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ABSTRACT 

The stability of a fluid contained in a circular cylindrical tank with a flat» flexible 

bottom under a periodic axial excitation is studied.   A variational approach is 

formulated.   An approximate solution results in a pair of coupled ordinary differ- 

ential equations with periodic coefficients.   A method of handling the stability of 

the solutions of such a system of equations is presented.   Numerical results are 

discussed, 

NOMENCLATURE 

English Symbols 

A   , B n •    n 

BM 

B 

¥ 

Constants 

Membrane number 

Bond number 

1 

■rt -w   .^m***- 



ö0 

th c    , a Amplitude of the n " sloshing mode 

F^ Potential of the solid-liquid-gas interface 

F« Potential of the edge load acting on the rim of the tank 

bottom 

g(t) Gravitational acceleration, time dependent 

g0 Mean local gravitational acceleration 

g1 Amplitude of the imposed axial acceleration 

G (T) Nondimensional gravitational acceleration 

h Membrane thickness 

H Nondimensional free surface shape 

I, L , I„, L , I. Functionals 

J0 , J« Bessel functions of first kind 

k n    root of the equation J- (k )   =  0 

I Depth of liquid 

L Nondimensional depth of liquid 

L. Pressure energy in nondimensional form 

L2 , L« Lagrangians in nondimensional form 

Mi » M-2 , M« Matrix 

N Midplane stress resultant 

A   u> n    sloshing frequency for rigid tank 

p Pressure 

P Nondimensional pressure 

rft Radius of the tank 

(r , 0 , z) Cylindrical coordinates 

(R , 0 , Z) Nondimensional cylindrical coordinates 



Sl ' S2 ' S3 Surfaces 

t Time 

y Modal matrix 

w Transverse deflection of membrane 

W Nondimensional transverse deflection of membrane 

z Vertical coordinate 

Z Nondimensional vertical coordinate 

Greek Symbols 

a Nondimensional axial acceleration 

\ 
Constants 

ri'r3 Boundary curves of S- , S~   respectively 

6X , «2 , «S 
Constants 

V Free surface shape 

0 Azimuthal coordinate 

\ Mass ratio 

An Constants 

Vn Constants 

P Density of membrane 

"o Density of liquid 

a Surface tension 

T Nondimensional time 

<P Velocity potential 

$ Nondimensional velocity potential 

U Forcing frequency 

ft Nondimensional frequency 

3}5 
aft 



2       2 2 
Q- , Q   (n = m , ... , N) Eigenvalues of Ü    where M , ... , N indicate the 

fluid modes which are chosen for the approximate 

solution 
2 

flw Frequency parameter for the membrane 

ti ' Frequency parameter for surface tension 

2    —2 
V , V Two-dimensional Laplace operator 

/ i „2    -2     i   a    a     i   a2    .     ,. , .  . 
ro r   d0 

coordinates] 

V , V Three-dimensional gradient operator 

a 0 V       V        r  dr      r   Be        z  dz 

in cylindrical coordinates; for the free surface and 

the membrane, ignore the e    — term] 

• — 



THE EFFECT OF WALL ELASTICITY AND SURFACE 
TENSION ON THE FORCED OSCILLATIONS OF A 

LIQUID IN A CYLINDRICAL CONTAINER 

1  INTRODUCTION 

Dynamics of large liquid-fuel rockets naturally involve the motion of a liquid in a 

flexible container.   The symmetric modes of the fluid motion, which influences the 

pressure at the tank bottom, and therefore influences the pressure in the pump and 

in the combustion chamber, as well as thrust and rocket acceleration, have an impor- 

tant effect on the structural dynamics of a rocket.   In some instances the longitudinal 

oscillations were so serious as to affect the safety of the vehicle.   For this reason, 

the analysis of the forced oscillations of the liquid container is important. 

At ground level, perhaps the effects on fuel sloshing of the flexibility of the tank wall 

and the surface tension of the free surface are negligible.   At reduced gravity condi- 

tions, these effects become more evident.   It is the purpose of this article to evaluate 

the effects of tank flexibility and surface tension on the stability of liquid motion in the 

symmetric modes. 

Sloshing of liquids has been studied by many authors.   Although most of them considered 

rigid containers (Rpf. 1), Miles (Ref. 2) considered bending modes of a flexible con- 

tainer, and Bleich (Ref. 3) investigated the longitudinal modes.   Recently, Bhuta and 

Koval (Refs. 4 and 5) studied the coupled oscillations of a liquid in a tank with a flexible 

bottom.   They defined the normal modes of the system, and treated the orthogonality 

and expansion theorems.   Bhuta and Yeh (Refs. 6 and 7) considered the problem of 

arbitrarily assigned velocity distribution on the tank bottom. 

On the other hand, there is substantial literature about the influence of surface tension 

on sloshing, e.g., Yeh's bibliography (Ref. 8) and papers by Bond and Newton (Ref. 9) 

and Reynolds (Ref. 10).   Most of these studies, however, are concerned with free 

oscillations.   Very little has been done about the influence of surface tension on forced 

oscillations, and no work seems to have been done on coupling with the flexibility of 

the tank. 



In the present paper, a circular tank v-ith a flexible bottom under vertical periodic 

excitation is studied.   The problem is first formulated in the form of differential 

equations and then in the form of a variational principle.   An approximate solution is 

presented, which results in a pair of coupled ordinary differential equations with 

periodic coefficients.   The stability of the solutions of these equations is discussed. 

