i
e

ad

AFCRL-66~180

"AD6326G69

L e

THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Licllle Darley
Danier L. Murphy
Cynthla Solomon
Warren Teltelman

" Bolt Beranek and Newman Inc.

50 Moulton Street

Cambridge, Massachusetts 2138

Contract No. AF19{623)-5065

FEDEPAT- “71R
PECHNITY

¥ 18

g;;§°5§y= lic.oflche\

15,

TNCHOUSE
CLEAR GNTIFIC AND

_-—-‘J

uArnni

2]

Project No. 8568
Scientific Report No. 1.

February, 1966

L@\R@%X‘.\JE UJW

(The work reported was supported by the Advanced Research
Projects Agency, P.R. No. CRL-56175, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAMBRIDGE RESEA..CH LABORATORIES
OFFICE OF AERCSPACE ®ESTZARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

AFCRL-66-180

THE BEN-LISP SYSTEM)

Daniel G. Bobrow
D. Lucille Darley

Daniel L. Murphy . E

Cynthia Solomon
Warren Teitelman

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

Contract No. AF19(628)-5065
Project No. 8668
Scientific Report No. 1

February, 1966

(The work‘reported was supported by the Advanced Reseafch
Projects Agency, P.R, No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITEL STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distributlion of this document is unlimited.

B R e kT e i

SR

IS

bt

s iy B N M PEE ey T

e G

e B S e N o B e

TABLE OrF CONTENTS

Page

I. mmochIoN..‘O......t....Il.ll..'........ I-l

II. THE INTERNAL STRUCTURE OF THE BBN-LiSP
SYSTEM..-....oooonoo..o-ooo-oooctoocooooo- II“l

III. DESCRIPTION OF FUNCTIONS IN BBN-LISP..... III-1

IV, LISTINGS OF S~-EXPRESSIONS OF EXPR'S
ANDFEXPR'S..I.......‘.........‘I......... W-l

APPENDIX A - OPERATING THE BBN-LISP SYSTEM

A-l
A-2

A-3

LISP LOADER.Q..l.l....'.“'.l..'l‘. Aol“l

USING LISP FROM THE COMPUTER ROOM
TELENPE......................C..'. A.E"‘l

USING LISP FROM A REMOTE PATASET... A.3-1

APPmDIx B - mDEx TO F‘UNCTIONSO.)......Q.I..Q.' B‘l—l

FOREWORD

The work reported here was performed at Bolt Beranek and
Newman Inc in Cambridge, Massachusetts for the Advanced
Research Projects Agency under Contract No. AF 19(628) -506F).

e s e R——

L]

[S
+

s Ppus e PEe P

THE BBN-LISP SYSTEM

ABSTRACT

This report describes in detail the BBN-LISP system. This
LISP gystem has a number of unique features; most notably,

it has a small ccre memory, ard utlilizes a drum for storage
of 1list structure. The paging techniques described here
allow utilization of this large, but slow, drum memory with
a surprisingly small time penalty. These techniques are
applicable to the design of efficient 1list processing systems
embedded in time-sharing systems using paging for memory
allocation, '

SECTION I.
INTRODUCTION

LISP is a highly scphisticated list-processing language which
is being used extensively in the artificial intelligence re-
search program at Bolt Beranek and Newman. This report
describes our LISP system, which has a number of unique
features., Ideally, a LISP system would have a very large,
fast, random-access memory. However, magnetic core memory
(the only large scale random-access memory availatle) is
very expensive relative to serial memory devices such as
magnetic drums or discs. Since average access time to a
word on a drum or disc is approximately 1000 times slower
than access to a word in a core memory, using a drum as a
simple extension of core memory would reduce the operating
speed of a system by a factor of 1000,

