to explore the

soil conditions of the. lunar surface.

However, Hechtl based his remarks on a preprint of a

paper by Dr. Thormann which gave idealized response data. He

learned during a personal visit in July 1964 that actual tests

had not yet been carried out.

On the other hand, McCarthy and Carden (1962) carried

out tests shooting an instrumented cylinder through a "oneu-

matic gun" of 20 feet in length and 6 inches in diameter

against various target materials such as sod, moss, wood,

sand, lead, and concrete with velocities up to 300 m/sec. At

the same time the author proposed independently to use a simi-

lar capsule as a new version of an aerial penetrometer. The

capsule has been described above (Chapter III, 2 and Figs. 12

and 13).

The first experiments were carried out by Dr. Hecht! in

the Soil Mechanics Laboratory of Princeton University. Hechtl
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ran tnirty different series of tests varying such experimental

parameters as target soil, soil moisture content and density

and shape of impact head.

The tests were carried out by attaching the drop capsule

to an electrical release mechanism which was brougnt to the

desired height above the soil target by a pulley-cable system.

Upon impact the piezo-electric signal was transmitted through

a trailing, cali 1 ,rated and isolated cable, and a cathode fol-

lower to a Textronic oscilloscope. The oscilloscope screen

was photographed upon arrival of the signal by a Polaroid

camera. Thus a permanent record of the signal was obtained

that could be evaluated later. The ordinate of the resulting

photograph gives the deceleration (to some scale depending

upon the amplification of the scope) as a function of the

time (shown on the abscissa). A schematic sketch is shown in

Fig. 22. The description of the measuring components and

their calibration is given by Hechtl in his dissertation and

need not be repeated here.

The first experiments showed that a perfectly centric

impact occurred rarely with a conical impact head which led

us to use a semispherical head for all later tests. Also,

the difficulty of keeping an oblong capsule in a vertical

position until impact under field conditions led us to believe

that the proper shape of a prototype capsule should be a

-177 ~1111 pl"'1
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sphere. This will avoid any problem of directional stabili-

zation.

The instrument was tested outdoors under field condi-

tions impacting on natural undisturbed soils and performed

well. The field measurements were then carried out with the

experimental setup shown in Fig. 22 except that the container

with the soil target material used in the laboratory is

replaced by the half-space in the field.

To measure wave propagation velocities of the target

soils in the field experiments one, two or (in test series

41) even three accelerometers were buried in the soil at var-o

ious distances from the impact point. They were placed with

their sensitive axis parallel to the soil surface and directed

toward the impact point. Since the accelerometers respond

only to normal &ccelerations, the resulting signals are from

waves of the type described by equation (140). The distances

from the impact point weie determined by direct chain measure-

ment after impact and are designated by r , r 2 and r 3 .

Since according to Newton actio equals reactio w, the

penetrometer signal gives not only the force exerted by the

target material on the penetrometer but also that exerted by

the penetrometer on the target. Thus, the signals of those

buried accelerometers show the decay and dispersion of the

stress waves resulting from an aperiodic, dynamic disturbance.

The signals from the buried accelerometers were usually taken
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y a~ Second .ACamera on

triggered by the penetrometer impact signal.

An attempt was also made to test the penetrometer on

target materials that had clearly defined and easily deter-

mined mechanical or rheological properties. This was tried

".-ter, soils of different viscosities, greases of differ-

,nsistency, wax and paraffin. Not all of these experi-

. ._s were successful. Dropping the penetrometer into water

was tried, e.g., in the swimming pool in the basement of

Dillon Gymnasium. Because of the extreme magnification of

the signal required with the very low impact, a basic 60 cps

frequency signal from the house current was somehow induced

and superimposed and made the impact signal unrecognizable.

This experiment was therefore abandoned. Oils as a target

material also produced difficulties. The impact was often

so weak that thc electron beam of the oscilloscope cathode

tube was not triggered.

The experiments were numbered consecutively. Continu-

ing with the sequence begun by }Hechtl (30), thus they began

with No. 31 and ended with No. 45. Table 5 lists the various

experiments.

The experiments were carried out jointly by the author

and his assistant, Dr. Christian Hechtl, during 1963-1964.

Reproductions of the original Polaroid photographs of the

oscilloscope signals are shown in the appendix (pp. A-i to

%ý
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Table 5

SSeries List of Experiments

No. Target Material Location Remarks

31 Wax: Princeton Soil Humble Oil
Cambar M-348 at 310C Mechanics Lab. Specs. Data

Sheet DG-36

32 Lubricating grease
Estan 3 (280C) It " " "

33 Estan 1 It Failed, too
soft

34 Paraffin (at 280C) it It

35 Water (failed)

36 Failed

37 Silty sand at grass field natural soil
soil surface behind

Princeton Soil
Mechanics Lab.

38 Silty sand, 20"
below surface " It It It

39 Uniform beach sand beach at Sea- natural
side Heights, beach
N. J.

40 Failed

41 Sandy silt and clay McCosh Circle natural sýoil
Princeton,N.J.

42 Sandy clay field off U.S. field plowed
1, 2 mi.south & harrowed
of Princeton

43 Crushed rock ½-i" Lambertville, compacted
N.J.

44 Fine sand Sheppard's natur':al soil
Mill Dam,

Bridgeton ,N. J.

45 Swamp 'Bridgeton,N.J.
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A-32). The necessary calibration constants for evaluating

these data are also shown. The most important results and

evaluations carried out so far are offered in the following

chapter.

We have also appended those four test series carried out

by Hechtl which were conducted with a semispherical head,

namely his series No. 12, 15, 19 and 22 (Appendix B-I to B-

12).

Whenever possible standard reference tests were carried

out cn all target materials for comparison. For natural soil

surfaces this was the field CBR test. For the laboratory

soils we also carried out CBR tests as well as unconfined

compression tests. For the wax, paraffin and grease the

values supplied Dy the manufacturer's data sheets were com-

pared. Figs. 24 to 27 show some of the experimental details.

For example, Fig. 24 shows the penetrometer before impact or

the paraffin (Series 34); Fig. 25 shows the penetration into

Estan 3 (Series 32); Fig. 26 shows the permanent, plastic

deformation cauced in Cambar wax; and Fig. 27 shows the test

setup for Series No. 41.
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IX. Evaluation of Test Results

1. General Discussion of Test Data

The polaroid oscilloscope photographs in many cases

(for example, in test series 12, 22, 31, 37, 38, 41, 42 and

44) give monotonously rising and falling curves which can be

approximated by a sine wave. The variatio! of the impact

force in these cases can very well be described by a formula-

tion according to equation (83). in those cases where the

curves show a significant variation from a sine curve this

fact can be explained by the particu'r test condition. In

test series 32, for example, the signal is rather constant

over a considei'able time interval. This was caused by the

fact that in this series the depth of penetration was always

larger than D/2. Thus, after an initial rise the penetration

resistance remains constant because the area of penetration

remains constant also and the resistance encountered is that

of a viscous flow around a cylinder with a semispherical head.

The last photo of that series, moreover, shows clearly the

penetration of the penetrometer through the entire pail of

grease (see Appendix A-5, photo 2).

