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ABSTRACT

The stability of a fluid contained in a circular cylindrical tank with a flat, flexible
bottom under a periodic axial excitation is studied. A variational approach is
formulated. An approximate solution results in a pair of coupled ordinary differ-
ential equations with periodic coefficients. A method of handling the stability of
the solutions of such a system of equations is presented. Numerical results are

discussed.
NOMENCLATURE
English Symbols
A ,B Constants
n’ n
B Membrane number
M
B Bond number
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I,Il,12,13,14

Jo+ 9y

k
n

]

(r, 0, 2)
(R, ©, 2)

Amplitude of the nth sloshing mode

Potential of the solid-liquid-gas interface

Potential of the edge load acting on the rim of the tank

bottom

Gravitational acceleration, time dependent
Mean local gravitational acceleration
Amplitude of the imposed axial acceleration
Nondimensional gravitational acceleration
Membrane thickness

Nondimensional free surface shape
Functionals

Bessel functions of first kind

nt‘h root of the equation J 1 (kn) =0
Depth of liquid

Nondimensional depth of liquid

Pressure energy in nondimensional form
Lagrangians in nondimernsional form
Matrix

Midplane stress resultant

nth sloshing frequency for rigid tank
Pressure

Nondimensional pressure

Radius of the tank

Cylindrical coordinates

Nondimensional cylindrical coordinates
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Greek Symbols

a

Ta
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61'62. 63
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Surfaces

Time

Modal matrix

Transverse deflection of membrane
Nondimensional transverse deflection of membrane
Vertical coordinate

Nondimensional vertical coordinate

Nondimensional axial acceleration
Constants

Boundary curves of S1 , S3 respectively
Constants

Free surface shape

Azimuthal coordinate

Mass ratio

Constants

Constants

Density of membrane

Density of liquid

Surface tension

Nondimensional time

Velocity potential

Nondimensional velocity potential
Fercing frequency

Nondimensional frequency
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Eigenvalues of 92 where M, ..., N indicate the
fluid modes which are chosen for the approximate
solution

Frequency parameter for the membrane
Frequency parameter for surface tension

Two-dimensional Laplace operator
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THE EFFECT OF WALL ELASTICITY AND SURFACE
TENSION ON THE FORCED OSCILLATIONS OF A
LIQUID IN A CYLINDRICAL CONTAINER

1 INTRODUCTION

Dynamics of large liquid-fuel rockets naturally involve the motion of a liquid in a
flexible container. The symmetric modes of the fluid motion, which influences the
pressure at the tank bottom, and therefore influences the pressure in the pump and

in the combustion chamber, as well as thrust and rocket acceleration, have an impor-
tant effect on the structural dynamics of a rocket. In some insiances the longitudinal
oscillations were so serious as to affect the safety of the vehicle. For this reason,

the analysis of the forced oscillations of the liquid container is important,

At ground level, perhaps the effects on fuel sloshing of the flexibility of the tank wall
and the surface tension of the free surface are negligible. At reduced gravity condi-
tions, these effects become more evident. It is the purpose of this article to evaluate
the effects of tank flexibility and surface tension on the stability of liquid motion in the

symmetric modes.

Sloshing of liquids has been studied by many authors. Although most of them considered
rigid containers (Ref. 1), Miles (Ref. 2) considered bending modes of a flexible con-
tainer, and Bleich (Ref. 3) investigated the longitudinal modes. Recently, Bhuta and
Koval (Refs. 4 and 5) studied the coupled oscillations of a liquid in a tank with a flexible
bottom. They defined the normal modes of the system, and treated the orthogonality
and expansion theorems. Bhuta and Yeh (Refs. 6 and 7) considered the problem of
arbitrarily assigned velocity distribution on the tank bottom.

On the other hand, there is substantial literature about the influence of surface tension
on sloshing, e.g., Yeh's bibtliography (Ref. 8) and papers by Bond and Newton (Ref. 9)
and Reynolds (Ref. 10). Most of these studies, however, are concerned with free
oscillations., Very little has been done about the influence of surface tension on forced
oscillations, and no work seems to have been done on coupling with the flexibility of
the tank.




In the present paper, a circular tank with a flexible bottom under vertical periodic
excitation is studied. The problem is first formulated in the form of differential
equations and then in the form of a variational principle. An approximate solutiorn is
presented, which results in a pair of coupled ordinary differential equations with

periodic coefficients. The stability of the solutions of these equations is discussed.