2  STATEMENT OF THE PROBLEM 

A circular cylindrical container with rigid side walls and a flat, flexible, bottom 

contains a liquid with a free surface.   The tank walls are subjected to an oscillatory 

axial acceleration, in addition to a constant me an-local-gravitational acceleration 

directed along the axis of the cylinder.   Above the liquid surface is a gas with con- 

stant pressure.   No external force acts underneath the tank bottom.   The situation is 

pictured in Fig. 1.   The problem is to determine the motion of the liquid and, in 

particular, its stability. 

The fluid properties, including the surface tension, are assumed to be uniform, 

constant, incompressible, and inviscid. 

The mean free surface of the liquid is assumed to be a plane perpendicular to the 

cylinder axis.   In low-gravity and finite surface tension, one may have to consider 

a curved mean free surface.   The governing criterion is the Bond number defined 

below.   In this paper, we assume that the 

Bond number is sufficiently large so that 

the free surface is approximately a plane. 

The case of low Bond number is discussed 

later. 

MIAN ACCEU«ATION 
I I 

OSCIllATCXY 
ACCELERATION   f 

a COS 

As a further simplification, we assume that 

the deviation from the static equilibrium con- 

dition is small, so that the deflections of the 

free surface and of the tank bottom, the fluid 

velocity, and hence the velocity potential, 
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Fig. 1   Geometry of the Problem in 
Nondimensional Variables 



may be considered infinitesimal quantities of the first order.   Under this assumption, 

all the equations can be linearized, and the mathematical problem is relatively simple. 

A number of interesting nonlinear problems are ruled out by this assumption.   But, 

as an investigation of the initial tendency toward instability, the linearized theory 

should be adequate. 

3 MATHEMATICAL FORMULATION 

Consider a quantity of inviscid liquid situated in a cylindrical container of radius rQ 

as is shown in Fig. 1.   The cylindrical polar coordinate system is chosen so that the 

+ z direction is directed upward away from the liquid, the zero on this axis being fixed 

on the mean free surface.   If the fluid is assumed inviscid and incompressible, and the 

motion irrotational, the equation of continuity may be expressed in terms of the velocity 

potential  <p, 

o ,r8r   8r    v2s<?   az2 

and the velocity components u ,   v ,   w are 

1 8   r|- + ^4+J4)0  ■ 0 (1) 

u =  <t>r      ,      v = - 0Ö      ,      w =  <pz (2) 

The usual subscript notation is used to denote partial differentiation. 

The kinematic conditions at the tank walls and the free surface are 

Ü = U =  0      on     r =  r0 (3) 

—       dö        8w 
11/      ~      —   «-       s      ——— 

az      at on     z  =  -I (4) 

w = If = I?  on  z = ° (5) 



where w denotes the deflection of the tank bottom, and  T] denotes the deflection of 

the free surface, both positive in the + z  direction, and both assumed to be 

infinitesimal. 

Since the motion is irrotational, Bernoulli's equation is satisfied throughout the liquid 

domain.   In particular, at the free surface, we have 

£■ =  - |(V</>)2 - g(t)T) - 0   + c(t) (6a) 

g(t)   =   gQ + gjCOS o>t (6b) 

where 

c(t) 

g.COS U)t 

p 

arbitrary function of time 

mean local gravitational acceleration 
imposed axial acceleration* 
pressure just inside the interface 

Taken as positive if they 
are directed toward the 
tank bottom (along the 
-z direction) 

The pressure p is related to the pressure just outside the liquid,   pr ,   by the 

relation 

Pn - P  " aK (7) 

where 

a    =   surface tension 
K   =   total curvature of the free surfaces 

♦Here we just write out a special form of imposed axial acceleration.   The method 
developed later can be applied to a general periodic imposed axial acceleration. 

8 
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In linearized form, under the assumptions that rj/rQ « 1 and  |gradr?|< 1,   we 

have 

K      VT1     r9r Vdrf + r2 ^ (8) 

If the pressure of the gas pr  is a constant, then without loss of generality we may set 
.^..2   . 

Pc = 0.   The function c(t)  can be absorbed in </> .   We can also neglect   |V0|     in 

Eq. (6) and evaluate  <t>.  on the surface  z = 0 

we obtain the linearized free surface condition, 

Eq. (6) and evaluate  <t>.  on the surface  z = 0 under the scheme of linearization.   Thus 

^v2 
p

0 
„ = (f?)2=/g<t)n (9) 

Similarly, Bernoulli's equation gives the pressure on top of the bottom wall 

<P>z = -!+w  = Po[-K)z = _,  -&<'><-' *w> (10) 

No other forces are assumed to be acting on the tank bottom.   If the tank bottom is 

very thin and is prestressed so that it behaves like a membrane, then the equation of 

motion of the bottom is 

_2 
N V w  =  oh r H 

9   w ,     ,,v 
+ (P) n (11) 

where 

N r 
P 
h 

Ph 

tensile stress resultant in the tank bottom (assumed to be a constant) 

density of the tank bottom material 

tank bottom wall thickness 

mass per unit area of the tank bottom 



L^ 

A combination of Eqs. (10) and (11) gives the linearized equation of motion of the 

elastic bottom as a membrane: 

2 
NrV2w  =  fjhd-f - p0g(t)w - P0(Hj + (Pk + Pon g(t) (12) 

In reality, a tank with flat bottom develops both bending and stretching stresses under 

fluid pressure.   Equation (12) is a good approximation only if a membrane tension is 

built in at the edges by stretching the bottom onto a rigid cyi iider before the two are 

welded together. 

It is necessary to specify the boundary conditions for  r) and w at the edge  r = r0 . 