In series 34 the brittleness of the target material is

very clearly demonstrated. While the overall curve still

follows a sine curve, successive brittle fractures cause

local deviations.
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A significantly different signal from that of a sine

curve is revealed for all coarse grained target materials

(test series 15, 19, 39, 43). First, the electron beam is

broadly diffused (compare, for example, Appendix pages A-15

to A-18, B-4 to B-9). Upon increasing the sweep speed of the

electron beam as done in series 43 (Appendix pages A-26 to

A-28) one can observe that this diffusion of the signal is

nothing but the superposition of a high frequency vibration

upon the basic impact signal similar to the formulation of

equation (182). This high frequency wave signal can only

originate either from the natural frequency vibrations of the

penetrometer or those of the piezo-electric crystal induced

by a very hard iiapact. If one considers, however, that these

vibrations do not affect the basic impact signal and are

merely superimposed, the correct impact signal may be con-

sidered to be the average value within the diffuse band (see

page A-28).

The superimposed natural frequency vibrations can also

be detected on less hard target materials (e.g., series 12,

22, 38, 42 and 44) although to a much smaller extent and only

at the beginning.

Even more surprising than the diffusion is the general

shape of the signal when zhe target material is sand, gravel

or crushed stone. There exists a definite peak force which

drops off rapidly, after which comes again an increase
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followed by a logarithmic decay. This can only be explained

in such a way that in these materials a "temporary lique-

faction" takes place at the beginning of the impact period.

Since very few grains are affected initially, the specific

energy per grain is ve:ry large and one can perhaps rational-

ize that during this short duration the grains partially lose

their frictional support and behave like a quasi-fluid. Upon

further penetration, however, the number of soil grains

affected by the impact becomes quite large and the available

energy is not sufficient to "liquefy" all these particles.

Thus a stabilization of the penetration resistance occurs

with a corresponding dropping off of the signal in the final

phase of the impact period.

In any event, from the variation of the signals obtained

it is clear that for the number of tests performed so far a

fairly definite distinction can be made whether the target

material was a granular, "liquefied-stabilized" soil or

whether it was a plastic-cohesive soil, and whether the

impact was hard or relatively soft depending on the magni-

tude and extent of the natural-frequency vibrations super-

imposed on the basic impact signal.
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2. Impact Velocity V(o)

If the deceleration a(t) is known, the impact veloc-

ity can be determined from equation (14) by integrating a(t)

over the impact period.

Since the oscilloscope photos - except for some constant

- are nothing else but a(t) we only have to carry out the

integration. Here a small technical difficulty is encountered:

the sweep of the electron beam must be adjusted in such a way

that a good resolution of the signal appears on the oscillo-

scope screen. If the beam velocity is relatively small, a

high curve with a narrow base results (e.g., photos of test

series 41 with a beam velocity of Vh = 0.2 cm/millisecond).

There the signal can be followed over a long period of time.

Thus the end of the impact period can be clearly established.

In the limiting case of zero horizontal beam velocity the

signal, of course, would be only a vertical line. Thus it is

easily possible that for a small beam velocity the signal is

not sufficiently resolved along the time axis to permit inte-

gration with sufficient accuracy.

If the beam velocity, on the other hand, is relatively

large (as for example in test series 42 with Vh = 0.5 cm/

millisecond), the signal has an excellent resolution with

respect to time but the end of the impact period does no

longer appear on the oscilloscope screen.

____ 7-
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The technical solution c:f this dilemma is best solved

by recording the signal on magnetic tape rather than by photo-

graphing an oscilloscope screen. The tape can later be run

at any speed desirable and no part will be lost. For an

operational penetrometer magnetic recording of the signal is

probably essential. Even though such recording systems are

standard items, their price is relatively high and for our

pilot tests the oscilloscope photos were considered suffi-

cient.

The evaluation of the impact velocities from the test

data is, for this reason, not nearly as accurate as would be

possible using zhe latest technology. Nevertheless, the

integration of the oscilloscope curves using a planimeter

yields a rather good agreement with the theoretical computed

values. These were computed by assuming the frictional

resistance of the penetrometer falling in air to be negligible.

This assumption appeared justified because of the low veloc-

ities and small drop heights. Table 6 shows a comparison of

these results.

The last column in Table 6 shows the per cent difference

between the theoretically computed impact velocity and the one

obtained by integrating the penetrometer signal. The mean

discreparcy dm calculated from:

dm =f (190)

=.
-MITI
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Table 6

Comparison of Measured and Computed Impact Velocities

Tesc Drop v(o)C=fa(t)dt v(o),= vg oDl/V(O)c
Series Height 1 v(o)/v() 2 Discrepancy

cm cm/sec. cm/sec. %

31 61 294 346 0.848 -15.2
122 463 490 0.945 - 5.5
183 533 600 0.890 -11.0
305 798 773 1.030 + 3.0
U25 900 918 0.982 - 1.8

32 61 312 3u6 0.905 - 9.5
122 459 490 0.936 - 6.2
183 713 600 1.190 +19.0

34 61 341 348 0.985 - 1.5
122 456 490 0.930 7.0
183 588 600 0.980 - 2.0
305 779 773 1.003 + 3.0

37 275 441 522 0.842 -15.8
275 588 522 1.122 +12.2
520 808 1010 0.800 -20.0

38 275 617 522 1.178 +17.8
275 573 522 1.100 +10.0
520 926 1010 0.918 - 8.2

39 275 515 522 0.985 - 1.5
520 470 1010 0.465 -53.5
520 559 10 0.552 -44.8

41 275 643 522 1.230 +23.0
275 441 522 0.842 -15.8
275 404 522 0.772 -22,8
520 937 1010 0.928 - 7.2

42 275 612 522 1.170 +17.0
275 614 522 1.175 +17.5
520 904 1010 0.900 -10.0

43 520 808 1010 0.800 -20.0

-I

- *
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Table 6 (continued)

, ~Test Drop =a/Teest De t v(o) a(t)dt v(o)/v(o) Discrepancy
Series Heightv(12=2L v01/v0)

cm cm/sec. cm/sec. %

44 275 556 522 1.061 + 6.1
520 786 1010 0.778 -22.2
520 713 1010 0.708 -29.2

12 61 309 346 0.894 -10.6
122 426 490 0.870 -13.0
183 529 600 0.882 -11.8
305 655 773 0.845 -15.5
425 713 911 0.782 -21.8
700 643 1175 0.548 -45.2

15 61 250 346 0.722 -27.8
122 331 490 0.677 -32.3
183 368 600 0.614 -38.6
305 441 773 0.570 -43.0
425 573 918 0.626 -37.4

19 61 233 346 0.672 -32.8
122 316 490 0.644 -35 .6
183 279 600 0.465 -53.5
305 537 773 0.693 -30.7
425 662 918 0.724 -27.6
700 662 1175 0.562 -43.8

22 61 357 346 1.080 + 8.0
122 422 490 0.860 -14.0
183 515 600 0.836 -16.4
305 537 773 0.693 -30.7
425 654 911 0.718 -28.2

.. .. ... ..
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was found to be 13.8% for the test series 30 to 4b. This

discrepancy has several components. First, the direction of

impact and the axis of the accelerometers are not always in

perfect alignment. This error can be eliminated as was dis-

cussed earlier by using three accelerometers with mutually

perpendicular axes and superposition of the signals according

to the Pythagorean theorem. Secondly, the drop height could

only be maintained with an accuracy of ± 2%. This was due to

slack and elastic extension of the supporting cables.