We have develcped a special paging technijue which allows
utilization of a drum for storage with a much smaller time
penalty. This technique allows us to make effective use of
a LISP system on our PDP-1 which has only 8392 18-bit words
of 5 microsecond core memory and 92,312 words on a drum
with an average access time of 1&,5 milliseconds. In addi-
tion, the techniques reported here would improve the speed
of operation of LISP systems embedded in time-sharing
systems using paging for memory allocation. In these time-
sharing systems the user is allocated only a small portion
of core memory at any time, although his program can address
a large virtual memory. The poriion of his data structure
and,/or program not in core is kept in a slower secondary

I-1

stcrage medium such as a dyum or disc. Thus, to the user it
is very similar to the situation on our PDP-1, except that a
hardware mechanism makes the program transparent to the
medium of storage of any page of his program,

Section II of this report describes the internal structure
of the BBN-LISP system, and the mechanisms used to facili-
tate fast use of drum storage. Section III describes the
LISP functions which are built into the basic system. Sec-
tion IV contains listings of those functions which are
defined in LISP.

Although we have tried to be as clear and complete as poss-

ible, this document is not designed to be an introduction to
LISP. Therefore some parts4may be clear only to people who

have had some experience with other LISP systems.

SECTION II.

THE INTERNAL STRUCTURE OF
THE BBN-LISP SYSTEM

The BBN-LISP System uses cnly a small core memory, but achieves
a large memory capacity by utilizing a drum, This drum is

used in three ways. PFirst, the working program is divided into
three overlays, the read and print (inmput-output) program, the
garbage collector, and the interpreter of S-expressions. Only
one of these overlays 1s in core at any time, although a number
of sub-programs common to all three remain in core at all times,

Secondly, the drum contains a large push~down list for use in
running recursive programs., This push-down list is double-
buffered; that is, the section of the push-down list used most
recently is in core and the section used limediately preceding
this section is also there, so that traveling between buffers
dse3 not necessitate a drum reference.

The third way of utilizing this large secondary store, the drunm,
is flor storage of 1list structure., If the entire remaining drum
storage was used simply as an extension of core memory, &n
access to the drum would be needed each time a new 1list element
was refervcnced; and LISP would be reduced to operating at drum
rotation speed. Instead, the drum storage of list structure is
divided into pages. [Eacih page is currently 258 words (decimal);
and each page contains ite own free storage list. The cons
algorithm, for constructing 8 new list element, nrks as follows.

II-1

PmE GEmE SUE P P T e e Em BN DA SUm ey Wy M) B0 (250 B

To construct z = cons [x;y]:

1) If y is not an atom, and there is room on the page
with y, then place z on this page

2) Otherwise, if x is not an atum, and there 1s room
on the page with x, put z on that page

3) Otherwise, place z on the page in core with maximum
free storage.

This algorithm tends tc minimize cross linkages between pages
and to limit any single structure to a very few pages. Thus
when vorking with this structure, it is unlikely that one will
make refercnces to more than a few pages for a relatively long
period of time. 8ince these pages can reside in core, no drum
references are needed. Fcr example, in entering the definition
of a function, the entire definition tenis to appear on a single
pag>. Thus, during the interpretation of a function, multiple
drum references are usually unnecessary.

Although we have not yet run this LISP system on a large problem
where we can make a reasonable timing comparison, we can give
the following anecdotal evidence for the increase 1n speed due
;0 this naging system. The run light on the PDP-.1 goes off when
8 drun swap is taking place. In an slder version of PDPP-1 LISP
the drum was treated as an extension of core memory. When any
problem was run, the run _igiht seemed to go or'f completely, in-
dicating thet the machine was spending almost all of its time
going drum transfers, In this system, however, tihe run light
seems to burn as brightly as the rest, indlicating that raiatively
frw drun transfer operationt occur except when going betwueen the
three overlay packages, trat is, when going from input and oute-
put bacls to the interpreter or goling into a garbage collection.

iI-2

On the research computer, because of the drum storage, ve
currently have in use an effective free storage list of approx-
imately 25,000 LISP words, i.e., double word paire (pointers).
Each LISP word is, of course, two 1& bit PDP-1 werds., In the
extended version of LISP that will be used on tihie hospital
system we will have 256,000 LISP words for free storage.

