CALIBRATION OF THE SHOCK TUNNEL COMPONENT OF COUNTERFLOW RANGE (I) AT MACH 7.5

J. H. Haun and Henry W. Ball
ARO, Inc.

May 1966

PROPERTY OF U. S. AIR FORCE
AEDC LIBRARY
AF 40(600)1200

Distribution of this document is unlimited.

VON KÁRMÁN GAS DYNAMICS FACILITY
ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE
NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.
CALIBRATION OF THE SHOCK TUNNEL COMPONENT
OF COUNTERFLOW RANGE (I) AT MACH 7.5

J. H. Haun and Henry W. Ball
ARO, Inc.

Distribution of this document is unlimited.
The work reported herein was sponsored by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Program Element 65402234.

The results of research presented were obtained by ARO, Inc. (a subsidiary of Sverdrup and Parcel, Inc.), contract operator of AEDC under Contract AF40(600)-1200. The test was conducted under ARO Project No. VI3516, and the manuscript was submitted for publication on March 4, 1966.

This technical report has been reviewed and is approved.

Harold L. Rogler
1/Lt, USAF
Aerospace Sciences Division
DCS/Research

Donald R. Eastman, Jr.
DCS/Research
ABSTRACT

Calibration of the shock tunnel component of the Counterflow Range (I) operating with a new nozzle throat designed to yield Mach 7.5 is reported. Transverse pitot-pressure profiles and heat-transfer rates on a hemisphere-cylinder model in the test section were measured at four flow conditions. A single probe was traversed along the nozzle centerline to determine the streamwise pitot-pressure gradient. Shock detachment distances for a hemisphere-cylinder were measured to determine when helium from the shock tunnel driver entered the test section. Results from these tests indicate a repeatable test core of uniform flow having a 12.5-in. diameter. Test times of from 2.5 to 4 msec were recorded before large quantities of helium appeared to be entering the test section. The streamwise pressure measurements indicated a Mach number gradient of 0.2/ft.
CONTENTS

ABSTRACT ... iii
NOMENCLATURE .. vi
I. INTRODUCTION .. 1
II. APPARATUS ... 1
III. DISCUSSION OF RESULTS ... 2
IV. CONCLUSIONS ... 4
REFERENCES ... 5

ILLUSTRATIONS

Figure
1. Photograph of Pitot-Pressure Rake 7
2. Photograph of Rake Installation 8
3. Schematic of Shock Detachment Distance Measurement Apparatus ... 9
4. Typical Reservoir and Pitot-Pressure Traces
 a. $p_0 = 100$ atm ... 10
 b. $p_0 = 700$ atm ... 11
5. Summary of the Pitot-Pressure Profile Data
 a. $p_0 = 700$ atm ... 12
 b. $p_0 = 450$ atm ... 12
 c. $p_0 = 225$ atm ... 12
 d. $p_0 = 100$ atm ... 12
6. Additional Pitot-Pressure Measurements
 a. Comparison of Mach 11 Pitot Profiles with Previous Calibration Results 13
 b. Streamwise Pitot-Pressure Gradient 13
7. Comparison of Measured and Theoretical Stagnation Heat-Transfer Rates 14
8. Comparison of Measured Heat-Transfer Rates at the Shoulder and the Stagnation Point 15
9. Theoretical Run Time Limits Based upon Arrival of the Helium Driver Gas 16
Summary of the Shock Detachment Distance Measurements

Comparison of Experimental and Theoretical Shock Tunnel Run Times

TABLES

I. Summary of Shock Tube Measurements and Computed Stagnation Conditions
II. Summary of Test Section Measurements
III. Summary of Computed Free-Stream Conditions

NOMENCLATURE

\(d \) Diameter of driven tube, in.
\(d^* \) Throat diameter, in.
\(h \) Enthalpy, \(\text{ft}^2/\text{sec}^2 \)
\(L \) Length of driven tube, ft
\(M \) Mach number
\(p \) Pressure, atm
\(p_0 \) Test section pitot pressure, atm
\(q_0 \) Stagnation heat-transfer rate, Btu/ft\(^2\)-sec
\(q_{SH} \) Shoulder heat-transfer rate, Btu/ft\(^2\)-sec
\(R \) Model nose radius, in.
\(Re \) Reynolds number, in.\(^{-1}\)
\(T \) Temperature, °K
\(t \) Time, msec
\(u \) Velocity, ft/sec
\(z \) Distance along the centerline of the tunnel, in.
\(\rho \) Density, amagats
\(\delta \) Shock detachment distance, in.
SUBSCRIPTS