The accelerometer has a guaranteed accuracy of 0.5%;

however, due to the signal amplification this is magnified

several times. In addition, of course, the theoretical value

with which the experimental values are compared are not the

exact and true ones because of air friction. Finally, there

occurs a relatively large error in the evaluation especially

when either, because of the sweep being too fast, the end of

the impact signal does not appear any more on the photograph

or, because of the sweep being too slow, the signal is not

resolved sufficiently to permit accurate integration. These

possible errors can be avoided by recording the signal on

magnetic tape.

Increasing use and experience is certain to lead to pro-

gressive elimination or reduction of various sources of error

so that the measurements will be sufficiently accurate and

reliable for scientific purposes. Here it is perhaps

,1sI MM
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interesting to note that the mean discrepancy for the four

test series by Hechtl (No. 12, 15, 19, 22) comDuted in the

same manner still have a discrepancy of 31.3% while those of

our tests have only 13.8%.

The author believes that this is sufficient improvement

so that one may judge the technical feasibility of the method

as positive. We believe that the mean error can be easily

brought within the range of 3% to 5%. This is judged to be

entirely satisfactory considering the natural scattering of

soil properties and the general nature of the problem.

3. Strength Properties of Target Materials

As shown in Table 3, the critical drop height for

purely elastic impact is 3.5 mm. even for- the hardest steels.

Thus it is superfluous to attempt to evaluate elastic con-

stants from the impact data.

The evaluation of the plastic flow pressure p., however.

should give one of the critical material constants.

According to equation (92a) the penetration during plas-

tic impact in a simplified form is given by:

V(o)
b sin bt (92c)

where

b2 21rR
m Po

.- %
S. .... .. .
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Ten ed o'F the imp act- pe OdA -A-4~ -. 7 _-h f __

that the penetration velocity a has decayed to zero:

S= v(o) cos bT = 0 or

bY =(93b)

Thus, the plastic flow pressure can be found:

Po 8R T2  (191)

T signifies the duration of the impact. The flow pressure,

however, can also be obtained from the maximum deceleration.

If we differentiate, for example, equation (92d) twice with

respect to time, we obtain:

a - v(o)b sin bt (192)

the maximum deceleration then is:

amax v(o)b - v(o) iR Po 192

solving for po we get:

m [ 'max 12

0o2- R v(o) (194)

Thus the yield stress can be evaluated from the test data

either by equation (191) or by (194). if we introduce the

dimension of the penetrometer model as given in Chapter III, 2

into these equations we get:
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2
W 1573 g sec

q81cm

and

p 0  0.168 1 g/cm2  (191a)

as well as
8 ' 1 2 g l m

p 0  O.068aax g/cm 2  (194a)

It is intere to note that according to equation

(191) the yield stress is independent of the drop height, the

impact velocity or the maximum deceleration and depends only

upon the impact duration T. The observed values do indeed

show a surprising constancy of T for a given target material.

Table 7 shows the evaluation of the po values by both methods.

For a better comparison the average values YT)o/ r the

individual target materials are compiled in Table 8 and are

compared with the standard control test results of CBR or the

equivalent unconfined compression strength qu"

The values for the flow pressure have an average scatter-

ing of 25.5% for po computed from equation (191) and of 41%

for p0 computed from equation (194). This is not too sur-

prising, because equation (191) uses only one exDerimentaliy

determined value while (194) requires axiax as well as v(o).

Thus, errors are being multiplied. Furthermore, not all the

scattering is to be blamed on insufficient accuracy of the

test method. A certain scattering is to be expected because

the very properties being measured are not unique quantities

4.
' •f ... •...... • •• • , • i Il _M•..=•, • • .•• ...- rr.... w _ _ ... , ...
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Table 7

Determination of the Plastic flow Pressure

Impact 1 PO 2 P
Test Drop Dura- 2 a v(o) am.0

Series Height tion T (eqv191a) max 7(o)J (eq.194a)
H T 10-6sec 2 m/sec cm/sec.

cm. m.sec. kg/cm2  kg/ccs

31 61 18 0.00309 0.52 570 346 26900 1.83
122 19 0.00277 0 .46 730 490 22200 1.50
183 20 0.0025 0.42 970 600 26200 1.78
305 22.5 0.00198 0.33 1140 773 2a800 1.48
425 21.0 0.00227 0.37 1350 918 21800 1.48

32 61 80 0.000153 0.026 114 346 1090 0.074
122 85 0.000138 0.023 148 L90 900 0.061
163 90 0.000124 0.021 160 600 713 0.043

34 61 1.2 0.69 116.0 5920 346 2950000 201
122 1.i4 0.77 129.0 8550 490 3020000 205
183 1.12 0.79 132.5 10250 600 2920000 198
305 1,12 0.79 132.5 13150 773 2900000 197

37 275 8.0 0.0156 2.62 2170 522 172000 11.7
275 8.0 0.0156 2.62 2170 522 190001 12.9
520 8.0 0.015F 2.62 2850 1010 80000 5.4

38 275 8.8 0.0129 2.17 1600 522 94000 6.4
275 9.2 0.01i8 1.98 11ý50 522 87500 5.9
520 8.8 0.0129 2.17 2850 1010 79500 5.4

39 275 45 0.000495 0.083 456 522 7600 0.52
520 42 0.00057 0.096 548 1010 29,0 0.20
520 40 0.000625 0.105 502 1010 2480 0.17

141 275 7.0 0.0204 3.44 2530 522 232000 15.8
275 6.5 0.0236 4.14 2450 522 220000 15.0
275 7.0 0.0204 3.44 2740 522 27ýs000 18.5
520 8.0 0.0156 2.62 3540 1010 122500 8.3

7-
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Table 7 (continued)

Impact 1 PO a 2 PO
Test Drop Dura- T2  •max v(o)

Series Height tion (eq.191a) 2v ) (eq.194a)
H T 10 6 sec. 2  2 m/se, cmisec,2

cm. m.sec. kg/cm2  kg/cm2

42 2" 17.2 0.00338 0.57 820 522 24500 1.6b
27- 12.8 0.0061 1.02 1185 522 51000 3.46
520 13.2 0.00575 0.97 1510 1010 225C0 1.52

43 275 10 0.0100 1.68 1715 522 10703 7.3
520 1i 0.0086 1.44 2000 I01C 39200 2.7
520 7 0.0200 3.36 2960 lO1C 86000 5.82

4 275 15 0.004144 0.75 1095 522 43800 2.98
520 14 0.0051 0.86 1540 1010 23200 1.58
520 11 0.0083 1.39 1770 1010 30900 2.10

45 200 172 0.0000338 0.0057 239

12 61 18 0.00309 0.52 513 3),6 22000 1.50
122 18 0.00309 0.52 e85 490 19600 1.33
183 16 0.0039 0.65 800 60C 17800 1.21
305 18 0.00309 0.52 1025 773 17503 1.19
425 18 0.00309 0.•2 800 911 7700 0.52
700 16 0.0039 0.65 1540 1175 17500 1.19