2 STATEMENT OF THE PROBLEM

A circular cylindrical container with rigid side walls and a flat, flexible, bottom
contains a liquid with a free surface. The tank walls are subjected to an oscillatory
axial acceleration, in addition to a constant mean-local-gravitational acceleration
directed along the axis of the cylinder. Above the liquid surface is a gas with con-
stant pressure. No external force acts underneath the tank bottom. The situation is
pictured in Fig. 1. The problem is to determine the motion of the liquid and, in

particular, its stability.

The fluid properties, including the surface tension, are assumed to be uniform,

constant, incompressible, and inviscid.

The mean free surface of the liquid is assumed to be a plane perpendicular to the
cylinder axis. In low-gravity and finite surface tension, one may have to consider
a curved mean free surface. The governing criterion is the Bond number defined
below. In this paper, we assume that the
Bond number is sufficiently large so that
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As a further simplification, we assume that
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the deviation from the static equilibrium con- ¢ J
dition is small, so that the deflections of the .
Fig. 1 Geometry of the Problem in
free surface and of the tank bottom, the fluid Nondimensional Variables

velocity, and hence the velocity potential,




may be considered infinitesimal quantities of the first order. Under this assumption,
all the equations can be linearized, and the mathematical problem is relatively simple.
A number of interesting nonlinear problems are ruled out by this assumption. But,

as an investigation of the initial tendency toward instability, the linearized theory
should be adequate.

3 MATHEMATICAL FORMULATION

Consider a quantity of inviscid liquid situated in a cylindrical container of radius Ty
as is shown in Fig. 1. The cylindrical polar coordinate system is chosen so that the
+z direction is directed upward away from the liquid, the zero on this axis being fixed
on the mean free surface. I the fluid is assumed inviscid and incompressible, and the

motion irrotational, the equation of continuity may be expressed in terms of the velocity
potential ¢,

=
Q?IQ;

2 2
T e L 8

and the velocity components G, v, w are
U= ¢ Veoo W= )
r '’ r ' ° z

The usual subscript notation is used to denote partial differentiation.

The kinematic conditions at the tank walls and the free surface are
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where w denotes the deflection of the tank bottom, and 7 denotes the deflection of
the free surface, both positive in the +z direction, and both assumed to be
infinitesimal.

Since the motion is irrotational, Bernoulli's equation is satisfied throughout the liquid

domain. In particular, at the free surface, we have

L= 1(@g)% - g(tyn - ¢, + c(t) (62)
Py 2 t
g(t) = 8y * 8 cos wt (6b)
where
c(t) = arbitrary function of time
_ n local vitational acceleration Taken as positive if they
&o = mean local graviiational accelerallol | ,.¢ directed toward the
g, cos wt = imposed axial acceleration* tank bottom (along the
_ . N . -2 direction)
p = pressure just inside the interface

The pressure p is related to the pressure just outside the liquid, p G’ by the

relation
pG -p = oK (7)
where
o = surface tension
K = total curvature of the free surfaces

*Here we just write out a special form of imposed axial acceleration. The method
developed later can be applied to a general periodic imposed axial acceleration.




- N

In linearized form, uader the assumptions that 71/ r, <<'1 and |gradn|< 1, we
have

2
o2 .18 (87, 1 8%
K= Vin r ar (rar) T3 ®)

If the pressure of the gas Pg is a constant, then without 16ss of generality we may set
| 0. The function c(t) can be absorbed in ¢t. We can also neglect |—V-¢|2 in
Eq. (6) and evaluate ¢t on the surface z = 0 under the scheme of lirearization. Thus

we obtain the linearized free surface condition,

o =2 0

L - (32) +emn ©
z=0

Similarly, Bernoulli's equation gives the pressure on top of the bottom wall

(P, gy = Po[' (‘Pt)z - g(t) (-1 + w)] (10)

=4

No other forces are assumed to be acting on the tank bottom. If the tank bottom is
very thin and is prestressed so that it behaves like a membrane, then the equation of

motion of the bottom is

2
=21 0w
N.V'w = ph 9t + g(t)] * (P prw (11)
where

Nr = tensile stress resultant in the tank bottom (assumed to be a constant)
p = density of the tank bottom material
h = tank bottom wall thickness
ph = mass per unit area of the tank bottom



A combination of Eqs. (1) and (11) gives the linearized equation of motion of the

elastic bottcm as a membrane:

2
V2w = ch oW _ -, [2¢
N FPw = b - gty w po(a,;)z__‘_2 + (ph+ p) g(t)  (12)

In reality, a tank with flat bottom develops both hending and stretching stresses under
fluid pressure. Equation (12) is a good approximation only if a membrane tension is
built in at the edges by stretching the bottom onto a rigid cyl ader before the two are
welded together.

