
SAFORL-66-180

7,THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Locille Darley
Daniei. L. Murphy
Cynthia Solomon

Warren Teitelman

Bolt Beranek and Newman Inc.
I' 50 Moulton Street

Cambridge, Massachusetts 02138

3 Contract No. AFI9(628)-5065

- CProjectNo. 8668
3 ~ 'oi~ ?F2 r.."q IFC A" Scientific Report No. .

,rE.C,•TNTl 7 ;....TA ION

i~~ ~sawoo vichilel

_ • February, 1966

(The work reported was supported by the Advanced Research
Projects Agency,, P.R. No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

3 Prepared for:

AIR FORCE CA•BRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE •:ESZARCH

trIT-1ED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

I
I
I

AFCRL-66-180

THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Lucille Darley
Daniel L. Murphy
Cynthia Solomon

1Uarren Teitelman

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts 02138

Contract No. AF19(628)-5065

Project No. 8668

Scientific Report No. 1

February, 1966

(The work reported was supported by the Advanced Research
Projects Agency, P.R. No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAM1BRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distribution of this document is unlimited.

7 7lmpi ii ~ll mm ul n~ l • m • m ia• n•mmm •i n I • •

I
TABLE OF CONTENTSH

Page

I.* INTRODUCTION. .*..... ° . *.. .*...*.*..°.°.. . .* .**. . I-i

[II. THE INTERNAL STRUCTURE OF THE BEN-LISP
SYSTEM...............

[III. DESCRIPTION OF FUNCTIONS IN BBN-LISP..... III-i

IV. LISTINGS OF S-EXPRESSIONS OF EXPRIS[AND) FEXPR' S......* ****.*. .. *..... IV-).

APPENDIX A - OPERA4TING THE BEN-LISP SYSTEM

A- LISP LOADER. A.1.1

A-2 USING LISP FROM THE COMPUTER ROOMSTEETYPE....... A.2-1

A-3 USING LISP FROM A REMOTE DATASET... A.3-1
APPENDIX B - INDEX TO FUNCTIONS B.1-1

li
L
L

L

lb
[.•rl

S... . . .-- ,Iv

FOREWORD

The work reported h3re was performed at Bolt Beranek and

Newman Inc in Cambridge, Massachusetts for the Advanced

Research Projects Agency under Contract No. AF 19(628)-506.5.

-iE -

THE 13BN-LISP SYSTEM

ABSTRACT

SThis report describes in detail the BBN-LISP system. This
LISP system has a number of unique features; most notably,

IL= it has a small core memory, and utilizes a drum for storage
of list structure. The paging techniques described here[allow utilizatIon of this large, but slow, drum memory with
a surprisingly small time penalty. These techniques are
applicable to the design of efficient list processing syutems

embedded in time-sharing systems using paging for memory
I allocation.

I

I
I.

1~

1k

-- I

SECTION I.

INTRODUCTION

LISP is a highly sophisticated list-processing language which
is being used extensively in the artificial intelligence re-
search program at Bolt Beranek and Newman. This report
describes our LISP system, which has a number of unique
features. Ideally, a LISP system would have a very large,
fast, random-access memory. However, magnetic core memory
(the only large scale random-access memory available) Is
very expensive relative to serial memory devices such as

magnetic drums or discs. Since average access time to a
word on a drum or disc is approximately 1000 times slower

than access to a word in a core memory, using a drum as a
simple extension of core memory would reduce the operating
speed of a system by a factor of 1000.

We have developed a special paging technique which allows

utilization of a drum for storage with a much smaller time
penalty. This technique allows us to make effective use of
a LISP system on our PDP-l which has only 8392 18-bit words

of 5 microsecond core memory and 92,312 words on a drum
with an average access time of 1E6,5 milliseconds. In addi-
tion, the techniques reported here would improve the speed
of operation of LISP systems embedded in time-sharing
systems using paging for memory allocation. In these time-
sharing systems the user is allocated only a small portion
of core memory at any time, although his p'.ogram can address
a large virtual memory. The portion of his data structure

and/or program not in core is kept in a slower secondary

I-I

I

Bstczage medium such as a drum or disc. Thus, to the user it
p is very similar to the situation on our PDP-i, excopt that a

hardware mechanism makes the program transparent to the

medium of storage of any page of his program.