15 61 38 0.00069 0.116 217 34f 3700 0.25
122 38 0.00069 0.116 331 490 4560 0.31
183 38 0.00069 0.11C 376 600 3940 0.27
305 38 0.00069 0.116 548 773 5000 0.34
425 38 0.00069 0.116 640 918 49C0 0.33

19 122 48 0.000435 0.073 228 490 2170 0.15
183 U6 0.000475 0.008 388 600 4180 0.28
-.25 39 0.000658 0.011 662 918 5220 0.35
700 39 0.000658 0.011 800 1175 4650 0.32

22 61 16,4 D.0037 0.62 38C 357 11800 0.80
122 16.0 0.0039 0.65 501 490 10600 C.72
305 13.3 0.00,)22 0.88 800 700 13000 0.89
425 13.4 0.00555 0.93 970 918 11200 0.76

L--A~
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Table 8

Comparison of Plastic Flow St-ess with Control Tests

Series No. Average Average 2 Con- Tests
& Target Po S (S )2 Po Smax (Max) t)ro2 q
Material (eq.191) max max (eq.194) CBR 2

kg/cm2  kg/cm2  %_% kg/cm

31 Cambar wax 0.43 -23 528 1.62 +13 169 - 0.511

M-348
(at 31 0 C)

I

32 Estar 3 0.023 +13 169 0.061 +21 441 - 0.045
grease
(at 28°C)

34 paraffin 127.: - 81 200.0 + 3 9 - 134.02

(at 29 0 C)

37 clay 2.62 ± 0 10.0 -46 2120 2.1 2.2

38 clayey sand 2.11 - 6 36 5.9 ± 9 81 4.3 3.0
silt

39 beach sand 0.089 +18 324 0.30 +73 5320 - -

41 Princeton 3.41 -23 528 14.4 -42 1760 6.3 4.4
clay

42 sandy clay 0.85 -33 1085 2.21 +57 3240 4.0 2.8

43 crushed rock 2.13 +59 3480 5.27 +49 24 ) 18.5 -

44 fine sand 1.00 +39 1520 2.22 +3U 1155 5.8 -

12 Princeton 0.56 +16 256 1.14 -54 2905 2.8 2.1
red clay

15 Ottawa sand 0.12 - 0 0 0.30 -17 289 - -

(dry)

19 beach sand 0.009 -26 675 0.25 -60 3600 -
w=1.34 g/crn

22 Princeton 0.76 +22 485 0.91 -11 121 1.9 1.L
clay (w-2.65%)

-S 2 = 9167 S $2 = 23610

z S2 /n = 652 LS 2 /n = 1685

mean scatter: Sm = 25.5% Sm = 41%

1 Hardnes number computed from the penetration number N.
2 Failure stress computed from the tensile stress at 23 0 C.
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by themselves and, particularly with a rather extensive test

program, they must be expected to have a certain scattering.

This is particularly so if one considers the great vari-

ability of the properties of natural soils from point to

point. Thus, perhaps a major part of the scattering might

be traceabie to actual local variation of the soil properties

in situ.

If, for example, we disregard the values for the scatter-

ing of p0 from (191) of test series No. 43 (i.e. impact on

crushed rock which very much depends on the surface configur-

ation at the exact impact point), the average scattering is

reduced immediate]y to 20%. For a material such as crushed

rock especially, it is surely important whether the impact

energy is directly conducted away by a rigid grain skeleton

cr whether the Impact is a resilient and elastic one.

The standard control test like CBR and unconfined cow-

pression test were not carried out on clean sands. The former

is very difficult to do because the exact depth of penetration

is difficult to establish and the latter is not possible at

all in a non-cohesive material.

For the target materials of series 31, 32 and 34, i.e.

for the cambar wax, the Estan 3 grease and the paraffin, the

mechanical properties fui-nished by the manufacturer were

accepted.

-~ ~~~ %.-w - -7 ~ .-
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The penetration number N for a grease or wax is the pene-

tration (in tenths of a millimeter) that occurs after five

seconds when a 900 cone weighing 250 grams is applied to the

grease at 250 centigrade.

For these materials one can thus determine a hardness

number using equation (7) giving:

(a) for the Cambar wax

P 0.255 2
hL = 0.898 P = 0.898 )2 = 0.51 (kg/cm )

d (0.7)

kb) for the Estan 3 grease:

HL = 0.898 0.250 -= 0.045 kg/cm2

(2.35)2

For the paraffin (Essowax 5010) the mi ,facturer gives a ten-

sile strength (a, 23 0 C) of 2i, kg/cm2 . If one uses this value

to calculate the shear strength and applies the corresponding

value to the Prandtl bearing capacity problem, one obtains a

value of Po = 134 kg/cm2 which is close enough to the experi-
2

mentally found value of about 200 kg/cm particularly if one

eonsiders that the calculated value is based on a static

strength and test whereas, for the case of the dynamic loads

during the penetrometer impact, the observed values should be

higher.

In general, the values for the plastic flow pressure p0

evaluated with equation (19!) are more consistent and are in

surprisingly good agreement witn the Ltandard control test
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values, i.e. with the u-nconfined compression tests or the

corresponding equivalent CBR values. The po values evalu-

ated by equation (194) give in almost all cases two to three

times higher values. The author has not been able to find an

explanation so far for this fact, except, as was mentioned

before, when calculating p0 from (194) two experimental values

have to be introduced which may lead to a multiplication of

any errors. However, the values from (194) are at least in

agreement as far as the order of magnitude for p0 is con-

cerned and they are also more or less consistent within any

test series.

4. Wave Propagation Velocities

The instrumenting of the target soils with accel-

erometers nad one main purpose: to measure the elastic

properties of these target materials. They all were built

in at such a distance from the point of impact that in their

vicinity the resulting stresses and deformations would remain

within the elastic range. Furthermore, they were to check

the validity of the assumption miade generally that the energy

carried away by vibrations may be neglected. The following

values were evaluated from the vibration signals:

SV.
(a) for the propagation velocity: ai A.

• 1

- : 2 . '-<- - .
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(b) for the period of vibration T
n

(c) maximum amplitude of
Bi

the acceleration: bi max -Kig

where g 981 cm/sec. 2 is the gravitational acceleration.

The next page demonstrates the evaluation of these quan-

tities from the test data. The values obtained are listed in

Table 9. From the average values for "a" the corresponding E

moduli were found according to equation (145) which are shown

in Table 10. According to this equation (145) they can be

determined by:

(1 + v)(1 - 2v) 2 (145a)

Saz (for v = 0)

= 0.83 a (for v = 0.25)

The values found are in very good agreement with those

given by Barkan. Their scattering is relatively small.

The photographs of series 41 which have the least dis-

tortion and interference show clearly that the signals in the

soil have the form given by equation (178). if we take the

displacement:

U=Be- -x i (ax - Wt)

and find the acceleration by double differentiation with

respect to time, one gets:

T- 47 1
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Table 9

Evaluation of the Vibration Signals

Test Drop Period Period
Series Height rI r a1 a2 T T2 b1 b2
Spage H 2 1 max maxS2 2

cm cm cm m/sec m/sec m.sec. m.sec. cm/sec. cm/sec.