It is necessary to specify the boundary conditions for n and w at the edge r = Ty -
We choose

w =0 when r = Y (13)
o1 _ 0 whem r =r (14)
or 0

The last condition is a special case of zero capillary-hysteresis. It is consistent with
the simplifying assumption that the undisturbed free surface is a plane z = 0, Ina
very-low-gravity condition, the mean free surface is curved, and Eq. (14) should be

replaced by the condition 97/dr=<yn at the wall where vy is a physical constant,

These equations define the linear, inviscid problem of sloshing under appropriate

initial or periodicity conditions.

4 DIMENSIONLESS EQUATIONS

Taking the radius of the cylinder r, as the characteristic length, the gravitational

0
acceleration g, as the characteristic acceleration, and w as the characteristic

frequency, we define the dimensionless variables as follows:

10
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? 0 0
. L =;‘- T o= wt
" 0

ooty -2

wro 0

g

w =X o o =

Yo &g

go + g, cos wt

G(7) g 2 2

We define the dimensionless parameters as follows:

_ _ 2
Bond number = B = p,8,T, /o

_ _ 2
Membrane number = By P80 %o / N,

—

Frequency parameter for surface tension = Qi =Py rng/ g

2 3 2

Frequency parameter for the membrane = QM = Py Tow / Nr

Mass ratio = A = —oh_
Py To

and the operator

v? = 1/R 8/8R (R 0/8R) + 1/R% 82/06% = rg$2

Then the equations become

2
a 2
—73+V | =0
(BZ )

11

"i‘i

(19)

(16)

(17)

(18)



with the boundary conditions

and
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+ By G(T)W - (A + L)ByG(7) = 0 (20)

-

Lkt

-B GH=0 (19)
g

Bl = ——— A M

1 (21)
-L (22)
0 (23)
1 (24)
1 (assuming ¥y = 0) (25)

Equations (18) through (25) show that the problem of sioshing depends on the parameters

2 2
Qo’ Bo’ o, QM’

B

M ’

A, and L.

These dimensionless parameters are not all independent; since

Q

2
M =

&

g
N

r

Q

and B =ﬁ°—B

M : (26)

r
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therefore

B 9;[
M_ M (27)
B, 2

g

However, we retain the sets of symbols 95 , Ba and Qz , BM because these two

pairs of parameters are not both likely to be important. The conditions are:

2
3 QM ,
° Qg , BU» o if the surface tension has no effect

BM — 0 if the tank bottom is rigid

5 DISCUSSION OF ANALYTICAL SOLUTIONS

Consider symmetric modes of motion in which & , H, W are independent of the angular
coordinates 6 . A solution of Eq. (18) may be posed as

o

. cosh kn Y/ . sinh kn y/
= dO(T)Z * CO(T) * 2 Jo(knR) cn(T)sinh knL * dn(T)coshknL (28
n=1]1 ‘
Then Eqgs. (22) and (23) give
k J (k R)
- n 0'n
05 G E 4 (T) Cosh k. T (29)
—1 n
n=zx
and
W = dj (1) + f(R)+ zkn e, (m) - ¢y ()] 3ok R) (30)
n=1

13



Both Egs. (21) and (25) are satisfied if the kn's are the rocis of the equation
Jl(xn)=0 n=1,2,3,..... (31)

Eq. (24) is satisfied by taking

dy(7) + 2 ky [4,(7) - e ()] 3 () = 0 (32)
n=1
and
J (B R)
f(R) = (A + L)[l -i—M—]
Jo (\Byp)

Here, f(R) is the static deflection of the membrane. We assume that, if BM is
positive, \/31\; is less than the first root of JO (x) = 0, namely, 2.4048. To satisfy
Egs. (19) and (20), we substitute & , H, W from Eqs. (28) through (30), collect
terms, and represent the lefthand side as a Fourier-Bessel series in JO (kn R). Since
the series vanishes, every coefficient of JO (kn R), n=1, 2,...., must vanish.