1 Initial driven tube charge conditions
4 Initial driver charge conditions
M Measured
0 Tunnel reservoir conditions
s Initial shock
T Theoretical
∞ Free-stream conditions
SECTION I
INTRODUCTION

A calibration test was conducted in the Counterflow Range (I) of the von Kármán Gas Dynamics Facility (VKF) to study the flow conditions in the test section using a large nozzle throat and the highest allowable shock tube charge conditions. This test condition will provide flow at a sufficiently high density to maintain equilibrium conditions in the flow fields of models used during counterflow tests.

The quality of the test section flow was determined from measurements of (1) the transverse pitot-pressure profile, (2) the streamwise pitot-pressure gradient, (3) the stagnation and shoulder heat-transfer rates on a hemisphere-cylinder model, and (4) the time-resolved shock detachment distance on a hemisphere-cylinder model. The shock detachment distance measurements were intended to provide an indication of the arrival of the helium driver gas in the free stream.

The shock tube was operated at tailored interface conditions for room temperature He and air. The maximum driver pressure of 1000 atm produced tunnel reservoir conditions of 1800°K and 700 atm. The reservoir pressure was varied to a minimum of 100 atm during these tests.

SECTION II
APPARATUS

The shock tunnel component of Range I was the same as described in Ref. 1, with the exception that the throat diameter was increased to 1.16 in. in order to produce a high free-stream density test gas. The flow survey rake is shown in Fig. 1. It was mounted in a vertical orientation, and additional probes were positioned 1.75 in. from the top and bottom of the test section, as shown in Fig. 2. Two 1-in.-diam hemisphere-cylinder heat-transfer probes were mounted from the sides of the vertical rake and positioned with axes at 2 and 4 in. from the tunnel centerline.

The rake was instrumented with 50- and 100-psi fast-response, variable reluctance pressure transducers (Refs. 2 and 3). Thermocouple-type heat-transfer gages (Ref. 4) were used at the stagnation points of the heat-transfer probes, and thin-film-type gages were used at the shoulder positions. Reservoir pressures were measured with piezoelectric transducers at stations located 4 and 8 in. upstream of the nozzle throat. These pressures agreed within ±5 percent during each run.
A 2- or a 3-in. -diam hemisphere-cylinder model was used during the phase of the tests in which shock detachment distances were measured. A 16-mm high speed framing camera was used in the arrangement shown in Fig. 3 to take shadowgrams of the model and shock wave.

SECTION III
DISCUSSION OF RESULTS

A complete listing, by run number, of the test conditions covered in this calibration is presented in Tables I, II, and III. Typical reservoir pressure, p_0, and pitot pressure, p'_0, traces are shown in Figs. 4a and b. As illustrated in these figures, the period of constant p_0 and p'_0 decreased with increasing p_0. The constant-pressure period varied from 4 msec at $p_0 = 100$ atm to 2.5 msec at $p_0 = 700$ atm.

The pitot profiles which were obtained using the 1.16-in. -diam nozzle throat are presented in Fig. 5. The profiles are flat, within ±10 percent over a 12.5-in. -diam core of flow. The level of the pitot profile was repeatable from run to run within ±10 percent at all test conditions, corresponding to an average Mach number across the core of 7.5.

The pitot profiles which were obtained with the 0.5-in. -diam throat are compared in Fig. 6a to unpublished profiles obtained two years ago during the initial tunnel calibration program. These two sets of data are in good agreement.

The measured streamwise pitot-pressure gradient is shown in Fig. 6b. The gradient in p_0/p'_0 of 12 percent per foot, corresponds to a Mach number gradient of 0.2 or 2.5 percent per foot.

In Fig. 7, the measured stagnation heat-transfer rates and theoretical rates based on the Fay and Riddell theory are compared. Seventy-five percent of the data are within ±10 percent of the theoretical values. The agreement implies that the actual total flow enthalpy agrees with the total flow enthalpy calculated from shock tube theory.