37 - A 8 275 283 482 113 105 16.3 12.9 26.0 8.8

A 9 520 290 510 151 159 13.5 14.0 28.9 11.4

38 - A 10 275 680 1000 400 357 14.6 12.8 63.2 29.0

A 11 275 680 1000 314 323 15.2 13.5 23.8 8.8

A 12 275 680 1000 400 454 13.5 13.0 82.2 36.0

A 14 520 680 1000 272 278 13.6 14.6 27.0 I .A

39 - A 15 275 140 280 200 200 12.0 11.0 38.0 1/.4

A 17 520 140C 280 188 200 13.0 12.0 50.8 17.3

A 18 520 14O 280 165 170 12.0 6.5 108.0 28.9

41 - A 19 275 244 490 2uk 340 7.1 7.5 40.5 159.0

A 20 275 242 488 242 296 5.4 7.0 39.0 121.5

A 22 520 244 491 244 280 6.5 8.0 57.8 232.0

42 - A 24 275 178 396 170 208 9.6 12.5 57.8 17.9

43 A 26 275 112 233 12'4 123 4.5 6.1 202.0 95.4

A 27 520 107 238 153 164 6.0 6.0 179.0 55.0

414 - A 29 275 151 375 - 417 - 10.0 98.1 21.7

A 31 520 166 394 - 329 7.5 ]'J.0 188.0 41.9

r 3  a 3  T3 b3

41 A 19 850 283 6.1 3.35

A 20 825 275 7.25 3.00

A 22 830 258 6.25 5.00
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r4. 2 . j. I ,'L.L.Lp! -P W
u= B w e e (!95)

2
i.e. except for the factor w nothing has changed.

X
2

Table 10

Determination of E-modulus

Test p a a 2 E(v = 0) E(v = 1/4)
Series Target 4 2 2 2 2
No. Material cm-/sec m./sec m /sec kg/cm kg/cm

37 Clay soil 0.00126 135 18,200 230,000 190,000

38 Clayey sand 0.00138 350 122,000 1,680,000 1,390,000
- silt

3
39 Beach sand 0.00137 188 35,200 480,000 400,000

41 Princeton clay 0.00156 274 45,000 1,I17,000 970,000

42 Sandy clay 0.00141 189 36,000 510,000 422,000
5

43 Crushed rock 0.0230 141 20,000 460,000 380,000

( 44 Fine sand 0.00153 373 139,000 2,100,000 1,740,000

4

0

5. Evaluation of Vibration Enery.

.9

The energy furnished by a force P moving through a

distance s is given by:

[o s
W = P ds =J m u ds (196)

7774V 77Jo
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If we determine an average value P through the integral inter-

val from the test data, then the total vibration energy could

be:

W M P *s
av

Considering a half-period 1/2 T with a sinusoidal change

of the acceleration from zero to a maximum amplitude b and

back to zero, we may write for the velocity change:

1/2 T

V = 2-- .1 b T I bT (197)
71 2 2 27

0

Analogously the distance traveled during the half-period

is:

2 1 1 bT 2

2 (198)

and the average force becomes:

P M bPb m (199)
m TF

where m designates the accelerated mass.

The total energy thus is determined by:

b 2 T2

=m (200)

If one assumes the waves propagate spherically, the acceler-

ated mass is:

2 3m ki 3It r (201)

______.- .. _- _ . -.. . -
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and the total energy then is:

W - 2 r3 b 2T 2  (202.
3 2

According to this formulation the maximum energy of vibration

evaluated for all test series was found for series 38 (page

A-10). Using the corresponding values from Tables 9 and 10,

we found for this case:

- 2.1 * 6803 . 82.22 . 13.52 . 0.00138 = 18,500 cm.gm.Wv -29.5

The total impact energy however for this test was:

WO = 1573 * 275 = 433,000 cm.gm.

giving a ratio N of vibration energy to impact energy:

N = v 18-500 = 4.3%
Wo 433,000

Since this was by far the largest value found, most other

values being a significant amount below this ratio, we con-

cluded that for our experiments the energy dissipated by the

vibrations of the half-space is indeed negligible.

" - - ---C M
____________________T________ a -
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X. Summary and Conclusions

The purpose of this investigation was to explore a method

that would permit the reliable assessment of surface soil

properties fop the prediction cf deformations during and after

aircraft operations. After the historical development of the

penetrometer concept is briefly traced, we present the basic

theoretical aspects of the problem. A penetrometer with a

piezo-electric accelerometer as the main feature was designed.

This penetrometer was tested and for laboratory experimenta-

tion purposes evaluated. While the instrument as designed

certainly should not yet be considered an ultimate version of

a new operational penetrometer, the principle tested and the

methods employed were found valid and useful. The modifica-

tions suggested are to make the penetrometer a complete sphere,

use three mutually perpendicular accelerometers, record the

signal on magnetic tape and eliminate the cable by telemeter-

ing the signal through a built-in transmitter to a receiver,

the surface of the sphere acting as an antenna. With these

modifications it is believed that a system will be achieved

which will permit the remote determination of the mechanical

strength of a soil surface with a reliability sufficient for

engineering purposes.

The values found for the flow pressure were in reasonable

agreement with the contzol test values and were con;1stent

01.
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among themselves. The solution for a sphere impacting on a

four parameter half-space was developed which gives, however,

a rather complicated, non-linear result that must yet be

evaluated numerically. Finally, it was shown that the energy

dissipated by vibrations when a body impacts on a half-space

for the velocities and material investigated is indeed negli-

gible.

S.. . .... .. . " ..._'
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(a) (b)

Figure 2

Cone Penetromneter of U.S. Army Corps of Engineers

(a) field instrumnent

(b) laboratory instrumcnt
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Geometric Similarity of Indentation

for the Hardness Test
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Figure 3(b)

Definition of Deformation Pararnetex-a

for Hert:-z Contact Problem
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Spherical Penetrometer of Tsyrovich
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Figure 5

Swedish Cone Penetrometer
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Figure 6

Proctor Plasticity Needle
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Figure 9

U.S. Army CREEL Ram Penetrometer
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Figure 10

Point of Ramn Penetromnete~r
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Rain Hardness versus Compressive Strength

Figure 12

Picture of Impact Penetrometer
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Section through Impact Penetrometer
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Figure 14

Volume Element in CylS.-drical Coordinate System

Figure 15

Plastic Flow Lines for Hen-k-y Contact Problem



i Figure 16

Yield Lines for Plane and Spherical Punch

Figure 17

Plasticized Region after Iterson
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Figure 24

Penetrometer before Impact on Paraffin

Figure 25

Penetration into Estan 3
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Figure 26

Deformation produced by 920 cm/sec Impact

on Cambar M-348

Figure 27

Test Setup for Series No. 41



A-1

T e s t S e r i e s No. 31

Target Material: Cambar Wax M-348 at 31 C.

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

Ma = 200 mV/cm-

Mt = 5 msek/cm -

t 0.16 cm ....

Drop Heighti H = 122 cm

Oscilloscope Calibration:

Ma = 200 raV/cm: - -

Mt = 5 msek/cm - - • J _

t = 0.64 cm -. -I. I -....... . ......... .' .... . . ,.; . . ..

4. *1



A-2

T e s t S e r i e s No. 31

Target Material: Cambar Wax M-3'49 at 31 0 C.

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma= 500 mV/cm

Mt = 5 msek/cm

t 0.8 cm

Drop Height: H = 305 cm

Oscilloscope Calibration:

Ma = 500 mV/cm _____ ,_L.