Thus, from Eq. (19) we obtain the necessary conditions
2 . _
QUCO(T)+BUG(T)dO(T) =0 (33a)
and
2 .. 9
2 & (1) + k tannk L[ + B_G(m)]d (r) = o (33b)

Multiplying Eq. (20) by R and integrating with respect to R from 0 to R, we get

14




R R
oW 8_
RO 4 BMGfRW(R,T)dR - AQ 2] (R, 7) RdR
0o (o)
A
S22 Ly R+ @l JQ RdR = 0 (34)
Tlz=-L

Any function W (R, 7) of class C2 in the closed interval 0 to 1 for R satisfying
the above equation will satisfy Eq. (20). A substitution of Eqs. (28), (29), and (30) into
it gives

N HbR &
2 kn(c!1 - dn)Jl(knR) # oMG 5 + ngl (dn - cn)Jl (kn R)

n=1

iR [ 14 +¢ < J, (k_R)
2 [ % - 2} Ty * ¢y 1Ky
_AQM[ 2 +n§1(an -cn’Jl(knR)]+ QN[ 2 R+ 2 k

. . M _
(cn coth knL - dn tanh knL) -a Jl(\/BMR) =0

(35)

By expanding R and J1 (\/BMR) in terms of Jl ( kn R), we can collect the coefficients
of J1 ( kn R) and set them equal to zero, to obtain

oy
e c(cot.hkL+Ak)-d(tanhkL+7\k)] ( - B G)(c-n)
n
2
i Q . . ByG 2a (A + L) By, J; (VBy) k,
S TR T k|t T T o 2
n o''n QM n90(ky) O(V M) BM—kn
(36)

15



Now, if we want to truncate the infirite series in Eqs. (28) through (30) by taking
n=m,..... , N, we see that Eqs. (32), (33), and (36) always involve 2(N - m + 2)

unknowns and 2(N - m + 2) equations, which in general have solutions.

Of course, we can do the same thing for Eq. (19) to obtain
sinh kn L

. k2 ) - n—
szicn + (K + B_G)k, (taab k L)d, T

(ni Gy + B G do) (37)

However, since we have assumed 3H/dR = 0 at R = 1, the series of Eq. (29), after
twice term-by-term differentiation. is still convergent. Thus Eq. (37) coincides with
Eq. (33).

We shall now discuss the solution for Egs. (32), (33), and (36). For the case of free
vibration, i.e. G =1 or a = 0, solutions for C,» dn can be obtained rather easily.
If we let

¢, = C elQT
and (38)
_ iQr
dn = Dne
then, from Eq. (33), we obtain
Ba
C, = =
0 Q2 Q2 0
o
and (39)
k(k2+B>tanhkL p2
G = Sl g D = —42p
n 9(27 Q2 n Q n

16

—



and from Eqs. (36) and (39),

2 2(L+A). _
Oy @ Jo(k)DO_BnDn (10)
n
where
- 2 2 2
By = -|9yp,(cothk L+2ak)-qp Q(tanhk L+Ak)

2
+ k (kz-BM) p—g-l (a1)

Q
Substituting into Eq. (30), we have
- =
2 2 2
. Q. Q7 (L + A) p-\J.(k R)
W = elQTDO 1+ z kn M 1 -—% %(—ﬁ-)—- + f(R) (42)
Bn Q 0''n

n=1

Now we can easily see that the coefficient of J ( k R) in the above series is of order

1/( kn/ 2) for large n ; so the series is actually dwergent after twice term-by-term
differentiation with respectto R. At R=1, W = 0, we have D0 # 0 for QIZVI z0

(Qil =0 corresponds to rigid tank); therefore,

0

2
Q (L+ A)k
2 M n /.2 2
=1 - =
£(e”) + E i (9 pn) 0 (43)

n=1

17



This equation will determine the eigenvalue Q . It can be shown that, for pﬁ 20,
Xq =0, all the roots Q are real, and no double roots exist. In the case 912\/[-00, some
2's can be obtained asymptotically in a rather simple fashion. Let
2 2
[

Q = Q

: 6 ) (44)

2 2
—pl(]-b Ry - 0y Dy - 05 @

Then we have

212 2 2 4
By = -QM[pE(cothle+ Ak,) -pﬁ(l - 6, Qpp - 6, -+ )(tanhle+Akl)