Section II of this report describes the i'nternal structure
i: [of the BBN-LISP system, and the mechanisms used to facili-

tate fast use of drum storage. Section III describes the

I LISP functions which are built into the basic system. Sec-
tion IV contains listings of those functions which are

! Idefined in LISP.

Although we have tried to be as clear and complete as poss-
ible, this document is not designed to be an introduction to

LISP. Therefore some parts may be clear only to people who3 have had some experience with other LISP systems.

!
I

*1
3

SECTION II.

THE INTRNIAL STRUCTURE OF
THE BBN-LISP SYSTEM

The BBN-LISP System uses only a small cire memorj, but achieves

a large memory capacity by utilizing a drum. This drum is

used in three ways. First, the working program is divided into

three overlays, the read and print (input-output) program, the

garbage collector, and the interpreter of S-expressions. Only

one of these overlays is in core at any time, although a number
of sub-programs conmnon to all three remain in core at all times.

Secondly, the drum contains a large push-down list for use in
running recursive programs. This push-down list is double-

buffered; that is, the section of' the push-down list used most
recently is In core and the section used iwmediately preceding
this section is also there, so that traveling between buffers

does not necessitate a drum reference.

The third way of utilizing this large secondary store, the drum,
is for storage of list structure. If the entire remaining drum

storage was used simply as an extension of core memory, en

access to the drum would be needed each time a new list element

was referenced; and LISP would be reduced to opei'ting at drum
rotation speed. Instead, the drum storage of list structure is
divided into pages. Each page is currently 258 words (decimal);

and each page contains its o-.n free storage list. The cons

algorithm, for constructing a new* list element, ,:orks as follows.

II- 1

I

To construct z = cons (x~y]:

I 1) If z is not an atom, and there is room on the page
with Z, then place z on this page

I 2) Otherwise, if x is not an atom, and there is room
on the page with x, put z on that page

[3) Otherwise, place z on the page I.n core with maximum
free storage.

This algorithm tends to minimize cross linkages between pages

and to limit any single structure to a very few pages. Thus

"when working with this structure, it is unlikely that one will
make references to more than a few pages for a relatively long

i period of time. Since these pages can reside in core, no drum

references are needed. Fcr example, in entering the definition

i of a function, the entire definition teres to appear on a single

pag'. Thus, during the interpretation of a function, multiple

drum references are usually unnecessary.

Although we have not yet run this LISP system on a large problem
where we can make a reasonable timing comparison, we can give
the following anecdotal evidence for the increase in speed due

j Lo this naging system. The run light on the PDP-i goes off when

a drnum swap is taking place. In an 3lder version of PtP-1 LISP

I the drum was treated as an extension of core memorj. When any

problem was run, the run. _igt seemed to go off completely, in-

dicating thet the mach.lne was spending almost all of its time

doing dr -. m transfers. In this system, however, t~ie run light

seems to burn as brightly ac the rest, Indicat~i. that relatively

ftw drun transfer operationE occur except when going between the

three overlay packages, that is, when going from InMtt and out-

put bach to the interpreter or go1'g into a garlage collection.

1. I1-2

I
I!

On the research computer, because of the drum storage, we

currently have in use an effective free storage list of approx

imately 25,000 LISP words, i.e., double word pairv (pointers).

Each LISP word is, of course, two 18 bit PDP-i worth. In the

extended version of LISP that will be used on the hospital

system we will have 256,000 LISP words for free storage.

There are a number of differences between this system and 7094

LISP aside from the storage conventions. For example, the value

of a variable is stored in a special value cell for that variable,

that is, as car of the atom name, An atom is dist!ngvLshed by

its address, which is located in a fixed region of virtual

memory space. Thus one need not reference a structure, but only

look at its address. in order to tell whether or not it is an

atom. If x is an atom, then cdr[z] is the property list of the

atom, as in 7094 LISP. However, the pr 4nt name of the atom is

not to be found on this property list. The user can only get

at the print name with the instrictions pack and upack. Sl.z-

ilarly, the definition of an atom as a function is hidden away

rrom the user in a special cell associated with the atom name.

Two functions, getd[x] end putd[x;def] are used to get the def-

inition of a Punction, and place the definition in the function

cell of an atom, respectively. The value of getd[x] on an atom

defined &s a machine lanr~uage su.broutine it a numerical constant

which bemrs some relationship to the instruction that must be

executed to obtain access to the subroutine.