We choose 

w  =  0      when     r  =  r0 (13) 

|jj = 0      when      r =  rQ (14) 

The last condition is a special case of zero capillary-hysteresis.   It is consistent with 

the simplifying assumption that the undisturbed free surface is a plane  z = 0 .    In a 

very-low-gravity condition, the mean free surface is curved, and Eq. (14) should be 

replaced by the condition 3Tj/8r= yrj at the wall   where y is a physical constant. 

These equations define the linear, inviscid problem of sloshing under appropriate 

initial or periodicity conditions. 

4   DIMENSIONLESS EQUATIONS 

Taking the radius of the cylinder  r0  as the characteristic length, the gravitational 

acceleration g    as the characteristic acceleration, and  u as the characteristic 

frequency, we define the dimensionless variables as follows: 

10 



4 

i   ; 

R ~ ±- 
r z - -£■ 

- 

ro 

* 

w       = — 

G(T) = 

T    =    Cut 

= _4L_ H = -3- 2 ro 

W 

~ ro 
«1 a = F 8o 

*0 + gj^ cos 

«0 

wt 
r -       p 

2   2 p0c;   r0 

(15) 

We define the dimensionless parameters as follows: 
2 

Bond number = B   = PQEQTQ/V 

Membrane number = B,, = pAg„rA/N M        0   0  0      r 

2 3   2 Frequency parameter for surface tension = ft   = p   r u  / a 
(16) 

2 3    2 Frequency parameter for the membrane = ßM = pn rft co  / N 

Mass ratio = X = --JÜL 
<>0r0 

and the operator 

V2  =  l/R9/8R(R8/8R) + l/R2 d2/d02   =  r2V2 
(17) 

Then the equations become 

£,♦*•.-. (18) 

11 

OR 



V2 H - n2 (ff-\ - B   G H =   0 
<MaT/Z=0        " 

with the boundary conditions 

and 

(19) 

2 
v2w.x02MLW + 02j||i\ +BMG(r)W-(X+L)BMG(r)=  0        (20) 

|| =  0      on   R = 1 (21) 

||. M    „   z = 0 (23, 

W   =   0       on    R = 1 (24) 

ff =  0       on   R = 1   (assuming y = 0) (25) 

Equations (18) through (25) show that the problem of sloshing depends on the parameters 
2 2 Ü   ,  B   , a ,  8w v  B«, ,  X a  and  L. 

These dimensionless parameters are not all independent; since 

^l* = ^-ß2 and BA>r = 7J-B (26) M       N     a M       N     a l    ' r r 

12 
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therefore 

B M U 

B n 
M 
2 (27) 

2 2 However, we retain the sets of symbols  ß   ,  B    and ft., ,  B,, because these two 

pairs of parameters are not both likely to be important.   The conditions are: 
2 

* ft-. , BM — 0  if the tank bottom is rigid 
2 

• ß   , B  -* « if the surface tension has no effect 
cr      a 

5  DISCUSSION OF ANALYTICAL SOLUTIONS 

Consider symmetric modes of motion in which $ , H , W are independent of the angular 

coordinates 0 .   A solution of Eq. (18) may be posed as 

oo 

* =  d0(r)Z + C0(T) +   2  Jo<knR) 

n = l 

cosh k   Z sinh k   Z 
c   (T)   , -   .n T  + d  IT) r—-r nx   ' sinh k   L       nx   ' cosh k   L n n 

(28) 

Then Eqs. (22) and (23) give 

oo 

H = <UT) + 

n=l 

(T) 
knJ0<knR> 
cosh k   L n 

(29) 

and 

W 

oo 

= d0(r) + f(R)+   2knIdn<T>-cn<T>lJ0<knR> 
n = l 

(30) 

13 



Both Eqs. (21) and (25) are satisfied if the  k fs are the roots of the equation 

W = ° n = 1 , 2. 3, (31) 

Eq. (24) is satisfied by taking 

00 

d0<T>+   2  knk<T>-cn<T>iJ0<kn> = 
n=l 

(32) 

and 

f(R) =   (X+ L) 1 - 
Jo<^R) 
Jo(>J%) 

Here,   f (R)  is the static deflection of the membrane.   We assume that, if BM  is 

positive,   V^M  is less tiian the *irst root °* J0^ = °' namely, 2.4048.   To satisfy 
Eqs. (19) and (20), we substitute  * ,   H ,  W  from Eqs. (28) through (30), collect 

terms, and represent the lefthand side as a Fourier-Bessel series in JQ (k   R).   Since 

the series vanishes, every coefficient of Jn (k   R) ,  n = 1, 2 , ,  must vanish. 

Thus, from Eq. (19) we obtain the necessary conditions 

Ql60(T) + B(jG(T)d0(T)  =   ° (33a) 

and 

^cn(n^kntanhknL[k2 + B(jG(r)]dn(T) =   0 (33b) 

Multiplying Eq. (20) by  R  and integrating with respect   to  R from  0  to  R ,  we get 

14 



pana? 

