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Abstract

This repcrt presents parts of the scientific investiga-
tions carried out under a task program related to the deter-
miration and assessment of surface dynamic soil properties
by laboratory instrumentetion. It first reviews the histor-
ical development of the hardness~penetrometer concept and
presents a pilot model for a new aeriai penetrometer. Basic
theoretical considerations are then advanced regarding the
stress-strain relationships in axial symmetry and the dynamic
loads associated with a drop-impact penetrometer. The exist-
ing theory of elasticity solutions are then reviewed and the
solutions for a sphere impacting on an ideally plastic and
on an elasto-~plastic semi-infinite solid are presented. The
Hertz solution of an elastic sphere impacting on an elastic
half-space is modified by using the elastic-viscoelastic
analogy to find a solution for a sphere dropping onto a four
parameter viscoelastic half-space.

The problem of energy transfer during impact by vibra-
tions is discussed shortly. The data for fifteen test series
carried out with the pilot model penetrometer on natural soils
and on some artificial materials are presented and evaluated.
It is concluded that the principle of the drop impact-

penetrometer is applicable in experiments for assessing the

mechanical properties of a natural soil surface. The proposed
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modification of a prototype penetrowmeter should aiso increase
its capability and reliability as a remote sensor for opera-
tional applications. The instrument, as envisaged, will not
only permit determination of mechanical surface properties .

on terrestrial soils but should also be extremely useful for

the exploration, by remote techniques, of lunar and other

extraterrestrial surfaces.
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I. Introduction and Definition of Problenm

The determination of soil properties is one of the most
important tasks of modern soil mechanics. For its successful
solution one needs, first of all, a clear and rigorous defini-
tion and a thorough understanding of these properties. Next,
it will be necessary to develop suitable methods and instrﬁ-
ments for determining these properties and, finally, one will
have to evaluate, interpret and apply the data that are
obtained.

Historical progress in this field followed a more or less
logical development. It began by measuring properties of dis-
turbed soils in the laboratory (e.g. Atterberg consistency
limits, friction angle in the shear box). But one soon recog-
nized that certain soil properties were strongly influenced
and adumbrated by the disturbance that is unavoidable in the
normal soil sampling process. For this reason the measurement
of properties in the laboratory on "undisturbed samples" found
wider and wider acceptance (e.g. the consolidation test and
the triaxial test). It is obvious that the term "undisturbed"
must be understood relatively and merely designates genérally
acéepted standard methods by which soils are being sampled to
achieve reasonably undisturbed samples without undue expense.
The actual method used for sampling and its applicability for

the soil being sampled bhecomes very important.



Even these methods, however, do not yet constitute an
ideal solution because first, a truly undisturbed sample can-
not be obtained - even with the greatest care, and secondly,
the transport of the sample to the laboratory, the assembly
of the sample in the testing apparatus, the test itself as
well as its evaluation always require a large amount of time
and labor. Moreover, according to Burmister (1957) the soii
properties depend also on the soil environment, particularly
the system of stresses that exists "in situ" in the soil and
this author is in complete agreement with this hypothesis.

For this reason it would be advantageous to develop

methods that permit the measurement of soil properties "in

situ," i.e., in place. The advantages of such methods could

be listed as follows:
1) There is no need for sampling and, therefore, any dis-
turbance during the sampling procecs, the transport
of the sample and its assembly in the apparatus is
eliminated.
2) The time lag between sampling and evaluation of the
test results is eliminated.
3) The measured properties are available immediately on
location.
For these reasons developments of new measuriug techniques
have been directed increasingly towards instruments and methods
that measure soil properties "in situ.”"” Among these instru-

ments and methods are:
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a) The standard penetration test

b) The shear vane

c¢) The Menard-pressuremeter

d) The static penetrcmeter (e.g. CBR)

e) The drcp penetrometer (e.g. aerial penetrometer)

The methods a), b) and ¢) are mainly concerned to meas-
ure the shearing strength of a soil in a bore hole whereas
methods d) and e) have the purpose to determine the properties
of the soil surface. The mechanical properties of the soil
surface are of importance in the design of highway or airport
pavements, or when it is necessary to judge the trafficabil-
ity of a2 surface by a tractor, by construction equipment or
by a military vehicle.

The latter problem is a tactical-logisticzal one of great
military significance which normally is made more difficult
still because often the soil surface to be judged is not
accessible. From a purely scientific pcint of view this prob-
lem is of great interest alsc. For example, the design of
the lunar exploratory moduie (LEM) being developed at the
moment by the Grumman Aircraft Company requires a reliable
indication of the surface properties of the moon.

In the fall of 1962 the author initiated a research pro-
ject sponsored by the Terrestrial Sciencesc Laboratory, Air

Fcrce Cambridge Research Laboratories (0AR), Hanscom Field,

Bedford, Massachusetts. A part of this project was to

PLa. \* e
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he P o ch would permit the measurement
of mechanical properties of a soil surface by remote methods,
i.e. without requiring the physical presence of an operator
at the surface. The aim was to determine the properties of a
natural soil surface tha*t might control modern aerospace oper-
ations on natural terrain such as landing and take-off of air-
craft and recovery of space vehicles.

The problem then was to develop a method for measuring
those properties of a soil surface which govern the opera-

tional possibilities of natural terrain sites for modern mili-

tary aircraft and other aerospace vehicles. The problem was

not entirely new.
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1I. Historical Development

During 1950-1953 an aerial penatrometer was developed at
New York Unmiversity (Fig. 1; see also Molineaux, 1955, and
Anonymous, 1953) that could be dropped from an airplane and,
upen impact, would release signals in the form of flares,
colored vanes or flags that would indicate the severity of
the impact. The signals could be observed from the plane and
would indicate the hardness of the impacted surface.

In its practical application, this aerial penetrometer
had several flaws. One of the principal difficulties was that
it required an impact with zero horizontal velocity component
together with a perfect vertical alignment of the penetrometer
axis.

In the normal operational case this was to be achieved
by flying the airplane at a constant speed of 180 knots and
ejecting the penetrcmeter rearwards and slightly downwards
with a speed such that the net difference between the two hor-
izontal velocity components would be zero. Be-zause of wind
and small variations ian the forward speed of an airplane it
is most difficult to achieve exactly this condition of Vh =0,
Even more important, if the longitudinal axis of this pene-
trometer is just slightly off the vertical at the instant of
impact, part of its energy will be converted into a moment

which tends to throw the penetrometer onto the surface broad-

side and thus a good part of the impact resistance will not




be transmitted through the point of the penetrometer. It was
found rather d4ifficult to stabilize the penetrometer aerody-
namically in such a fashion that it would always hit verti-
cally. Furthermore, this instrument, as develcped, cannot
make an absolute measurement. Rather, before being dropped an
estimate must be made with respect to the expected impact
resistance and the observed signal then merely ixdicates
whether the actual resistance encountered was larger or

smaller than the onre previously estimated.

Principle of Penetrometer Methods

The development of the aerial penetrometer just discussed
was not at all without precedent but followed in principle the
"cone penetrometer" developed by the Waterways Experinment
Station of the Corps of Engineers, U.S. Army, in Vicksburz,
Mississippi (Tig. 2)(WES 1857) which is used to determine the
trafficability of a natural soil surface.

This instrument is a rod with a standard conical tip at
the lower end. This tip is pushed vertically intc the soil
surface by a force on the handle at the upper end and this
force is measured by a dial through a proving ring.

The instrument and its operation is described in a Water-
ways Experiment Station manual and is discussed by Hechtl
(1964) in the context of trafficability evaluation. Although

the Vicksburg cone penetrometer is an original instrumentation

T
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development, it is based on the same principle as other pene-
trometers. In the final analysis all penetrometer methods
have their origin in the principles of hardness measuremeant
of materials which can, according to Williams (1942), be
traced back to an article by Reaumur in 1722. The more modern
investigations, however, most probably were initiated as a
consequence of the solution of the contact stresses of two
elastic spheres by Hertz.

The idea to use the results of this solution for the
determination of material properties was obvious and led to
the various methods of measuring the surface hardness of a

material.

Bardness Measurements

In measuring the well-known Brinell hardness, e.g., a
steel sphere is pressed by a force P into the surface to be
examined and the diameter of the resulting permanent deforma-
tion is measured. The Brinell hardness is then given by the
ratio of the force P to the curved contact area of the defor-

mation:

H, = P (1)
B I (p - /o2 - D)

where D is the diameter of the sphere and d the diameter of

the permanent deformation.
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In most cases the Brinell hardness is not a constant
but a function of the load P and the diameter of the sphere.
According to general physical principles one would expect
that for gecmetrically similar deformations, the Brinell hard-
ness number is constant and independent of their absolute mag-
nitude. This was indeed found to be so.

If, for example, a sphere of diameter D1 causes a defor-
mation d4 and a sphere of diameter D, causes a deformation dg
then the Brinell hardness number will be the same provided
that the deformations are geometrically similar, i.e. the

central angle ¢ (Fig. 3) is the same. This is the case if

d4

Dy

UICL
N

2

According to Tabor (1950) the Brinell hardness is not a
very satisfactory quantity because the ratio of the load P to
the contact area does not give the average pressure over the
contact surface.

If, on the other hand, we use the vertical projection of
the contact pressure p only and apply the equilibrium condi-

tion we obtain:

a
P = 2n pxadazxs= ﬂpa2
o

where a is the radius of the circular indentation at the sur-

P
face and the projected pressure p is given by p = 5 This
7a

measure of hardness, namely:

4p

H = (2)

M 1d2
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was first proposed by Meyer and is generally known as Meyer

hardness. Meyer also found an empirical relation between the

load P and the diameter of the indentation as:

P = kdP
7 where k and n are constants of the material. The exponent n
usually being larger than 2.0 lying in the range 2.0 < n < 2.5,
If the load is applied by spheres of different diameters then

the values k and n change also and we get

n1 n2 n3
] P:kidj =kd2 :k3d3 T eces e (3)

For a large number of tests Meyer found that the exponent n
is independent of D but that k decreases with increasing

sphere diameters such that

o LB Rttt s

- n-2 _ n-2 _ n-2 _
A - lel haad k2D2 - k3D3 - * e o & > (L‘)

. where A remeains constant. Therefore we may write:

_ A n _ A n _ A n _
P - D n_2 d1 - D n’.2 d2 - D n-2 d3 - e« o o0 0 @ (5)
1 2 3
from which follows that:
) P _ d n-2

3 A (D) (6a)

and
P d.n
- = A (%) (8b)

— D2 D

Equation (6a) states that for geometrically similar deforma-

tions (¢ -onstant) the hardness number must be constant
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whereas (6b) indicates that for geometricaily similar defor-
mations the ratio ﬁ% must be constant.
That is to say a static load of 3000 kg applied by a
sphere of 10 mm causes a plastic indentation which is geo- i
metrically similar to that caused by a load of 750 kg applied
through a sphere with D = 5 mm or by a load of 30 kg with D =
1 mm. In all these cases the hardness number must remain the
same.
For the general case one may write:

P d
= F(3) (62)
42 D

where F is a suitable function expressing the similarity
principle.

In order to avoid the problem of the different geometry
for different penetration ratios % which presents itself when
measuring the Brinell or Meyer hardness, P. Ludwik (19083)
chose a conical indenter with an angle cf 90° instead of a

sphere. Thereby the penetration t is equal to the indenta-

2
tion radius $. The contact area is then given by A = rd
2 4sin#5°
and the Ludwik hardness number can be computed from:
. o
HL - 4 P sin 45 = 0.898 P (7)

ﬂd2 d2
For a homogeneous material the hardness number of Ludwik

is thus independent of the penetration ratio and geometric

similarity obtains for any load P or any penetration depth t.
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Ludwik used this hardness number mainly to investigate
the internal friction of metals (Ludwik, 1916).

As a consequence of these investigations by Brinell,
Meyer and Ludwik, a large number of methods for measuring
hardness were developed which in detail vary mainly in the
absclute magnitude and shape of the indenters and in the form
in which the loads are applied (statically or dynamically).
Here shall be mentioned only the methods of Vickers and
Rockweil. For dynamic load application a serie;’hf methods
were developed, e.g. the Shore scleroscope ané/the pendulum
by Herbert and that by Kuznetsov. A deti};éé description of
all these methods is given by Williams (1942).

We are particularly interested here in to what degree

the principles of hardness measurement have been applied in

the field of soil mechanics.

Hardness Measurement in Soil Mechanics

A surprising number of soil mechanics tests can be traced
back either directly or at least indirectly to the principles
of hardness measurements just discussed. For exampie, as
direct descendants we may consider: the steel ball test by
Tsytovich, the Swedish cone test, the Proctor plasticity
needle, the California bearing ratio test, the ram penetrom-
eter for measuring the hardness of a snow surface developed

by CRREL (Cold Regions Research § Engineering Laboratory) of
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the U.S. Army, the Waterways Experiment Station cone pene-
trometer of the U.S. Army Corps of Engineers and the aerial
penetrometer of the U.S. Air Force. As soil mechanics tests
which have their origin at least indirectly in the principles
of hardness measurement may be considered the U.S. standard
penetrometer and the penetrometers used in the various coun-
tries, e.g. in Denmark, Holland, Sweden, Switzerland and
Germany. The various penetrometer points are shown for exam-
ple by Terzaghi arnd Peck (1948) and the experiences made with
these various penetrometers are described in the literature.
These latter methods have the purpose of measuring the shear
or penetration resistance of a soil at some depth either in a
bore hole or after the penetrometer has been pushed into the
ground already some depth.

These methods are, therefore, of little interest here.

We are mainly interested in those methods and tests
which we classified as direct descendants of the hardness
measurement principles. In the following we shall give a

short description and discussion of the various methods.

1. The Steel Balil Test by Tsytowich

To investigate the consistency of cohesive soils,
Tsytovich modified the Brinell test in the following manner.

A steel ball of diameter D = 9.5 mm is forced by a load P

into the smoothened surface of the s0il. The load is chosen
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Such that the penetration “t* is between 0.5 and 1.0 mm where
t is measured with an accuracy c¢f 0.01 mm. The apparatus is
shown in Fig. 4. The penetration is read after a load period
of 5, 10, 30, 60 and 300 seconds and the corresponding shear

resistance is computed by the formula:
P
S = 0.057 — 8
o (8)

where P is the load in kg, D the diameter of the sphere (cm)
and t the penetration (cm). This formula was derived for
ideal, plastic, i.e., frictionless materials, and is supposed
to be usable for soils with a friction angle of up to 7°.

For soils with a higher friction angle the results must be

multiplied by a correction factor m according to Beresanzev:

friction angle correction factor m
10° 0.61
200 0.28
30° 0.11

Since the penetration depth t is time-dependent and
increases with increasing load duration this method yields
a shear resistance that decreases logarithmically with the
load duration.

This, indeed, also corresponds to actual clay socil
behavior which exhibits a shear strength that tends assymp-
totically towards an ultimate valuve as the duration of the
load is increased. It is interesting to note that this

method is one of the few ones which is able to reveal the

rheological properties of a soil.
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Nevertheless, a certain amount of the penetrat

AN = e <
Ak -

also be caused by consolidation which will introduce a small
error; however, its magnitude can be determined fairly well,

if it should be considered necessary.

2. The Swedish Cone Test

This test follows exactly the same principle as that
of Tsytovich except that the sphere is replaced by a cone
with an angle of 60° or 30° respectively. The apparatus is
shown in Fig. 5. The disturbed or undisturbed soil is placed
in the container and the surface is leveled and smoothed.

The cone is then adjusted by a screw such thar its point just
touches the soil surface. Then the cone is released and pene-
trates by its own weight into the soil. This penetration is
measured by a micrometer and serves to determine the strength
index H of the soil which is definred as one sixth of the load
producing a penetration of 1 cm of the 60° cone.

From a large number of tests a table could be established
giving the strength index for any penetration and load. The
strength index H is a purely empirical value and serves mainly
to determine the sensitivity of a clay and to compare the
relative strength c¢. various soil layers.

If H4 and Hyp is the strength index in the undisturbed

and disturbed state respectively, then the sensitivity is
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He/Hs. In the range of small indici an empirical relation-

. ship was found between H and the shear strength s, namely:

H 2
S * %00 (kg/cm®)

T
%y
%,
)
Al-\

This relationship is supposed to be valid for H ¢ 240.
Although the experiment is evaluated on a purely empir-

ical basis it is claimed to be very useful.

Table 1
- Strength Index for Swedish Cone Test
Penetration (mm) Strength Index H
load P 100 grams 60 grams 10 grams

cone angle 30° 50° 650°

2.0 1140 195 -

3.0 526 100 -

4.0 296 58 -

5.0 189 36.5 -

€.0 140 26 .8 4.5

7.0 104 1.7 3.3

- 8.0 79 15.4 2.6
9.0 62 12.2 2.0

10.0 42 1¢.0 1.7
- 11.0 8.2 1.4
i2.0 6.9 1.2

14.0 4.9 0.8

16.0 3.6 0.6
18.0 - 0.4

- 20.0 - 0.3

3. The Proctor Plasticity Needle

R. H. Proctor (1933) proposed to measure the force
necessary to push a plane indenter of circular crosc-section

with a penetration rate of about 0.5 inch per second into the

surface of a compacted soil. The apparatus used is shown in
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Fig. 6. Exchangeable indenters with cross-sectional areas
varying from 1.0 to 0.01 square inch are pressed by a rod and
handle assembly through a spring ianto the soil and the neces-
sary force is read off. The necessary force should bz around
300 psi. at the optimum water content. Proctor proposed this
test as a construction control test c¢o determine whether the
required compaction had been obtained at the permissible
water content. He considered a penetration resistance from
200 to 300 psi. as acceptable. The test, however, has been
replaced more and more by "in situ" density measurements and

is hardly used any longer.

4, The California Bearing Ratio Test (CBR)

In 1540 the U.S. Army Corps of Engineers was suddenly
faced with the task to develop a method that would permit the
quick and reliable design of airfield and highway pavements.
After months of intensive research the conclusion was reached
that the method developed by the California State Highway
Department was the most suitable. It was therefore adopted
for the design of asphalt pavements and it permitted to take
advantage of the experience already gained with this test in
California. The CBR test is, in principle, a penetration-
shear test which determines a bearing strength modulus. This

bearing strength modulus then determines, according to a

purely empirical relationship, for a given wheel load the
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required pavement thickness. For the desigu of airfield pave-
ments the design curves of the California State Highway Depart-
ment were extended and confirmed by measurements on existing
airfield pavements. This method then was used extensively
during and after the second worid war and probably is one of
the most successful methods of modern soil mechanics.

The equipment for the CBR test is shown in Fig. 7. 1In
this test a circular steel cylinder of 1.954~inch diameter is
presced intc the soil surface by a hydraulic piston and the
load-penetration disgram is found. In the normal case the
stress corresponding to the penetration of 0.1 inch divided
by the stress corresponding to the same penetration (0.1 inch)

for the standard material (crushed rock) is the CBR value:
Osoil

CBR = IR
standard

Since the stress for the standard material
at 0.1 inch penetratiocn is 1000 psi., a soil stress of 300
psi. at 0.1 inch penetration would give a CBR value of 30%.
This method has found wide application in the western
hemisphere and is being used with great success. A detailed
investigation of the method was carried out in 1945 by the
Waterwvays Experiment Station in which the scil defermation
chare - :caristics below the piston were carefully examined also
(see Fig. B8). The CBR test is thus surely that test method

in which the principle of hardness measurement has found its

widest application in modern soil mechanics.
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5. The Ram Penetrometer

This instrument is a steel rcd with a conical point
that is driven into a material surface by the repeated impacts
of a falling weight and the penetration is then related to
the impact energy. In principle this method is therefore '
related to the pile driving formulae. There are a number of
ram penetrometers in existence and as a typical example we
may just mention that developed by the U.S. Army Cold Regions
Research ard Engineering Laboratory.