'There are & number of differences between this system and 7094
LISP aslide from the storage conventions, For example, the value
of a variable is stored in a scecial value cell for that variable,
that is, as car of the atom name. An atom is distlinguvished by
ite address, which 1s located in a fixed region of virtual
memory space., Thus one need not reference a structure, but only
look at its address. in order tc tell whether or not it is an
atom., If x 1s an atom, then cdr{x] is the property 1list of the
atom, as in 7094 LISP. Hcwever, the print name of the atom is
not to be found on this property list. The user can cnly get

at the print name with the instrmictions pack and unpack. Sia-
ilarly, the definition of an atom as a function is hidden away
from the user in a special cell assoclated with the atom name,
T™wo functions, getd{x] &nd putd{x;def] are used to get the def-
inition of a function, and place the definition in the function
cell of ar atom, respectively. The value of getd{x] on an atom
deflned a8 a machine lanzuage s.broutine i: a numerical constant
which bears some relationship to the instructlon that must be
executed to ohtain access to the subroutine,

¥hen & new function is entered, the old values of its variadies |
are pushed down on the push-down lizt, and the currenl values
are stored in the value cells, Since the current value of any

II-3

fucd TeEg QNN PN WEg SEy Gy S P O EDT e NG

Plosider o A
T

Wity
&

S et SR PG Pead

variable is always to be found in its value cell, free variables
are no problem. Fowever, there 1s the usual anomalous case of
conflicting free variables in functlonal arguments. This can

be circumvented by using sufficiently unique variable names.

Because of the way variable values are stored, the main inter-
preter, eval, obviously does not use an A-list, and 1is therefore
a function of only one argument. The function evala defined

in the BBN-LISP System will simulate the effect of the usual
eval[x;a], a being an A-list.

Different LISP systems employ different methods to achieve the
following two effects in functions labelled FEXPR'S in 7094 LISP.
These two effects are (1) giving a function the ability to have
an indefinite number of arguments, and (2) giving a function the
ability to receive its arguments unevaluated.

On the 7094 anFEXPR is defined by putting the function definition
cn the property list after the flag, FEXPR, anc treating it as

a speclal case in the interpreter. In BBN-LISP we call functions
which have abilities (1) and (2) FEXPR's, but we define them

- differently. The way @niEXPR is defined in BBN-LISP is as

foliows: 1instead of the usual lambdi followed by a list of
variables, the defining form is preceded by nlamda followed by

a list containing a single variable. When a function with an
nlamda is entered, everything following the function name in the
form to Le evaluated is placed on a single list and becomes the
value coi' the single argument of this FEXPR. This is passed to
the functicn unevaluated. In order to evaluate any portion of

17 s

this list, an explicit call to eval must be made, See "defineq"

in the listings for an example of the use of this Aevice. &

II-1

e e . -

third reason FEXPR's and FSUBR's are used on 7094 LISP is to
make the A-list avallable to a program. However, since
there is no A-list in BBN-LISP this will not concern us here.

Another major difference between BBN-LISP and 7094 LISP is
due to the fact that the 7094 has floating point hardware,
and the PDP-1 does not. Any floating point machinery would
have to be interpreted on the research computer. This would
be expensive in both time and space, and, therefore, in this
version of LISP there is only integer arithmetic. A compiler

is being planned for the PDP-1 and will be described in a
later document.

II-5

..Au,/'

]

-

-—

i

o S er—~ B

e BN G PG PG e S)

Bt v i

E

:»W'Q

PENE e P g e

cons[x;y]
SUBR

car[x]
SUBR

cdar{x]
SUBR

caar[x] =
SUBR

cadr[x] =
SUBR

SECTION III,

DESCRIPTION OF FUNCTIONS IN BBN-LISP

carlcar{x]]

car[edr[x]]

cons constructs a dotted pair of
xard y. If y is a list, x becones
the first element of that 1list.

car glves the first element of a
1list x, or the left element of a
dotted pair x. Nominally undefined
for atoms, it gives the binding
(value) of an atom x.

cdr gives the tail of a list (all
but the first element). This is
also the right member of a dotted
pair. If x is an atom, cdr[x]
gives the property list of x.