+ %y 8 92 (52+ af)n;[+

2 2
- [51 X, - P (cothk, L - tanhle)]ﬂM
2 2 4
+[(61 + 6,) xg - Pp oy (tanh Ky L + J\k!)] Q

v (82 + 28, 8, + 85) x; - B 6 (tanh k; L+ Ak @y + 0(af) @9

M
where
(.2
X = i - By) (46)
Equation (43) becomes
2 2
pp (L + 1) (8, + 8, 2y + L
1=
2 2
6%, - Dy (coth k L - tanh k, L) + [(‘51 +6,) %, - p 6, (tanh k L + Ak!)] Q
- :
a2 g2 1 1 4
t(L”‘)z ) "3 +O(QM)= ¢ &l
n=1 kn - BM k! - BM

18
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In order that the above equation be valid as Qz

M -0, we must have

coth kgL - tanh k!L 9

6 1 = xﬂ pﬂ (48)

]

and, since
[- o]
1 1 Jo (\lBM)
5 - - (49)
~ k,-By M 2By JINBM)
Eq. (43) becomes
.. po(L+a) (o, + 6,08 + ...)
(6';’ +8,) x, - pEo,(tanh k; L + Ak + [X.'z (a'f + 28,5, + 6 - Py 6, (tanh kL + xk,)] “12»1 ‘...
3 (B
- a2 p? L+ A) 1’31;' o (VB ) 1 (50)

S rern A R MU

Expanding the lefthand side in power series of QIZVI , and putting the coefficient of
Qi{‘ equal to zero, we get

2
p, (L+A)6
1,.( ! 1 =0 51)

5 5 =
- ‘tanh kK L + AK
6s + 52) X, - Py 6, (tanh k L + Ak )

and

2 2 2
Py (L + 1) 62 - (<51 + 26162 + 63) Xp * Py 62(tanh le + Akl)

+[p£2(L+)\)]2 Bl _ JO(JEI\;) - — 1 )
Mo 2By Iy ({By) K - By

19



Then

and (52)

3 X ZP%VE'(6i+26162)xg+[P%(L+7\)]2 1 Jg_(M)
| VB 2B ()

_ 1
2 1
ky - By
Therefore, after some rearrangement, we get
TR LANA 45\
g -t |- (- ) Ue)- (- (- (52« of5)|
| { ? ] { Ay
- J
where
Xg
A= m &4
Q
M

From Eq. (53) we make two interesting observations:
® The term P is the lth nondimensional natural sloshing frequency of the
liquid in a rigid tank. Since (pn/vﬂ) > 1, we conclude that Qf < p%.
® The elastic effect is at least of order
2
QM—-— = 2 f—l- -V
sinn 2k, L |~ “A4, (kg = vg)

20
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Because of the presence of the elastic bottom, the sloshing mode shapes are no longer

as simple as those in a rigid tank; but, in rigid tanks, the influence of cross coupling
6

of different fluid modes on the natural frequency is of order ‘QM .

The other limiting case is: Py the density of the fluid, tends to zero while BU , Qg
are bounded away from zero; then Eq. (43) will tend to the free-vibration frequency
equation for a circular membrane — i.e.,

o0

2 q?
1+z 2 2 .2
nS1 Ko 9% - k2

t (%)

(55)
kQJ, (kQ)
25, (k@)

or

J (k@) =0

where

6 STABILITY OF THE SOLUTION

To study the stability of the solution (Refs. 11 and 12), we shall consider the following
more general system of equations:*

(96)

o0 o0
o i2nt i2nt _
Yo ) Bon€ Yyt 2 Bops1¢ Y1 70

n=-® n=-owo

*This is an extension of Hill's method (see Ref. 12, p. 413) to a system of two equations.

21



> o]
where Boon , Ao >0, B0>0 , A_1 = Bl =0, n;mﬁn (where ﬁn = [An! cr
|Bn|) is an absolutely convergent series. Equations (56) are invariant when t is

changed to t + 7 ; therefore if y(t) is a solution of Eqs. (58), y(t+ 7) is also a solu-
tion. By the Floquet theorem (Ref. 13), Egs. (56) have solutions of the following form:

y(t) = et y(t)

The term y(t) is periodic function mod(r). If Re{ >0, y— = as t— « an unbounded
solution exists, which is said to be unstable. For a periodic solution mod (7) to exist,