The measured heat-transfer rates at the shoulder of the probe are plotted against measured stagnation heating rates in Fig. 8. One point is off considerably, but the bulk of the data lie within ±10 percent of a shoulder-to-stagnation heat ratio of 0.065. Based on the experimentally determined pressure distribution of Ref. 5 (for $M_0 = 8.1$) and the theory of Lees (Ref. 6), this ratio of heating rates should be 0.065 for the present case.
Figure 9 shows theoretical run times for the Range I shock tunnel, based on the criterion that the run is terminated by the arrival of the He/air interface at the nozzle throat. The curve marked inviscid flow was obtained considering alteration of the shock tube wave diagram (tailored interface conditions) with time as inviscid fluid passes the throat. The set of curves marked viscous flow was obtained considering additional interface acceleration as predicted by Mirels' theory (Ref. 7). For the large throat, \(d^* = 1.16 \) in., run times of 5.4, 5.7, 6.1, and 6.4 msec were obtained for reservoir pressures of 100, 225, 450, and 700 atm, respectively.

In order to examine experimentally the arrival of helium at the test section, tests were conducted during which the time-resolved shock detachment distance on a spherical-nosed model was photographically recorded. The calculations of Van Dyke and Gordon (Ref. 8) indicate that the detachment distance would increase measurably as the flow changed from pure air to pure helium. Although the Mach number and related quantities are not known when a significant amount of helium enters the test section, it is possible to estimate the limiting shock detachment distance on the basis that, for pure helium behaving as a perfect gas, nozzle expansion area ratio would dictate a maximum Mach number of 15.2, with a corresponding density ratio across a normal shock of 0.253. This Mach number would be reduced by boundary-layer growth on the nozzle walls, but density ratio, and therefore shock detachment distance, would be affected only negligibly. Hence, from Ref. 8, it is found that the detachment distance for pure helium would be 0.20 R.

The shadowgrams in Fig. 10 are typical of those obtained during these tests. During the run chosen for illustration, the detachment distance was nearly constant at 2, 3, and 4 msec but had increased 20 percent at 6 msec. At 10 msec, the model had begun to vibrate and had moved upward in the field of view. Zero time was defined as the instant when the first shock wave appeared at the nose of the model.

The detachment distance data are presented in Fig. 11 in terms of the detachment distance-to-model nose radius ratio as a function of run time. The data show that the detachment distance was erratic during the first 1.5 msec; this period also corresponds to the pitot-pressure rise time (see Fig. 4). For run times between 1.5 and 6 msec, a ±5-percent band is shown for the data to represent its estimated precision. An arbitrary ±5-percent band has also been associated with the theoretical shock detachment distance (Ref. 8) for air. Comparing the ±5-percent bands at the 450-atm condition, for example, it can be noted that during the period 1.5 to 3.5 msec the measured and theoretical shock detachment distances agree, whereas at 5 msec the measured distance is definitely greater than the theoretical value.
By noting similarly restricted run times for the data at all four reservoir pressures, the band marked arrival of helium limit (AEDC-I) in Fig. 12 was obtained. In this figure, the run times from Fig. 11 have been adjusted to a zero time which corresponds to the instant of reflection of the incident shock wave. The adjustment allows the experimental test section run times to be compared with the theoretical shock tube limits shown in Fig. 12. The run times of Fig. 11 were adjusted by adding the nozzle transient time of the starting shock wave (1.0 msec as illustrated by the displacement of the initial rise of the reservoir and pitot-pressure traces in Fig. 4) and subtracting the nozzle transient time of a gas particle during the run (1.4 msec from Ref. 9). The time of initial stabilization and the time of decay of the test section pitot pressure were adjusted in the same manner and are presented in Fig. 12.

The data of Fig. 12 show that at reservoir pressures below 300 atm the Range I run time is definitely limited by the influx of helium rather than by pitot-pressure decay; there is doubt that a helium-free test period exists at these conditions. At a reservoir pressure of 700 atm, however, there is a period of 2 msec during which the pitot pressure will be stable and the shock detachment distance will not differ from the theoretical distance by more than ±5 percent. The arrival of helium limit, obtained indirectly by measuring detachment distances, is shown in Fig. 12 to be in reasonable agreement with the results of experiments at DAL (Ref. 9) and CAL (Ref. 10), obtained directly from time-resolved gas samples. Notice that the present arrival of helium limit band lies 25 to 40 percent below the theoretical viscous flow limit.