R R 
R|f ^BMGjRW(R,r)dR-XQ^ 

o 
"S f W(R' r) RdR 

R 
<* + L) 2        2    f B* 

2       BM GR   + QMJ  8T Z=-L 
RdR =   0     (34) 

2 
Any function W(R,T)  of class C    in the closed interval  0  to 1   for R  satisfying 

the above equation will satisfy Eq. (20).   A substitution of Eqs. (28), (29), and (30) into 

it gives 

oo 

n=l 

kn<cn-dn>Jl<knR)+IiMG  TT +   £  <dn " cn> Jl <kn R) 
n-1 

-Xfi M 

doR oo 

2     ^   I(an-Cn)Jl(knR) 
n=l 

+ °M| 
F "^r 0 0.       Y Jl<knR> R + 

n=l 

(c   coth k   L - d   tanh k   L) x  n n n n    ' 
(X+L)V% 

o 1     Ji (VB77R) = o Jo<V%>      X  V  M 

(35) 

By expanding R and «L (VBM **)  in terms °*  ^i ( k   R)»  we can collect the coefficients 

of J- ( k   R)  and set them equal to zero, to obtain 

Q M 

n 
[cn(coth kn L + X kn) - cfn(tanh kn L + X kn>] + (fcj - BM o) (cfl - dn) 

n M 
knW 

BMG 2o(X + DVB^J^VS^)      kn 

knJ0<ktt>
J0<V5M)       BM ' kn 

(36) 

15 
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Now, if we want to truncate the infinite series in Eqs. (28) through (30) by taking 

n = m, , N ,   we see that Eqs. (32), (33), and (36) always involve  2(N - m + 2) 

unknowns and  2(N - m + 2)  equations, which in general have solutions. 

Of course, we can do the same thing for Eq. (19) to obtain 

o  . /   o \ Smh KL /   9 \ 
4cn+« + BoG) V^ kn L>dn  = "j^T K S9 + Ba G V <37> 

However, since we have assumed 9H/8R = 0  at R = 1 ,  the series of Eq. (29), after 
twice term-by-term differentiation, is still convergent.   Thus Eq. (37) coincides with 
Eq. (33). 

We shall now discuss the solution for Eqs. (32), (33), and (36).   For the case of free 
vibration, i. e.   G = 1   or a = 0,   solutions for c   ,  d    can be obtained rather easily. 
If we let 

n n 

and (38) 

d    =  D   eißT 

n n 

then, from Eq. (33), we obtain 

B 
C    =   — D u0       02 .2 ~0 

a 

and (39) 

r 
kn(^BJ^hknLD    __PL 

16 



-   * - J 

i 

and from Eqs. (36) and (39), 

"M"   JA(k ) U0      Pnn 
0    n 

(40) 

where 

n ß2 p2 (coth k   L + A k ) 
M   ft n n ß2  ß2(tanh k   L + A k ) M      x n n' 

♦*«-■»$- 
(41) 

Substituting into Eq. (30), we have 

W = eißTD, 1 + 

OO 

n=l 

ß^ß2(L+ A) 
1  - 

p  \Jn(k  R) *n \ 0x   n    ' 

n ß 2/ J0<kn> 
+ f(R) (42) 

Now we can easily see that the coefficient of J ( k   R) in the above series is of order o *   n    ' 
l/(.kg/2) for large n ; so the series is actually divergent after twice term-by-term 

2 
differentiation with respect to R.   At R = 1 , W = 0 ,  we have D   & 0 for ßf , & 0 

o M 
2 

(ßM = 0 corresponds to rigid tank); therefore, 

t(*T)  = 1 + 
ßiur(L + A)k "M 

n=l 
n 

»(«•.<).. (43) 

17 



LA. 

This equation will determine the eigenvalue   Q .   It can be shown that, for p    ^0, 

v   -0 , all the roots  Q  are real, and no double roots exist.   In the case **M 

Q!s can be obtained asymptotically in a rather simple fashion.   Let 

$2* -0, some 

a   = n, 2 .4 (i - «! 4 - «» oj, - », «ii (44) 

Then we have 

ß. * -o 
2  [_2 
M [pJ(cothkfL+ Xk,) - pj( 1 - fi1oJ| - 62njj ... )(tanhk|L+ Xk,) 

i 12 1    ' 

+ [ (öl + 62) x* " pl 61(tanh k* L + Ak*)l °1 

+ [(fij + 26t 62 + «,)x| - pf 62 <tanhkf L + Xk£)j 0«, + o(o^) 

4 
(45) 

where 

xi " ki(k? " BM) (46) 

Equation (43) becomes 

1 - 
pJ(L + \)(öx + ö2"M + •••)" 

2 
M 

6lxf " p« (co'h klL " tanh kj L) + [ (öj + 62) x, - pf^ (tanh k, L + X kj)] fi^ + ... 

nMfr+x> 

oo 

2 
n = l 

1 

n        M k? - B M 

+ 0 K) - (47) 

18 



'■; 

In order that the above equation be valid as  ßM ~* ° »   we must nave 

coth k| L - tanh k^L   2 

6i =             x,             p* 

and, since 

(48) 

CO 

I 
n = l 

To(>K) 
k2 - B„ n        M 

BM 2>MI(>W 
(49) 

Eq. (43) becomes 

l - 
p2(L + X)(ö1 + ö2ß^+...) 

(«I + «2)*1~ PiÄ1<Unhkf L + Xkj) + [x;(4+ 26!fl
2 

+ 63) " Pj «2(taah k(L ♦ \k,)J ß£, + ... 