When a new function is entered, the old values of its variables

are pushed down on the push-down list, and the current values

are storod in the value cells. Since the current value of any

11-3

I
I

variable is always to be found in its value cell, free variables

U are no problem. Vowever, there is the usual anomalous case of

conflicting free variables in functional arguments. This can

be circumvented by using sufficiently unique variable names.

Because of the way variable values are stored, the main inter-

£ preter, eval, obviously does not use an A-list, and is therefore

a function of only one argument. The function evala defined

[in the BBN-LISP System will simulate the effect of the usual

eval[xIa], a being an A-list.

Different LISP systems employ different methods to achieve the

following two effects in functions labelled FEXPR!s in 7094 LISP.

These two effects are (1) giving a function the ability to have

an indefinite number of arguments, and (2) giving a function the

ability to receive its arguments unevaluated.

£ On the 7094 anFEXPR is defined by putting the function definition

on the property list after the flag, FEXPR, and treating it as

f a special case in the interpreter. In BBN-LISP we call functions

which have abilities (1) and (2) FEXPR:'s, but we define them

differently. The way aniEXPR is defined in BBN-LISP is as

follows: instead of the usual lambda followed by a list of

variables, the defining form is preceded by nlamda followed by

a list c,3ntaining a single variable. When a function with an

nlamda is entered, everything following the function name in the

j. form to be evaluated is placed on a single list and becomes the

value of the single argument of this FEXPR. This is passed to

3 the function unevaluated. In order to evaluate any portion of

this list, an explicit call to eval must be made. See "defineq"

I in the listings for an example of the use of this device. A

Ii II-4

!

third reason FEXPR's and FSUBR's are used on 7094 LISP is to

make the A-list available to a program. However, since

there is no A-list in BBN-LISP this will not concern us here.

Another major difference between BBN-LISP and 7094 LISP is

due to the fact that the 7094 has floating point hardware,

and the PDP-i does not. Any floating point machinery would

have to be interpreted on the research computer. This would

be expensive in both time and space, and, therefore, in this

version of LISP there is only integer arithmetic. A compiler

is being planned for the PDP-i and will be described in a

later document.

11-5

SECTION III.

DESCRIPTION OF FUNCTIONS IN BBN-LISP

F cons[x;y] cons constructs a dotted pair of
SUBR x and y. If y is a list, x beco:nes

the first element of that list.

Scar[x, car gives the first element of a
list x, or the left element of a

[dotted pair x. Nominally undefined

for atoms, it gives the binding

(value) of an atom x.

cdr[x] cdr gives the tail of a list (all
SUBR but the first element). This is

also the right member of a dotted
I pair. If x is an atom, cdr[x]

gives the property list of x.

caar[x] = car[carLx]] All 30 combinations of nested cars
SUBR and cdrs up to 4 deep are included

cadr[x] = car[cdr[x]] i the system.
SUBR

cddddr[x] = cdr[cdr[cdr[cdr[xl] J]]
L .SUBR

eq[x;y] The value of eg is T if x and y are
SUBR identical atoms, including numbers;

j otherwise the value is NIL. (Will
give T for lists if their internal

representations are identical, NIL

otherwise.)

I III-I

I
I

null[x] eq[x;NIL)
SUBR

atom[x] Its value is T if x is an atom;
SUBR NIL otherwise.

oblist[] Gives a list of all atoms in the
SUBR system.

not(x] Its value is true if its argument
EMCR is false, and false otherwise.

quote[x] This is a function that prevents
FSUBR its argument from being evalu-

ated. Its value is x itself.

condrx] The argument for cond is a list.

FSUBR Each element of the list is itself

a list containing n > I items:

the first is an expression whose

value may be false or true (that

is, NIL, or anything which is not

NIL); the rest may be any expres-

sions. This is the conditional

expression in the LISP system.
The meaning of it is: if the

first element of the first list
is true (not NIL), then the f ol-
lowing expressions are evaluated.
The value of the conditional is
the value of the last expression
in this sublist. If there is only
one e;pression, then the value of

111-2

the conditional is the value of

this expression. This value co-

incides with the value in 7090
LISP for pairs of items., but

allows additional flexibility.