SECTION IV
CONCLUSIONS

Tests were conducted in Range I to determine the quality of the shock tunnel flow using a 1.16-in. diam nozzle throat. The charge pressure of the helium driver gas was varied from 1000 atm, the maximum allowable, to 170 atm, resulting in a variation in nominal tunnel reservoir conditions from 1800°K and 700 atm to 1800°K and 100 atm. From these tests the following conclusions can be drawn:

1. The pitot-pressure distribution was uniform within ±10 percent over a 12.5-in. diam core of flow.
2. The level of the pitot-pressure profile was repeatable from run to run within ±10 percent. The average Mach number was 7.5, repeatable within ±3 percent.
3. Measurements of stagnation heat-transfer rate on a hemisphere-cylinder probe agreed with theoretical values computed from shock tube conditions within ±10 percent. The agreement implies that the actual total flow enthalpy agrees with the computed total flow enthalpy.

4. The Mach number gradient along the portion of the streamwise axis of the tunnel in the vicinity of the test section was approximately 0.2 per foot.

5. The period of steady pitot pressure varied with tunnel stagnation conditions from 4 msec at the 100-atm condition to 2.5 msec at the 700-atm condition.

6. Measurements of the shock detachment distance on a hemisphere-cylinder model at the high pressure condition, $p_0 = 700$ atm, agreed with theory within ±5 percent during the period 1.5 to 4 msec after arrival of flow in the test section. During the 4- to 6-msec period, large quantities of helium driver gas entered the test section flow. During tests at the lower pressure conditions, helium appeared to be entering the test section as early as 2.5 msec after the start of flow. The experimentally determined arrival of helium occurred 25 to 45 percent earlier than predicted for viscous flow.

REFERENCES

Fig. 1 Photograph of Pitot-Pressure Rake
Fig. 2 Photograph of Rake Installation
16-mm High Speed Camera
5500 Frames/sec
4-in. Extension

Camera Lens (6-in. Focal Length, f/4.5)

Hemisphere-Cylinder Model
0.020-in. Aperture

Tunnel Test Section

Mercury Vapor Lamp
2.5-in.-diam f/6 Uncorrected Lens

All Dimensions in Inches
≈16 ≈44 64.5 19.5

Note: Camera Focused on Centerline of Tunnel

Fig. 3 Schematic of Shock Detachment Distance Measurement Apparatus
Period of Constant p_0

- $p_0 = 8 \text{ in. from Throat}$
- $p_0 = 4 \text{ in. from Throat}$

Period of Constant p_0^*

- $p_0^* = 3.75 \text{ in. from Tunnel C}$
- $p_0^* = 2.5 \text{ in. from Tunnel C}$

Time from Diaphragm Break, msec

Fig. 4 Typical Reservoir and Pitot-Pressure Traces
Period of Constant p_0

Reservoir Pressure, $p_0 \approx 150$ atm/division

$\begin{align*}
\text{Time from Diaphragm Break, msec} \\
p_0 - 8 \text{ in. from Throat} \\
p_0 - 4 \text{ in. from Throat}
\end{align*}$

Period of Constant p_0^-

Pilot Pressure, $p_0^- \approx 1.5$ atm/division

$\begin{align*}
\text{Time from Diaphragm Break, msec} \\
p_0^- - 1.25 \text{ in. from Tunnel } C \\
p_0^- - 2.50 \text{ in. from Tunnel } C
\end{align*}$

b. $p_o = 700$ atm

Fig. 4 Concluded
<table>
<thead>
<tr>
<th>Sym</th>
<th>Run No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>498</td>
</tr>
<tr>
<td>0</td>
<td>499</td>
</tr>
</tbody>
</table>

\[d^* = 1.16 \text{ in.} \]

\[p_0' / p_0 \times 10^3 \]

\[\begin{array}{c|c|c}
\hline
\text{Sym} & \text{Run No.} \\
\hline
\circ & 490 \\
\circ & 491 \\
\triangledown & 492 \\
\triangledown & 497 \\
\hline
\end{array} \]

\[d^* = 1.16 \text{ in.} \]

\[p_0' / p_0 \times 10^3 \]

\[\begin{array}{c|c|c}
\hline
\text{Sym} & \text{Run No.} \\
\hline
\circ & 488 \\
\triangledown & 489 \\
\circ & 496 \\
\hline
\end{array} \]

\[d^* = 1.16 \text{ in.} \]

\[M_\infty = 7.3 \text{ Typ} \\
M_\infty = 7.7 \text{ Typ} \]

\[\text{Bottom} \\ \text{Distance from } \zeta \text{ of Test Section, in.} \\
\text{Top} \]

\[d. \ p_0 = 100 \text{ atm} \]

Fig. 5 Summary of the Pitot-Pressure Profile Data
Table: Sym and Run Numbers

<table>
<thead>
<tr>
<th>Sym</th>
<th>Run No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>485</td>
</tr>
<tr>
<td>■</td>
<td>486</td>
</tr>
<tr>
<td>●</td>
<td>487</td>
</tr>
<tr>
<td>●</td>
<td>495</td>
</tr>
</tbody>
</table>

Symbols
- ●: Sym
- ■: Run No.