- nj^PjV + X) '1 Jo(^) 
BM      «V^'l (V»M)      k'-BM 

+ 0 
(«ft)"« 

(50) 

Expanding the lefthand side in power series of 0„,   and putting the coefficient of 

0„   equal to zero, we get 

pJ(L+ X)«j 

(61 + 62)x* -P|
2°1<tanhklL + XV 

= 0 (51) 

and 

p2(L + X) 62 - (b\ + 2ÖXÖ2 + 63) X| + pfö^tanh kf L + Xkf) 

[PJ(L + M|* 
jo(>ra 

B M 2>f^Jl(V^)     k"-BM. 
6.   = 0 

19 



Then 

6„  = 
giPi"|- 6i*t 

and (52) 

<5„  = 
Jo(\TO 

.>[% 2V^Ji(V^) 

kl " BM 

Therefore, after some rearrangement, we get 

0, 
2 

Pf -?■') 
2^ 

A 
-^ '^ 

i vi)Vi 
■r- - 1 

where 

¥J+14 (53) 

A. = 
n 2 

M 

(54) 

From Eq. (53) we make two interesting observations: 

• The term  p. is the I      nondimensional natural sloshing frequency of the 

liquid in a rigid tank.   Since   (HJK ) > 1 •   we conclude that   ß^   < p? . 

• The elastic effect is at least of order 

a M 
sinn 2k. L [■21K - "i)j 

20 



Because of the presence of the elastic bottom, the sloshing mode shapes ire no longer 

as simple as those in a rigid tank; but, in rigid tanks, the influence of cross coupling 

of different fluid modes on the natural frequency is of order ftM . 

2 
The other limiting case is:  pQ , the density of the fluid, tends to zero while B   ,   Q 

are bounded away from zero; then Eq. (43) will tend to the free-vibration frequency 

equation for a circular membrane -i.e., 

?(ß2)  =  1 +  £ 
^ 2    9 

2G2-k2 

n n n= 1 k- n   -k 

(55) 

kQ JA (kfi) 
= 0 

or 

where 

2J1(k£2) 

Jo(kQ)  = 0 

2     2 
2        Phr0 q» 

k    " N r 

6  STABILITY OF THE SOLUTION 

To study the stability of the solution (Refs. 11 and 12), we shall consider the following 

more general system of equations:* 

*♦    I    A*»-V     S    **-l **'*'» n= - °o n= - co 

(56) 

'«* ? "^""V..i-Vi^i-« 

♦This is an extension of Hill's method (see Ref. 12, p. 413) to a system of two equations. 

21 
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QO 

where  ßQ * AQ ,  AQ > 0 ,   BQ > 0 ,  A^ = B,  = 0 ,     £    0n  (where ß   =   | A  |    cr 
n_oo 

|B |)  is an absolutely convergent series.   Equations (56) are invariant when  t  is 

changed to  t + TT ; therefore if y (t)  is a solution of Eqs. (58),  y (t + TT)  is also a solu- 

tion.   By the Floquet theorem (Ref. 13), Eqs. (56) have solutions of the following form: 

where 

y(t) =  e{t*(t) 

y2/ \ tf2 

The term   ij>(t)  is periodic function mod(7r).   If  Re £ > 0 ,  y— <*> as  t— «  an unbounded 

solution exists, which is said to be unstable.    For a periodic solution mod (IT)  to exist, 

lm£   must be equal to an integer, whereas  Re 4 = 0 

Let us assume a solution of the following form: 

t*\ ^    \ *2nt yl(t) =   e       2    ?2ne 

n= -00 

00 

^    S    v 
£     >2n+l 

00 00 
2 xr       2 

where     ]T    n   y~   ,     J]     n^ ^2  +1   are absolutely convergent series. 
n- - 00 n~ - °o 
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Substituting into Eqs. (56), we get 

OO OO 

^    A e2mit   ^    v e
(2ni+{)t =  0 Z       2m-le Z    y2n+le ° 

oo ao 

+ 

m — - oo JJ= _ oo 

(57) 

oo oo 

*)t 

n--oo m= - °° n=_oo 

oo oo 

+ 

EQ= - oo xi= -oo 
2    «*♦,•*■*   2   r^"»»'-. 

On rearranging the terms of the absolute convergent series, and equating the coefficients 

of e^        *'   to zero, we obtain 

_y    m -2n)2
+    V       Am „ 

Y2nAn-4n2 I    A    .4n2?2n-m 

(58) 

0 m= -oo 

provided that AQ - 4n2 * o ,  B0 - 4n2 * o .    The divisors AQ - 4n2  and B0 - 4n2  are 

introduced in order to make an infinite determinant, which will be formed below, to be 

convergent. 
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Equations (58) are a set of homogeneous equations.   For  y    to have nontrivial solutions, 

the determinant formed by the coefficients of the equations must vanish.   Call this 

determinant A (U;); then 

A(i?) =   [ttyl   = 0 (59) 

where 

A    - (U  - 2m)2 

2m, 2m A        A   2 A0 - 4m 

'0 
a 

Bn - (U  - 2m)2 

2m+l,2m + l „        A   2 B0 - 4m 

2m-n £ n rx a~     • =  o for  2m - n * 0 
A    - 4m 

2m + 1-n -      0     , - a2m+l,n =  ; TT for  2m + 1 - n = * 0 
B0 - 4m 

m,n =   0 ,  ±1 ,  ±2,... 