Im must be equal to an integer, whereas Re: = 0

Let us assume a solution cf the following form:

o0
_ Lkt i2nt
y (t) = e Von
n=-co
0
_ &t i2nt
yp(t) = e on+1 ©
n=-o
0 9 20 9
where Z N Yo - Z n” Yon+1 are absolutely convergent series.
n=-o n=-o

22
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Substituting into Egs. (56), we get

o0 ao ]
: 2 (2ni+¢g)t 2mit (Zni+§)t
2 V(201 + £) e + 2 AZme Yon ©
n:_m m:.,m n:-m
©0 o0
2mit (Zni+ )t _
¥ E Aom-1® E Yon+1 © 0
m=-oo n=-o
(87)
- o] (o] - o]
o 2 (2nit+g)t 2mit (Znit+ )t
2 72n+1(2m+§) © * z B2me Yon+i ©
n:-w m:-m n:_m
00 o0
2mit (2ni+ )t _
+ 2 B2m+1e 2 Yo © =0
m= - n= -

On rearranging the terms of the absolute convergent series, and equating the coefficients

i+
of e(zm En to zerc, we obtain

0
(i£ - 2n)2 Am -
-, + Y 0
2n 2 2 '2n-m
A -4n - A - 4n
0 m=-o (
(58)
2 Q0
) e -2m?, N —B—y =
Yon+1 T 4/ B -4 Mti-m
B, - 4n - 0
0 11= -

. 2
provided that AO -4n" = 0, BO - 4n? # 0. The divisors Ag - 4n2 and B - 4n2 are

introduced in order to make an infinite determinant, which will be formed below, to be

convergent.

23
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Equations (58) are a set of homogeneous equations. For Y, to have nontrivial solutions,
the determinant farmed by the coefficients of the equations must vanish. Call this
determinant A (if); then

A(ig) = !aijl =0 (59)
where

A0 - (it - 2m)2
a —_—
2m,2m A -4m2

0

B . 9 \2

0 = (l& - 4am)
a =
2m+1t 2m+1 Bo _ 4m2

A2m—n
o . = — for 2m -n = 0
2m,n 2

A -4m

0

B

- _2m+l-n _

02m+1,n = =3 for 2m+1 -n= = 0

B -4m

0
m,n =0, 1, £2,...

We consider another infinite determinant 4 (i£) = |Bij| where

bn,m = ! (60a)
o A
BZm HE 2m,n_ _ 2m-n - for 2m - n <0 (60b)
’ 2m,2m AO-(ig - 2m)
o B
- 2m+1.,n _ 2m+1-n )
Bom+1,n = = for 2m+l-n=0 (60c)

“om+1,2m+1 B, - (i - 2m)”
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Since

converges, provided ¢ does not have such a value that one of the denominators of
B m
Then (Ref. 14),

n (it ) vanishes. Thus, the infinite determinant Al (i¢ ) is absolutely convergent.

oom T i - 2m)? B, - (it - 2n)?
Al(ig)rriit.noo L 0 ” 0 ]

2 2\
h=—m (AO—4n )(BO -4n)

]

A(ig)

sin g (i - VAg) sing (i6 + VA)) sin g (i - VBy) sin 3 (i5 + VB))
2 (T 2T
sin (—Z'V’A_(;) sin (5\/80)

A, (ig)

(61)

W= note some interesting properties of 4 (i&): (1) Al (i¢£ ) is a meromorphic function
of ¢ andtendstol as Ref — xo ; (2) Al (¢) is a periodic function of ¢ with period

2i . If we form another function,

+

F(g) = A (ig) - K [cot-,g-(ig VA,) - cot%(ig - \/A_O)]
- K, |cot F(ig + VA]) + cot (it - ﬂ%)]

- Kg |eot (i + vB) - cotF(ig - \/Bg)l

- K, cot—;-r(ig + VB ) + cot%(ig - JB;)] (62)
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where Kj's are so chosen that F(£) has no poles at if = Vi, -.L\,/BO,

A (it ) is a periodic function of £ , it follows that F (£ ) has no poles at

then, since

it = 2n £ VA

0’ 2n + VB, n = 1 |, £2,....