The equipment is shown in Fig. 9. A steel block of
weight W falls through a height H onto an anvil. The result-
ing impact drives the conical point of the rod into the mater-
ial surface and causes a penetration s. A detail »f the coa-
ical point is shown in Fig. 1C.

The ram hardness R is then determined from:

R = %g + W+ Q (9a)

where Q is the weight of the penetromete  rod. Since it is
often difficult to determine the penet~ation s for a single
blow, one often determines the tot.l set from a heat of n

blows and finds

R = + W +Q (9%)
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where s, now is the penetration after n biows. The results
obtained with the penetrometer shown were compared with uncon-
fined compression tests which yielded a linear relationship
between the unconfined compression test and the logarithm of

P according to:
Q, = 4.078 1n R - 14.72 (kg/cm?) (10)

A series of experiments and the scattering cof the results are
shown in Fig. 11.

it is interesting tc note that in this case the load is
applied by impact, i.e. dynamically. As one can see, egqua-
tions (9a) and (9b) have the same structure as the various
pile driving formulae and, therefore, are subject to the same
criticisms and reservations that were made with respect to
those by Cummings. Especially the assumption that the pene-
tration resistance remains conrstant throughout the penetra-
tion process along the distance s is of questionable validity
and the further assumption that the various energy losses may
be neglected shows that thes¢ formulas at best have an approx-

imate value.

6. The U.S. Army Corps of Engineers Cone Penetrometer

This instrument was developed by the Waterways Exper-

iment Station of the U.S. Army Corps of Engineers in Vicksburg,
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Mississippi and has been used for several years to determine
the shear strength or the trafficability of a soil surface
for given cross-country type vehicles. The apparatus was

already shown in Fig. 2 and consists mainly of a conical

peint having an opening angle of 30° and an area of 0.5 in2
connected by a steel rod and proving ring to a handle. The
cone is forced by hand into the soil surface and the force

required is read coff from the proving ring dial. This dial
is calibrated in such a fashion that one reads directly the
ultimate bearing pressure. This figure is called the "cone

index." Hechtl and Herbst {(1963) described the application

of this index in more detail.

7. The Aerial Cone Penetrometer

As we have indicated earlier, this instrument is the
logical follow orn to the U.S. Army Corps of Engineers pene-
trometers. It was developed particularly for those situations
where, for practical or military reasons, the Corps of Engi-
neers penetrometer cannot be used. The instrument (see Fig.
1) essentially is a long aluminum tube having a conical point
with a spike at the lower end. The cone is connected through
a spring-firing pin assembly to a cartridge that sets off a
smoke signal, flare or color vane when it is fired. If the

impact of the penetrometer is hard enough the cartridge is

\}:
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set off and the resulting signal may be observed visually

from the air. An infrared bulb may also be lighted. As the
spring of the firing pin can be varied, one can use stiffer
and stiffer springs until one is found which no longer permits
the firing pin to fire vhe cartridge.

The instrument has a number of limiting characteristics
and disadvantages. For cne, the severity of the impact will
depend on the impact velocity. This velocity therefore must
be measured independently or, at least, it must be estimated.
Secondly, every impact cnly gives a relative indication,
namely whether the resistance encountered by the penetrometer
was greater or less than the one required by the chosen spring;
thus a determination of the actual magnitude requires at least
several, if not a large number, of impacts to bracket the true
value with sufficient accuracy. One of the most severe dis-
advantages, however, in the practical application is the aero-
dynamic instability of the instrument and the geomeiric
requirements for its perfect operation.

In order to give perfect results the aerial penetrometer
should impact upon the horizontal soil surface not only in
perfect vertical alignment but also without any horizontal
velocity component. 1n practice, however, the aerial pene-
trometer would most likely have a small inclination a. Such

an inclinaticn not ecnly reduces any resisting force trans-

mitted through the pin by the factor cos a but also causes
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the impact energy to be transmitted to a small degree only
through the conical point while most of it is converted into
a moment causing the penetrometer to impact broadside. Even
in a perfect vertical alignment impact such a moment may
develop, namely if the penetrometer has a horizontal velocity
component different from zero.

For the normal operational case it will be practically
impossible to eliminate all these sources of error and achieve
a perfectly vertical impact with zero horizontal velocity com~

ponent and an accurately known vertical component.

The Princeton Impact Penetrometer

Because of these difficulties the author, in the fall of
1962, began a research project sponsored by the Terrestrial
Sciences Laboratory of AFCRL to investigate the feasibility
of methods measuring the soil properties of interest without
the disadvantages cited above suchn that aircraft trafficabil-
ity on a soil surface in terms of predictable deformaticns
could be evaluated.

The important practical as well as theoretical censider~
ations for developing such a method are discussed below.
Also, a description of a laboratory instrument (Fig. 12; ¢
check the design concept is given as well as the results ¥

saveral series of tests that were carried out with the instru-

ment.
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The instrument itself was designed by the author and
manufactured in the central machine shop of the School of
Engineering and Applied Science of Princeton University. Mr.
Christian Hechtl, research assistant, assembled and calibrated
the electronic equipment and during the summer and fall 1962
carried out a first pilot test series mostly on disturbed,
artificially prepared soils in the laboratory. These pilot
tests had the purpose to confirm, in principle, whether the
chosen concept and system was satisfactory, to find the most
favorable shape of _.he nose for the drop capsule and to find
the influence of water content and dry density on the test
results. The results of these pilot tests were presented in
February 1964% by Mr. Hechtl as his Ph.D. dissertation.

The bulk of the results presented in this report were
carried out jointly by the author and Dr. Hechtl during the
summer of 1964 mostly on natural, undisturbed soil.

It is the purpose of the remainder of *this report to
present first the basic, theoretical considerations for this
type of remote testing and then analyze the test results and

discuss the possible further improvement and development of

the impact penetrometer and its operation.

R aT)

A




M-—“&M”——O——w —_— g - - aaealy S

II7. The Drop CTapsule Penetrometer

1. Test Principle

Cre of the main difficulties encountered with the
aerial penetrometer is measuring, or at least estimating, the
impact velocity since the square product of this quantity
determines the impact energy. A small error in determining
this velocity, therefore, causes a rather large error in the
kinetic energy at impact.

An attempt, therefore, was made to consider techniques
which would permit a direct measurement of the velocity.
This would have been possible perhaps with microwave radar
techniques using the Doppler principle. However, it was
feared that this would lead to rather complicated electronic
equipment. On the cther hand modern solid state technology
had developed a series of accelerometers using piezo-electric
crystals (which had already found wide application in ordi-
nance and rocket develcopment) which were uniquely suited for
our purposes.

If one attaches an accelerometer (measuring the deceler-
ation as a function of time) to any instrument impacting on a

target, one can apply Newton's law and write:

F(t) = ma(t) (11)
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and the accelercometer signal variation with time corresponds,
except for the mass m, to the variation with time of the
force exerted by the target material on the instrument which,
however,due to a second law by Newtor must be equal to the
force exerted upon the target material. Moreover, since the
final velocity of a missile after impact without rebound is
equal to zero one can obtain from the acceleration-time sig-
nal a(t) not only the velocity v(t) but also the distance
traveled s(t). Because,according to an elementary rule of

differential calculus:

v(t) =./;(t) at + ¢y (12)

and
s(t) =‘j;(t) at + c, (13)
If we designate the instant of initial contact as t = 0,

the velocity at this instant with v(0) and the total period

of the force exch. .ge with T, then according to (12) we may

write:
o
v(0) :J[ a(t) 4t + ¢y = 0 + cy (1ba)
o
T
v(T) = [ a(t) dt + v(0) = 0 (1u4b)
Jo
thus
T
v{0) = -j[ a(t) ét = - A (T) (14c)
o

That is to say the impact velocity can be obtained as the

area under the acceleration-time diagram. Furthermore, we
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observe that for t = 0 the penetration s{0) must be zero,
i.e. c, = 0 and the final penetration s(T) must, hence, be:
T
s(T) = v(t) at (15)
0

Assuming, for the sake of argument, the acceleration-
time signal could be represented by the first half of a sine-

curve, then:

. - . t
a(t) = a, sin 7 % (16)

which would then yield:
T t 2
v(0) = - ap sin 1 =dt = - = a_ T (17)
i o T W

and:

s(T) = - (18)

Once the deceleration-time signal during impact is known
one also knows the‘variation of the force with time. The
impact velocity as well as the final penetration can then be
easily obtained by integration cf the sighal.

The choice of an instrument that gives an electronic sig-
nal corresponding to the deceleration upon impact thus avoids
all those difficulties which stem from the complicated meas-
urement of the impact velocity or its erroneous estimate.

.

It was mainly for this reason that the piezo-electric

accelerometer capsule was chosen. Here we have to mention,
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however, one difficulty that presents itself, namely, that of
the velocity components. A piezo-electric accelerometer, of
course, gives only the acceleration along its piezo-~electric
axis. If, therefore, the instrument impacts with a velocity
component normal to this axis, the deceleration in this direc-
tion does not give any signal. Feor the prototype of a piezo-
electric penetrometer this problem can be easily solved by
using a triple accelerometer with their respective axes
mounted along the axes of a cartesian ccordinate system. The

maximum component can then be found by superposition:

a5 ax =//;3 + a§ + a§ (19)
Since, for our laboratory ~xperiments, acceleroneter
axis and impact velocity component in most cases could easily
be made to coincide we avoided the complication of using three
accelerometers. This was also in the interest of economy
since the instrumentation per channel cost about $4,000-$5,000.
However, for the prototype of an aerial penetrometer a triple
accelerometer or possibly a directional stabilization would be

necessary.

2. Jnstrument Capsule

The instrument was designed as a hollow, circular

chromium steel cylinder of 75 mm diameter having an
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exchangeable tip which was either conical, hemi-spherical or
flat. The accelercmeter is attached by a thread to a small

anvil inside the tip in such a fashion that the axis of the

accelerometer and that of the cylinder coincide. The total

weight was 1.573 kg. In Figs. 12 and i3 a photograph and a

section of the instrument respectively are shown.

A shielided cable transmits the signal through an ampli-
fier system to the screen of the oscillocscope. The hori-
zont:l beam velocity of the oscilloscope could be varied
widely. Thus, the time axis of the signal could be arbi-
trarily extended or compressed which permitted a p:ioper
choice for the best readability of the =ignal.

For the test series used so far the signal was photo-
graphed by a polaroid camera which permitted to make a judg-
ment within a few minutes whether a test had been successful.
Of course, *the signal could have also been stored on a meg-
netic tape which fer a prototype operaticnal penetrometer
appears more suitable and practicable.

The first experiments with this instrumentation were
carried out by Christian Hechtl under supervision of the
author in the summer of 1963. They served above all to con-
firm the applicability of the testing principle, to calibrate
the instrument, to test the equipment and collect first exper-
ience with it in the laboratory and to find the meost important

parameters that determine the target response. Abcve all, we
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wanted to find the most suitable shape for the tip of the
capsule.

The results were reported in detail by Hechtl in his dis-
sertation. They were summarized py the author in November
1963 in Status Report No. 4, Contract No. AT(19)-628-2u27,
submitted to the Terrestrial Science Laboratory, and the ten-
tative conclusions were:

1. The drop penetrometer, in principle, is suitable for

th

({4

determination of soil properties.

2. The magnitude of the maximum deceleration permits
the determination of the strength «{ the scil in the range of
the impact velocities used (up to 15 m/sec).

3. First tentative comparisons between the Hertz and
the Meyer theories of impact showed that the results were
closer to that by Meyer. This comparison was made by Hechtl
using rather severe simplifications.

4. The most important parameter for the laboratory tests
appeared to be the dry density of the soil, a second one the
water content.

5. For clay soils with a higher than Proctor optimum
Wwater content smooth curves resulted with a monotonously
increasing and then decaying signal.

In very dry soils and in sand aand gravel we observed cer-
tain vibrations of very high frequency which correspond to

the eigen values of the vibration of the capsule and are
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superimposed on the target response signal. 1In the normal
case these superimposed high frequency oscillations have no
influence on and do not prevent the evaluation of the response
signal.

Over and above these characteristic frequencies excited
by firm targets there also appear certain softening and
rehardening phases during the impact period, especially in
sands. These should be further investigated.

Later experiences with the drop penetrometer -~ especially
outdoors - led to the conclusion that it will be impossible
to stabilize the penetrometer against any lateral forces cor
movements in such a fashion that the instrument will always
impact vertically and without any horizontal veloecity com~
ponents. To minimize any error due to these influences, we
chose for all future tests the hemi-sphericel tip.

Among the thirty test series reported by Hechtl there
were, howcwrer, oniy fwvuir carried out with hemi-spherical heead,
namely the series No. 12, 15, 19 and 22. The rest had mostly
been carried out with a conical head because it gives a defor-
mation that, as already observed by Ludwik, always maintains
geometric similarity for any penetration depth. This initially
appeared advantagecus for the theoretical evaluation o>f the
results.

The above mentioned experience and the consequent conclu-

sions led to a second test series in which the hemi-spherical
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head was used exclusively. Initially, the penetrometer was

to be tested with various target materials which, in contrast
to most natural soil deposits, had uniform, well defined prop-
erties that were either known or could be easily determined.
For this purpose we chose two greases of varying consistency
and two paraffins of different hardness.

Further tests were then carried out on natural soils.

Before we discuss these tests, however, it will be advan-
tageous to consider theoretically the state of stress and
deformation that occurs in the target material during the
impact process.

We deal here with a typical case of central symmetry for
which the use of a cylindrical coordinate system is most sujt-
able. We will, starting from the theory of elasticity, con-
sider the interplay of forces and the deformation using an
ideal plasticity theory. Finallyv, we will derive relation-
ships for a viscorlastic half-space under the influence of a

dynamic load applied through a spherical surface.
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. . e e e a——
e e Y s ~




—wmen

L
IV. Basic Theoretical Considerations
1. States of Stress and Deformation with Axial Symmetry
In any state of stress or strain being symmetrical
to a rotational axis cne uses, 25 is well-known, the cylindri-
cal coordinates r and z. We follow here essentially & nota-
tion and treatment given by Nadai and consider a volume ele-
ment with the sides rd¢, dr, dz (Fig. 14) and designate the
4
displacement components of the point P in the radial and ver-
tical direction with u and w respectively. The resulting
normal strains canm then be expressed as follows:
. ou - u _ ow
Er“-_x:,et";’ez-“_z (20)
and the shear strain in any vertical plane is given by:
Ju IwW
Yrz = 3z * 37 (21)
The volume change (dialation) is then:
Ju u oW
€ = e, te te, TFIo bty (22)
If we designate the stress components irn the radial, tangen-
tial and axial direction with o0,, ¢, and o0, respectively avd
the corresponding shear stress with 1,, = T the equilibrium
conditions for the volume element of Fig. 14 may be stated
(ignoring body forces):
90 0, - C i
by r 9T
+ LRk N (23a) ’
or r 3z i
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90
z 9T T _
] Sz tarty =0 (23b)

For an elastic material the stresses can be computed from the

strains using Yooke's stress-strain relationships:

o, =26 (%% + I_%EEU) (24a)
6p = 2 6 (3 + 75 (2ub)
o, =26 (3 + e (24c)
to=6 (3R =gy, (2u4d)

where G is the shear modulus and v is Poisson's ratic. If we
introduce the stress-strain relations of equations (24) into

the equilibrium conditions (equations 23), we get:

de

: (1 - 2v)(au - %) + 28 = ¢ (25a)
r2 ar
and
(1 2v) A CLA 0
- 2v Wt 3= (25b)
2 2
9 9 3
where A = = +

. ap2 | Tor + 322 is the Laplace cperator. Accord-

ingly the volume change

= L1-2v . 1-2v
€ = 3(1+9)8 (Cp * Op + 0,) = TF— (0, + ¢, + 0,) (26)
. must Automatically satisfy the Laplace equation
2 2
pAe = 3£ 4 2 37 . (27)
. 9r2 riér 22
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By using the relationship (27), the equations (25) can be
:ransformed into the differential equations of the displace-

ment components u and w:

- L -8y =
(A 1ﬂ?_)(zs u- =) =0 (28)

*

AAw=0 (29)

Let us consider now the problem of an elastic half-space
2z 2 0 which has on its surface z = 0 a given distribution of
the normal and shear stresses or of the deformation components
u and w. We restrict our considerations to the case of sym-~
metry with respect to a vertical axis. A problem of this type
can be solved by various methods especially by using potential
theory. General solutions are given, e.g., by Riemann-Weber
(19i0). However, we consider here only some partial integrals
of aquations (28) and (29) which can be used to express arbi-
trary functions of r, either as infinite series or as definite
integrals. These functions can be made to satisfy the pre-

scribed boundary cond.i.xons on the surface of the half-space

z 0 as it is often done analogously with trigonometric ser-
ies or Fourier integrals.
A double pair for each partial integral of (28) and (29)

for u and w respectively would be:

e**? 3, (ar) (30)

(14
i+
R
N
(]
[N
~
3
=
~
-
o4
N
[

Uq

z e*B% g, (8r) (31)

< e Jo(Br), u, =

Yq

LEATILT e LTt o Mo, T o et _ [P
e e e
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where Jo(Br) and Jl(ar) are Bessel functions of the first
kind and of order zero and one respectively for a real vari-
able, o and B being real constants. These functions Jo(x)
and J,(x) as is well-known are the solutions of the differ-
ential equation.

NETES AU A S SO, (32)
dx2 dx X y
for n = 0 and n = 1 respectively which are regular at the

origin x = 0.
They may also be expressed as infinite series which are

convergent for any value of x:

(x/2)2 . /2t ),

J (x) = 1 e e e .
° (1 )2 (2 12 (3 1)?
3 5 7
X (x/2) (x/2)°  (x/2)
Iy =5 - ST Y o TR

for very large values of x, i.e. for x » «, these series con-

verge assymptotically to:

_ . n
Jo(x) = |7 sin (x + E) (33)
- 2 . r
Ji(X) = [ 7% sin (x - ) (34)

whereby the following rules of integration and differentia-

tion apply:
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S AL I
dx 1 "o x °
IJidx = - JO 3
foodx‘xJi ;
’co o
JJo(x) dx=JJ1(x) dx = 1
D}’l-J(x) dx = 1
x 1
2. Surface Stresses on the Elastic ilalf-Snace
We consider the half-space z » 0 n1aving stresses
g, = p(r) applied on its surface z = 0 which are symmetrical

z
with respect to the vertical axis » = n with the shear
stresses at z = 0 being zero.

This includes also the case where the normal pressures
p(r) act within the circle r ¢ a and vanish or r > a.

For such a case the stress components Ops Ops O, and Tt
must all decay to zero for large values of z. Therefore, the
values in the vicinity of the loaded circle wculd be of main
interest.

We introduce the displacement components c¢f the half-

space:

u = (A + Baz) e %2

Jl(ar) (36a)

yﬂ-—- e §
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w = (C + Daz) e %% J_(ar) (36b)

where the values A-D are constants of integration and u and w
are solutions for (28) and (29) respectively. The constants
A-D are, however, not independent of each other but must be
chosen in such a way that the conditions (25) are satisfied

simultanecusly. Besides these conditions the shear stresses

on the surface must also vanish which means that for z = (
L (37)
z r

If we carry out the differentiation of the displacements (36)

according to (37) we obtain
C=-A+3B (38)

If we further carry out the operations with u and w

which are required by equations (25) we obtain

- - _ A .