We consider another infinite determinant A. (i£) =  |0..|   where 

^m    m    =    X <60a) ^m, m x 

ö A 
0           _       2m,n 2m-n            -      n                ~                 /«/M_V 
02m,n -  a.     '_     = " ~      I    ,2   for  2m - n * 0 (60b) 

2m, 2m AQ - (14  - 2m) 

=      °2m+l,n     „        B2m+l-n    -  for 2m+l-n*0    (60c) 
P2m+l,n      «2m+1>2m+1       B0-(i5-2m)2 
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Since 

oo 

77 ßm. 
m= - °° 

m --   1 

m,n= -oo 
m* n 

I«       I irm,mi 

converges, provided £  does not have such a value that one of the denominators of 
ß       (i£) vanishes.   Thus, the infinite determinant A.(ii;)  is absolutely convergent. 
Then (Ref. 14), 

lim      £    !AQ - <* -J*ßh -^ -2n)1 
n=-m (A0-4nMB0  "4nj 

sin | (i|  - v^-) sin | (15 + v^) sin f (i|  - /B^) sin f (i| + vT3p 
Aj(lU .   2/7T   _r-\     .   2/7T  rn-\ 

(61) 

We note some interesting properties of A, (i|): (1) A. (i£ )  is a meromorphic function 
of 4   and tends to 1 as   Re | — ±°° ; (2) A, (£ )  is a periodic function of 4   with period 
2i .   If we form another function, 

F(|) =  A^U) - Kj [cot|(i| + J7TQ) - cot|(i§  - VA^)] 

- K2 [cotf (i£ + v^) + cot|(U  - vT^)] 

- K3[cot|(i5 + v^) - cot|(i{ - v^-)] 

' K
4 [cotf(i* + v"50) + cot 2 (i*  " ^Vl <62> 

25 



■- ~4Uw        I 

where  K.'s  are so chosen that F(£)  has no poles at i£ = ±VXT,   ±^BQ>  tnen» since 
Aj (i£ )  is a periodic function of 5 ,   it follows that  F (4 ) * has no poles at 

i£  =  2n ± VXjj",    2n ± ^ , n =   ±1  , ±2 ,  

Thus,   F (5 )  is a meromorphic function with no pole on the entire plane.   F (£ )  is 

certainly bounded, therefore, by Liouville's theorem,   F (£)  must be a constant, say 

C.   As   Re4— db°e ,  Aj(i5) = 1.    Therefore, 

C  =   1 + 2 (K2 + K4) i  as  Re £ — « 

=  1 - 2 (1^ + K4) i  as  Re £ -* -00 

Hence,   IC + K3 = 0 ,  and  F (£ ) = 1   for all  £ .    Using this result and Eqs. (61) and 

(62), we get 

sin4 4/ - 2ö9 sin2 20+6,+«, sin ^ 
A(«)a ÖTZ : 2    9    * r  (63) 

sin2(fV^)sin2(f^) 

where  ö-  are some constants relating to  K.'s ,  A0 ,  and  Bft.    Put  i§ = 0 ,   1/2  and 
j 

1  in Eq. (63) and we get 

5,  =   A(0)sm2(f^)sin2(fyB-0) 

262 =   1 + sin2 (| V5^) sin2 (f vB"0) [A < 0) - A (1)] (64) 

and 

2Ö3 =  l+ sin2(f ^~o) Si"2(f ^o)(2A(l) " A<°> - AH 
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In a special case, if the coefficients of Eq. (56) are even functions of t , then Eq. (56) 

is unchanged when we change  t to  -t ; we see that, if £   is a solution, then  -£   is also 

a solution.   Therefore, if A(i£0) = 0 and  sin(i£07r)* 0 ,  then 6« = 0 .   Therefore, 

when we want to find the roots for A(i£) = 0 ,  we always have 6« sin(7r. £ ) = 0  and 
d 1 

the roots of Eq. (63) can be written out in a simple form, 

sin2   4^    =ö9±I/ö:- ö: (65) 2 "2 ^ 

For abounded solution, i.e. for  Re£ = 0 ,  we must have 

52±    ^Ä 1  - Ö,} ±    Wo, - Ö,   > 0 (66) 

In Eq. (63), by putting A(i£ ) = 0 ,  we can compute £ ,  and determine whether this 

is an unbounded solution or not.   Then, from Eq. (58), we can compute y   »  and obtain 

the complete solution of Eqs. (56). For a periodic solution, we must have A(0) = 0 or 

A(l)= 0. 

If a periodic solution of an inhomogeneous counterpart of Eqs. (56) is considered, e.g. 

if + A(t)£ =  B(t) 

where B (t)   is a column matrix with its elements as periodic iimction, we can use 

Eq. (57) (with non-zero righthand side) by putting 4 = 0,  whereas Eqs. (58) become 

inhomogeneous.   If A(0)  is not equal to  0   ,  we can solve for  y    uniquely.   If A(0) = 0 

we are on the boundary where Eqs. (56) have an unbounded solution.   Therefore, for 

such an inhomogeneous equation as in our problem, the zone of instability is determined 

by the homogeneous solution. 
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7  APPROXIMATE SOLUTIONS 

We choose 

JS [ cosh k  Z sinh k  Z 1 
*    ^ I   )Z   +   Co(T) +     2   J0(knR)      Cn(T) iTSr^r +  dn(T,   ^n^ o 

n = m n n 
(67) 

N 
H  = d0(T)   + 

y d (T) a o» 
/    nv '    cosh k *-* n 

k^ J^ (kM R) 
L~ 

n = m 

(68) 

and 

where 

N 

W = do(T) +   ^ \ [dn(T) - onW] J0(knR) ♦ f(R) 
n = m 

N 

do<r>  =    2   kn[Cn^-dn(T)]Jo(kn) 
n = m 

(69) 

(70) 

These equations satisfy Eqs. (18), (19), and (21) through (25).   Then the equations 

<TC0(T) + BffG(T)do(r)  = 0 (71a) 

fi2 c (T) + k   tanh k  L  [ k2 + B   G(r) I d (T)  =  0 an n n[n        o        in (71b) 

hold for n = m,m+l,...N.    Now,   N - (m - 1) of the  c   , d    are left arbitrary. 