Mt = 5 msek/cm - -

t = 3.2 cm ...... - ... . .

1-m



A-3

T e s t S e r i e s No. 31

Target Material: Cambar Wax M-348 at 31 0C.

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H = 425 cm

Oscilloscope Calibration:

Ma = 500 mV/cm

Mt = 5 msek/cm ----Opp

t = 3 . 8 c m - - -- - --. 
.

f 7-

.- 4, i



A-4

-eI
T e s t ,e i i! No. 32

Target Material: Lubricating Grease Estan 3 at 280C.

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H 61 cm

Oscilloscope Calibration:

Ma 50 mV/cm {
Mt = 10 msek/cm

t 12.8 cm -. - -

--
i- -

Drop Height: H 122 cm

Oscilloscope Calibration:

"Ma = 50 mV/cm

Mt = 5 msek/cm

t = 19.0 cm W
_______ _______ ______ jI - '"' _

l -



A-5

T e s t S e r i e s No. 32

Target Material: Lubricating Grease Estan 3 at 280C.

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma = 50 mV/cm

Mt = 10 msek/cm _

t = 2 4 . 0 c m 
4 0.. . ..

-or-

Drop Height: H 305 cm

Oscilloscope Calibration:

Ma 50 mV/cm

Mt 10 msek/cm

t 30.0 cm



T e s t S e r i e s No. 34

Target Material: Paraffin at 280C.

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

Ma = 2,000 mV/cm

Mt = 0.2 msek/cm -I-.

t 0 .1 cm 4........ .... .... +.... .... . . I ...

=7

Drop Height: H = 122 cm

Oscilloscope Calibration:

Ma = 5,000 mV/cm--

Mt = 0.2 msek/cm - -

t = 0.1 cm .... .... .... ... 44.4 4,, , .4.. + W I

.L



A-6 A-7

Test Series NO. 34

Target Material: Paraffin at 28°C.

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma =5,000 mV/cm--------------------------

Mt = 0.2 msek/cm ....--

t = 1.4 cm a A A

Dr-op Height: H = 305 cm

Oscilloscope Calibration:

Ma = 5,000 mV/cm

Mt = 0.2 msek/cm

t 0.3 cm

O .rr. . .



A-8

T e s t S e r i e s No. 37

Target Material: Undisturbed Clay Soil

Calibration Factors: Penetrometer: K = 8.6 mV/g

r'1 : K 34 mV/g" r2: 56 mVlg

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 1000 mV/cm

M., = 10 msek/cm

ri = 283 cm

Ma = 0.5 mV/cm

Mt = 10 msek/cm

r2 = 482 cm

Ma = 0.5 mV/cm ...
Mt = 10 msek/cm

-, I ++- - -= TM --w
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A-9

Se s t S e r i e s No. 37

Target Material: Undisturbed Clay Soil

Calibration Factors: Penetrometer: K 8.6 mV/g

ri: K 34 mV/g; r 2 : K 56 mV/g

Drop Height: H =520 cmtA

Oscilloscope Calibration:

Penetrometer:

Ma = 1000 mV/cm

Mt = 10 msek/cm,

r = 290 cm

Ma = 0.5 mV/cm

Mt = 10 msek/cm

A2
r2 = 510 cm

Ma = 0.5 mV/cm ... r

Mt 10 riisek/cm

Pet-etrometer: ZI -00+

M 2000 mV/cm
""a a



A-IU

T e s t S e r i e s No, 38

Target Material: Clayey, Sandy Silt, Undisturbed
Calibration Factors: Penetrometer: K = 8.6 mV/g

ri: K 31 mV/g; r 2 : K 34 mV/g

Drop Height: H 275 cm

Osc~lloscope Calibration:

Penetrometer:Ma~ene-tr~ ..... 2....................../ L•...*.....

Ma 200 mV/cm

Mt 2 2 msek/cm

r,= 680 cm

Ma 1 mV/cm

Mt = 10 insek/cm

2r = 1000 cm

aM = 500 mV/cm

Mt 10 msek/cm XT/ 'j
A i4



10 A-1l

T e s t S e r i e s No. 38

Target Material: Clayey, Sandy Silt, Undisturbed

Calibration Factors: Penetrometer: K 8.6 mV/g

r: K = 31 mV/g: r 2 : K = 34 mV/g

Drop Height: H = 275 cm I

Oscilloscope Calibration:

Penetrometer:

Ma 200 mV/cm

Mt = 2 msek/cm

rI 680 cm

Ma 500 mV/cm

Mt 20 msek/cm

r = 1000 cm ..

M- 503 mV/cm-
2Q

Mit = 20 msek/cm -1

.... ... . .. .

I5
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iT e S t Se r i e s Nio. 38

Target Mfaterial: Clayey, Sandy Silt, Undisturbed

Calibration Factors: Penetrometer: K 8.6 inVlg

rtK 31 mV/g; r: K 34 rnV/g

Drop H~eight: H =275 cm IA--
Oscilloscope Calibration:

Penetrometer:

Ma 200 mV/cm

M 10 msek/cm

r,=680 cm

M imV/cm

HIL 10 msek/cm

r2=1000 Cm

Mt = 10 msek/cm



A-13

T e s t S e r , e s No. 38

Target Material: Clayey, Sandy Silt, Undisturbed

Calibration Factors: Penetrometer: K 8.6 mV/g

ri: K 31 mV/g; r 2 : K 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer: ,

Ma = 200 mV/cm a
Mt 2 msek/cm '4

r" 580 cm

Ma = 500 mV/cm I
Mt n 200 insek/cm

r2 = 1000 cm

Ma = 200 mV/cm

ML=200 msek/cm .

.. .... .... .... I. .A



A-14

T e s t S e r i e s No. 38

Target Material: Clayey, Sandy Silt, Undisturbed

Calibration Factors: Penetrometer: K 8.6 mV/g

rl: K = 31 mV/g; r 2 : K 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration: 4

Penetrometer:-- - -

Ma = 500 mV/cm ..... i-.- . .-. ---a - ,4--- . .

Mt = 2 msek/cm ----- -

r, = 680 cm

Ma = 500 mV/cm ".

Mt = 20 msek/cm

2 1000 cm

Ma = 200 mV/cmA kdft

Mt = 20 msek/cm.

4- 6 1 -

S. . . . . .. . ..I.. .i . .
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T e s t S e r i e s IQ

Target Material: Beach Sand, Freely Deposited

Calibration Factors: Penetrometer: K 8.6 mV/g

ri: K 31 mV/g; r 2 : K 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration;

Penetrometer: ,~4~4~.--

Ma. = 100 mv/cm- --

Mt = viseklcm -- -

t

ri= 140 cm

M- ... = 500 mV/cm

Q4

Mt = 10 msek/cm- - - - - - - -

'2 280 cm

Ma = 500 mV/cm _i ___lii. .