B = D A (39a)
_ 2(1 - v)

C=-"73-2v A (39b)

This means that except for the constant A all other constants
are determined and the displacement components (36) can be

given as:

e
"

A (1 - 2v - az) e %% Jl(ur) (40a)

-A 2(1 - v) + az e %%

%
]

Jo(cr) (40db)
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)) The constant A must now be found by a second boundary condi-
tion, namely either by prescribing the distribution of the
normal stresses or that of the displacements u and w at the
surface. Let us assume that A is a function of a parameter
a: A (a). 1f we multiply the right-hand side of equations
(40) by da and integrate from a = 0 to ¢ = ® we can express

the displacements by the definite integrals:

, u = Jm ACa) (1 - 2v - az) e %% Jl(ar) da (41a)
5
) _ = : . ~az
w = ACa) [2(1 - v) + az] e J lar) da (41b)
) which yields the displacements at the surface z = C:
- -]
u = (1 - 2v)J( ACa) Jl(ar) da (42a)
(o]
(-]
w = -2(1 - v)J[ A(Ca) Jo(ar) da (u42b)
a) o
. By using the expressions (41) we can again compute the
b)
volume change:
S _ du u oW _ P -QZ .
€ = -5? E ; + -—-z— = 2(1"2\)) A A\G) e Jo(ar)adu (430)
which for z = 0 yields:
[cn
a) e = 2(1 - 2v)bl A{a) Jo(ar)uda (u3b)
o
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To evaluate A{a) we consider the case where the normal stresses
0, are a prescribed function of r and apply the boundary con-
ditions for z = 0.

According to Hooke's law:

ow VE
= 2 ——— e o 4
9, = 26 Gzt ) (28e)
we get:
62 = - p = f(r) - QGf A{ca) JO(GI‘)GdG (uy)
o

A comparison of (43b) and (u4u4) shows that:

1 - 2v
2T e e us
€ P ( )

This means *hat the volume change is directly proportional to
the pressure p. According to the theory of r ssel functions
an arbitrary function f(r) may be expressed as a Fourier

integral:
-3 [ -3
f(r) =Jf Jo(ar)udaJ( £(X) J (ad)Adr (ug)
o o
By comparing equations (44) and (u46) we see that the function
A(a) is determined by the definite integral:

A(a) = -~ 5%J[ p(A) Jo(al)kdk (u47)
)

accordingly the displacements u and w of the surface of the

half-space are given by:
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L
H ooy 7 Gna [ e g ten)as (48)
u = 2G p 1 )
(o o
- -] -}
-1 - [
LA p(A)Ada J (ar) J,(ar)da (49)
Jo o
The interior integral of (48) is nothing but a discontinuity
function of the variable A which may be omitted if we replace
the upper limit of «» by r and hence we get:
r .
- _ 1 -2y ‘
u s - e r/ p(A)Adx (50)
o
Because:
g (ar) Jg(ad) = L for A, T (51)
=0 forr 4, A [ =

We introduce an average pressure p of the pressure pf{r) within

the circle of variable radius (o , r ;, =)

- _ 2fF
P = —§]r p(A)ada (52)
r Jo
The displacements of the surface z = 0 becomes:
i - 2v _ .
u = - 3% PP (53)

The displacements w, however, cannot be determined so easily.

At the origin r = z = 0 we get, according to (u49):

FIER - |
W, = TG J{ p() AdAJ[ J(ad) da (54) I

(o]
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But from:

we get:

[

Jo(ak) da =

(55)

Thus, on the surface the diasplacements u and the volume change

are known.

surface stresses and get:

which are valid for every point of the surface.

origin z

displacements of two elastic sphercs which are pressed

=r

The

= - p(r)
1 , _
= - p(r) + > (1 - 2v) P
= - 2 vp(r) - % (1 - 2v) F

C we get:

- p(o)

= @ = - 31+ 2v) p(o)

Stress Distributégn after Hertz

Hertz investigated the uistribution of

According to (24) we may, therefore, compute the

(56a)

(56b)

(56¢c)

{(s64)

(56e)

stresses and

togather by a force P whose line of action intersects the
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centers of both spheres. 1If the radius Ry, of the second
sphere approaches very large values, we get the problem of
a sphere pressed upon the halif-space. The pressure con the
surface is then given by:

06, = =P = - Py /1 - (r/a)? (57)
That is to say within the circle of contact with radius a,
the pressure is given by (57) for all values of r > a the
pressure on the surface varishes. If we would plot these
pressures as ordinates above the corresponding radii, we
would get an ellipsoid of revolution. The resultant force
P which is equal to the volume of this ellipsoid would be:
= 27 2
P-Tpoa (58)
According tc (52) the average pressure is:
2 [T
§=—[prdr (59)
on
hence:
2p°a2 r2 3/2
P = >t - (2 - —5) for o ¢ r ¢ a (60)
3r a
|
- 2Poa2 -
P = > for r > a (61)
3r

The vertical displacements according to Tdeppi (1920) will be:

(a - X (62)
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The highest indentation occurs at the central axis r = 0:
] 1-v3Pp
= = o 53
Vo 3 5 3 (63)
and at the edge wh = a: =
nd a e edge where r = a: w; = 7 w,
The radius of the circle of contact is given by:
$vw1/3
.03 1 - v

The direct application of these results is not possible
because practically in all experiments with the penetrometer
the elastic limit 1is exceeded. However, as will .oe shown
later, the Hertz solutions can be used when applying the
elastic-viscoelastic analogy and it is for this reason that

the elastic solutions are discussed in such detail.

4. Stresses and Deformation with Axial Svmmetry in the

Piastic Range

As already indicated, the main part of the deforma-
tion of the so0il surface during the penetrometer test takes
place in the plastic range. Therefore, an investigation of
the defofmations due to a sphere penetrating into a plastic
body is necessary.

The plane strain problem of a plastic deformation of a

half-space by a punch was investigated by Prandtl (1821) and




uy

Hencky (1923). Hencky also considered an approximate solu-
tion for the penetration problem with a symmetrical axis and
noted that the radii of the slip lines varied only by 12.5%
from those for the problem of plane strain.

In his considerations Hencky used the assumpticn of
Karman-Kaar, namely, that in the plastic range two of the
three principal stresses are equal and that the third prin-
cipal stress is different from the two first ones by the
moment 2k. That is to say, it ditfers by an amount corre-
sponicing to the yi2ld stress. He thus used a statically

determined system of stress as follows:

o4 = 2k + 0, = 2k + 04

Prandtl gives an ultimate beari- = pressure of Pg =
2k(1 +9) whici. for the half space with 8 = 7n/2 gives Py 7
2k x 2.57. The considerations of Hencky yield a variable
pressure (see Fig. 15) with a wvalue of 2k x 3.33 in the
center and 2k x 2.52 at the edge of the punch. The average
pressure is 2k x 2,83,

Because the investigations by Prandtl and Hencky were
made for é rectangular punch, one might assume that for a
sphericai penetrometer they are not applicable. However, if
we compare Figures 16a and 16b which show the slip 1i . pat-
terns for a rectangular and for a spherical punch respec-

tively, we recognize that this assumption is not justified.
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It happens that in both cases a conical wedge directly
belcw the punch is forced into the material and the angle at
the apex of this cone must be 90° in both cases. This wedge
of material is practically in a hydros:tatic state of stress
and may be considered as being part of the penetrometer thus
making the actual body penetrating into the material identi-
cal. The only difference is that for the cylindrical punch
the loaded surface remains constant while for the spherical
indenter the loaded surface increases with increasing pene-
tration. Iterson (1947) analyzed the spherical indenter for
the hardness test in detail. Using the same assumptions as
Prandtl he came to the result that the ultimate bearing pres-
sure for a spherical penetrometer is also Ps = 2k x 2.57 as
found by Prand{l for the cylindrical punch. Iterson also car-
ried out experiments to check Hencky's observation that the
radii of the slip lines for the three-dimensional problem
differ only by 12.5% from those of the plane problem (see
Fig. 15). He found that the plastified zone D at the surfacse
of the material (Fig. i7) in the plane strain problem was
equal to three punch di;meters: D = 3d. For the three-
dimensional problem he found, from sevevral series of tests
with different loads, different sphere diameters and penetra-
tion, an average D/d = 2.76,

An exact, theoretical analysis using the hypothesis of

Karman-Haar was carried out by Ishlinskyv (jiduu4). He utilized
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some mathematical results obtained earlier by Sokolowsky
which differs from that shown in Fig. 15 c¢nly by the fact
that the straight lines have a very small curvature. More-
over, Ishlinsky comes to the same result, namely, *that the
yield stress is approximately 0.34 to (.36 times the average
pressure. This observation agrees also with the statement
of Hencky who gives the yield stress as 0.35 Pay®

The solutions by Hencky and Ishlinsky have been criti-
cized by Symonds (1948) who claims that the hypothesis of the
two principal stresses being equal have nelther a physical
nor a mathematical justification. This may be formally cor-
rect, however the application of the Mises yield criterion
carried out by Symonds shows that real solutions exist only
in a few special cases and for the problem of plane strain
the solution is identical with that of Prandtl-Hencky.

In summary we may state that according to the theory of
plasticity, a relationship can be established between the
statical hardness test value and the yield stress or the
shearing strength of a material. Hence, a spherical pene-
trometer can be used, in principle, to evaluate the strength
of a material. Accordingly, a nuaber of authors have inves-
tigated the relationship betwes«n Brinnel hardness and the
yield stress or tensile strength. For example, Foster (1936)
gives the empirical relationship between tensile strength o,

and Brinnel hardness HB for non-ferrous metals as:
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O, = = - 1 (in tons per square inch)

For steel and steel alloys the same authur gives the yield

stress as:

Uy = 021 to 0.23 HB

The value 0.22 Hg is also cited by Hercky as the one
found from experiments that correlates yield stress and
Brinnel hardness. The discrepancy from the theoretical
value (0.35 Hp) is explained by Hencky as follows: "Accord-
ing to the Brirnel "“ardness test, the yield stress wou be
0.22 times the average bearing pressure. According to our
calculations it should be 0.35 times the average pressure.
However, we can hope to find agreement with the Brinnel test
onily if we assume the penetrated surface of radius AO ...
exactly as it results after plastic equilibrium cbtains. We,
therefore, have to solve first for different penetraticms of
the sphere, the equations (14a) and (14b) as well as equa-
tion (12). Only then a comparison with the experimental
results will be possible.

"If we assume the penetrating punch is bounded by a
conical surface, we see from eguation (15) that the pressure
below the tip increases logarithmically toward infinity.

Furthermore, we note that from the sector OBC the part from

o o

$ = - 457 to ¢ = 0 is vanishing more and more whereby the
integral jp%é changes its sign and yields a positive contri-~

bution to the exterior (negative) compressive stress.




"The relationship betweean yield stress and average bear-
ing pressure (based on the projected surface), therefore,
cannot be constant but depends on the penetration and the
shape of the penetrating body. According to equations (12}
and (14) one could, at least approximately, determine the
relationship bestween yield stress and average bearing pres-
sure for any penetration and any penetrometer shape and would
then have to compare this with the experimental results. By
such a comparison cone shculd also be able to determine the
influence of strain hardening which at present cannot be
taken intc account theoretically...."

How far these statements suffice to explain the rather
considerable discrepancy between theory and experiment we
may leave open at this time. It is obvious, hcwever, that
if a significant strain hardening of the material takes place
during the plastic peretration, the resulting hardness number
Hp or, according to Hencky, the average bearing pressure pay
will be larger than it would be without strain hardering.

o
This means that the value —L wiil become bigger if no strain

H

B
hardening occurs and may well apprcach the theoretical value.
Experiments with materials that clcsely approximate tihe

stress~strain relationship of an ideal plastic body could

clarify this point.
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V. Dynamics of Load Application for the Drop-Impact

Penetrometer

All considerations so far were made for static or quasi-
static loads. '{owever, the drop penetrometer has a basically
different load application because the exchange of energy
between the penetrometer and the target material takes place
during a very short time interval. The loads are therefore
applied very rapidly and decay in the same fashion, i.e. we

deal here with a dynamic, impact type of load.

1. 8tereo-Mechanical Impact

The classical theory of impact is principally based
on the conservation of momentum theorem for rigid bedy and
leads to a simple mathematical formulation. The application
of this theorem, however, does not permit the determination
of any stresses of forces during the impact process. One can
merely determine the initial and final velocity components
and compare them with the applied linear or angular momentum.
Also, the classical theory is unable to describe any local
deformations at the point of impact and, moreover, assumes
the part of the kinetic energy that is transformed into vibra-
tions to be negligible. This assumption is said to be valid

for the impact of two spheres (Raleigh, 1906) or for that of

a sphere with a huge rigid mass (Hunter, 1957). For an
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ideally elastic impact a second condition can be found by
using the conservation of energy theorem which permits the
determination of the final velocities.

If the impact is not completely elastic and‘permanent .
deformations do occur, oune introduces a coefficient of resti-

"e." This coefficient describes the degree of energy

tution
exchange such that for e = 1.0 the impact is ideal elastic,
for e = 0 it is fully plastic. The value e may also be found

as the ratio of the velocity components normal to the contact

surface before and after impact:

Frictional forces that may appear on the contact surface
can be taken intg consideration by a dynamic friction factor
f. This factof/is usually assumed purely on an empirical
basis. v

Let us consider a mass point of mass m moving with the

velocity V alceng a path that may be described by the radius

Y. The equation of the motion can then be written as:
n¥r=nv="% (65)

where P is the force causing a change in veilocity. After
integrating once with respect to time for the time interval
T we get:

(66)

"
o

T—
m("'r'-V)=(Pdt
Jo

o]
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where the product mV is the mcmentum. The time integral of
the forceva?Ht = Q is called the impulse. A rfurther inte-
gration yi:lds:

T —
n(%F - F, - V1) =/ Qdt = Gr (67)
o

where G is the mean value of the integral Qdt. Equation (66)

is the impulse-momentum theorem. If we determine the scalar
i -

product of F(V + vo) with both sides of eguation (66) we ge<:

v+ v
— — —-— (o]
m (v2 - vo2) = Q —

Nl

(68)

This means that the change in kinetic energy is equal to the
scalar product between the impulse and the average velocity
befecre and after the impact.

If we multiply equation (66) scalarly with V and note

that:

—_— —_ j —_ 1 = — .2

VT - ) =3 (72 - ¥ .2) + 5 (¥ -7 (69a)
it follows that:

1 - N 1 _ _ 2 —_—

7 m (vo2 - v2) =5m (V- vy) - Qv (69b)

For a rigid body the last term of equation (869b) is usually

zero if there is no friction and no external forces, i.e.:

n (¥ - vo)"’ (70)

Nt

1 —
5 m (vo

This is the well-known theorem of Carnot.
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1
}

If we designate vV, and V;

the velocity of the particle mj
before and after impact respectively then the principal equa-
tions of the classical theory of impact for perfectly elastic

conditions are:

— t
Zmi"i = Z my ¥y (71a)

and
PANCAT IR R WEAZD (71b)

Equation (71a) postu.ates the conservation of momentum and
(71b) that of the moment of momentum. Hence, for the normal

impact of two bodies the following equations apply:
' '
m1v1 + m2v2 = m1v1 + m2V2 (710)
! '
m(vy)? + mp(vy)? = myvy® 4+ mymy? (714)

The terminal velocities may thus be determined from:

t 2m2 ' 2m1 i
vy T vy - EI:E; (vl-v2); Vo T Vg ET;;; (vq-vy) (7ie)

while the magnitude of the force at impact according to (866)

will be:
N t 2m1m2
P = m(vy-vy) = = my(vy-vy) = - E;?E; (vy-v3)
) 2mqms . '
T omytny (Vi‘vz) (71F)
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2. Ideally Elastic Impact (Hertz Theory)

The consideration of tfhe contact stresses between

two elastic spheres were extended by Hertz also to the case
of a dynamic load. He made the assumption that all the
energy during impact is being exchanged twice, i.e., that
+he energy which is transformed into vibrations of the impact-
ing bodies may be neglected.

For the impact of an elastic sphere impinging vertically
on an elastic half-space we combine equations (58) and (64)
and instead of the radius of the contact circle we intrecduce
the approach of the two masses x. Then the load deformation

relationship yields:
P =k, a”’* (72)

where o is the sum of the elastic deformaticn of the surface
of the half-space w, and the shortening of the sphere radius
%Wy and k, exprcsses the elastic properties of the sphere and

the half-space. Thus:
a = w, + W, (73)

If, instead of the half-space, we first consider the
impact of two spheres with the radii R; and R, and the masses
my and m, respectively then the equation of motion can be

written as follods:

mymy ..

P = - mlz;l = - m2;;2 (7'4)

W1¥2
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From (66) follows that:
a = Wyt oW, (75)
r =0
X =0

By combining equations {(72) and (74) and integrating using
the initial conditions &(0) = v(0); a(0) = 0 where v(0) 1is
the relative impact velocity at the beginning of contact,
i.e., the sum of the velocities of the two spheres: v(0) =

vl(o) + v2(0), one obtains:

a = - E;E;_ k, @ = kqkoy @ (76)
and

1 . : 2 5/2

o [a2 - v(0)2] = - ¥ kqkg aJ/ (77)
The maximum approach occurs when a= 0. consequently:

2/5

. - mi] (78)

The apprcach « at any time t is given by:
(79)

a
da
t = 5 m
\L- v{0) —§k1k2 ad/2

Since the deformation process is assumed to be perfectly

reversible the maximum approach occurs exactly at the mid-
point of the contact period. This contact period may be
found by integrating equation (77). For this purpose we

e - [ L d u -
introduce a dimensionless variable 2 = o and obtain:

m
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f . 1/2q m da
T = 2 dt = 2 -'-/:.—-f 24-':—': T
572
3 o o v(0)“ - 3 kiky a
§ . (80)
: (it a3
f v(0) A f1 - 7572
.. The solution of the integral yields:
2
() o a
; 4 5
' T = ¢ /7~ ~— = 2.943 Trpy
' — o
$ F(1O) v(o)
i (81)
‘ 2/5
2.943 5
v(o)1/5 4 k1k2
é
. where T is the gamma function.
Hunter (1957) gives a simplified approximation for the
relation expressed in equation (79) as:
@ = a sin 1,058 v(o)t (82)
o
m
Thereby the furce P becomes a function varying with time
according to a sine-curve:
i P = 1.140 v(o)2 . 1.068 v(o)t < < TQm
- kqap sin on > 0 t 1.068 v(o)
. ““m
P=203 > 7568 vio) (83)

If Wwe let the radius of the second sphere R2 become
infinitely large, we have the impact of a sphere on a half-

pace instead of the impact 5f two spheres.

=
-
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The equations (73] through (83) do not change except

that the impact parameters ki, ko, a, a4, un, and T are

simplified considerably.

A tabulation of these parameters

for the two cases in question yields the following values

(Goldsmith,

1960).

Table 2

Elastic Parameters for the Hertz Impact Theory

impact
param-
eter

centric impact of two elastic
spheres with radii R4 and Ry

normal impact of an
elastic sphere with
radius R, on the elas-
tic half-space

m1 + m2
4 ( 1 ) R1Ro

3 \3,+8,/ R +7,

R4R

3n ™MR2
31 L2 (5448, P

5 R +R,

2 RitRy 34
2 §I§;— = K; (51+52)P

[15ﬂv(0) {61+62)m1m2 R4+R9
L 16(mq+my) RqR,

/

. 2/5 3

J{84+62)mymy / R1%R2

L4.53 *;—_R—-?-
m1+m2 V\O) 189

1/5

1/5

1.3 .
L i o
31 §4+8, R
37
1; R1 (51+52) P
2
a”™ _ 37
ﬁ; T (61+52)P
2 2/5
157v(o0) “{84+82)my
16 ¢R1
ag
u (61+62)m1]
VRiv(o)
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The values 61 and 8, designate the elastic constants for
the spheres 1 and 2 respectively for the Hertz impact problem
and are determined by:

2

§ = E._ET:.__"_ (8u4)

where E = Yoo 2's modulus, v = Poisson's ratio.