To determine these arbitrary functions, we use the Ritz method by substituting     $ , 
H ,  and  W  of Eqs. (67) through (70) into the variational equation 
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r2 

ö    J     I ($, H, W ; TJdT  =  0 (72) 

> The Euler equations are exactly Eq. (36) for N = m ... N, with  cQ , dQ  satisfying 

Eq, (71a). 

For free vibration, by taking a single term  m = N, we get the "one-termapproximation1': 

1 + 
flg.(L + \)(fl? -pm) fcM m = 0 

m 
(73a) 

or 

fll 1    2 
2"pm 

km ß 

2       v v   p m m*m 

m   - 
+ 

Am % 
2 ^ ^   p m m*m 

2      4A m 

v P2 
m*m 

(73b) 

which is the same as neglecting all the terms in the summation of Eq. (43) except the m 

term.   If we take two terms, i.e.,   N = m + 1 ("two-term approximation"), we get the 

following characteristic equation for  Q : 

th 

m+1 
flL(L + \) 

1 + 
'M i* - >ik 

n (74) 
ri-m 

8  NUMERICAL RESULTS 

Some numerical results are obtained using the method discussed above. In Figs, 2 

through 5, the natural frequencies normalized by the sloshing frequency p. , which 

equals 

h ( kl + Bo)tanh *! L 
-.1/2 

tf 
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of the corresponding rigid tank, versus the membrane number  B..,   which equals 
(2 \ 

P0gQr^j/N   ,   were plotted for parameters   B   , L, A,    Since   Q  is normalized 

by p1,   the parameters   tt    and   fiM ,   which equals   Q   (1V./B  \ can be eliminated. 

The computation was based on Eq. (73) (one-term approximation), with  m   =   1 , and 

on Eq. (43).   In most of the calculations, the one-term approximation and exact solution 

gave almost identical results for the lowest frequency, which cannot be distinguished in 

the figures shown. 

From these figures, we see the general trend clearly that frequencies decrease as 

BM  increases.   In Fig. 2, the Bond number is large (B    =10), and  B..  does not 'M a M 
have much effect on the lowest frequency.   As  B    decreases (see Figs. 3 and 4, 

B    = 1, 0.1), the great effect of  BM  can be seen.   At certain ranges of BA.,   the a M M 
lowest frequency decreases sharply as  BM  increases; and the range is approximately 

determined by the ratio of B    to  BM ,   and the depth of liquid   L.    This relationship 

can be seen clearly from Eq. (43), if the terms in the summation sig. are normalized 

in a slightly different form, i.e., for  B   , BM  small, 

k   (L + A) 

1 + 

x     , fl\
2 (kl * Ba) kl tanh kl L 

^/   (kn+Ba)kntanhknL. 

„ = lcothknL + Akn--2/T2 

ßj/k2 + B^k^anh^L k2 - B,, n        M Ba/fi2 

p2 (k2 + B/T) k tanh k L      (k2 + B„) tanh k L BM \p2 

^1 V n        (J/   n n \ n        o] n >*n 

kn(L + X) 

1 + 

1 - 
q i 2   k* tanh kJ L 

k3 tanh k   L n n 

ir--lcothknL + xV 
Q2 kj tanh kx L B 

P2 k* tanh, kn L + tanh kn L BM 

ß\2k^ tanhkx L 

Pl/  k^tanhk   L n n 

-  1 

=  0 

(75) 
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 }PO   (73) 

0,(m =  2)"^^^^ 

fi2(m  =   I) 

1.0 °1(m =   ° Q (m * 1,2) 02(m  r)/2) 

0.5 
1.0 2.0 

MEMBRANE NUMBER,   BM  =   L   r2)/N 
M        '  o  o oV     r 

3.0 

Fig. 2 Frequencies Computed From Eqs. (73) and (43), 
With Bond Number 10 

Q2(m  =   2) 

RATIO OF LIQUID DEPTH TO RADIUS, L =  0.4 

MASS RATIO, A -  0.04 

EQ. (43) 

EQ. (73) 

1.0 2.0 3.0 

MEMBRANE NUMBER, 6,,   -  L   g  r2 )/N 
M        \   o 3o o '/     r 

Fig. 3  Frequencies Computed From Eqs. (73) and (43), 
With Bond Number 1.0 
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Apparently the roots for  ß/p-   depend on  B /BM   only for fixed  L, X.   Physically it 

says that, at low Bond number, the surface tension plays an important role; its effect 

depends mainly on  BM/B    (the ratio of the surface tension to midplane stress resultant 

of the membrane).   The argument holds for any N-term approximation. 

In Figs. 4 and 5 we can see the effect of the depth of the liquid to radius ratio   L.   It 

causes the sharp decrease of frequency occurring at smaller  BM  for larger  L. 

In Fig. 6 (a and b), the stability boundary with  a (=g./g  )  is plotted versus forcing 

frequency normalized by the rigid tank first sloshing frequency, according to Eq. (A-U) 

in the Appendix, with  i = j - 1   for one-term approximation only. 

9  CONCLUSIONS 

From the exact solution for free vibration, we make four conclusions for the eigenvalue 
2 

ti :   (1)  Q  is always real, for p   ,  xn > 0 ;  (2) the elastic effect lowers the natural 

vibration frequency; (3)  the elastic effect on each sloshing frequency is of order 
2 

fl^/sinh 2k   L ;  (4) because of the presence of the elastic bottom, coupling of different 

sloshing modes occurs, and the effect of one sloshing mode on the natural frequency of 

another due to this elastic coupling is of order  ftM . 