Equations
- $d^* = 0.50$ in.
- $p_0 \approx 550$ atm
- $\rho_0/\rho_0 \times 10^3$

Graph
- Data from Initial Calibration lie in Cross-Hatched Area
- $M_{\infty} = 10.8$
- $M_{\infty} = 11.3$

Text

a. Comparison of Mach 11 Pitot Profiles with Previous Calibration Results

b. Streamwise Pitot-Pressure Gradient

Fig. 6 Additional Pitot-Pressure Measurements
Flagged Symbols Indicate Model
4 in. off C of Tunnel; Others Are
2 in. off C
Shaded Symbols Indicate Runs
with 0.5-in.-diam Throat

Fig. 7 Comparison of Measured and Theoretical Stagnation Heat-Transfer Rates
Flagged Symbols Indicate Model 4 in. off \(C_e \) of Tunnel; Others Are 2 in. off \(C_e \)

Shaded Symbols Indicate Runs with 0.5-in. -diam Throat

Fig. 8 Comparison of Measured Heat-Transfer Rates at the Shoulder and the Stagnation Point
Inviscid Flow in the Driven Tube

Viscous Flow

\[p_0 = 700 \text{ atm} \]

Mirels (Ref. 7)

\[M_s \approx 3.8 \]

Fig. 9 Theoretical Run Time Limits Based upon Arrival of the Helium Driver Gas
Zero time is defined as the instant when the first shock wave appears at the nose of the model.

Fig. 10 Typical Shadowgrams of the Model and Bow Shock
Fig. 11 Summary of the Shock Detachment Distance Measurements
Table

<table>
<thead>
<tr>
<th>SYM</th>
<th>FACILITY</th>
<th>DRIVEN TUBE LENGTH, L, FT</th>
<th>THROAT DIAM, d*, IN.</th>
<th>d*/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>DAL 30 IN.</td>
<td>31</td>
<td>0.84</td>
<td>0.168</td>
</tr>
<tr>
<td>□</td>
<td>DAL 30 IN.</td>
<td>31</td>
<td>1.70</td>
<td>0.340</td>
</tr>
<tr>
<td>△</td>
<td>CAL 48 IN.</td>
<td>50</td>
<td>1.45</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>AEDC-I</td>
<td>26</td>
<td>1.16</td>
<td>0.375</td>
</tr>
</tbody>
</table>

NOTE: $M_s \approx 3.8$, TAILORED He/AIR

Fig. 12 Comparison of Experimental and Theoretical Shock Tunnel Run Times
TABLE I