As statedi initially these relationships are valid if the
vibration energy is negligible. According to Hunter (1957)
the ratio of vibrational energy Ev to total energy Eo for the
impact of a sphere on the half-space accordiag tc (83) is

given by:

1/5
Ey _ 2.7 fsv(o)s] (85)
E 3 | b=

o ge flg
where g is the gravitational acceleration and ¢ the velocity
of sound in the half-space. The vibrational energy, hence,

is very small as long as the impactv velccity is smaller than
c.

The second basic assumption for the Hertz impact problem,
namely complete elasticity and reversibility of the deforma-
tion, is much farther off the mark. If we compute e.g. the
resulting impact force according to (72) with the correspond-
ing values of Table 2, we get:

P y 4
- 1 2 (88)

2 ? .
ma 37 61 T 62 Rl

which according to (78) gives the maximum value of the result-

ing stresses:
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P 1/5
max 1 « y—3 -1 2
p = = (6 _+35,) R [307(6,4+65)m,v(0Y" ]
m 1[a2 3."2 1 °2 1 177277
(87)

If we let a sphere drop on the half-space and introduce :
e.g. the values of a steel sphere of 10 mm diameter and com-
pute the height of drop which is possible without the yield
stres; being exceeded in the half-space material, we get the

following vaines:

Table 3

Critical Drop Height for Elastic Impact

Brinell critical height
half-space material hardness Hp plastic deformation (mm)
soft copper 55 0.0033
A-7 carbon steel 125 0.182
high strength steel alloy 320 3.5

It is thus obvious that for most practical cases the ass»mp-
tion of complete elasticity and reversibility of the deforma-

tions is far from realistic.

3. Impact on the Plastic Half-Space

Because of the limited applicability of the Hertz

theory and equation (72) an attempt was made to formulate
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_ relationships that would held in the plastic range. Asg in
the case of the Hertz theory we begin again with the statie

% lcad-deformation relationship and return to the results

% obtained by Meyer who found empirically:

L

| P=zka (3a)

where a is again the radius of the permanent crater and k as
well as T are constants of the half-space material which,
however, as we remember, are also dependent upon the radius

Ry of the impacting sphere. If the crater is sufficiently
shallow, i.e., for penetration depths a < R/2, we may replace
the crater radius by the crater depth according to the approx-
imation (see Fig. 3b):

a2 = 2Ra (88)

. Then equation (3b) ma; be rewritten:
P = kol (89)

. where k and n are ncw different juantities. Equation (89) is
valid until the process of restitution starts. The latter is
assumed to be elastic and the relationship . tween the force

and the deformation dvring this restitution process is given

by
- a« - a, 1°
P =P - 3 O >
) m o, - ap) P OmZ %3 an (90)
wkere a, is the permanent crater depth and a, the maximum
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penetration. If the restitution is assumed to proceed accord-
ing to Hertz, the exponent s assumes the value 3/2.

Equation (89) may be assumed exact if the elastic defor-
mation is negligible and if, moreover, the plastic flow pres-
sure p, is acting uniformiy over the entire contact surface
and remains constant throughout the penetration process (no

strain hardening occurs). For this case

k =27 Rp, and n = 1.0 (91)

This means the %oad-deformation relation corresponds to
that predicted Lty th; theory of plasticity. In the general
case, however, these idealiizations are not satisfied because
of strain hardening, the flow of the displaced material dur-
ing the impact process and, finally, because of the particular
stress-strain relations that obtain for the high strain vel-
ocities during impact. For these reasons the wvalues k and n
of equation (89) will in general also depend on the penetra-
tion velocity a.

For the plestic penetration of a rigid sphere with radius

R into a soft target material as shown in Fig. 3b, one can

establish thke following simple relationship:

2
= 2 - S« -
P =1mp,ac=2nmp,Ras= m 3;5 (382a)
or:
" 21R
a4 2P L (92b)
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The solution of this simple differential equation with
the assumption that the flow pressure p, is constant and

independent of a yields:

———— ?
: . 21Rp,
a = v(o) TTRpg sin —— t (92¢)

The maximum crater depth occurs at the end of the impact

period, namely when:

27Rp,

a = * v(o) cos t =0 (933)

m

for:

e
.
(4]
.

27Rp,
m

= T, . X m
=z T=3 (93b)
Thus the maximum crater depth becomes:

_ m
Qmax ~ V(O)/ 27Rp, (9t)

Introducing (94) into (93b) yields:

am _ 1 ._7 :'n'l
v(o) ~ 27 ¥(o)

L
T = Py (95)

As a comparison the Hertz theory gives a contact period of:

T 43 (81
= 2, e 1
2.9 1) (81)

and a maximum approach of:

5v( 2 2/5
2 | 3y(o)”
®max ~ k4 kg (78)
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The formulations of equations (92) to (95) assume that
the dynamic flow pressure Po is a constant. They are there-
fore subject to the same reservations that were made already

earlier.

4. Elastic-Plastic Impact

Tabor (1951) considered the impact of & rigid sphere
on an elastic-plastic half-space. Assuming that the sphere
of mass m falls through a height hqy onto the half-;pace and,
after impact, rebounds to the height h,y leaving a perménent
crater with radius a, one can calculate the total energy as
Eq4 = mghy and the energy of restitution E, = mgh, . If one
assumes, as before, the vibration energy to be negligible,

the energy used to form the crater Ej must be:
E3 = E1_ - E2 = mg (hi - h2) (96)
But the energy of restitution can be computed also from the

theory of elasticity because it describes a purely elastic

process and one may write:

)
2
I n

E, = mgh2 = 75 k;'n (61 + 62) (97)

The volume of the crater, in first approximation, is given by:

' ra’

V = s (98)
4Ry
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i

4

i . R, is here the radius of curvature of the permanent crater

5 which because of restitution is larger than the sphere radius
’é Fy. 1If the flow pressure is again assumed constant the energy
i £3 is given by:

rat
Ey =po V=0p 7K, "8 (hq - ho) (99)

Expressing R, as a functinn of Ry by using the Hertz relatiomns

. one gets:

L1 _3 En (8, + §3) (100)
Ry, Ry 4 3
which gives:
u 2~ p2
E, = pg —— - <> 25 (5, + 5.) (101a)
37 Po 4R, 16 a 1 2

The first term is simply p,V5 where Vg is the apparent volume
. of the crater which would result if the crater had the same

radius Ry as the sphere. The second term is nothing else but

% E9 as a comparison with (97) reveals at once. Therefore:
E. = p V. ~ 3 (101b)
3 Pola g8 2

from which one gets for the flow pressure:

mg (hy=3 hy)

S Po < v (102)
T s
i
" It is okvious that for small values of h2
) mghy
- Po = =% (103)

oy s
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This result was already observed experimentally by Markel
(1895).

For the derivation of equations (96) through (193) again
a constant flow pressure was assumed. For the case of a vari-
able flow pressure one can again return to the relation

obtained by Meyer:

P n-2
P = EE = K d (6a)

where n is a value between 2.2 and 2.5. Then the energy of

plastic deformation would be:

——-5—5- pV (104)

By = n +

where now p is the average flow pressure at the end of the

deformation process.

p = : mg (105)

This formula yields values about 10 to 12% larger than those

computed from equation (102).
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VI. 1Imyact of a Sphere ovn a Viscoelastic Half-Space

1. Principles of Rheology

The theory of elasticity and that of plasticity
determine the solution of problems of stress or defcrmation
by assuming idealized stress-strain laws. However, most
engineering materials fecllow these laws only approximately.
Moreover, these solutions have an additional deficiency,
namely they completely ignore an additional dimension - time.

These theories assume that upon lcad application a state
of strain is attained instantareously and, thereafter, with-
out a change of the load no change of stress or strain can
take place. Unfortunately, real materials do not behave that
way. Time-dependent deformation {(creep) and, often combined
with it, changes in stress (relaxation) dc take place and
these occur in every material under any state of stress. In
some cases, fortunately, stress relaxatioen and creep are
negligible (as for example, for steel at normal loads and
temperatures). For softer materials as e.g. asphalt, plastics
and especially for coils these time-dependent deformations
however make up the major portion of the total deformation.
For this reason a cocnsideration of these time-dependent prc-
cesses becomes necsessary.

The relatively young branch of mechanics that deals with

the time-dependent deformation of solid bodies is rheology.
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As the theory of elasticity rheology formulates idealized
stress-strain-time laws. With these idealized laws of mater-
ial behavior solutions for a given problem are found which
now are time-dependent.

To visualize the conditions prevailing one often works
with rheological models which are built in such a way that
the equatiouns describing their deformations have the same
mathematical structure as the stress-stra.n-time laws of the
material under consideration. As building blocks for these

models the following elements are used:

element symbol deformation equation description
Hooke G 134 = € Yﬁj elastic body
Newton v T35 =7 ?i] viscous fluid
St. Venant ’ij =03 135 <k rigid plastic
(Tij"k) = ﬂ Yij Tij > k bOdy

Combination of the Hooke and Newton elements in parallel

yields the Kelvin model with the deformation equation:

Tij = Gtij + ﬂ\ﬁ i3 (1086)

combination in series on the other hand yields rhe Maxwell

model with the deformation equation:

e
+ 1/G Ty (107)

?.:1/111

ij ij

3
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By combining Kelvin or Maxwzll models in parallel or in series
very complicated material behavior can be described (see Fig.
18). The corresponding deformation equations can be fcund by
the proper combination of equations (106) and (107). 1In

general form the deformation equation of these various models

can he given as:

4o} n-1
d d d
(pp —— *+ Ppoq —— t - - - - - -+ py =t py) TF=
n dtn n-1 d,tn“l dt
n+i n
(qp4y =——— *+ ¢ < R s q 4 4 Qo)
a¢nt+l Dogen bat (108a)
or
R(t) = S(Y) (108b)

where R and S are polynomials of the operator d4d/dt with con-
stant coefficients. As can be seen, derivatives with respect
to time appear in the deformation law which means that in the
solution of a problem partial derivatives with respect to the
time as well as with respect tc the coordinates x, y, z will
appear.

For certain special problems, namely if the time-
dependence is lirnear, the problems may be solved by intro-
ducing a Laplace cr Fourier transformation. By this method
the problem is "translated" into a simpler problem in the

Laplace or Fourier domain which is now time-independent. The

solution is then carried out ir this domain and is generally
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much simpler but the results later have to be translaied back
into the real domain and in this translation the time-
dependence reappears. This method is used frequently for the
simplification of complex mathematical problems (Doetsch,
1937) and was applied by Lee (1955) to the determination of
the stresses and deformations of viscoelastic bodies.

In doing this Lee founu that the viscoelastic problem in
the real domain always was reduced to the purely elastic prob-
lem in the Laplacet domain. This means that problems solvad by
the theory of elasticity can be retranslated into viscoelastic
problems provided the method of Lee is applicable in principle.
This raquires that the stress-strain law be linear and permit
superposiiion as follows:

If the stress o4(t) yields the strain e4(t) and o,(t) the
strain e,(t) respectively, then the stress~-strain law is =aid
to be linear if and only if upon application of o,(t) + o,(t)
the strain at any time will be eg4(t) + eo{t).

As in the case of the linearity postulated by Hooke's
law in the theory cof elasticity real materials will probably
satisfy this iinearity condition only approximately. Never-
theless, the elastic-viscoelastic analogy has been fovund to be

a versatile and powerful tool in recent yecars for the solution

of viscoelastic problems.
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2, Soluticns by the Elastic-Viscoelastic Analogy
In 1957 Lee himself applied his method to the con-
tact problem of Hertz and found for the contact stresses of
a sphere on a half-space suvbject to a sudden force Q accord-
ing tec (108a):
R [p(r,t)] = 2= 5 [Va? - »?] (109a)
4
and
8 3
R [p(t)] = Eﬁ; S(a”) (109b)
As one can see, the operators R and S act on the load a3nd on
the deformation respectively. For a body behaving like a
Maxwa2ll model equation {(108a) yields:
- I
R =D, t+ Py 3 3 S = 3% (110)
A comparison with (107) shows that p, = % and py = G.
for a suddenly applied load Q which thereafter remains
censtant, equations (105) yield:
3 _ 3
a” = g RyQ (py + p, t) (111)

The sclution follows after the transiation back into the

real domain which is very simple in this case:

. VO
p(r,t) = va? -6t T)/aQ-r2
ﬂRiG

(112)
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The resulting stress distribution is compared with that of
Hertz in Fig. 19.
For the half-space behaving like a Kelwin model the

relationship was found in a similar manner and gave:

R4Q - =1
<. {1 -e T 3 (113)

o
1
ol

The solutions just found still have some important deficiencies
which do not permit their applicaticn to the drop penetrometer
problem. TFirst, the Maxwell or Kelvin models are still too
simple to describe a somewhat complex material behavior and,
secondly, Lee assumed for his solution that the load Q was
applied according to a unit step function and remained con-
stant thereafter. Both these conditions are different in the
drop penetrometer experiment, although one might consider the
results (112) and (113) as rather elementary and rough approx-
imations.

Below we will derive a solution for a more complete rheo-
logical model for the half-space and for a force that increases

and decays monotonousiy with time, i.e. one that varies as a

sine curve according to equation (83).
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3. Impact of a Sphere on the Four-l'arameter Half-Space

Inspection of equations (106) and (107) shows at

o, e

once that for a constant load on a Maxwell model, e.g. the

AR

deformations increase linearly with time without any limit.
Upon unlicading there is an immediate elastic rebound which
corresponds to the instantaneous deformation exhibited when
the load was first applied. The Kelvin model con the other
hand does not have any permanent deformation upon unloading
and merely exhibits delayed elasticity. The Kelwvin body
requires, however, a certain time until all the deformations
are recovered.

Since the mathematical difficulties increase very
rapidly with an increasing number of model elements - as we
shall see shortly - it is advantageous to choose the simplest
model that still is able to represent the material behavior
adequately and with sufficient accuracy. The simplest model
that satisfactorily expresses the mechanical behavior of a
soil is the four-parameter model (Fig. 20). It may be con-
sidered as a combination of a Maxwell and a Kelvin model in
series or a model according to Fig. 18c with Kelvin elements
in series and n = 3 where the first and last element are
degenerated.

The differential equation of the four-parameter model is:

G G G G4 Gy G
D2t 4 (224 L+ 22 pr o+ L 22 6,02F ¢ 6, 2 DY (118)
nq no No ng N9 = N9

AL e
"“Lwﬂ:ﬁm' ol




72

and its Laplace transformation is given by:

52? - st(o0) - ;(o) + (Ei + El + E&) [sT - t(o0)] + El EZ T
ng no no N4 N2

23 : G2 (. % ,

= 6, [s°F - s¥(o) - ¥(o)] + 6,4 o™ (s¥ - ¥(0)] (115)

If we introduce the initial conditions:
[ .
1{0) = 1(0) = 0; hence, also J (o) = (o) =0

we get:

G G G Gqa Gn ™ _ G4 G -
[32 + (~£ + 21 + 22 s + 1 _gj T = Gls2 + 122 s f(iib)

Then the viscoelastic analogy yields:

T=o2au}f ! (117)

n Gg
- S ¥+ — &
u o= _i n2
T2 G G G Gy, G
S2 + (—-1-1--—-1-7-4'-—2-)8 + __1__?_ (118)
nq na no nq No

We now return to the elastic problem of Hertz and rewrite

equation (62) as follows:

2
3 P 3 Pr
W= g (1 - v) Tz - 1% (1 - v) 523 (119)

By introducing Lame's constants A and u:
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G =y
_ A
A Y NETY
equation (119) is rewritten as
- ....3._.__.......__..._.A + 2“ __2_ _Iﬁ (120)
¥ 216 WO ¥ oy 42 (87 23
At r = 0, the total penetration of the drop capsule can be
obtained as
.3 Aty P ,
¥ 216 W(x ¥ ) a (121)

For a spherical shaped head of the drop capsule
\ - AETE (122)

It is thus obvious that a non-linear relationship exists
between w and P such that the Laplace transform cannot be
appiied directly. However, we can introduce a quantity, cay

b = wa, which varies linearly with the force P:

I R
b = wa = TRTCEEY P (123)

If P varies with time as indicated by (¢3), P = P, sin wt,

we have:

3 A+ .
b = 16 MENEN] P sin wt (124)

2u
H) *m

Then the viscoelastic solution in the Laplace transform

domain 1is




o

it 3Pm A + 2% ——

b(S) 16 a(x n ﬁ) {Sln wt} (125)
Letting

- X +21

¢ = TR+ 1) (126)
and int:oducing

2

A = K - U (127)
we obtain

A+ 2%

$s) = FXF D

A S 3T (wytkwglds + wywg
T G4 14T | th T 14T wy tku, w W,
s? + (1 + w2)s +
14T 14T

[(w1+kw2)s+w1w2][(1+ur)sz+(w1+w2+km2+urw2)s+w1w2] }
+

wqtkow W W
s(s+w2)[s2 + (—i———g + wp)s + 1 2]
14T 1+T
(128)
where

Gy Gq Gy Gy
r = -_— ? k = -_— 9 0)1 - - LY m2 = -
6K G2 n1 n2

and K is the bulk modulus introduced earlier instead of .

The inverse Laplace transform yields:

2 1

~wot ~wg —uy,t
$(t) = § T4T {(1+ur)6(t)+(1+r)(m1+km2e Y2581 "3 g, e M )}
(129)

where

1

n

1 2o , L 2 2 _u_ *
2 {“2*1+r(w1“k“2) t g {logtTar(wgtkund] - 137 wqug
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§
g
L
-
- 2 kw w
L. _ 1 1427+47T 2 1
; B1 REE TS 1+T * wWo-w3 - g
6. = Lo fairorsur? o kep wy
2 7 14T % 1+T Wo-wy Wy
. = wywp-wqwz-kuswg
' 1 (.l)u"u)s
i
H wiwg-wlmq—kaw%
! %2 < w3-wy
Bv using the convolution theorem, the inverse Laplace trans-
form of equation (125) gives the viscoelastic solution in the
real domain:
: 3?, [t
o b(t) = 15 ¢(t~r) sin wrtdrT
. o
3P ko3 8 B
°Fm {[1+ur A . zwul cin ot
- o~ E ~ i)
801 14T w2+mi w2+m§ w2+w§
w Kaw 84w Bow
- [.l t — 2 + 1 T 2 ] cos wt
w wtws w2+m§ w2+w8
Z
w kww - B1w - ; Shw -
¥ El 3 ; e 2% 4 21 ye o+ 2 7 © wut}
w +w2 w *ws w-+wu
(13n)
From equations (122) and (130), the viscoelastic deformation
. w(t) can be calculated. Since the equation {130) involves a
complex combination of the elementary model parameters Gi’ Gy
) N4, Noa K, it has to be caiculated by an etectronic computer.
e RS
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The principal difficulty is that the material parameters do
not appear in linear form or combinations only. Thus it is
nct at all certain that a unigue, real solution exists and

it is possible that several different sets of parameters

will satisfy the experimental data with sufficient accuracy.
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- VII. The Vibrations of the Half-Space due to Impact

& et v

2 1. Basic Equations

g‘

“ For ai. isotropic, homcgeneous and ideally elastic

v 2

body the equations oFf moction for the propagation of an impact
wave can be given by the equations of motion (131) below.