Numerical results indicate a great effect of surface tension on the natural frequency and 

stability boundary at low Bond numbers.   If B   ,  BM  are both small  ( <1 ),   then the 

frequency depends on the combination of parameters  BM/B   . 
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3.0»-^C 

Ojtm =  2) 

RATIO Of LIQUID DEPTH TO RADIUS, L = 0.2 

MASSRATiO,* =0.04 

 EQ. (43) 

\ EQ. (73) 

«3(m  =   1,2) 

Q?(* =   «) 

^.^^.._  ^(m =   !'2) 

ni(m =   0 «"^ ! ii"  
ß,(m   1,2) 

0.5 1.0 

MEMBRANE NUMBER, BM = \P090^)/Nr 

1.5 

Fig. 4 Frequencies Computed From Eqs. (73) and (43), With Bond Number 0.1 
and Lower Ratio of Liquid Depth to Radius 

■Q4(m =   1,2) 

02(m =  2) 

RATIO OP LIQUID DEPTH TO RADIUS,  L      0.4 
MASS RATIO, X    0.04 

 EQ. (43) 

 } EQ. </3) 

Q9(m  -   1,2) 

1.0 1.5 

MEMBRANE NUMBER, B,.   =   (a  g   r2)/N '    M        1 o3o Q'l     r 

Fig, 5  Frequencies Computed From Eqs. (73) and (43), With Bond Number 0.1 
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Fig. 6  Stability Boundary Computed From Eq. (75), for Various 
Values of B^ and B^ 
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Appendix A 

APPROXIMATE BOUNDARY FOR A SYSTEM 
OF DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS 

TO HAVE UNBOUNDED SOLUTION 

Following Struble's (Ref. 15) approximate stability boundary for Mathieu's equation, 

we extend it to a system of N equations: 
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jr + Dy =   a cos t A^ (A-l) 

where 

y = 

yp 

D = 

V 

ß: 

ß 

ß n 

(A-2) 

A -   (a..) 

and  ß.fs are different from zero,  a   is a small parameter,   a.,  are constants.   We 

assume that   y.'s  have the expansions 

y.  =  E.(t) cos(Q.t - 0. t) + a yf] + a2 y<2) + (A-3) 

~2     ;2 where  E.(t) ,  0.(t)  are slowly varying parameters, and that E. , 6-   , E.  , 0. E.  , 

6.   can be neglected as compared with  E.  , 0. .   Substituting (A-3) into (A-l), we get 

2njE.0i + o(öf,Ei?....j]cos(nit-0i)-2ßi(Ei+ . . .. )sin(ß.t - 0.) + a [yj1' + fi2y(l)j 

n 

= f ]T   a^E^cos^l + ß.)t-0.]+ cos[(l -ß.)t+0.])+O(a2)        i -   1,2, n 

(A-4) 
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For ß. * 1 ± ß. ,  we may solve for y: '  immediately by taking E. ,0. to be constants. 

But there is a possibility that the expansion for y. ' breaks down because of zero or 

small divisors for the solution of y:    . *  In order to avoid this difficulty, we can use 

E. ,0.   to cancel those terms that cause trouble.   We shall consider the case that 

ß. + ß. = 1 + 0(a )  for only one pair of specific  i, j. 

In this case, we remove the troublesome terms in (A-4) by putting 

2ß. 0. E. cos(ß. t - 0.) - 2ß. E. sin(ß. t - 0.) 
ill        v   l i' li       v   l i' 

= faijEjcoS[(l -ß.Jt+0.] 

= §-a.. E.fcosf(l - ß. - ß.)t + 0. + 0.|cos(ß. t - 0.) 
2    ij    Jl       lv i        )' i       jj       x   i i7 

- sin [(1 - Q. - ß.)t + 0. + 0.1 sin (ß. t - 0.)} 

(A-5) 

and a similar equation with the subscripts  i, j  interchanged.   Then by equating the 

coefficients of cos (ß  t - 0   ) , sin (ß  t - 0   ) , r = i, j  we get 

2ß.0iE. = j a.. E. cos[(l  - ß. - ß.)t + 0. + 0 j 

2ß.E. = J a.. E. sin[(l  - ß. - ß.)t + 0. + 0.] 

2ß.0.E. = la^EjCosft-fi. - ß.)t + 0. + 0.j 

2ß. E. - fa.. E. sin [(1   - ß.  - ß.)t + 0.  + 0.] (A-6) 

♦Struble, R.A., Nonlinear Differential Equations, New York,McGraw-Hill Book 
Company, 1962, Chapters, pp. 221-227 
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It can be easily shown that 

Q. a.. E2  -   n. a.. E2 

i   Ji   i J   ij    J 

0.   =   6. 
i J 

Substituting into Eq. (A-6), it becomes 

(A-7) 

1/2 
2Vi= f(JinLJ)   ^i*1 -Oi-iyt + Mj 

1/2 
20i*i  =  f(   1J/  "j       Eicos [(1  " «j - «j)t+ 29.] 

(A-8) 

The values of Ü. ,Q. ,a..,a.. ,a  will determine whether  E.,E.  in the above equation, 
J J J J 

has unbounded solutions or not.   We note that Eq. (A-8) has exactly the same form as 

that obtained bv Struble for a single Mathieu's equation.   If  a., a.. Sl./Q.   is less than 0 
ij   Ji    i    J 

from Struble's result, all solutions of E. are bounded; if a..a.. Q. tt. is greater than 0, 

its stability criterion is 

1/21 

i - a. - n. 
/a., a.. \ 

£Ll   U   J1 
Stable 

Unstable 
(A-9) 
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