A1l 30 combinations of nested cars
and cdrs up to U4 deep are included
in the system.

cddddr{x] = cdr{ecdr{cdr{car{x)i]]

SUBR

ealx;y]
SUBR

The value of eq is T if x and y are
identical atoms, including numbers;
otherwise the value is NIL, ({(Will

give T for lists 1f their internal

representations are identical, NIL

otherwise.) ‘

ITI-1

null[x]
SUBR

atom[x]
SUBR

oblist(]
SUBR

not [x]
EXPR

quote[x]
FSUBR

cond[x]
FSUBR

L e

eq[x;NIL)

Its value i1s T if x 1is an atom;
NIL otherwise.

Gives a list of all atams in the
system.

Its value is true if its argument
is false, and false otherwise.

This is a function that prevents
its argument from being evalu-
ated. Its value 1s x itself.

The argument for cond 1is a 1list.
Each element of the list is itself
a list containing n > 1 items:

the first is an expression whose
value may be false or true (that
is, NIL, or anything which is not
NIL); the rest may be any expres-
sions. This 1s the conditional
expression in the LISP system.

The meaning of it is: 1if the
firet element of the first list

is true (not NIL), then the fcl-
lowing expressions are evaluated.
The value of the conditional 1is
the value of the last expression
in this sublist. If there is oniy
one expression, then the value of

III-2

:ﬁl"‘

,“w

i
L

st Sl SEEY AR ONG SE) ONg ey

Tl 05 U PN e p

prog(1]
FSUBR

go[x]
FSUBR

list{x1;...;xn]
FSUBR

the conditional is the value of
this expression. This value co-
incides with the value in 7090
LISP for pairs of items, but
allows additional flexibility.

If the first element of the first
list is false (= NIL), then the
second sublist 1is considered, etc.
Thus, the arguments are searched
until a first element of a list
is found which is not NIL. If
none are found, the value of the
conditional expression is NIL.

This feature allows the user to
write an ALGOL-like program con-
talning LISP statements to be
executed. The argument is a list,
the first element of which is a
list of prcgram variables. The
rest of the list is a sequence of
statements, and atomic symbols

used as labels for transfer points.

g0 1s the function used to cause a
transfer in prog. (GO A) will
cause the program to continue at
the label A.

The value of list is a list of
the values of 1its arguments.

III-3

o - —gorear e e

return{x]
SUBR

print(x]
SUBR

prini[x]
STUBR

terpri[]
SUBR

punchon(x]
SUBR

| =

typeout [x]
SUBR

read[]
SUBR

punch [x]
EXPR

return is the normal end of a
prog. Its argument is evaluated
and is the value of the prog in
which it appears.

Prints x, followed by carriage
return, on specified devices
(see punchon, typeout). Value
is x.

Prints one etom, X, with no space
or carriage return following.
Value is X.

Prints a carriage return. Value
is NIL.

Turns punch on for print if x = T;
turns punch off if x = NIL.

Value is former setting of punchon.

If x = T, turns typewriter on for
printing. If x = NIL, turns type-
writer off. Value 1is former
setting of typeout.

Reads on S-expression from
specified device (see typein).

This function sets punchon to ¢,
sets typecut to nll, punches X,
and then restores punchon

and typeout to their original
values,

III-4

N |

G S 0 e e - e can N NS SN G ey e e =0 O

‘. ?,1

P o
L3

Gl S0 W ¢ s - e GaS I PEE U SN WY ey ey S5O D

typein[x]
SUBR

ratom(]
SUBR

setsepr(x]
FSUBR

setbrk[x]
FSUBR

If x = T read-in device is set to
typewriter, If x = NIL read-in
cevice is set to reader, Value 1s
former setting of typein.