For a soil the first two conditions are satisfied frequently,
at least in a statistical sense, wherezs the latter (ideal

elasticity) surely is an approxiwnation only. These equations

are:
2
e 2 _ o“u
(A + w) 37+ w9 =+ X = f 2e2 (131a)
€ 2 82v
(A + ) =— + uvv + Y = f — (131b)
. y 3t
de 2 32w
(A + py) = + uvw + Z = y == (131c)
VA at2

where u, v, and w are the elastic displacement components in
the cartesian coordinate system %, y, 23 and ¢ being the

volume change as in equation (22):

. du  3v 3w N
e =3x t a3yt (132)
., 2 2 2
v? = 32 + 32 + 3? (133)
SN Ix y az*

is the Laplace Operator, @ the density; X, Y, Z are the com-

o nontats of the bodv forces while X and u, as before, are the
~
¢ Lame constants related as follows:
:
s g o B
L —
A CoT




v
(1+v)(1-2v) 3

) 2
A E = K - 3 G 3 u

(134)
In an elastic material with infinite dimensions in all
directions a dyaamic disturbance causes two types of waves
independent of each other such that the total displscement of
any point may be consideced as the sum of the two independent

displacements:

U= oug ot uy 3 VI vyt v, 3 W T oWyt W, (135)

The compenents of the first wave are irrotational, i.e.,
satisfy the conditions:

ow v ou oW v du
i T TP i (136)
3y 9z Az ax Ix 9y

which means that they are determined by potential functions:

:.a_g :ﬂ- :M 1
Y dx V1 3y Y1 9z (137)

-
b

The components of the second wave are without dilation, i.e:,
they satisfy the ccudition:

3u2 3V2 3972

€2 T 3x ° ay 3z 0 (138)

Thus the total displacements become:

-

= 3¢ T X ) ;
u Y tuy, 3V 5y t vy 3 W 5 t Wy (i39)

Substituting these values into the equations of metion (131)

yields:

- - P et - rer o,
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52
£2 2 432 g2 (140)
3t2
= = b v2 y (1u1a)
ot 2
2
9°v
22 = p? y¢? v, (181b)
3t
2
9w
2 - 2 ¢? Wy (141¢)
12

2 A+ 2y 2

- 2T ¥ - B
a = f 3y b = f

The deformations according to equation (140) are pure volume

changes according to

e, = V° ¢4 (1u42)

IR

For this reason the wave given by equation (140) is often
called dilatational or longitudinal wave. The second type of
wave because of equation (138) is free c¢f any dilatation.

The propagation of this wave yields only relative displace-

ments whose components are given by:

5 3W2 3V2
u, = 2—;_ - 3g (1u43a)
SUQ 3w2
] - ———
2V, T 377 3% (1u3b)
3V2 BUQ
2 J D e—— = ——— r
Wo % 3y (1u3¢)
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For this reason the wave given by equations (1u41) is
calied a shear wave. Ir a dilatational wave the movement of
a point is in the direction of wave rropagation, in a shear
wave it is normal to it. The equations (1u40) and (141) are
not coupled which means that the two motions are entirely

independent from each other.

2. Propagation Velocities

Integrals of equations (180) and (141) can be written

in the following form:

lr(t -5 (144)
r

where r is the radius vector of the point under consideration,

F is an arbitrary function which satisfies the initial and
the boundary conditions. The propagaticn velocity ¢ = a for
the longitudinal waves and ¢ = b for the shear waves. Using

aquation (134) these can be computed from:

_ 1-v E _ [2(1-vjG
2 'Jf(1+y)(1—2v) ? —ﬁioQV) (145)
1 £ G ) A
b =/—2_(I—+v) }; = "j; Lt1u46)

from which follows that the propagation velocities depend

only upon the elastic constants.
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The ratio of the velocities

_[2(1=v)”
1-2v

is, hence, always larger than unity. Barkan (i948) gives the

Wty

o

).
(9

following values for these velocities:

- Table 4

Wave Propagation Velccities in Soils

Soil density a b
Type kg sec?/cm® 10°% m/sec m/sec
Moist Clay 1.80 1509 150
Loess (nat. water cont.) 1.67 8C0 260
} Dense Sand & Gravel 1.7¢ 480 250
: Fine Sand 1.65 300 110
Medium Sancd 1.65 550 160
Medium Gravel 1.80 750 180

3. Vibrations Due to a Point Locad

Assuming that we deal with simple harmonic waves
originating from a point source we will attempt to find solu-
tions of equations (140) and (14i) by introducing the Tolliow-

ing functions:

iwt

g = e ¢(x,y.2) (187)

and

it ans AT )
M " 2 e S %
< -
v
o= W
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iwt iwt it
u, = e Uy v, = e Vi w, = e ¢ yA (1u8)

where w is the excitey frequency. Introducing these functions

intc the wave equation the following conditions must obtain:

(92 + 1n?) ¢ (189)

|
o

and

(v2 + x2y U= (92 + k%) v = (v2 + x%) W = 0 (150)

Moreover, because of (138) the functions U, V, and W must

also satisfy:

U, 3V, W _ (151)
P y 92

The solutions for equations (150) can be found by the

substitutions:

2 2

B R L ) 2
U= 335y 3 Vo= 3yaz W o= o2 + k (152)
Introducing these values into (150) reveals that ¢ must
satisfy:

Let us now consider a cylindrical coordinate system for
the half-space with its origin at the surface such that:

X = rcos ® ; y=prsin 9 ;3 2z = z

for which the Laplace cperator becomes

ro

2
9 P
—_— 4 — (1514)
or 322

<
)
"
w I3
H la
INY
+
e
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P §

and designate the displacement in the direction of the radius

vectcr r by g, then

v = % q (155%)

.
k]

TR S e
v
I~
"
M )%
0

5

Thus, according to (139) and (152), we gex:

2 2
- q = .a.i + ._.")_.i’. 3 w = .3_9. + u + k2¢ (1586)
ir dridz 9z 322

We now introduce a dynamic load P :

Pz = - P J_(er) (157)
(Trz = 0)
: which is applied at the surface z = 0. Jo(ar) is, as before,
« a Bessel Function.

Again we assume a solution for (149) and (150) analo-
gously to (36):

-0z -Bz
é = A e Jo(ar) 3y ¥ = B e Jo(g,r) (158)

where A, B and £ are arbitrary constants which can be deter-

mined from the boundary conditions:

2 2
Oz 9 37 ¢ LA (
u - - k ¢ - 2 ar2 - 2 araz \1596.)
= T 2 2
rz _ ] 2 (R

which yield:
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? 2
28" - k=~ P 2 P
A - 3 B = m—_— - (160)
F(g) w '’ F(g) w
F(g) = (262 - 132 - ug? o8 (161)
Hence, the displacement components at th=: surface (z = 0) can

be computed from (156):

2,2
_ -g(287-k“-2aB) P o
2
_ k° . . P
Wy = FE) I (§,r) m (162b)

Let us now examine the case that P have the form:

v
P = - 77 £dg

Introducing this value into (162) and integrating we obtair

the dicplacements of the surface of the half-space:

P 20 2 2 2
v E°(26°-k“-2aB) .
Q‘O - 2““ A F(E;) Jo(g,‘.) dg (1638'
and P )
. v [k Ea _ .
Wo =~ Z7n . F(E) 9,(E,-r) dE (163b)
)
The int:grals (163) . annot be evaluated directly because
) F(f) is zero for certain values, e.g., for { = % % .

Ry introducing a new variable, rearranging and using

series approximation Shekhter (1948) succeeded in finding a

solution for smill values of f= kr:
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.o BK
!

lut .
o e™ Ut (£, + 1 £y) (164)

where the functions f1 and f2 depend on Poisscn's ratio. For

v = 0,5 Shekhter obtainad:

= i 3 5
£, = - 1.00196 ¢ + 0.0598F - 0.00607 §% + 0.000243 §° - ...
£, = 0.0571 J_(1.047) + 0.0474 - 0.00647 P2 + 0.000264 §"

and fer v = 0.25:

rh
n

- 0.119 T 4+ 0.0895p- 0.0104 ¢3 + 0.00u66 5 -
1 dbhi | : §- ©- § . i1 e

H
1}

. ‘ 2 y
5 0.0998 J0(1.0877l) + 0.0484 - €.00595 9 + o.oozuqf

In general the vertical component in the vicinity of the

exciter force can be given in simplified form from (16u):

ws= - A Y (§) sin (wt -X) (1¢5a)
where
"
Ao = T (165b)
p(g) = Jf12 + f22 (165¢)
and \ f1 ‘
tan) = T, (1654d)

The function w(f) for Poisson'tc ratios of v = 0, 0.25 and
0.5 are shown in Fig. 21.
Sauter (1950) evaluated the integrals of the displacement

components for the surface of the half-space due to an
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4) aperiodic impact and obtained the following result for a

purely normal impact:

or
_ 1
Wo = = ; 2 04 (166)
2 b
2nyb (1 - =3)t
a
where 0, is the impact stress.
If we introduce the values given by Barkan for dense
sand (f = 1.70, a = 480 m/sec, b = 250 m/sec) and for moist
clay ( §= 1.80, a = 1500 m/sec, b = 150 m/sec), then we get:
W = 0.0002 §} for sand (167a)
L
) ’ 6‘
~f w, = 0.0004 jf for clay (167b)
‘he
4., Damping, Dispersion and Distortion
.5a)
If there are also frictional forces active in the
55b) half-space in addition to the elastic ferces that tend to
return the body to its original shape, then damped vibrations
55¢) result. If these frictional forces are assumed to be propor-
tional to the point velocity, the following equation describes
55d) . . .
e this type of vibration:
RS 39
7= 2’ VP + 25 53 : (168)
at
nent where 8§ is the damping factor which is always negative. For

the sake of simplicity we may consider a one-dimensional
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vibration according to (168). It is advantageous tc exchange

the variables by substitutirng:

¢ = vett (169)

Intrcducing this into (168), we obtain:

2 2

a—-g—-&2rig-%+r2U=a23——%—+2r6U+2(Sg% (170)
3t ax
If we introduce r = §, the terms with the first deriva-
tive vanish and we get:
220 _ 23U, .2
—_— = a“ + &N (171)
3 2 "2
t oX

As one can see, the solution of this equation is given

by:

U= A sin (rx - st) (172)
provided that:
s? = a%p% _ g2 (173)

This wmeans that the damping factor is a function of the fre-

quency from which follows that different frequencies are

damped in a different way. This phenomenon is called dis-

tortx. . Thus the wave front is changing as it progresses.
Let us consider the solvtion:

-lwt
u = U e (.“.7'4)

where U is a function of x only. Then, according to equation

(168), we have:
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2:-{)('———-——2—-——'—") (175)

This equation Las twec solutions of which, however, only
one has a practical signifi~ance. namely, the one that does
not yield infinite values for u for large values of x. If we
put:

w2 - 2iwé

> = (a + ig)° (176)
a

th

[t]

solution becomes:

y = Bel(a + iBg)x (177)

which, according to equation (174), vields:

- i - wt
w =B e BX Jlax - wt) (178)

Since B is also related to the damping factor, both a as well

as B8 are functions of the frequency and are relateu by:

w 8
a2 - 82 = ('&')2 3y and oR = - E; (179)

When a is a function of the frequency. the phenomenon is
called dispersion, when B8 is dependent on w, it is called
distortion. ¥hen bhoth phenomena occur simultaneously, the

wave energy is slowly dispersed while the shape of the wave

front is continuously changing.

IR I
X

§

T+
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5. Group Velocity and Phase Velocity
Considering two wave trains determined by:

2 2

e (180a)
3t 1 9x
2 ~ 2

3w . 42 3 (180b)
' 3t? 2 3x2

where a, and a, are two different propagation velocities, then

these trains may be considered to be of the form:

X
= —_— - 1
u, A cos [pl(a1 t) + E1] (181a)
— x -
u, = A cos [p2(§; t) + E,] (181b)
P P
where f1 = 5% ’ f2 = 5% are two different frequencies. Super-

position of the two freguencies yields:

f1 f4 E1+E2
+ uy; = 2 A cos |7 x (——+ —) -1t (f, + £,) + ——
1 2, a, 1 2 2

u = u

ccos |mox (=2 - 22) -1t (f-£)+ _______j
4, & (182)

This equation describes two harmonic motions, one with a fre-

quency aud propagation velocity of:

14 - f
) £ = ~1~3—-3 (183)
and
alaz(fi + fz)
a = - (18yu)
f1a2 + r2a1

respectively, and the second with:

o

a@g%ﬁ?ﬁaagsswwi — ‘
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f1 - £9
F1 = —— (185)
and
aqan(fq - o)
at = 2 2 (188)
fiay, - foay

We note that for the case of fy, = f,, equation (182)
gives a harmonic motion that slowly changes amplitudes. If
the maximum displacement of the point x = 0 occurs at time t,

X

then that of the point x occurs at time t + v and returns

with a pericd é% . An interesting characteristic of this
moticn is tre continuously changing wave front and the recur-
rence of the maximum amplitudes in certain intervals.

If we consider two moticns with frequencies that 1lie
within & narrow band, say within f ané f + Af, we have the
phenomenon of dispersion. The i1alue of a' of equation (186)
is the so-called group velocity, while the "a" given by (184)
is the wave- or phase-velocity. To determine the former we
introduce into (186): a, = a, a, =& + ba, f2 = f and
f1 = f + Af, and determine a' in the limit as Af approaches

zero. Then:

a
a' = (187

1 - f/a da

<V

H

According to the binomial theorem and neglecting higher order

terms, we get:

da
a (1 + f/a iF ) (188)

at
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. If we introduce also the corresponding periods, T, and
; T + AT and the wave lengths L and L + AL, one can easily
g ’ deduce from (188) that:
: A(2)
al = — (189)
A(f)

The group velocity is of primary technical interest
because it determines the propagation of the maximum displace-
menrts. The situation is demonstrated in Fig. 23. There a
train of waves is propagated like an energy packet traveling
with its group velocity withcut essentially changing its
shape.

However, because of dampening and dispersion the ampli-
tudes gradually become smaller and the frequencies lower.

The velocities a and a' thus become also dependent upon fre-
quency or wave length. In water, for example, long waves
travel faster than short ones and the group velocity a' is
half the phase velocity a. In elastic rods, on the other
hand, short waves run faster than long ones and the group
velocity is twice the phase velocity. The group velocity

can thus be larger as well as smaller than the wave velocity.
Morcover, Lamp (1374) has shown that the two velocities a

. and a' need not run in the same sense: the wave trains may

be running toward the right with such a velccity that the

center of the group moves toward the left.
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6. Impact with High (Ballistic) Velocities

If a projectile impacts on a body with very high
(ballistic) velocities, a crater develops whose volume
depends on the kinetic energy of the projectile and the
properties of projectile and target. This is a classic
problem of ordinance research tnat has been investigated
extensively for some time. The impact of a meteorite is a
problem of a similar nature. Some recent results that
especially also discuss the penetration of projectiles into
sand, rock and scd are reported by Rinehart (1954), Goldsmith
(1960), McCartny and Carden (1962), and Kornhauser {(1964).

Since our experiments were carried out at relatively
low velocities (maximum 15 m/sec), the phenomena encountered

at high velocity impact fall outside the scope c¢f our con-

siderations.
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VIII. Description of Test Series

The idea of measuring the deceleration upon impact of
an instrumented capsule by a piezo-electric accelerometer was
proposed by several people independently at about the same
time. Hechtl (1964), for example, states in his dissertation
that such experiments were carried out on sand and rock at
the Jet Propulsion Laboratory of the Califecrnia Institute of
Technology. Their instrument was to be used to explcre the
scil conditions of the lunar surface.

However, Hechtl based his remarks on a preprint of a
paper by Dr. Thormann which gave idealized response data. He
learned during a personal visit in July 1964 that actual tests
had not yet been carried out.

On the other hand, McCarthy and Carden (1962) carried
out tests shooting an instrumented cylinder through a "pneu-
matic gun" of 20 feet in length and 6 inches in diameter
against various target materials such as\sod, moss, wood,
sand, lead, and concrete with velocities up to 300 m/sec. At
tne same time the author proposed independently to use a simi-
lar capsule as a new version of an aerial penetrometer. The
capsule has been described above {(Chapter III, 2 and Figs. 12
and 13).

The first experiments were carried out by Dr. Hechtl in

the Soil Mechanics Laboratorv of Princeton University. Hechtl
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ran tnirty different series of tests varying such experimental
parameters as target soil, soil moisture content and density
and shape of impact head.

The tests were carried out by attaching the drop capsule
to an electrical release mechanism which was brougnt to the
desired height above the soil target by a pulley-cable system.
Upon impact the piezo-electric signal was transmitted through
a trailing, cali“rated and isclated cable, and a cathode fol-
lower to a Textronic oscilloscope. The oscilloscope screen
was photographed upon arrival of the signal by a Polaroid
camera. Thus a permanent record of the signal was obtained
that could be evaluated later. The ordinate of the resulting
photograph gives the deceleration (to some scale depending
upon the amplification of the sccpe) as a function of the
time {shown on the abscissa). A schematic sketch is shown in
Fig. 22. The description of the measuring components and
their calibration is given by Hechtl in his dissertation and
need not be repeated here.

The first experiments showed that a perfectly centric
impact occurred rarely with a conical impact head which led
us to use a semispherical head for all later tests. Also,
the difficulty of keeping an oblong capsule in a vertical

position until impact under field conditions led us to believe

that the proper shape of a prototype capsule should be a
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sphere. This will avoid any problem of directional stabili-
zation.

The instrument was tested outdocrs under field condi-
tions impacting on natural undisturbed soils and performed
well. The field measurements were then carried out with the
experimental setup shown in Fig. 22 except that the container
with the soil target material used in the laboratory is
replaced by the half-space in the field.

To measure wave propagation velocities of the target
soils in the field experiments one, two or (in test series
41) even three accelerometers were buried in the soil at var-
ious distances from the impact point. They were placed with
their sensitive axis parallel to the so0il surface and directed
toward the impact point. Since the accelerometers respond
only to normal cccelerations, the resulting signals are from
waves of the type described by equation (140). The distances
from the impact point were determined by direct chain measure-

N

ment after impact and are designated by »r r, and rg.

1> 72

Since according to Newton actio equals reactio w, the
penetrometer signal gives not only the force exerted by the
target material ou the penetrometer but also that exerted by
the penetrometer on the target. Thus, the signals of those
buried accelerometers show the decay and dispersion of the
stress waves resulting from an ap2riodic, dynamic disturbance.

The signals from the buried accelerometers were usually taken
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triggered by the penetrometer impact signal,

An attempt was also made to test the penetrometer on
target materials that had clearly defined and easily deter-~
mined mechanical or rheoclogical properties. This was tried

- ~ter, soils of different viscosities, greases of differ-

msistency, wax and paraffin. Not all of these experi-

n. .S were successful. Dropping the penetrcmeter into water .
was tried, 2.g., in the swimming pool in the basement of
Dillor. Gymnasium. Because of the extreme magnification of
the signal required with the very low impact, a basic 60 cps
frequercy signal from the house current was somehow induced
and superimposed and made the impact signal unreccgnizable.
This experiment was therefore abandoned. 0ils as a target
material also produced difficulties. The impact was often
so weak that tlic electron beam of the oscilloscope cathode
tube was not triggered.

The experiments were numbered consecutively. Continu-
ing with the sequence begun by Hechtl {3C), thus they began
with No. 21 and ended with No. u45. Table 5 lists the various
experiments.