Mt = 10 msek/cm

- - 7
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T e s t S e r i e s No. 39

Target Material: Beach Sand, Freely Deposited

Calibration Factors: Penetrometer: K 8.6 mV/g

r1: K 31 mV/g; r 2 : K = 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Ma= 100 mV/cmf

Mt =10 msek/cm -

0sciioscop---......

r,= 140 cm

M a = 1 TDV/cm

Mt =10 msek/cm

r2 = 280 cm 
00 o w m t

Ma = 500 mV/cm
..4 .... ... ....44 ....4-..4-

Mt = 10 msek/cm

A&

-44. 4 444 -4444.44 *44444 444 444*44

r-"I =~ -• cm - - *!-
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A-17

T e s t S e r i e s No. 39

Target Material: Beach Sand, Freely Deposited

Calibration Factors: Penetrometer: K 8.6 mV/g

rI: K 31 mV/g; r 2 : K 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration: -

Penetrometer:

M a = 200 mV /cm ...... .-4 4 -... ... .. .... .. .

Mt = 5 msek/cm A I

r, = 140 cm t

Ma = 2 mV/cm

Mt = 10 msek/cm

r2 = 280 cm

Ma = 1 mV/cm 
-

Mt = 10 msek/cTR

-- - - - --- ,- - -m

*4 44i ON$ ilii N" ~ 4

.- - + .... .



A-i8

T e s t S e r i e s No. 39

Target Material: Beach Sand, Freely Deposited

SCalibration, Factors: Penetrometer: K 8.6 mV/g

r K = 31 mV/g; r K 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration:

Penetrometer: - V. ..
Ma 200 mV/cm j
Mt 5 msek/cm_

r1 = 140 cm

Ma = 2 mV/cm

Mt = 10 msek/cm

r2 = 280 cm - - --

Ma = 2 mV/cm I _
Mt = 10 msek/cm

- .. . ... .

.. 4

-*+++

Rom
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T est S e r i e s No.0 1

Target Material: Princeton Red Clay
Calibration Factors: Penetrometer: K 8.6 mV/g

rI: K = 34 mV/g; r 2 : K 34 mV/g;

r3: K = 170 mV/g

Drop Height: H = 275 cm

*scilloscope Calibration-

Penetrometer:

Ma = 500 mV/cm

Mt 5 msek/cm

ri= 244 cm

Ma = 500 mV/cm

M t =10 msek/cmT

r2= 490 cm

MH = I mV/cm

Mt 10 msek/cm

r 8 = 850 cm

Ma = 200 mV/cm

Mt= 5 msek/cm

--



T esat Searie 6s "No. 41

Target Material: Princeton Red Clay

Calibration Factors: Penetrometer: K 8.5 mV/g

rI:K =34 mV/g; r2: K 34 mV/g;

r:K =170 mV/g

Drop Height: H =275 cm

Oscilloscope Calibration:

Penetrometer:

Ma= 500 mV/cmI

Mt = 5 msek/cm

ri=242 cm

Ma =500 mV/cm

Mt = 10 msek/cm_____________________

r2=488 cm'

Ma = 1 mV/cm

Mt 10 msek/cm

r = 825 cm

M 0. 2 mV/cm

Mt 5 msek/cm



A-20 A-21

T e s t S e r i e s No. 41

Target Material: Princeton Red Clay

Calibration Factors: Penetrometer: K1 8.6 mV/g

ri: K = 34 mV/g; r 2 : K = 34 mV/g

r3: K = 170 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 500 mV/cm

Mt = 5 msek/cm

ri = 230 cm

Ma = 500 mV/cm

Mt = 10 msek/cm

r2 = 475 cm

Ma = 500 mV/cm

Mt 1 10 msek/cm

r 3 = 815 cm

a 200 mV/cm .. .... .
McSMt 5 msek/cm p i l AI



A -22

T e s t S e r i e s No. 41

Target Material: Princeton Red Clay

Calibration Factors: Penetrometer: K 8.6 mV/g

r,: K = 34 mV/g; r2: K= 34 mV/g;

r 3 : K = 170 mV/g

Drop Height: H 520 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 500 mV/cm I

Mt = 5 msek/cm

r 244 cm "

I i
Ma = imV/cm t
Mt = 10 msek/cm aI mm--

r2 = 491 cm

Ma = 2 mV/cm

Mt = 10 msek/cm 'T

= 830 cm

Ma = 0.2 mV/cm

Mt = 5 msek/cm_

tIV - 7



2 A-23

T e s t S e r i e s No. 42

Target Material: Silty Sand (Plowed Field)

Calibvation Factors: Penetrometer: K 8.6 mV/g

r1 : K 34 mV/g; r 2 : K 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer: - -

Ma = 200 mV/cm

Mt = 2 msek/cm ,g: *g :MM, - ---- ---- : Hsi o::f

rl = 198 cm

Ma = I mV/cm

M, = 1.0 msek/cm

r2 = 415 cm

Ma =500 mV/cm

Mt 10 msek/cm
---- ---- - _ 89 o

! *
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T e s S e r ie s No. 42

Target Material: Silty Sand (Plowed Field)

Calibration ractors: Penetrometer: K 8.6 mV/g

r K = 34 mV/g; r 2 : K = 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer : ... .

Ma 5 200 mV/cm I
Mt = 2 msek/cm

r = 178 cm ---- I 4

Ma = 200 mV/cm -

Mt = 10 msek/cm

|4 I - * ...

r2 = 396 cm .

Ma :200 mV/cm .

Mt = 10 msek /cm



A-25

T t 4 2,

Target Material: Silty Sand (Flowed Field)
Calibration Factors: Penetrometer: K 8.6 mV/g

rj: K = 34 mV/g; r 2 : K 314 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration: - - -- -, -
Penetrc.neter:

Ma 200 mV/cm

Mt 2 msek/cm .. . ...... .. .
t 

-- - -- -
-- -A

---g - - --- --

= 178 cm- 
-- - -

Ra = I mV/cm

Mt = 10 msek/cm

r2=396 cm

M a = 500 mV/cm

Mt = 10 msek/cm

1[

SI 
-

- --
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Te s t S e r i e s No. A3

Target Material: Crushed Rock, Compacted

Calibration Factors: Penetrometer: K 8.6 mV/g

r1 : X 34 mV/g; r 2 : K = 314 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:

Ma 500 mV/cm

Mt = 1 msek/cm

rI = 112 cm

M a = 2 mV/cm

Mt= 10 msek/cm

2,= 33 cm 1 I
Ma = ImV/cm -

Mt 10 msek/cm

"; - - - !
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T e s t S e r i e s No. 43

Targr.t Material: Crushed Rock, Compacted

Calibration Factors: Penetrometer: K 8.6 mV/g

r K 34 mV/g; r2: K 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration:

Penetrometev:

Ma = 500 mV/cm

Ht = 1 msek/cm

rI = 107 cm

Ma = 2 mV/cm

Mt = 10 msek/cm

r2=238 cm

M 7/--m

Ma = 1 ; V/cm ; "- - -J '-- • • "

Mt 10 msek/cm

I lo l II ;

ml

, ' .-----



A-A

AA

T e s t S e r i e s No. 43

Target Material: Crushed Rock, Compacted

Calibration Factors: Penetrometer: K 8.6I mV/g

rI: K 34 mV/g; r 2 : K 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 1000 mV/cm

Mt = I msek/cm

rI = 107 cm

Ma = 2 mV/cm

Mt = 10 msek/cm _

r2= 238 cm-I -!