0

Thus, F (&) is a meromorphic function with no pole on the entire plane. F (¢) is
certainly bounded, therefore, by Liouville's theorem, F (¢{) must be a constant, say
C. As Ret — x| Al(ig) = 1. Therefore,

Q
|

= 1+2(K2+K4)i as Ref — =
=1 -2(K2+K4)i as Re{ — -=

Hence, K2 + K3 =0, and F(£) =1 forall £. Using this resuit and Eqs. (61) and
(62), we get

sm4—§-—26 —g— 6, + by sin Tl

sz('g' o)' (% )

where ‘5i are some constants relating to Kj's, AO’ and BO' Put i{ = 0, 1/2 and

A(iE) = (63)

1 in Eq. (63) and we get

0, = a0 (5155 (3 )

= 10 () s () o o) - )
.

oy = o s (37) (5 VB ald) - 8000 - a0
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L IPREN

In a special case, if the coefficients of Eq. (56) are even functions of t, then Eq. (56)
is unchanged when we change t to -t ; we see that, if ¢ is a solution, then -{ is also
a solution. Therefore, if A(if;‘o) = 0 and sin(igon)at 0, then 63 = 0 . Therefore,
when we want to find the roots for A(i§) = 0, we always have 63 sin(1ri £) =0 and

the roote of Eq. (63) can be written out in a simple form,

1 2
sin” B = 5, +4[6) - 67 (65)

=0 (66)

In Eq. (63), by putting A(if) = 0, we can compute £ , and determine whether this

is an unbounded solution or not. Then, from Eq. (58), we can compute Yy and obtain
the complete solution of Eqs. (56). For a periodic solution, we must have A(0) = 0 or
A(l)= 0.

If a periodic solution of an inhomogeneous counterpart of Eqs. (56) is considered, e.g.

y+A(t)y = B(t)

where B(t) is a column matrix with its elements as periodic iunction, we can use

Eq. (57) (with non-zero righthand side) by putting ¢ = 0, whereas Eqs. (58) become
inhomogeneous. If A(0) is not equal to 0 , we can solve for Yy uniquely. If A(0)=0
we are on the boundary where Egs. (56) have an unbounded solution. Therefore, for

such an inhomogeneous equation as in our problem, the zone of instability is determined

by the homogeneous solution.
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7 APPROXIMATE SOLUTIONS

i,

We choose
\
N . o
. cosh kn Zz sinh kn Z
é = do(T)Z + co('r)+ z Jo(knR) {cn(r) ShE L kn T dn('r) coshk L knL (67)
n=m
N k J (k_R)
H=d(1)+ a (2220 1 (68)
" Yo n cosh knL
n=m
and
N
W =d () + 2 k ldn(T) - cn(f)] Jo(k R) + f£(R) (69)
n=m
where
N
do(r) = 2 kn [cn('r) - dn('r)] Jo(kn) (70)
n=m

These equations satisfy Eqs. (18), (19), and (21) through (25). Then the equations

2% (1) + B, G(Nd (1) = 0 {11a)

2. 2 .
22 ¢y(M) + k tanhk L [k + B G(M] d (1) = o0 (71b)

holdfor n=m,m+1,.,..N. Now, N- (m -1) of the cn’dn are left arbitrary.
To determine these arbitrary functions, we use the Ritz method by substituting ¢,
H, and W of Egs. (67) through (70) into the variational equation
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-
o f 1(&,H,W;7)dr = 0 (72)

The Euler equations are exactly Eq. (36) for N.=m ... N, with ¢
Eq. (71a).

0 do satisfying

For free vibration, by taking a single term m = N, we get the ''one-term approximation':

2 2
SZZM(L+}\)(Q" - pm)km o

1+ (73a)
B m
or
2 4
Q]_ _ l 2 Am + -“_@ - Am + um _ Am (73b)
Q - 2 Pm 2 v+ b p2 v ” p2
YmPm mPm m’'m

which is the same as neglecting all the terms in the summation of Eq. (43) except the mth

term. If we take two terms, i.e., N = m + 1 ("two-term approximation'), we get the
following characteristic equation for Q :

m+1

1+ z SIZM(L+A);SZZ_pi)kn =0

n (74)

n=m

8 NUMERICAL RESULTS

Some numerical resuilts are obtained using the method discussed above. In Figs. 2
through 5, the natural frequencies normalized by the sloshing frequency Py which
equals

K, (ki + Ba)tanh k, L vz

92
o
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of the corresponding rigid tank, versus the membrane number BM , which equals

( Py 8, 0)/N , were plotteg for pargmeters B, L, A .2 Since Q is normalized

by | the parameters Szo and QM » Wwhich equals Qo (bM/ Ba) can be eliminated.
The computation was based on Eq. (73) (one-term approximation), with m = 1, and
on Eq. (43). In most of the calculations, the one-term approximation and exact solution
gave almost identical results for the lowest frequency, which cannot be distinguished in

the figures shown.