SUMMARY OF SHOCK TUBE MEASUREMENTS AND COMPUTED STAGNATION CONDITIONS

<table>
<thead>
<tr>
<th>Run No.</th>
<th>P_4, atm</th>
<th>P_1, atm</th>
<th>P_4/P_1</th>
<th>M_S</th>
<th>P_0, atm</th>
<th>ρ_0, amg</th>
<th>T_0, K</th>
<th>$\frac{h_0}{s^2}$ $\times 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>485</td>
<td>750</td>
<td>5.80</td>
<td>129</td>
<td>3.83</td>
<td>557</td>
<td>74.9</td>
<td>1840</td>
<td>22.8</td>
</tr>
<tr>
<td>486</td>
<td>750</td>
<td>5.80</td>
<td>129</td>
<td>3.83</td>
<td>550</td>
<td>74.0</td>
<td>1840</td>
<td>22.8</td>
</tr>
<tr>
<td>487</td>
<td>171</td>
<td>1.20</td>
<td>142</td>
<td>3.83</td>
<td>106</td>
<td>15.5</td>
<td>1870</td>
<td>22.8</td>
</tr>
<tr>
<td>488</td>
<td>342</td>
<td>2.56</td>
<td>133</td>
<td>3.66</td>
<td>227</td>
<td>32.6</td>
<td>1740</td>
<td>21.5</td>
</tr>
<tr>
<td>491</td>
<td>342</td>
<td>2.50</td>
<td>137</td>
<td>3.74</td>
<td>227</td>
<td>33.0</td>
<td>1790</td>
<td>21.9</td>
</tr>
<tr>
<td>492</td>
<td>328</td>
<td>2.60</td>
<td>126</td>
<td>3.64</td>
<td>242</td>
<td>33.7</td>
<td>1860</td>
<td>22.8</td>
</tr>
<tr>
<td>493</td>
<td>680</td>
<td>5.35</td>
<td>127</td>
<td>3.75</td>
<td>495</td>
<td>63.7</td>
<td>1790</td>
<td>22.0</td>
</tr>
<tr>
<td>494</td>
<td>680</td>
<td>5.40</td>
<td>126</td>
<td>3.75</td>
<td>448</td>
<td>62.0</td>
<td>1790</td>
<td>22.0</td>
</tr>
<tr>
<td>495</td>
<td>749</td>
<td>5.73</td>
<td>131</td>
<td>3.83</td>
<td>590</td>
<td>79.1</td>
<td>1830</td>
<td>22.8</td>
</tr>
<tr>
<td>496</td>
<td>171</td>
<td>1.30</td>
<td>131</td>
<td>3.53</td>
<td>110</td>
<td>17.8</td>
<td>1650</td>
<td>19.8</td>
</tr>
<tr>
<td>497</td>
<td>342</td>
<td>2.66</td>
<td>128</td>
<td>3.83</td>
<td>243</td>
<td>37.7</td>
<td>1860</td>
<td>22.8</td>
</tr>
<tr>
<td>498</td>
<td>1020</td>
<td>8.05</td>
<td>127</td>
<td>3.84</td>
<td>689</td>
<td>91.0</td>
<td>1830</td>
<td>22.8</td>
</tr>
<tr>
<td>499</td>
<td>1020</td>
<td>7.84</td>
<td>131</td>
<td>3.84</td>
<td>702</td>
<td>92.1</td>
<td>1840</td>
<td>23.0</td>
</tr>
<tr>
<td>500</td>
<td>680</td>
<td>5.46</td>
<td>125</td>
<td>3.82</td>
<td>441</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>501</td>
<td>680</td>
<td>5.46</td>
<td>125</td>
<td>3.76</td>
<td>454</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>502</td>
<td>680</td>
<td>5.46</td>
<td>125</td>
<td>3.79</td>
<td>441</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>503</td>
<td>680</td>
<td>5.46</td>
<td>125</td>
<td>3.79</td>
<td>441</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>504</td>
<td>680</td>
<td>5.46</td>
<td>125</td>
<td>3.79</td>
<td>441</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>505</td>
<td>680</td>
<td>5.46</td>
<td>125</td>
<td>3.86</td>
<td>447</td>
<td>62.9</td>
<td>1790</td>
<td>22.0</td>
</tr>
<tr>
<td>506</td>
<td>680</td>
<td>5.45</td>
<td>125</td>
<td>3.83</td>
<td>440</td>
<td>59.3</td>
<td>1870</td>
<td>23.9</td>
</tr>
<tr>
<td>507</td>
<td>785</td>
<td>5.60</td>
<td>132</td>
<td>—</td>
<td>475</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>508</td>
<td>326</td>
<td>2.59</td>
<td>126</td>
<td>3.81</td>
<td>203</td>
<td>29.0</td>
<td>1860</td>
<td>22.8</td>
</tr>
<tr>
<td>509</td>
<td>340</td>
<td>2.60</td>
<td>131</td>
<td>3.90</td>
<td>241</td>
<td>31.8</td>
<td>1980</td>
<td>24.5</td>
</tr>
<tr>
<td>510</td>
<td>170</td>
<td>1.31</td>
<td>131</td>
<td>3.75</td>
<td>99</td>
<td>14.6</td>
<td>1810</td>
<td>22.0</td>
</tr>
<tr>
<td>511</td>
<td>1020</td>
<td>7.40</td>
<td>127</td>
<td>3.84</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>512</td>
<td>170</td>
<td>1.26</td>
<td>136</td>
<td>—</td>
<td>102</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>513</td>
<td>170</td>
<td>1.34</td>
<td>138</td>
<td>3.76</td>
<td>105</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>514</td>
<td>340</td>
<td>2.60</td>
<td>131</td>
<td>3.87</td>
<td>234</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>515</td>
<td>680</td>
<td>5.45</td>
<td>125</td>
<td>3.83</td>
<td>475</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>516</td>
<td>1020</td>
<td>8.02</td>
<td>127</td>
<td>3.82</td>
<td>690</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE II
SUMMARY OF TEST SECTION MEASUREMENTS