If the first element of the first

list is false (- NIL), then the

second sublist is considered, etc.

[Thus, the arguments are searched

until a first element of a list

is found which is not NIL. If

none are found, the value of the

3 conditional expression is NIL.

prog(l] This feature allows the user to
FSUBR write an ALGOL-like program con-

taining LISP statements to be

3 executed. The argument is a list,

the first element of which is a

list of program variables. The

rest of the list is a sequence of

statements, and atomic symbols

used as labels for transfer points.

I go[x] go is the function used to cause a
FSUBR transfer in prog. (GO A) will

cause the program to continue at

the label A.

list[xi;...;xn] The value of list is a list of
FSUBR the values of its arguments.

I
I I11-3

I

return(x] return is the normal end of a
SUBR prL*. Its argument is evaluated

and is the value of the prog in

which it appears.

printIxl Prints x, followed by carriage i
SUBR return, on specified devices

(see punchon, typeout). Value

is x.

prinifx] Prints one atom, x, with no space
SUMBR or carriage return following.

Value is x.

terpri[] Prints a carriage return. Value
SUBR is NIL. I

punchon[x] Turns punch on for print if x = T;
SUBR turns punch off if x = NIL. I

Value is former setting of punchon. g
typeout[x] If x = T, turns typewriter on for

SUBR printing. If x = NIL, turns type-

writer off. Value is former

setting of tyIeout.

read[] Reads on S-expression from
Sspecified device (see typein).

punch[xJ This function sets punchon to t,
EXPR sets t to nil, punches x,

and then restores punchon

and typeout to their original
values.

1
I

I

I

typein[x] If x = T read-in device is set to
SUBR typewriter. If x = NIL read-in

i device is set to reader. Value is
former setting of te.

ratom(] Reads in one atom from read-in de-
SUBR vice. Separation of atoms is as

"defined by the functions setsepr

and setbrk.

setsepr[x] These are both FSUBRS and may have
FSUBR up to 18 arguxn~ts each. Arguments

setbrk~x] should be octal numbers, e.g., 77q
FSUBR

for carriage return. Characters

defined by setbrk will delimit atoms

and be returned as separate atoms

themselves. Characters defined by

setsepr will not be returned and

will serve only to separate atoms.

For example, to make ratom read in

ordinary format, space (Oq), comma

(33q), and carriage return (77q)

are separation characters, and left

paren (57q), right paren (55q), ar4:-

period (73q) are break characters.

Thus setsepr[Oq 33q 77qT
retbrk[57q 55.j 73q]

would set up these characteristics.

The value of setsen and of setbrk

is NIL.

I 111-5

clearbuf[l This SUBR clears the input and output
SUBR

buffers of the sequence break pack-

age, including the sequence break

reader, rato . read, and typei line

buffers, and sets the case to lower

case. This means that if you have

just done a read and the S-expression

did not complete a line, whatever

else is on that line will be lost.

However, it is very useful if you

want to initialize the system, or an

er.-or has beer, made, and you want to

clear out what has been read in on

a line.

readin(x] If x = T,, readin sets the teletype
SUBR input to the paper tape reader.

Specifically, it eliminates the line-

feed echo after a carriage return,

and the delete characters, rubout

and colon, are not recognized. Set-

ting I to NIL restorez the status to

normal. This function returns its

previous value.

feed(n] The value of n must be a number.
SUBR

This function outputs on the teletype

n carriage return-line feeds or n

carriage returns depending on the

setting of readin.

III-0

5 character(n] This function outputs on the tele-
SSUBR type a single character with octal

representation (code) n. n must

be a number.

progi[x;y] This function evaluates !oth its

[SUBR arguments in order, that is, x

first and then y, and then returns

the value of x.

prog2(x;y] The purpose of this function is to
SUBR allow the evaluation of x, before

returning y.

progn.x;y;...;z] _ is an FSUBR which evaluates
SFSUBR each of its arguments in sequence,

and returns the value of its last

argument as its value. It is an

extension of p rog2.

I set[x;y] This function sets the atom which
SUBR is the value of x, to the value of

I y, and returns the value of j.

setq[x;y] This FSUBR is identical to set,
FS31BR except that the first argument is

quoted.