The experiments were carried out jointly by the author
and his assistant, Dr. Christian Hechtl, during 1963-1964.

Reproductions of the original Polaroid photographs of the

oscilloscope signals are shown in the appendix (pp. 4&-1 to
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Table 5
- List of Experiments
; Series . ) )
@ No. Target Material Location Remarks
5 31 Wax: Princeton Soil Humble 0il
; Cambar M-348 at 31°C  Mechanics Lab. Specs. Data
Sheet DG-36
32 Lubricating grease
- Estan 3 (28°C) 11 " ] 1 1"
33 Estan 1 " " Failed, too
. soft
3y Paraffin (at 28°C) " "
35 Water (failed)
36 Failed
P 37 Silty sand at grass field natural soil
i soil surface bchind
‘ Princeton Soil
Mechanics Lab.
38 Silty sand, 20"
below surface " " " "
39 Uniform beach sand beach at Sea- natural
side Heights, beach
N.J.
40 Failed
X 41 Sandy silt and clay McCosh Circle natural soil
Princeton,N.J.
42 Sandy clay field off U.S. field plowed
1, 2 mi.south &€ harrowed
of Princeton
R 43 Crushed rock %-1" Lambertville, compacted
N’J.
4y Fine sand Sheppard's natural soil
. Mill Dam,
Bridgeton,N.Jd.
y
us5 Swamp ‘Bridgeton,N.J.

34
e
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A-32). The necessary calibration constants for evaluating
these data are also shown. The most important results and
evaluations carried out so far are offered in the following
chapter.

We have also appended those four test series carried out
by Hechtl which were conducted with a semispherical head,
namely his series No. 12, 15, 19 and 22 (Appendix B-1 to B-
i2).

¥henever possible standard reference tests were carried
out cr all target materials for comparison. For natural soil
surfaces this was the field CBR test. For thes laboratory
soils we also carried out CBR tests as well as unconfined
compression tests. For the wax, paraffin and grease the
values supplied py the manufacturer's data sheets were com-
pared. Figs. 24 to 27 show some of the experimental details.
For example, Fig. 24 shows the penetrometer before impact or
the paraffin (Series 34); Fig. 25 shows the penetration into
Estan 3 (Series 32j; Fig. 26 shows the permanent, plastic

deformation cauced in Cambar wax; and Fig. 27 shows the test

s2tup for Series No. u1.
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IX. Evaluation of Test Results

1. General Discussion of Test Data

The pclaroid oscilloscope photographs in many cases

(for example, in test series 12, 22, 31, 37, 38, 41, 42 and
44) give monotonously rising and falling curves which can be
approximated by a sine wave. The variatiocr of the impact
force in these cases can very well be described by a formula-
tion according to equation (83). In those cases where the
curves show a significant variection from a sine curve this
fact can be explained by the particu ar test condition. In
test series 32, for example, the signal is rather constant
over a considerable time interval. This was caused by the
fact that in this series the depth of penetraticn was always
larger than D/2. Thus, after an initial rise the penetration
resistance remains constant because the area of penetration
remains ccnstant also and the resistance encountered is that
of a viscous flow around a cylinder with a semispherical head.
The last photc of that series, moreover, shows clearly the
penetration of the penetrometer through the entire pail of
grease (see Appendix A-5, photo 2).

In series 34 the brittleness of the target material 1is
very clearly demonstrated. While the overall curve still

follows a sine curve, successive brittle fractures cause

local deviaticns.




W""?J‘b 4““‘&-— o . -~ T g ————— - oy S PE S SCe

A significantly different signal from that of a sine
curve is revealed for all coarse grained target materials
(test series 15, 19, 39, 43). TFirst, the electron beam is
broadly diffused (compare, for example, Appendix pages A-1°5
to A-18, B-4 to B-9). Upon increasing the sweep speed of the
electron beam as done in series 43 (Appendix pages A-26 to
A-28) one can observe that this diffusion of the signal is
nothing but the superposition of a high frequency vibration
upont the basic impact signal similar to the formulation of
equation (182). This high frequency wave signal can only
originate cither from the natural frequency vibrations of the
penetrometer or those of the piezo-electric crystal induced
by a very hard iwmpact. If one considers, however, that these
vibrations do not affect the basic impact signal and are
merely superimposed, the correct impact signal may be con-
sidered to be the average value within the diffuse band (see
page A-28).

The superimposed natural frequency vibrations can also
be detected on less hard target materials (e.g., series 12,
22, 38, 42 and 4u4) although to a much smaller extent and only
at the beginning.

Even more surprising than the diffusion is the general
shape of the signal when i(he target material is sand, gravel
or crushed stone. There exists a definite peak force which

drops off rapidly, after which comes again an increase
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followed by a logarithmic decay. This can only be explained
in such a way that in these materials a "temporary lique-
faction" takes place at the beginning of the impact period.
Since very few grains are affected initially, the specific
energy per grain is very large and one can perhaps rational-
ize that during this short duration the grains partially lose
their frictional support and behave like a quasi-fluid. Upon
further penetration, however, the number of soil grains
affected by the impact beccmes quite large and the available
energy is not sufficient to "liquefy" all these particles.
Thus a stabilization of the penetration resistance occurs
with a corresponding dropping off of the signal in the final
phase of the impact period.

In any event, from the variation of the signals obtained
it is clear that for the number of tests performed so far a
fairly definite distinction can be made whether the target
material was a granular, "liquefied-stabilized™ soil or
whether it was a plastic-cohesive s0il, and whether the
impact was hard or relatively soft depending orn the magni-
tude and extent of the natural-freguency vibrations super-

imposed on the basic impact signal.
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2. Impact Velocity V(o)

If the deceleration a(t) is known, the impact veloc-

ity can be determined from equation (14#) by integrating a(t)
over the impact period.

Since the oscilloscope photos - except for some constant
- are nothing else but a(t) we only have to carry out the
integration. Here a small technical difficulty is encountered:
the sweep of the electron beam must be adjusted in such a way
that a good resolution of the signal appears on the oscillo-
scope screen. If the beam velocity is relatively small, a
high curve with a narrow base resuits (e.g., photos of test
series 41 with a beam velocity of Vy = 0.2 cm/millisecond).
There the signal can be followed over a long period of time.
Thus the end of the impact period can be clearly established.
In the limiting case of zero horizontal beam velocity the
signal, of course, would be cnly a vertical line. Thus it is
easily possible that for a small beam velocity the signal is
not sufficiently resclved along the time axis to permit inte-
gration with sufficient accuracy.

If the beam velocity, on the other hand, is relatively
large (as for example in test series 42 with Vy = 0.5 cm/
mi_lisecond), the signal has an excellent resolution with

respect to time but the end of the impact pericd dces no

longer appear on the oscilloscope screen.




The techrical solution ¢f this dilemma is best solved
by recording the signal on magnetic tape rather than by photo-
gravhing an oscilloscope screen. The tape can later be run
at any speed desirable and no part will be lost. For an
operational penetrometer wagnetic recording of the signal is
probably essential. Even though such recording systems are
standard items, their price is relatively high and for cur
pilot tests the oscilloscope photos were considered suffi-
cient.

The evaluation of the impact velocities from the test
data is, for this reason, not nearly as accurate as would be
possible using cthe latest technology. WNevertheless, the
integration of the oscilloscope curves using & planimeter
yields a rather good agreement with the theoretical computed
values. These were computed by assuming the frictional
resistance of the penetrometer falling in air to be negligible.
This assumption appeared justified because of the low veloc-
ities and small drop heights. Table 6 shows a comparison of
these results.

The last column in Table 6 shows the per cent difference
between the theoretically computed impact velocity and the one
obtained by integrating the penetrometer signal. The mean

discreparcy d; calculated from:

di2

dm = = (190)
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Comparison of Measured and Computed Impact Velocities

Testc Drop ( - .
Series Height v(o)l./;(t)dt vio), J2gh v(o)l/v(o)Q Discrepancy
cm cm/sec. cim/sec. %
31 61 294 346 0.8L8 -15.2
122 463 490 0.945 - 5.5
183 533 600 0.830 -11.0
305 7988 773 1.030 + 3.0
L25 900 918 0.982 - 1.8
32 61 312 3u6 0.905 - 9.5
122 usg 430 0.933 - 6.2
183 713 600 1.190 +19.0
3y 61 3u1 3u% 0.985 - 1.5
122 456 496 6.930 ~ 7.0
1823 588 600 0.980 - 2.0
305% 779 773 1.0C3 + 3.0
37 275 uug 522 0.842 -15.8
275 588 522 . 1.122 +12.2
520 808 1010 0.890 -20.0
38 275 617 522 1.178 +17.8
275 573 522 1.100 +10.0
520 Q26 1010 0.918 - 8.2
39 275 515 522 0.985 - 1.5
520 470 1010 0.u65 -53.5
520 559 ° 10 0.552 -44.8
ui 275 6u3 522 1.230 +23.0
275 441 522 0.842 -15.,8
275 404 522 0.772 -22.8
520 937 1010 0.928 -~ 7.2
42 275 612 522 1.;70 +17.0
275 614 522 1.175 +17.5
529 gCy 1010 0.900 -10.0
43 5290 808 1010 0.800 -20.0




k)
e

PR A A
g
H

P

105

.~

- Table 6 (continued)

é Szii:s szzgt v(o)iﬁ/;(t)dt v(o)2=/2gh v(o)l/v(o)2 Discrepancy
§ : cm cm/sec. cm/sec. %
A
® 4y 275 556 522 1.061 + 6.1
520 786 1010 0.778 -22.2
§20 713 1010 0.708 -29.2
12 61 309 346 0.89Yy ~-10.6
122 426 490 0.870 -13.0
183 529 600 0.882 -11.8
305 655 773 0.845 -15.5
L25 713 911 0.782 -21.8
7090 ou3 1175 0.5u48 ~-45,2
15 61 250 345 0.722 -27.8
122 331 490 0.677 -32.3
183 368 609 0.614 ~38.6
305 Ly 773 0.570 -43.0
425 573 318 0.626 -37.4
19 61 233 346 0.672 -32.8
122 216 400 0.6u4y -35.6
183 279 600 C.465 ~-53.5%
305 537 773 0.693 -30.7
B2s 662 918 0.724 -27.6
700 662 1175 0.562 -43.8
22 61 357 346 1.08¢ + 8.0
122 y22 43990 0.860 -14.0
183 515 600 0.83€ -16.4
305 537 773 0.633 -30.7

425 654 911 0.718 -28.2
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was found to be 13.8% for the test series 30 to u45. This
discrepancy has several components. First, the direction of
impact and the axis of the accelerometers are not always in
perfect alignment. This error cdn be eliminated as was dis-
cussed earlier by using three accelerometers with mutually
perpendicular axes and superposition of the signals according
to the Pythagorean theorem. Secondly, the drop height could
only be maintained with an accuracy cf * 2%. This was due to
slack and elastic extension of the supporting cables.

The accelerometer has a guaranteed accuracy of 0.5%;
however, due tc the signal amplification this is magnified
several times. In addition, of course, the theoretical value
with which the experimental values are compared are not the
exact and true ones because of air friction. Finally, there
occurs a relatively large error in the evaluation especially
when either, because of the sweep being tvwo fast, the end of
the impact signal does not appear any more on the photograph
or, because of the sweep bheing too slow, the signal is not
resolved sufficiently to permit accurate integration. These
possible errors can be avoided by recording the signal on
magnetic tape.

Increasing use and experience is certain to lead to pro-
gressive elimination or reduction of various sources of error
so that the measurements will be sufficiently accurate and

reliablie for scientific purposes. Here it is perhaps

[
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interesting to note that the mean discrepancy for the four
test series by Hechtl (No. 12, 15, 19, 22) computed in the
same manner still have a discrepancy of 31.3% while those of
our tests have only 13.8%.

The author believes that this is sufficient improvement
so that one may judge the technical feasibility of the method
as positive. We believe that the mean error can be easily
brought within the range of 3% to 5%. This is judged to be
entirely satisfactory considering the natural scattering of

scil properties and the general nature cf the problem.

3. Strength Properties of Target Materials

As shown in Table 3, the critical drop height for
purely elastic impact is 3.5 mm. even for the hardest steels.
Thus it is superfluous to attempt to evaluate elastic con-
stants from the impact data.

The evaluation of the plastic flow pressure p,, however,
should give one of the critical material constants.
According to equation (92a) tre pernetration during plas-

tic impact in a simplified form is given by:

v(o)

a = 3 sin bt (92¢c)

where
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tne €ndad o neé iImpacy perzcd is determined by t+ha fact

that the penetration velocity a has decayed to zero:
@ = v(o) cos bT = 0 or

T = (93b)
Thus, the plastic flow pressure can be found:

- mw (191)

D
© gRrR T2

T signifies the duration of the impact. The flow pressure,
however, can also be obtained from the maximum deceleration.
If we differentiate, for example, equation (92d) twice with
respect to time, we obtain:

a = - v(o)b sin bt (192)

the maximum deceleration then is:

B
gmax = - v(o)b = - v(o) 12;R polz (193)

solving for p, we get:

o 2
m amax‘

Po * 2% v{o0) (194)

Thus the yield stress can be evaluated from the test data

either by equation (191) or by (194). If we introduce the

dimension of the penetrometer model as given in Chapter III, 2

into these equations we get:
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_ W 1573 _ . g sec2
m=3 g1 - 16 T
and
1 2
- p. = 0,168 — g/cm (191a)
o 72
as well as
gmax 2 2
= 0. — / 19u4a
P, = 0.068 7o) g/cm ‘ ( )
It is intere . . to note that according to equation

(191) the yield stress is independent of the drop height, the
impact velocity or the maximum deceleration and depends only
upon‘the impact duration T. The observed values do indeed
show a surprising constancy of T for a given target material.
Table 7 shows the evaluation of the p, values by both methods.
For a better compariscn the average values‘Z;po/' »r the
individval target materiais are compiled in Table 8 and are
compared with the standavrd control test results of CBR or the
equivalent unconfined compression sfrength Q"

The values for the flow pressure have an average scatter-
ing of 25.5% for p, computed from equatiorn {(191) and of u1%
. for P, computed from equation (194). This is not tooc sur-

prising, because equation (191) uses only one experimentalliy

determined value while (194) requires a as well as v(o).

max
Thus, errors are being multiplied. Furthermcre, not all the
scattering is to be blamed on insufficient accuracy of the

test method. A certain scattering is to be expected because

the very properties being measured are not unique quantities
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Table 7

Determination of the Plastic flow Pressure

Impact 1 ) v
Test Drop Duga— 2 ° o v(o) %n 2 P
Series Height tion T (eq.191a) max v(o) (eq.194a)
H T 10 %sec? m/sec? cm/sec.
2 2
cm. m.sec. kg/cm kg/cm
31 61 18 0.00309 0.52 570 346 26900 1.83
122 19 0.00277 0.46 730 480 222900 1.50
183 20 0.0025 c.u2 a79 600 26200 1.78
305 22.5 0.00198 0.33 ilu0 773 21800 1.48
425 21.0 0.00227 0.37 1350 s18 21800 1.u48
32 ol 8C 0.000153 0.026 114 346 109¢C 0.974
122 85 0.000138 0.023 148 490 9C0 0.0081
163 S0 0.00012u 0.021 160 600 713 0.0u45
3y 51 1.2 0.69 116 .0 5920 3u6 2950000 201
122 1.1k 0.77 129.0 8550 430 3020000 205
183 1.12 n.79 132.5 102590 600 29200090 198
305 1.12 0.79 132.5 13150 773 2900000 197
37 275 8.0 0.0156 2.52 2170 522 1720060 11.7
275 8.0 0.015¢6 2.62 2170 522 12000V 12.9
520 8.0 0.,0156 2.62 2859 1010 80000 5.4
38 275 8.8 0.0129 2.17 1600 522 34000 6.4
275 9.2 0.0118 1.98 1550 522 87509 5.9
520 8.8 0.0129 2.17 2856 1010 78500 5.u4
39 275 48 G.000ugsS 0,083 456 522 7600 0.52
520 L2 0.00057 ¢.096 548 1010 29°0 0.20
520 40 0.000625 0.105 502 1010 2480 0.17
qi 275 7.5 0.0204 3.44 2530 522 232000 15.8
275 6.5 0.0236 .14 2450 522 220000 15.0
275 7.0 0.02Cy 3.4y 2740 522 2730800 18.5
520 8.0 0.61¢%6 2.62 3540 1010 122500 8.3
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Table 7 (continued)
Impact 1 Ps ve 2 Py
Test Drop  Dura- 72 “max v(o) “m
i Series Height tion 6 (eq.181a) v(o) (eq.19ta)

. H T 10" °sec? ) m/sec.? cm/sec. )
cm. m.sec. kg/cm kg/cm

uz 2" 17.2 0.00338 0.57 820 522 24500 1.66
27. 12.8 0.0061 1.02 1185 522 510090 3.46

52¢C 13.2 0.00575 0.97 1510 1010 225¢¢ 1.52

43 275 i0 0.0100 1.68 1715 522 1970 7.3

520 11 0.0086 i.u4 2000 101¢ 39200 2.7

52C 7 0.0200 3.36 2960 101¢C 86000 5.82

by 275 15 0.00u8u4y 0.75 1095 52?2 43800 2.68
520 iy 0.0051 0.86 1540 1010 23200 1.58

520 i1 0.0083 1.39 770 1010 30800 2.10

us 200 172 0.0000338 0.0057 23¢

12 61 18 ¢.00309 Nn.52 513 3L0 22000 1.50
122 i8 0.0030% G.52 £85 490 19600 1.33

183 16 0.0039 0.65 80C 60C 17800 1.21

305 18 0.0930¢9 0.52 1025 7735 1750) 1.16

425 16 0.00309 0.52 800 911 7700 0.52

700 16 0.0038 0.65 2540 1175 17500 1.19

15 61 38 2.000669 6.116 217 3uc 3700 0.25
122 38 0.00069 0.116 331 490 4560 0.31

183 38 ¢.00069 0.11C 376 600 3940 0.27

30% 38 0.00069 0.116 SLS§ 773 5000 0.3k

425 38 0.00069 0.116 640 918 438CO 0.33
19 122 usg 0.000u35 0.073 228 ugg 2170 0.15
183 ug 0.000u475 0.008 388 600 4180 0.28

.25 39 0.000658 0.011 662 918 5220 0.35

700 33 0.000658 0.011 800 1175 4650 0.32

22 61 16.4 3,00357 0.62 38¢ 337 11800 0.8C
122 16.0 6.0039 9.65 502 490 1060C C.72

308 13.8 0.00022 ¢.28 800 76C0 13000 .89

425 13.4 0.00555 0.93 370 918 11200 0.76
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Table 8

————

Comparison of Plastic Flow St ess with Control Tests

Series No. Average 5 Average Con- Tests
& Target Po s (s ) P S (¢ trol
] mée o max i q
Material (eq.191)  "a¥ max (eq.194) mAXT ¢BR u )
xg/em2 % kg/cm? % % kg/cm
31 Cambar wax 0.43 -23 528 1.62 +13 169 - 0.511
M-3u48
(at 21°C)
1
32 Estar 3 0.023 +13 169 0.061 +21 buyi - 0.045"
grease
(at 28°C)
34 paraffin 127.» - 81 |, 200.9 + 3 9 - 13“.02
{at 28°C)
37 clay 2.62 + 0 10.0 -46 21290 2.1 2.2
38 clayey sand 2.11 - 6 36 5.9 £ 9 81 4.3 3.0
silt
39 beach sand 0.089 +18 324 0.30 +73 5320 - -
41 Princeton 3.u41 -23 528 14,4 -42 1760 .3 4.4
clay
42 sandy clay 0.85 -33 1085 2.21 +57 3240 4.0 2.8
43 crushed rock 2.13 +59 3480 5.27 +4G 2L ) i8.5 -
44 fine sand 1.00 +39 1520 2:22 +3u 11556 5.8 -
12 Princeton 0.56 +16 256 1.14 -5 2905 2.8 2.1
red clay
15 Ottawa sand 0.12 - 0 0 0.30 -17 289 - -
(dry)
19 beach sand 0.008 -26 675 0.25 -50 3600 - -
w=1.34 g/cm
22 Princeton 0.76 +22 L85 0.81 -11 121 1.9 1.t
clay (w=2.65%}
Ls? = 9167 L s? = 23610
Lsi/m = 652 /s%/n = 1685
mean scatter: Sp = 25.5% Sp = 31%

1Hardnes

number computed from the penetration numbevr N.