<table>
<thead>
<tr>
<th>Run No.</th>
<th>((p_0/p_o)_{avg} \times 10^3)</th>
<th>(d_{oM}') Btu/ft(^2)-sec</th>
<th>(d_{SHM}') Btu/ft(^2)-sec</th>
<th>(d_{oM}') Btu/ft(^2)-sec</th>
<th>(d_{SHM}') Btu/ft(^2)-sec</th>
<th>Test Section Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>485</td>
<td>1.67</td>
<td>—</td>
<td>10.6</td>
<td>—</td>
<td>10.0</td>
<td>Pitot Rake and Two Heat Models</td>
</tr>
<tr>
<td>486</td>
<td>1.73</td>
<td>179</td>
<td>—</td>
<td>164</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>1.59</td>
<td>169</td>
<td>10.8</td>
<td>170</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>8.97</td>
<td>158</td>
<td>—</td>
<td>153</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>489</td>
<td>9.60</td>
<td>164</td>
<td>11.6</td>
<td>159</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>8.67</td>
<td>225</td>
<td>16.4</td>
<td>214</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>9.47</td>
<td>224</td>
<td>17.1</td>
<td>219</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>9.13</td>
<td>264</td>
<td>—</td>
<td>219</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>8.19</td>
<td>322</td>
<td>27.3</td>
<td>279</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>9.25</td>
<td>317</td>
<td>20.4</td>
<td>286</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>1.67</td>
<td>131</td>
<td>8.5</td>
<td>138</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>496</td>
<td>8.60</td>
<td>140</td>
<td>8.5</td>
<td>122</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>497</td>
<td>8.86</td>
<td>194</td>
<td>12.5</td>
<td>231</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>8.50</td>
<td>356</td>
<td>25.4</td>
<td>330</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>499</td>
<td>8.68</td>
<td>356</td>
<td>27.1</td>
<td>—</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>9.26</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>9.92</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>8.65</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>8.18</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>8.38</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>9.44</td>
<td>—</td>
<td>—</td>
<td>321</td>
<td>19.5</td>
<td>Two-in.-diam Hemisphere-Cylinder, One Heat Model</td>
</tr>
<tr>
<td>506</td>
<td>9.65</td>
<td>—</td>
<td>—</td>
<td>310</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>8.84</td>
<td>—</td>
<td>—</td>
<td>322</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>8.87</td>
<td>—</td>
<td>—</td>
<td>210</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>9.90</td>
<td>—</td>
<td>—</td>
<td>230</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>10.6</td>
<td>—</td>
<td>—</td>
<td>142</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>10.6</td>
<td>—</td>
<td>—</td>
<td>405</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>10.6</td>
<td>—</td>
<td>—</td>
<td>153</td>
<td>9.1</td>
<td>Three-in-diam Hemisphere-Cylinder, One Heat Model</td>
</tr>
<tr>
<td>513</td>
<td>10.6</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>9.67</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>9.24</td>
<td>—</td>
<td>—</td>
<td>360</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>9.29</td>
<td>—</td>
<td>—</td>
<td>383</td>
<td>25.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE III
SUMMARY OF COMPUTED FREE-STREAM CONDITIONS