Examle: If the value of x is c,

and the value of 2 is b, then set

[x;yl would result in c having
value b, and b returned. setq[x;yJ

would result in x having value b,

and b returned. The value of ' Ja
I unaffected.

111-7

'I

setn[x;y] setn requires and checks for an atom
SUBR as the value of the first argtument,

and a number as the second. If the

first argument is not already de-

fined as a number, the value of the

second will be moved to a new cell

in FWS (Full Word Space), the loca-

tion of which will be stored in the

value cell of the first argument.

Otherwise, setn replaces the FWS cell

containing the previous numeric

value of the first argument by the

numeric value of the second. If the

second argument was the most recent

number added to FWS, the cell con-

taining its value is returned to the

free list.
Example:

(SETN (QUOTE P) (PLUS P 1))

creates a new cell in FWS containing

the old value of P plus 1. This

value gets moved to the FWS cell con-

taining the old value.

The following will lose:
(PRUG .. (SET (QUOTE A) B)

(SETN (QUOTE A) (PLUS A 1)) ...)

because the cell containing the value

of A is the same as that for B. To

avoid the problem, the first SET

should have been a SETN so that a

unique numeric value cell would have

been assigned for A.

II-8

!a

Jsetqq[x;] Identical to seta except that neither
argument is evaluated.

setnq[x;y] This FEXPR is identical to setn
FEXP except that the first argument is

quoted.

putd[x;y] p places the value of Z into the

SUBR function cell of the atom which is

the value of x. This is the basic

way of defining functions. p, is

mnemonic for ut definition on x.

Value of Rutd is the definition
(value of Z).

putdq[x;y] This function is similar to uutd,3 PEXPR but both arguments are considered

quoted, and its value is x.

I getd[x] This function ge the definition
STBR of the function whose name is the

value of x. If x is not a defined

function, the value of getd[x] is
NIL; if x is a SUBR or FSUBR, the
value is a number.

fntyp[x] This function gives EXPR, FEXPR,
SUBR SUBR, FSUBR or NIL depending on

L
whether x is an EXPR, FEXPR, SUBR,

j FSUBR or not defined, respectively.

eval[x] eval evaluates the expression x andi
SUBR returns this value.

!
1 III-9

errorset(form;arg) This function calls eval with the
SUBR value of form., and returns with a

list of this value if no error is
encountered. If an error is
encountered on the call to eval,
errorset returns with the value

NIL. If aM is T, the message from

error is printed; the message is not

printed if arg - NIL.

eraetq[xj This FEXPR is defined as
FExrR (ERRoRsET (CAR x) T);

that is, it is the same as errorset

with the argument quoted and the

error flag set to T.

nlsetq[xJ This FDCPR is identical to ersetq
FEXPR except that the error flag is set

to NIL and the error comment from

error will not be printed out.

error[x] error induces an error with mes-SUBR --- 'sage x.

quit(qut induces a "strong" error, i.e.,
SUBR will unwind a program through

errorsets to the top level,

equal[x;y] The value of this function is T if
SUBR x and y are equal, that is, identi-

cal S-wxpressions, and NIL otheriise.

It is as fast as in for .oma'.

III-10

and[x] This function is an FSUBR and canF3WUBR take an indefinite number of argu-

ments. Its value is T if none of its

arguments has value NIL, and is Y'IL

otherwise.

or[x] or is also an FSUBR and may have an

FSUBR indefinite number of arguments (in-

cluding 0). o2r has value NIL if all

of its arguments have value NIL,

otherwise, it has value T.

rdflx[lx] If x is NIL this function will try

EXPR to read one S-expression from the

typewriter with read[]; if no error

occurred in reading, it will return
with list of the S-expression that,

was read. If an error occurs in
reading, it returns with NIL. If x

is not NIL, it will attempt to read
an S-expression and keep attempting

to read it until it gets one without
an error; each time it tries to read
an S-expression and gets an error,

it will print out x. In this case
it returns with the %-expression
itself (not list of the S-expression).

append[x;y] This function copies list x and
EXPR appends list y to this copy. The

value is the combined list.