From these figures, we see the general trend clearly that frequencies decrease as
BM increases. In Fig. 2, the Bond number is large (B(7 = 10), and BM does not
have much effect on the lowest frequency. As Bo decreases (see Figs. 3 and 4,

Ba = 1, 0.1), the great effect of BM
lowest frequency decreases sharply as BM increases; and the range is approximately
determined by the ratio of Bo to BM , and the depth of liquid L. This relationship

can be seen clearly from Eq. (43), if the terms in the summation sig . are normalized

can be seen. At certain ranges of BM , the

in a slightly different form, i.e., for B(7 , BM small,

Q\ (k2+B)k tanhle
0 k (L+A)]1 -
n P1/ (k2 + By)k, tanhk L
1+
2
1L1+B Jtanh k L ko - By B, /o2
1cothkL+)\kn t 3 B. | 2~
p2 2 (2 +B>l\ tanhk L (k> + Bj)tanhk L PM \p
3
Q 2 kltanhle
o kl(L+}\) 3
‘ P1 k' tanhk L
=1+
3 3
2 k tanh k, L B 2 kY tanh k, L
n-1 cothk L+>\kn-g——————-————§ o nhlk LBU E) 1 1.
prk tanhk LT MKy L By \P1/ i nnk 1
n n
=0
(75)
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NORMALIZED SLOSHING FREQUENCY, ﬂ/;:ol

NORMALIZED SLOSHING FREQUENCY, Q/;:'|
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2.0t RATIO OF LIQUID DEPTH S~
TORADIUS, L = 0.4 S~

w
=)
I
/

O\

=me== ) EQ. (73

1.0 dylm =1 Q(m =12 fim=1,2)
0.5 1 1 i |
0 1.0 2.0 3.0
MEMBRANE NUMBER, By, = (s g r2)/N,
Fig. 2 Frequencies Computed From Eqs. (73) and (43),
With Bond Number 10
3.0
Q,(m = 1,2)
N Q(m = 2)
& ————————— —————J———“—q
\ :\
\\ \ RATIO OF LIQUID DEPTH TO RADIUS, L = 0.4
2.0}

o

A MASS RATIO, A = 0.04
\
\ ————— Q. (43)

} £EQ. (73)

; 2
MEMBRANE NUMBER, By, = (»_g_r* )/N,

Fig. 3 Frequencies Computed From Egs. (73) and (43),
With Bond Number 1.0

31



Apparently the roots for Q/p1 depend on BU/BM only for fixed L., A. Physically it
says that, at low Bond number, the surface tension plays an important role; its effect
depends mainly on BM/ B(7 (the ratio of the surface tension to midplane stress resultant

of the membrane). The argument holds for any N-term approximation.

In Figs. 4 and 5 we can see the effect of the depth of the liquid to radius ratio L. It

causes the sharp decrease of frequency occurring at smaller B,, for larger L.

M
In Fig. 6 (a and b), the stability boundary with « (= 8; /go) is plotted versus forcing
frequency normalized by the rigid tank first sloshing frequency, according to Eq. (A-Y)

in the Appendix, with i = j = 1 for one-term approximation only.
9 CONCLUSIONS

From the exact solution for free vibration, we make four conclusions for the eigenvalue
Q: (1) Q is always real, for pﬁ ' Xg > 0 ; (2) the elastic effect lowers the natural
vibraticn frequency; (3) the elastic effect on each sloshing frequency is of order

Qid/ sinh 2kn L ; (4) because of the presence of the elastic bottom, coupling of different
sloshing modes occurs, and the effect of one sloshing mode on the natural frequency of
another due to this elastic coupling is of order Qg[ 5
Numerical results indicate a great effect of surface tension on the natural frequency and

stability boundary at low Bond numbers. If Bo , B,, are both small (<1), then the

M
frequency depends on the combination of parameters BM/ Bo'
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NORMALUIZED SLOSHING FREQUENCY, (I/p'
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Fig. 4 Frequencies Computed From Eqs. (73) and (43), With Bond Number 0.1
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Fig. 5 Frequencies Computed From Eqs. (73) and (43), With Bond Number 0.1
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Fig. 6 Stability Boundary Computed From Eq. (75), for Various
Values of B and B,,
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