2rajlure stress computed from the tensile stress at 23°C.
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by themselves and, particularly with a rather extensive test
program, they must be expected to have a certain scattering.

This is particularly so if one considers the great vari-
ability of the properties of natural soils from point to
point. Thus, perhaps a major part of the scattering might
be traceable to actual local variation of the soil properties
in situ.

If, for example, we disregard the values for the scatter-
ing of P, from (191) of test series Nc. 43 (i.e. impact on
crushed rock which very much depends on the surface configur-
ation at the exact impact point), the average scattering is
reduced immediately to 20%. For a material such as crushed
rock especially, it is surely important whether the impact
energy 1is directly conducted away bv a rigid gra:in skeleton
¢r whether the impact is a resilient and elastic one.

The standard control test 1ike CBR and unconfined com-
pression test were not carried out‘gg clean sands. The fcrmer
is very difficult to do because the exact depth of penetration
is difficult tc establiish and the iatter is not possible at
ail in a non-cohesive material.

For the target materials of series 31, 32 and 34, i.e.
for the cambar wax, the Estan 3 grease and tha paraffin, the
mechanical properties fuinished by the manufacturer were

accepted.
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The penetration number N for a grease or wax is the pene-
tration (in tenths of a millimeter) that occurs after five
seconds when a 90° cone weighing 250 grams is applied to the
grease at 25° centigrade.

For these materials one can thus determine a hardness
number using equation (7) giving:

{a) for the Cambar wax

P .25
Hy = 0.898 —5 = 0.898 0:227_ . 9.51 (kg/cm?)

d (0.7)2

tb) for the Estan 3 grease:

H, = 0.898 2:230_ = o, 045 kg/cm?
<
(2.35)
For the paraffin (Essowax 5010) the m¢ nfacturer gives a ten-

sile strength (a: 239C) of 2% kg/ch. If one uses this value
to calculate the shear strength and applies the corresponding
value to the Prandtl bearing capacity problem, one obtains a
value of p, = 134 kg/cm2 which is close enough to the experi-
mentally found value of about 200 kg/cm2 particularly if one
«onsiders that the calculated value is based on a static
strength and test whereas, for the case of the dynamic loads
during the penetrometer impact, the observed values should be
higher.

In general, the values for the plastic flow pressure Py
evaluated with equation (191) are more consistent and are in

surprisingly good agreement witr the c¢tandard contirol test
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values, i.e. with the unconfined compression tests cr the
corresponding equivalent CBR values. The P, values evalu-
ated by equation (194) give in almost all cases two to three
times higher values. The author has not been able to find an
explanation so far for this {act, except, as was mentioned
before, when calculating Po from (194) two experimental values
have to be introduced which may lead to a multiplication of
any errors. However, the values from (194) are at least in
agreement as far as the order of magnitude for p, is ccn-
cerned and they are also more cr less consistent within any

test series.

4. Wave Propagation Velocities

The instrumenting of the target soils with accel-
erometers nad one main purpose: to measure the elastic
properties of *these target materials. They all were built
in at such a distance from the point of impact that in their

. vicinity the resulting stresses and deformatvions would remain
within the elastic range. Ffurthermore, they were to check
the validity of the assumption made generaily that the energy

" carried away by vibrations may be neglected. The following

values were evaluated from the vibration signals:

e et

(a) for the propagation velccity: a, =

P S
- B e N
B T ERT et

e Sy
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t

(b) for the period of vibration T = 7?
(c) maximum amplitude of
B;
the acceleration: b = ——

1 max Kig

2

where g = 981 cm/sec.“ is the gravitational acceleration.

The next page demonstrates the evaluation of these guan-
tities from the test data. The values obtained are listed in
Table 9. From the average values for "a" the corresponding E
moduli were found according to equation (145) which are shown
in Table 10. According to this equation (1u45) they can be

determined by:

(1 + v)(1 - 2v) 2
E = 1 - v §a

(1u45a)

=¥ al (for v = 0)

= 0.83 § 32 (for v = 0.25)

The values found are in very good agreement with those
given by Bavkan. Their scattering is relatively small.

The photographs of series %41 which have the least dis-
tortiorn and interference show clearly that the signals in the
soil have the form given by equaticn (178). If we take the

displacement:

-8x i (ax - wt)
u=BeBe ww s

and find the acceleration by double differentiation with

respect to time, one gets:
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Table 9
’ Evaluation of the Vibration Signals
Test Drop Period Period
:e;izz He;ght r, r, a, a, T1 T2 b1 max2 b2 max
cm cm cm m/sec m/sec m.sec. m.sec. cm/sec. cm/sec.
37 - A 8 275 283 482 113 105 16.3 12.9 26.0 8.8
A 9 5§20 290 810 151 159 13.5 i4.0 ?28.9 11.4
38 - A 10 275 680 1000C 400 357 14 .6 12.8 63.2 29.0
A 11 275 680 1000 314 323 15.2 13.5 23.8 8.8
4 12 275 680 1000 400 us5y 13.5 13.0 82.2 36.9
A 1y 520 680 1000 272 278 12.8 14.6 27.0 17
39 - A 15 275 i4¢ 280 200 200 12.0 11.0 38.0 /.
A 17 5290 iu4cC 280 188 200 13.0 12.0 50.8 17.3
A 18 520 iug 280 165 170 12.0 6.5 108.0 28.8
41 - A 19 275 24y 490 2ub 340 7.7 7.5 0.5 i59.0
A 20 275 242 ugs 2u2 296 5.4 7.0 39.0 121.5
a4 22 $206 2u4b uq1 24y 280 .6.3 8.0 57.¢ 232.0
42 - A 2u 275 i78 396 170 208 9.6 12.5 57.8 17.9
43 -~ A 286 275 112 233 124 123 4.5 6.1 202.0 95 .4
A 27 520 107 238 153 idu 6.0 6.0 17¢.0 55.0
yn - A 29 275 151 375 - L17 - 16.0 38.1 21.7
A 31 526 166 9L - 329 7.5 19,0 188.0 41.9
T3 23 T3 b3
41 -~ A 19 850 283 6.1 3.35
A 20 825 275 7.25 3.00
A 22 830 258 6.25 5.00
B RRESEERT TR
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. 2 ix{as + -iwt
= B w e e {195)
i.e. except for the factor w2 nothing has changed.
Table 10
Determination of E-modulus

Test . 2 E(vw = 0) E(v = 1/4)

. p a a
Series Target " Y 5 2 5 2
No. Material cm“/sec m/sec m"/sec kg/cm kg/cm
37 Clay soil 0.00126 138 18,200 230,000 180,000
38 Clayey sand 0.00138 350 122,000 1,680,000 1,330,000

- silt
3¢ Beach sand 0.00137 188 35,200 480,000 500,000
41 Princeton clay 0.00156 274 45,000 1,117,000 970,000
42 Sandy clay 0.00141 189 36,000 510,000 422,000
43 Crushed rock 0.0230 141 29,000 460,000 380,000
by Fine sand 0.00153 373 139,000 2,100,000 1,740,000
5. Evaluation of Vibration Eneryy
The energy furnished by a force P moving through a
distance s is given by:
S S 0
W s j( P ds ij[ m u ds {196)
o o
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If we determine an average value P through the integral inter-
val from the test data, then the total vibration energy could

be:

Considering a half-period 1/2 T with a sinusoidai change
of the acceleration from zero to a maximum amplitude b and

back to zero, we mavy write for the velocity change:

1/2 T

2 1 1
v = — ¢« — b =T =
1 2 2

1 b7 (197)
2 7

Anz2logousiy the distance traveled during the half-period

is:

2 1 1 .
S=7V3T=3 5 (198)

and the average force becomes:

b

P o=m 7 (199)

where m designates the accelerated mass.
The to%tal energy thus 1s determined by:
b272
m

Wos (200,

2%

If one assumes the waves propagate spherically, the acceler-

ated mass is:

2
m= 3T (201)




and the total energy then is:

"o 12 234202

3u

{202,

According to this formulation the maximum energy of vibration
evaluated for all test series was found for series 38 (page
A-16). Using the corresponding values from Tables $ and 10,

we found for this case:

1
W = ==2— « 6803 + 82.2° - 13.52 .+ 0.00138 = 18,500 cm.gm.

The total impact energy however for this test was:

Wy = 1573 = 275 = 433,000 cm.gm.

giving a ratio N of vibration energy to impact energy:

. _18,500 _ , 4o

N:..l
W, 533,000

Since this was by far the largest value found, most other

-

values being a significant amount below this ratio, we con-

cluded that fer our experiments the energy dissipated by the

vibrations of the half-space iz indeed negligible.
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X. Summary and Conclusions

The purpose of this investigation was to exzplore a method
that would permit the reliable assessment of surface soil
properties four the prediction cf deformaticns during and after
aircraft operations. After the historical development of the
penetrometer concept is briefly traced, we present the basic
theoretical aspects of the problem. A penetrometer with a
piezo-electric accelerometer as the main feature was designed.
This penetrometer was tested and for laboratory experimenta-
tion purposes evaluated. While the instrument as designed
certainly should not yet be considered an ultimate version of
a new operational penetrometer, the principle tested and the
methods employed were found valid and useful. The modifica-
tions suggested are to make the penetrometer a complete sphere,
use three mutually perpendicular accelerometers, record the
signal on magnetic tape and eliminate the cable by telemeter-
ing the signal through a built-in transmitter to a receiver,
the surface of the sphere acting as an antenna. With these
modifications it is believed that a system will be achieved
which will permit the remote determination of the mechanical
strength of a soil surface with a reliability sufficient for
engineering purposes.

The values found for the flow pressure were in reasonable

agreement with the control test values and were cenzistent
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among themselves. The solution for a sphere impacting on a
four parameter half-space was developed which gives, however,
a rather complicated, non-linear result that must yet be
evaluated numerically. Finally, it was shown that the energy
dissipated by vibrations when a body jimpacts on a half-stace
for the velocities and material investigated is indeed negli-

gible.

T DWBR e R T S s e = - e - N v 4. :
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. Figure 2

Cone Penetrometer of U.S. Army Corps of Engineers

- (a) fieid instrument

(b) laboratory instrument
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Figure 3(a)

Geometric Similarity of Indentation

for the Hardness Test

Figure 3(b)

Definition of Deformation Parameters

for Hertz Contact Problem
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Spherical Penetrometer of Tsytovich
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Figure 5

Swedish Cone Penetrometer

70 cm

Figure 6

Proctor Flasticity Needle
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Figure 9
U.S. Army CREEL Ram Fenetrometer
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Figure 10

Point of Ram Penetrometer
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Figure 11

Ram Hardness versus Compressive Strength

Figure 12

Picture of Impact Penetrometer
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Figure 13
Section through Impact Penetrometer

(Numbers are dimensions in millimeters)
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Figure 14

Volume Element in Cyli-drical Coordinate System

Figure 15

Plastic Flow Lines for Hencky Contact Problem
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Figure 16

Yield Lines for Plane and Spherical Punch
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Figure 17

Plasticized Region after Iterson
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Rheological Models
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Contact Stress Distribution after Lee
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= Four Parameter Model

.

‘.
¥

T




.,._._‘..ﬂ,.}&‘a...,....-ﬂ‘ = — : —— it v

0.50
%

s 5

oaol—1

\
0.30 \ -
\\ _ POISONS RATIO Y=l
\(K POISONS RATIO e Y4
0.20 \ '
\ -POISONS RATIO /=0
N
NN
0.10 N
\ [ —
S~~~ \\_ e —
— P i
0
0 05 16 1.5 2.0 25 30
-
Figure 21
54 Versus f
s
u Q a

Figure 22

Group Velocity of Wave Trains
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Figure 24

Penetrometer before Impact on Paraffin

Tigure 25
o

Penetration into Estan 3
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Figure 26

Deformation produced by 920 cm/sec Impact
on Cambar M-3ug

Figure 27
Test Setup for Series No. 41
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T e s t Series No. 31

Target Material: Cambar Wax M-3u48 at 31°¢.

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

Ma = 200 mV/cm E
M, = 5 msek/cm T
-y
t = 0.16 cm yees: AT
Y NEaeY)
—- i
A A
Drop Heights H = 122 cm
Oscilloscope Calibration:
M, = 200 mV/cm ¥ -t
- ¥
-
M, = 5 msek/cm ¥ -
b [}
b !
t = 0.6“ cnm WSS dddad ‘#‘:‘ ) Y'A“ “¢¢‘.:l¢l $3. 4.4 ALA‘\:‘JLI I we
-’
/ -+
Y P
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A-2
Test Series No. 31
Target Material: Cambar Wax M-3%8 at 31°C.
Calibration Factor of Accelerometer: K = 8.6 mV/g
Drop Height: H = 183 cm
Oscilloscope Calibration:
M, = 500 mV/cm I T
Mt = & msek/cm ¥ —
t = 0'8 cm 4440 AK‘h‘ 3.4 4.0 AAA:::IAAA W W AL‘LliLllL_AAALJ
. ""’I! II‘I\T'TY 1.'77':7'" '
Ay . ———Lﬂ!i“_ ; . I

Drop Height: H = 305 cm

Oscilloscope Calibration:

=
m

500 mV/cm —

5 msek/cm

/-\
3.2 cm 4 i s 2 4 2 1 1 FW Y Kllll

My

A4
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i
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A-3
Test CSeries No. 31

Target Material: Cambar Wax M-3u48 at 31%.

Calibration Factor of Accelerometer: K = 8.8 mV/g

Drop Height: H = 425 cm

Oscilloscope Culibration:

Mg = 500 mV/cm p o
-
L o
My = 5 msek/cm p % ;
-
L o
t = 3.8 cm - :ﬁfr\;::: e
A}
1 ¥
&j{ - -
! : 1 =
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T e st Ser iles No. 32
Target Material: Lubricating Grease Estan 3 at 28°¢C.
Calibration Factor of Accelerometer: K = 8.6 mV/g
Drop Height: H = 61 cm
Oscilloscope Calibration:
Mg = 50 mV/cm [ 3 '
My = 10 msek/cm <+ '
- - '
t - 12-8 Cm dd 480 isay llfg ;JYJ‘J + I\ flll bdbddit tmas b o b
= i
i | e

Drop Height: H = 122 cm

Oscilloscope Calibration:

Yy = 50 mV/cm ——r | .
My = 5 msek/cm + ! ) ‘
-+ 1) I
-+
t = 19.0 Cm bdod i -3 bl 443 —‘-Lll:l'l L‘]
~ T !
1 = N
’ l be

/




T e s t Series No. 32

Target Material: Lubricating Grease Estan 3 at 28°%¢.

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

_] M, = 50 mV/cm I T
My = 10 msek/cm - :: -
“! t = 2”‘00 cm st b (%
‘ .
L] -
* ! ' | E
Drop Height: H = 305 cm
Oscilloscope Calibration:
—
] M, = 50 mV/cm .7
l M, = 10 msek/cm , = — -
j t = 30.0 cm .~--~~-~-« vy .pvxﬁtvxv??rtl +rt "
| !
i USRS SR U ¥ A -~
. E2
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s No. 34

Target Materiai: Paraffin at 28°cC.

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

Mg = 2,000 mV/cm F
L
C
-
My = 0.2 msek/cm +
t = 0.1 cm HAHHHHAAH RS
i
4
Drop Height: H = 122 cm
Oscilloscope Calibration:
My = 5,000 mV/cm ¥ T
- b
q- "
My = 0.2 msek/cm + -
-
t = 0.1 cm bt gy ‘::=%¢5:=-:=:e: Sl ’IIL"LA_.LL i4dd
d\
ﬁ/v~ + ‘+i_~ -
| —
1 < | \ B ""T'
— 4 - - vel L A - .
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Target Material: Paraffin at 28°¢.

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 183 c¢m

Oscilloscope Calibration:

=
H

5,000 mV/cm

AL AA
TET Vv

0.2 msek/cnm

=
t
i

1-""’ Cm d

ct
]

S 40423484
LS I

-
-l
-
-
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e dEW T
tpreey
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N
-
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e
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L
-
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Drop Height: H = 305 cm

Oscilloscope Calibration:

M, = 5,000 mV/cm F T
1 M, = 0.2 msek/cm + . . I
- t - 0.3 cm IVSCE SUUNE IV JUS SUWEE T —ddbn e ALA]'
‘ |
— ' e
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T e s t Seriles No. 37

Target Material: Undisturbed Clay Soil
Calibration Factors: Penetrometer: K = 8.6 mV/g

ry: K o= 34 mV/g: r,: XK = 56 mV/g

Drop Height: H = 275 cm

e

aaaala s o
reve

Oscilloscope Calibration: *\

A
g

Penetrometer:

2 A
v

Mg = 1000 mV/cm |

vryYy

My = 10 msek/cm

FUWYS FUWWL

Mg = 0.5 mV/cm

odednd
-y

My = 10 meek/cm

4

->

* 4
Py ey e e POwwe FUwwy rove FUWYY FUuwvwe

bbbl o
’ -« ro ws oo 0w row o ace e

Sbd b
e

4
4
L,
L
P
-
-5
L 3
-
t 3
-

r, = 482 cm

Mg = 0.5 mV/cm ﬁL‘ N ™ v/’w\

10 msek/cm

=
+
]
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Test Series Ne.

Target Material: Undisturbed Clay Soil

Calibration Factors: Penetrometer: K

rqy: K = 34 mV/g;

1‘2.

8.6 mV/g
K = 5¢ mV/g

Drop Height: H = 520 cm

4, 7

Oscilloscope Calibration:

Penetrometer:

Mgz = 1000 mV/cm

My = 10 msek/cm

B

e

290 cm )
Mag = 0.5 mV/cm

My = 10 msek/cm

o g e

1
p !
12, }
ry, = 510 cm ﬁ
p
Ma = 0.5 mV/cnm
e -
Mt = 10 msek/cm
Pezetrometer: e ¥
<
<®»
M, = 2000 mV/cm h 4
L | p
j; n*fv
L 3

s s O - Y
s L A IR e PR P PN
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Tes t Series No. 38

Target Material: Clayey, Sandy Silt, Undisturbed
Calibration Factors: Penetrometer: K = 8.6 mV/g

rq: K = 31 mV/g;, r,: K = 3y

Drop Height: H = 275 cm ' l

Oscilloscope Calibration: ; ‘ ?