F 1 mV/cm

M 10 msek/cm

J ii

n t

.. . --



A-28 A-29

T e s t S e r i e s No. 44

Target Material: Uniform, Fine Sand, Natural Deposit

Calibration Factor's: Penetrometer: K 8.6 mV/g

rl: K 34 mV/g; r 2 : K 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 200 mV/cm

Mt = 2 msek/cmt

ri = 151 cm

Ma = i mV/cm

Mt = 10 msek/cm

r2 = 375 cm

Ma = 500 maV/cm
__.I-

Mt 10 msek/cm

-4-

Islam=~ -



"A-3(

±e S I serie No 44s

Target Material: Uniform, Fine Sand, Natural Deposit

Calibration Factors: Penetrometer: K = 8.6 mV/g

r 1 : K 34 mV/g; r 2 : K 34 mV/g

Drop Height: H 520 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 500 mV/cm

Mt = 2 msek/cm

1 =160 cm

Ma = 2 mV/cm.

Mt = 10 msek/cm

r 2 = 387 cm

Ma = 5 mV/cm

Mt - 10 msek/cm

% 0i.

"-p

-.- • .- t



-30 A-31

Target Material: Uniform, Fine Sand, Natural Deposit

Calibration Factors: Penetrometer: K = 8.6 mV/g

r: K = 34 mV/g; r 2 : K 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 500 mV/cm

Mt = 2 msek/cm

r, = 166 cm

Ma = 1 mV/cm

Mt 10 msek/cm

r2 =394 cm

Ma = 500 mV/cm

Mt 10 msek/cm

,A-
I

a .... .. . _ - %. _ % . . .... t oq T



T e s t S e r i e s No. 45

Target Material: Swamp

Calibration Factors: Penetrometer: K 8.6 mV/g

ri: K = 34 mV/g; r 2 : K 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:

Ma 50 mV/cm

Mt 20 msek/cm

r, = 76 cm

Ma = 500 mV/cm

Mt = 20 msek/cm

r2 = 76 cm

Ma = 500 mV/cm

Mt = 20 msek/cm



T e s t S e r i e s No. 12

Targe-t Material: Sandy Silt with some Clay;
Natural Surface Deposit

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

Ma = 100 mV/cm

Mt = 2 msek/cm

t = 1.8 c€in

Drop Height: H 122 cm

Oscilloscope Calibration:

Ma 200 mV/cm

M t = 2 msek/cm

t = 2.1 cm



B-2

T e s t S e r i e s No. 12

Target Material: Sandy Silt with some Clay;
Natural Surface Deposit

Calibration Factor of Accelerometer: K 8.6 mV/g

.rop Height: H = 183 cm

Oscilloscope CalibrE.tion:

Ma = 200 mV/cm

Mt = 2 msek/cm

t = 3.7 cm

Drop Height: H = 305 cm

Oscilloscope Calibration:

Ma 200 mV/cm

Mt 2 msek/cm

t 4.5 cm

a



-2 B-3

T e s t S e r i e s No. 12

Target Material: Sandy Silt wi.th some Clay;
Natural Surface Deposit

Calibration Factor of Acceierometer: K 8.6 mV/g

Drop Height: H = 425 cm

Oscilloscope Calibration:

Ma = 500 mV/cm

Mt = 2 msek/cm

t = 7.9 cm

Drop Height: H 700 cm

Os( Iloscope Calibration:

Ma = 500 mV/cm

Mt = 5 msek/cm

t 5.2 cm



B-4

T e s t S e r i e s No. 15

Target Material: Ottawa Sand, U.S. Sieve Size No. 30-40

Calibration Factor of Accelerometer: K 3.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

Ma = 100 mV/cm

Mt = 5 msek/cm I
"t = 4.8 cm ;

I _ I£. ! t" I

Drop Height: H = 122 cm

Oscilloscope Calibration:

Ma 100 mV/cm

Mt 5 msek/cm

t 5.2 cm



B-5

Target Material: Ottawa Sand, U.S. Sieve Size No. 30-40

Calibration Factor of Acceleiometer: K 8.6 mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma= 100 mV/cm

M t = 5 msek/cm

t = 5.7 cm

Drop HeigI~t: H =305 cm

Oscilloscope Calibration:

Ma = 200 mV/cm

M t = 5 msek/cin

t = 6.4 cm



B -6

T st S e r i e s Uri 15

Target Material: Ottawa Sand, U.S. Sieve Size No. 30-40

4 Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H 425 cm

Oscilloscope Calibration:

Ma = 200 mV/cm

Mt = 5 msek/cm

t = 6.8 cm " -

7 7

--- • _ .... , -a- - ,~ .. .. ..



6 B-7

T e s t , e r ,. e s No. 19

Target Material: Beach Sand, Natural Deposit

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

1 a = 50 mV/cm

Mt = 5 msek/cm

t = 6.8 cm

Drop Height: H = 122 cm

Oscilloscope Calibration:

Ma = 50 mV/cm

Mt = 5 msek/cm

t = 7.0 cm



B-8

T e s t S e r i e s No. 19

Target Material: Beach Sand, Natural Deposit

Calibrati'n Factor of Accelerometer: K 8,6 ntV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma = 100 mV/cm

Mt = 10 msek/cm

t = 7.0 cm

Drop Height: H = 305 cm

Oscilloscope Calibration:

Ma = 200 mV/cm

Mt = 5 msek!cm

t = 7,5 cm

Al



B-9

T e s t S e r i e s No. 19

Target Material: Beach Sand, Natural Deposit

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: 4 - 425 cm

Oscilloscope Calibration:

Ma = 200 mV/cm

Mt = 5 msek/cm

t = 7.8 cm

Drop Height: H = 700 cm

Oscilloscope Calibration:

Ma = 200 mV/cm

Mt = 5 msek/cm

t = 8.0 cm

!I

-0~

.- -]
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T e s t S e r i e s No. 22

Target Material: Princeton Red Clay; 3

Moisture Content = 2.65%, w 86.8 Ib/ft

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

Ma 100 mV/cm

Mt 2 msek/cm

t = 2.3 cm

Drop Height: H = 122 cm

Oscilloscope Calibration:

Ma = 100 mV!cm

Mt = 2 msek/cm

t =3.0 cm

- %. 1-.



B-11

T e s t S e r i e s No. 22

Target Material: Princeton Red Clay;
Moisture Content = 2,65%, w = 86.,8 lb/ft

Calibration Factor of Accelerometer: K 8.E mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma = 200 mV/cm

Mt = 2 msek/cm

t =4.0 cm

Drop Height: H 305 cm

Oscilloscope Calibration:

Ma = 200 mV/cm

Mt = 2 msek/cm

t = 4.2 cm Kfi
1 .. . .

- -w --

I NO
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T e s t S e r i e s No. 22

Target Material: Princeton Red Clay; lbf 3

'Moisture Content =2.65%, w 86.8 bf

Calibration Factor of Accelerometer: K 8.6 mV/g

Drop Height: H = '425 cm

Oscilloscope Calibration:

Ma =500 mV/cm

Mt = 2 msek/cim

t = 4.8 cm

-I.JL4 Al

Drop Height: H 1292 cm

Oscilloscope Calibration:

Ma =200 mV/cm

Mt = 2 msek/cm

t =3.0 cm

n!
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