III- 11

I t _: . ." • _ • _

nconc[x;y] This function is similar to
SUBR a , in effect, but it actual- U

ly causes this effect by modify-

ing the list structure x., and

making the last element in the

list x point to the list y. The

value of nconc is a pointer to

the first list x, but since this I
first list has now been modified

it is a pointer to the concate-
nated list. I

nnconc[x;y] This function is the same as
SUBR nconc, nnconc is used by the I

trace programs so that nconc it-

self can be traced.

attach[x;y] This function attaches x to the
EXPR

front of the list y by doing an

rplaca and an rplacd, g
tconc[x;p] This function provides an effi-

EXPR cient way for placing an item x J
at the end of a list R. This

list is the first item on p, that

is, car[p]; cdr[p] is a pointer

to the last element in this list;

x is placed on the end of the

list by modifying this structure,

and x is placed on the list as an

item. The effect of this function

is equivalent to nconc[car[p]; i
list~x]), with cdr[p] updated to

point to the last element of the

modified list.

I
I1I-i2

Jam, -

Iconcx;p] This function is similar to tconc,EXPR except that in this case x is a list.

An entire list will be tacked on the
end of car(p], and cdr[pJ will be
adjusted to be a pointer to the last
element of this new combined list.
Both tconc and lconc work correctly
given null arguments.

last[x] This function has as its value aEXPR pointer to the last cell in the list

x, and returns NIL if x is an atom.

length[x] This function has as a value the
EXPR length of the list x. If x is an

atom, it returns 0.

prettyprint[x] The argument of prettyprint is a

EXPR list of names of functions; it

prints and/or punches (depending on
the settings) the definitions of
the named functions in a pretty
format. It utll•zez the functions
p, endline, and superprint.
This latter function does all the
work.

prettydef[xl This function of one argument (a

EXPR list of function names) prints and/

or Punches "(DEFINEQ", followed by
the prettyprint listing of each of

IIl i•

II

these functions, followed by a right

paren. A tape punched by prettydef

can be loaded by the function load

if a STOP is punched on the end of

the tape. The value of prettydef

is X.

define[x] The argument of define is a list.
EXPR Each element of the list is itself r

a list containing either two or

three items. In a two-item list

the first item of each element of"

the list is the name of a function

to be defined, and the second item

is the defining lambda or nlamda

expression. In a three-item list f
the first item is again the name of

the function to be defined. The i
second is the lambda list of vari-

ables and the third is the form for

the expression. As an example

consider the following two equiva-

lent expressicns for defining the I
Phnction null.

1) (NULL (LAMBDA (X) (EQ X NIL)))
2) (NULL (X) (EQ X NIL))

1
1II-14 1.

I
1,

defineq(x;...;z] This FEXPR is closely related to

FEJWR define. However, it can take an

indefinite number of arguments, and

it will treat them literally, as if

they were quoted. Each of the argu-

ments must be a list of the form

described as an element of the list
which is the argument for define.

Using defineg instead of define

allows one to eliminate two pairs

of parentheses in writing functions

to be defined for loading with the

function load.

load~x] load is a function which reads suc-
EXPR -cessive S-expressions from the paper

tape reader, and evaluates each as
it is read. If x = T, then load

prints the value; otherwise it does

not. load continues reading S-ex-
pressions and evaluating them, until
it reads the single atom STOP fol-

lowed by a carriage return, at which
point it returns the value NIL.

Using load is the standard way of

getting functions In from the paper
tape reader; it saves having to

write sequences of

E(EVAL (READ)).

II1-15

S -, , .- - - - M o w =

unpack[x] The argun nt of unpack should be an
SUBR atom. The value of unpack is a list

which contains, in order, the char-

acters which make up the print name

of that atom.

pack(x] The argument x of pac must be a
3,UBR list of atoms. The value of pac is

a single atom whose print name is a

packed version of the print names of

all the atoms given in the list.

Thus

pack((a bc def g)] = abcdefg.

remob[x] The argument of remob must be an
SUBR atom. The effect of applying remob

to this atom is to remove all trae-'

of this atom from the system. This

is a good way of reclaiming soace

from atoms which are no loger.Jneeded.

but it is very dangerou&) and remob

should be used with crile. A future

mention of the same atom name will

have no connection with the old one

that was f'rrefly there. In addi-

tion, any 1ista which point to this

old atom. will now be incorrect.

member(x;y] This SUBR checks to See if
SUBR x .s a member of the list y. If so,

it returns the value T; if not, it

returns the value NIL.

I11-16I

1
I