<table>
<thead>
<tr>
<th>Run No.</th>
<th>p_∞, atm</th>
<th>ρ_∞, amg</th>
<th>T_∞, °K</th>
<th>u_∞, fps</th>
<th>M_∞</th>
<th>Re_∞, in.$^{-1}$ $\times 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>485</td>
<td>0.0058</td>
<td>0.019</td>
<td>83</td>
<td>6620</td>
<td>11.1</td>
<td>2.65</td>
</tr>
<tr>
<td>486</td>
<td>0.0060</td>
<td>0.020</td>
<td>84</td>
<td>6620</td>
<td>11.0</td>
<td>2.68</td>
</tr>
<tr>
<td>487</td>
<td>0.0057</td>
<td>0.019</td>
<td>81</td>
<td>6620</td>
<td>11.2</td>
<td>2.70</td>
</tr>
<tr>
<td>488</td>
<td>0.0135</td>
<td>0.021</td>
<td>172</td>
<td>6470</td>
<td>7.5</td>
<td>1.43</td>
</tr>
<tr>
<td>489</td>
<td>0.0146</td>
<td>0.022</td>
<td>179</td>
<td>6460</td>
<td>7.3</td>
<td>1.44</td>
</tr>
<tr>
<td>490</td>
<td>0.0259</td>
<td>0.045</td>
<td>154</td>
<td>6300</td>
<td>7.7</td>
<td>3.22</td>
</tr>
<tr>
<td>491</td>
<td>0.0291</td>
<td>0.048</td>
<td>165</td>
<td>6340</td>
<td>7.5</td>
<td>3.28</td>
</tr>
<tr>
<td>492</td>
<td>0.0297</td>
<td>0.048</td>
<td>171</td>
<td>6470</td>
<td>7.5</td>
<td>3.19</td>
</tr>
<tr>
<td>493</td>
<td>0.0523</td>
<td>0.090</td>
<td>159</td>
<td>6370</td>
<td>7.7</td>
<td>6.35</td>
</tr>
<tr>
<td>494</td>
<td>0.0550</td>
<td>0.093</td>
<td>162</td>
<td>6360</td>
<td>7.6</td>
<td>6.37</td>
</tr>
<tr>
<td>495</td>
<td>0.0611</td>
<td>0.020</td>
<td>83</td>
<td>6620</td>
<td>11.1</td>
<td>2.82</td>
</tr>
<tr>
<td>496</td>
<td>0.0122</td>
<td>0.023</td>
<td>142</td>
<td>6040</td>
<td>7.7</td>
<td>1.74</td>
</tr>
<tr>
<td>497</td>
<td>0.0289</td>
<td>0.047</td>
<td>168</td>
<td>6480</td>
<td>7.6</td>
<td>3.2</td>
</tr>
<tr>
<td>498</td>
<td>0.0731</td>
<td>0.125</td>
<td>159</td>
<td>6490</td>
<td>7.8</td>
<td>8.95</td>
</tr>
<tr>
<td>499</td>
<td>0.0768</td>
<td>0.129</td>
<td>162</td>
<td>6520</td>
<td>7.8</td>
<td>8.15</td>
</tr>
<tr>
<td>500</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.4</td>
<td>—</td>
</tr>
<tr>
<td>501</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.3</td>
<td>—</td>
</tr>
<tr>
<td>502</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.5</td>
<td>—</td>
</tr>
<tr>
<td>503</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.7</td>
<td>—</td>
</tr>
<tr>
<td>504</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.4</td>
<td>—</td>
</tr>
<tr>
<td>505</td>
<td>0.0560</td>
<td>0.094</td>
<td>162.4</td>
<td>6360</td>
<td>7.6</td>
<td>6.50</td>
</tr>
<tr>
<td>506</td>
<td>0.0575</td>
<td>0.090</td>
<td>174.7</td>
<td>6530</td>
<td>7.5</td>
<td>5.95</td>
</tr>
<tr>
<td>507</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.4</td>
<td>—</td>
</tr>
<tr>
<td>508</td>
<td>0.0238</td>
<td>0.039</td>
<td>167.6</td>
<td>6480</td>
<td>7.6</td>
<td>2.64</td>
</tr>
<tr>
<td>509</td>
<td>0.0335</td>
<td>0.048</td>
<td>191.6</td>
<td>6700</td>
<td>7.4</td>
<td>3.00</td>
</tr>
<tr>
<td>510</td>
<td>0.0152</td>
<td>0.024</td>
<td>175.6</td>
<td>6340</td>
<td>7.3</td>
<td>1.51</td>
</tr>
</tbody>
</table>
Calibration of the shock tunnel component of the Counterflow Range (I) operating with a new nozzle throat designed to yield Mach 7.5 is reported. Transverse pitot-pressure profiles and heat-transfer rates on a hemisphere-cylinder model in the test section were measured at four flow conditions. A single probe was traversed along the nozzle centerline to determine the streamwise pitot-pressure gradient. Shock detachment distances for a hemisphere-cylinder were measured to determine when helium from the shock tunnel driver entered the test section. Results from these tests indicate a repeatable test core of uniform flow having a 12.5-in. diameter. Test times of from 2.5 to 4 msec were recorded before large quantities of helium appeared to be entering the test section. The streamwise pressure measurements indicated a Mach number gradient of 0.2/ft.
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) “Qualified requesters may obtain copies of this report from DDC.”

(2) “Foreign announcement and dissemination of this report by DDC is not authorized.”

(3) “U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

(4) “U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through

(5) “All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.