Penetrometer:

Mg = 200 mV/cm
M't - 2 msek/cm ................
&Jf
ry = 680 cm
Ma = 1 MV/Cm
My = 10 msek/cm
1 |
,P2 = 1000 cm | IR
Mg = 500 mV/cm [

My = 10 msek/cm

e -k - .-

mV/g

- ——— o ——
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Tes t Sex>ies No. 38
Target Material: Clayey, Sandy Silt, Undisturbed
Calibration Factors: Penetrometer: K = 8.6 mV/g
rit K = 31 mV/g: ry: K = 34 mV/g
Drop Height: H = 275 cm
Oscillos<ope Calilibration:
Penetrometer:
My = 200 mV/cm
My = 2 msek/cm
Ve
- rq = 680 cm
Mg = 500 mV/cm
My = 20 msek/em
4 b
;' t 1
r, = 1006 cm '- g SOOI o b
< i 4
Mg = 500 mV/cm P B G G ts Lot As aaan et s o SR
o ) | -
S }
My = 20 msek/cm | ¥ B
1 ;
}
L 4 ; J .
+ ! st‘+‘
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Test No.
Target Material: Clayey, Sandy Silt, Undisturbed
Calibration Factors: PFenetrometer: K = 8.6 mV/g

ryt K =31 mV/g; r,: K= 34 mV/g

2
Drop leight: H = 275 cm T{Q 3
4 . .
! ’t“r"" 1
Oscilloscope Calibration: : !t l Q
i |
SUUENE 3 PURUNE VURTUTRE I
Penetrometer: .
My, = 200 mV/cm
B S
Ht.= 10 msek/cm
rqy = 680 cm
Ma = 1 mV/cm
W, = 10 msek/cm
Ty = 100C ¢m f
Jb
Ma = 507 mV/cem ’ 1
3 b
My = 10 msek/cm 1
K ]

4
SRS NENW

3
b
4
p
b
p
3
3
b
3
S

]
3

e PRreN
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T e s t Series No. 38

Target Material: Clayey, Sandy Silt, Undisturbed

Calibration Factors: Penetrometer: K = 8.6 mV/g

rqy: K = 31 mV/gy; rp: K = 34 mV/g

Drop Height: H = 275 cm

—— it - 8

Oscilloscope Calibration:

Penetrometer:

1l
L I A e I e L I BT

My = 200 mV/cm

My 2 msek/cm

e s v mw o

Ty = 580 cnm

My = 500 mV/cm

My = 200 msek/cm

I |
- e s <L — —
r, = 1000 cm :
2 !
1
Mg = 200 mV/cm X ‘
i
M. = 200 msek/cm
4
- h e e =
4 : i
R 3 ] ]
* 1 {
TPSE JVVIN TUUSE TN TUUTTRROn
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Test Series No. 38
. Target Material: Clayey, Sandy Silt, Undisturbed

Calibration Factors: Penetrometer: K = 8.6 mV/g

é . ry: K =31 mV/g; rp,: K = 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration: e

Penetrometer: ; ‘\ - i -

A

i o
Ha = 500 mV/cm s e s \BBSE AAGES S00as Raaas oo seaes
<

2 msek/cm -

My

T R LR R PR gp > - -

‘ i l * T o

D e sy - ——— -

My = 500 mV/cm

20 msek/cm

x
+
1]

1000 cm

1]
BEasks
t——
i
T
L

M_ = 200 nV/cm

Mt = 20 msek/cm
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T e s t Series No. 3gq

Target Material: Beach Sand, Freely Deposited
Calibration Factors: Penetrometer: K = 8.6 mV/g

rq: K = 31 mV/g; r,: K = 34 mV/g

Drop Height: H = 275 cm

. - [
| !
Oscilloscope Calibration: % 4—-1 -
i -
{ b
— «—-’~—
Penetrometer: FUUUR FUUUS SUUUE DUUI PUDUWIPRDe:
1 ] .
Ma = 100 mV/cm ‘ 1 )
; S
<+
My = S msek/cm o SV e e
* - +
+
:
rq = 140 cm : - ‘ :
M, = 500 mV/cm
Mt = 10 msek/cm
|~ 3
L 3
<
L 3
L J
-
<
r, = 280 cm S
>
’ a & A & A A
Ma = 500 mV/cm L as aas o aaans anans anas sanas iasasaanas ansas anas
b ¢
-
My = 10 nsek/cm 3
-
ot Ao b
3 !
3 i
&v !
: .\w«.ﬁm«i
b
$ s
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T e s t Series No. 39

. Target Material: Beach Sand, Freely Deposited

Calibration Factors: Penetrometer: K = £.6 mV/g

-

r,: K =31 mV/g; rp,: K = 34 mV/g

'S g
R

Drop Height: H = 275 c¢m

Osciiloscope Calibration:

Penetrometer:

b i PO bt ot b b et o

M

a 100 mV/cm | ;

AGh 20 an &

My 10 msek/cm

+

DA R e o

ry = 140 cm N

.o

M_ = 1 mV/cm

10 msek/cm

=
et
i

A bAd
A0 o .

= 280 cm

: M, = 500 mV/cm ‘Nﬁ-% 3 T

YW
L2 g

POV PUUY b, FWTS FUUWe FUTTTY PUTVYS FUTTV TOWTS PUWw
AL As Aanas AA R AN S s AL AL AAS LS BAASS AA AL S & e s B0 e e
= 1 <
M = (0] k
t mse cm +
E 3
L 3
>
p
b
b
PUPYY FUYWE FUWYE PUTTE FUUYE FUTYY FUWEY FUTYS PUYYY FUUTY
AS A e s e s ae na e ma e a6 e s o e e A me e B e o g 0 o o
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T e s t Series No. 39

Target Material: Beach Sand, Ireely Depousited
Calibration Factors: Penetrometer: K = 8.6 mv/g

rqs: K = 31 mV/g; ro: K = 34 mV/g

Drep Height: H = 520 cm

Oscilloscope Calibration: ' R

Penetrometer:

-

200 mV/cm PP DU

4
+

-
1

W W
LR En mn e o

Ma

My 5 msek/cm . 1 ]

b o

140 cm

=
1"
N

mV/cm

My = 10 msek/cm

=
"
Y

<
b
r, = 280 cm b«
2 4
-
<4
<

mV/cm

My = 10 msek/cm

(TUNY FTOTEY PO OET
vy yowvwe rov

asaal o
A\ LA B4

IYOVE TUYUYE FTPYY FUDY Y FWwwY
AANAL RAALS RAASS AN ol & s

L 3
L 3

L J




No. 39

[N
o
1]

T e s t S er

Target Material: Beach Sand, Freely Deposited

-

Calibration Factors: Penetrometer: K = 8.6 mV/g

ry: K =31 mV/g; ry: K = 34 mvV/g

4RI S s

Drop Height: H = 520 cm

Oscilloscope Calibration:

Penetrometer:

—— -

M,

200 mV/cm

My = 5 msek/cm

140 cm

e
[N
[

My = 2 mV/cem

Mg = 10 msek/cm

) / 1;
3
r, = 280 cn I
*
{.
. _ 4
Mg = 2 mV/cm ]
-——{-—’\h/ "w d
My = 10 k/c b
t - mse c'm P Fowwe A A A & ey
R e s s AR A s G mas mm e CC:#»‘###; b egt-b-bep o s nan e
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Tes t Series No. 51
Target Material: Princeton Red Clay
Calibration Factors: Penetrometer: K = 8.8 mV/g
ry: K = 34 nmV/g; ro: K = 34 mV/g;
rz: K = 170 mV/g ‘
Drop Height: H = 275 cm
‘scililoscope Calibration:
Penetrometer: L l E ......
Mg = 500 mV/cm ﬁ | !
_ - '
My = 5 msek/cm !
ry = 244 cm
] M, = 500 mV/cm
- M, = 10 msek/cm

ro, = 490 cm
M, = i mV/cm
M; = 10 msek/cm
™ r, = 850 cm
M, = 200 mV/cm
My = 5 msek/cm ‘




T e s t Series ‘No., u41

Target Material: Princeton Red Clay
Calibration Factors: Penetrometer: K = 8.§ mV/g

ry: K= 34 mV/g; rp: K = 34 mV/g;
rg: K = 170 mV/g
Drop Height: H =.275 cm
Oscilloscope Calibration:
Penetrometer: T ’ . '

My = 500 mV/cm |

My = 5 msek/cm

242 cm

=
1)

a 500 mV/cm

My = 10 msek/cm

r, = uealcm
na = 1 mV/cm
M = 10 msek/cm kb b \ '
| 1
ry = 825 cm : ; s ] R
M, = 0.2 mV/em r‘;;?%
a . - S LR B R N Y S S N X
My = 5 msek/cm : V
a————— T PR R e,
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T e s t Series Ne. u1

Target Material: Princeton Red Clay

Calibration Factors: Penetrometar: K = 8.6 mV/g

34 mV/g; K = 3% mV/g
170 mV/g

Ty K r2:

]

rg: K

Drop Height: H = 275 cm

Oscilloscope Calibratioan:

. Penetrometer:
M. = 500 mV/cm

5 msek/cm

=
t
L]

=
n

500 mV/cm

10 msek/cm

A8
=
t
n

475 cem

=
1]

500 mV/cm

j< <
+
1]

10 msek/cm

r, = 815 cm

=
1]
N
o
(o]

mV/cm 'S

>
-

.
2 !
3 i N
4 |
444 AP S N
-+
L '
8 '
.
'
$

=
(s

(1]

wn

msek/cm

4
4
4
4+
+
+
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s
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+
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Series

Target Material:

Calibration Factors:

;
rqy: X
& rz: K
Drop Height: H = 520 cm

Oscilloscope Calibration:

Penetrometer:

Ma = 500 mV/cm
Mt = S msek/cm
r1 = 244 cm

Ma = 1 mV/cn
Mt = 10 msek/cm
I'Q = 491 cm

M, = 2 mV/em
Hf = 10 msek/cm
rs = 83¢ cm

M, = 0,2 mV/cm
My = 5 msek/cm

b e i 420 ——

No.

Penetrometer:

41

Princeton Red Clay

K = 8.6 mV/g

34 mV/g;
170 mV/g

ro: K = 34 mV/g;




T e s <t Series No. 42

Target Material: Silty Sand (Plowed Field)
Calibvation Factors: Penetrometer: K = 8.6 mV/g

r,: K = 34 mV/gs r,: K = 34 mV/jg

Drop Height: H = 27% cm

Oscilloscope Calibration:
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s T Series No. &2

Target Material: Silty Sand (Plowed Field)
8.5 mV/g

r,: K = 34 mV/g; r,: K

Calibration Factors: Penetrometer: K

34 mV/g

drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:
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Ma = 200 mV/cm
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Mt = 2 msek/cm =ttt
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Mg = 500 mV/cm
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My = 10 msek/cm
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T es t Series No. 42
Target Material: Silty Sand (Flowed Field)
Calidbration Factors: Penetrometer: K = 8.6 nV/g
ry: K = 34 mV/g; r,: K = 34 mV/g

Drop Height: H = 520 cm
Oscilloscope Calibration:

<
Penetroneter: 3

L J
My = 200 mV/cm 5E
My = 2 msek/cm Y rr "VHE A et M
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B, = 1 mV/cem t 1 -
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e s t Series No. a3

Target Material: Crushed Rock, Compacted
Calibration Factors: Penetrometer: K = 8.6 mV/g

r = 348 mV/g; ry: K o= 36 mV/g

1:

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:

M

a 500 mV/cm

Mt = 1 msek/cm

ry = 112 cm

Ma = 2 mV/cm

Mt = 10 msek/cm

r. - 233 cm f ’
< |

Ma = 1 mV/cm ¢

Mt = 10 msek/cm

b Al o sA




T es t Series No. 43

Target Material: Crushed Rock, Compacted

Calibration Factors: Penetrometer: K = §.6 mV/g

ry: K = 34 mV/g; ry: K = 3% mV/g

Drop Height: H = 520 cm
Oscilloscope Calibration:

Penetrometex:

M, = 500 mV/cm

My = 1 msek/cm

rl = 107 cm

M, = 2 mV/em

Mg = 10 msek/cm

r, = 238 cm —T I ;

M, = 1:V/cm | Al J“M

msek/cm
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Tes t Series No. 43

Target Material: Crushed Rock, Compacted

Calibration Factors: Penetrometer: K = 8.6 mV/g
rq: K = 34 mv/g; 1r,: K = 34 mV/g

Crop Height: H = 520 c¢m

Oscilloscope Calibration:

Penetrometer:

M, = 100C mV/cm
My = 1 msek/cm
rqy = 107 cm
My = 2 mV/cm
My = 10 msek/cm
r2 =z 238 cm l | [ o
B, = 1 mV/cm ) . ! l
] -

My = 10 msek/cm 1 %
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Test Series No. uu
Target Material: Uniform, Fine Sand, Natural Deposit

Calibration Factors: Penetrometer: K = 8.6 mV/g

rq: K = 34 mV/ig; r,: K = 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

Penetrometer:

n

Ma = 200 mV/cm

2 msek/cm

My

rqy = 151 cm

M, = 1 mV/cm
My = 10 msek/cm
b
ry = 375 cm ! I i
: - |
M, = 500 mV/cm O ;
]

Ht = 10 msek/cm FNM—-W{
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Target Material: Uniform, Fine Sand, Natural Deposit

Calibration Factors: Penetrometer: K = 8.6 mV/g
rq: K = 34 mV/g; ro: K = 34 mV/g

Drop Height: H = 520 cm

Oscilloscope Calibration:

Penetrometer:

My = 500 mV/cm

Ht = 2 msek/cm
rl = 160 cm

Ma = 2 mV/cm
Ht = 10 msek/cm

r, = 337 cm

mV/cm

=
i
(33

10 msek/cm

My =
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A-31
T & s t Seriec No. ub
Target Material: Urniform, Fine Sand, Natural Deposit
Calibration Factors: Penetrometer: K = 8.6 mV/g
rq: K = 34 mV/g; ro: K = 34 mV/g
Drop Height: H = 520 cm
Oscilloscope Calibration:
Penetrometer:
Mg = 500 mV/cm
My = 2 msek/cm
rq = 166 cm
Mg = 1 mV/cm
My = 10 msek/cm
r, = 394 cm ’ . .
Mg = 500 mV/cm
My = 10 msek/cm
AN
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‘ VRN YAV e
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T e s t S eries No. 45

Target Material: Swamp
Calibration Factors: Penetrometer: K = 8.6 mV/g

rq: K = 34 mV/g; r,: K = 34 mV/g

Drop Height: H = 275 cm

Oscilloscope Calibration:

/

Penetrometer:
Ma = 50 mV/cm
My = 20 msek/cm
rqy = 76 cm
M, = 500 mV/cm
Mt = 20 msek/cm

'
r2 = 76 cm ?
Ma = 500 mV/cm
My = 20 msek/cm




T e s t S erie s No. 12

Target Material: Sandy Silt with some Clay;
Natural Surface Deposit

Calibration Factor of Accelerometer: K = 8.6 mV/g

Crop Height: H = 61 cm

Oscilloscope Calibration:

Mg = 100 mV/ecm
Mt = 2 msek/cm
t = 1.8 ¢

Drop Height: H 122 cm

Oscilloscope Calibration:

Mg = 200 mV/cm
My = 2 msek/cm
t = 2.1 cm
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T e s t Series No. 12

Target Material: Sandy Silt with some Clay;
Natural Surface Deposit

. Calibration Factor of Accelercmeter: K = 8.6 m¥V/g

.rop deight: H = 183 cm

Oscilloscope Calibration:

Mo = 200 mV/cm
v My = 2 msek/cm
t = 3.7 cm

Drop Height: H = 305 cm
Oscilloscope Calibration:

M

a 2006 mV/cm

Mt T 2 msek/cm

t = 4.5 cm
g
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T e s t Series No. 12

Target Material: Sandy Silt with some Clay;
Natural Surface Deposit

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 425 cm

Oscilloscope Calibration:

Ma = 5800 mV/cm
Mt = 2 msek/cm
t = 7.9 cm

Drop Height: H = 700 cm

Osc¢ lloscope Calibration:

Ma = 500 mV/cm
My = 5 msek/cm
t = 5.2 cm
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Tes t Series No. 15

Target Material: Ottawa Sand, U.S. Sieve Size No. 30-u40

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

'4.8 Cm R :

Ma = 100 mV/cm

My = 5 msek/cm i l l I Z ‘
1 — .

t o= oo :

Drop Height: H = 122 cm

Oscilloscope Calibration:

Ma = 100 mV/cm
My = 5 msek/cm
t = 5.2 cm
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Target Material: Ottawa Sand, U.S. Sieve Size No. 30-40

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 183 cm

Oscilloscope Calibratiomn:

=
i

s = 100 mV/cm

=
"

T 5 msek/cm

-+
]}

5.7 cm

Drop Height: H = 305 cm

Oscilloscope Calibration:

Ma = 200 mV/cm
Ht = 5 msek/cm
t = 6.4 cm
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- T& s t S eries No. 1§
. Target Material: Ottawa Sand, U.S. Sieve Size No. 30-40
% Calibration Factor of Accelerometer: K = 8.6 mV/g
g
: Drop Height: H = 425 cm
Oscilloscope Calibration:
’ My, = 200 mV/cm
M, = S msek/cm
t - 608 cm
H
i
S
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T e 8 t S er . e s No. 19

Target Material: Beach Sand, Natural Deposit

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibration:

=
1

50 mV/cm

5 msek/cm

=
t
|

6.8 cm

+
"

122 cm

Drop Height: H

Oscilloscope Calibration:

My = 50 mV/cm
Mt = 5 msek/cm
t = 7.0 cm
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Tes t Series No. 19
- Target Material: Beach Sand, Natural Deposit
Calibrati-n Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma = 100 mV/cm
I'Lt = 10 msek/cm
t = 7.0 cm

Drop Height: H = 305 cm

Oscilloscope Calibration:

! M, = 200 mV/cm
Mt = 5 msek/cm
t = 7.5 ¢cm




T € s ¢t Series No. 19

Target Material: Beach Sand, Natural Deposit

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 425 cm

Oscilloscope Calibration:

Ma = 200 mV/cm
My = 5 msek/cm
t = 7.8 cm

Drop Height: H = 700 cm

Oscilloscope Calibration:

Ma = 200 mVY/cm
Mt = 5 msek/cm
t = 8.0 cm

3
g
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T es t Series No. 22

Target Material: Princeton Red Clay;
Moisture Content = 2.65%, w = 86.8 1lb/ft

3

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Height: H = 61 cm

Oscilloscope Calibratlon:

Ma = 100 nmV/cm
Mt = 2 msek/cm
t = 2.3 cm

Drop Height: H = 122 c¢m

Oscilloscope Calibration:

Ma = 100 mV/cm
Ht = 2 mgek/cm

-
t = 3.0 cm




T es Tt Series No. 22

Target Material: Princetcn Red Clay; 3
Moisture Content = 2.65%, w = 86.8 1lb/ft

Calibration Factor of Accelerometer: K = 8,.€ mV/g

Drop Height: H = 183 cm

Oscilloscope Calibration:

Ma = 200 mV/cm
Mt = 2 msek/cm
t = 4,0 cm

Drop Height: H = 305 c¢m
Oscilloscope Calibration:

M_ = 200 mV/cm

1}
N

Ht msek/cm

t = 4.2 2m
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Tes t Series No. 22

Target Material: Princeton Red Clay; 3
‘Moisture Content = 2.65%, w = 86.8 1b/ft

Calibration Factor of Accelerometer: K = 8.6 mV/g

Drop Hzight: H = 425 cm

. _,“.M,Mxmmmmm%%wm&m

. Oscilloscope Calibration:
M, = 500 mV/cm
. My = 2 nmsek/cn

t 4.8 cm (7 I f

L

ﬂ):n-u~u4g;;

4

Drop Height: H = 122 cm

Oscilloscope Calibration:

=
(1]

a 200 mV/cm

< 4
t
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2 msek/cm
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