Reads in one atom irom read-in de-
vice. Separation of atoms 1s as
defined by the functions setsenr
and setbrk.

These aire both FSUBRS and may have
up to 18 arguments each. Arguments
should be octal numbers, e.g., 774
for carriage return. Characters
defined by setbrk will delimit atoms
and te returned as separate atoms
themselves. Characters defined by
setsepr will not be returned and
will serve only to separate atoms.
For example, to make ratom read in
ordinary format, space (0Oq), comma
(33q), and carriage return (77q)
are separation characters, and left
paren (57q), right paren (55q), and-
period (73q) are break charscters,
Thus setsepr{Oq 33q 77q]
retbrk(57q 55 73q]
would set up these characteristics.
The value of setsepr and of setbrk
1s NIL.

IiI-5

clearbuf(]
SUBR

readin[x]
SUBR

feed[n]
SUBR

This SUBR clears the input and output
buffers of the sequence break pack-
age, including the sequence break
reader, ratom, read, ard typein line
buffers, and sets the case to lower
cagse., This means that if you have
Just done a read and the S-expression
did not complete a line, whatever
else 1is on that line will be lost.
However, 1t is very useful if you
wvant to initlallze the system, or an
error has been made, and you want to
clear out what has been read in on

a line,

If x = T, readlin sets the teletype
input to the paper tape reader.
Specifically, it eliminates the line-
feed echo after a carriage return,
and the delete characters, rubout

and colon, are not recognized. Set-
ting x to NIL restoreg the status to
normal. This function returns its
previous value.

The value of n must be a number,

This function‘outputs on the teletype
n carriage return-line feeds or n
carrlage returns dependlng on the
setting of readin,.

I(I-5

W~

. M n S e B DRG0 e v

o

ORI T b

" R TR NP R e
= £9 63 a5

3

s SEG ONE NN SN Oy e

GEh UER S EB P

character[n]
SUBR

progilx;y]
SUBR

prog2(x;y]
SUBR

progn(x;y;...;z]
FSUBR

set{x;y]
SUBR

setqlx;y]
FSLUBR

This function outputs on the tele-
type a single character with octal
representation (code) n. n must
be & number.

This function ev.luates *»oth its
arguments 1in order, that is, x
first and then y, and then returns
the value of x.

The purpose of this function 1is to
allow the evaluation of x, before
returning y.

progn 1s an FSUBR which evaluates
each of its arguments in sequence,
and returns the value of 1ts last
argument as its value, It is an
extension of prog2,

This function sets the atom which
18 the value of x, to the value of
¥, end returns the value of y,

This FSUBR 1s identical to set,
except that the first argument 1is
quoted.

Example: If the value of x is ¢,
and the value of y is b, then set
[x;y] would result in ¢ having
value b, and b returned., setq(x;y]
would result 1n x having value b,
and b returned, The value of y ia
unaffected,

ITI-7

setn(x;y]
SUBR

setn requires and checks for an atom
as the value of the first argument,
and a number as the second. If the
first argument 1s not already de-
fined as a number, the value of the
second will be moved to a new cell
in FWS (Full Word Space), the loca-
tion of which will be stored in the
value cell of the first argument,
Otherwise, setn replaces the FWS cell
containing the previous numeric
value of the first argument by the
numeric value of the second., If the
second argument was the most recent
number added to FWS, the cell con-
talning its value is returned to the
free list.

Example:
(SETN (QUOTE P) (PLUS P 1))
creates a new cell in FWS conteining
the o0ld value of P plus 1. This
value gets moved to the FWS cell con-
taining the old value,

The following will lose:

(PRUG .. (SET (QUOTE A) B)

(SETN (QUOTE A) (PLUS A 1)) ...)
because the cell containing the value
of A is the same as that for B, To
avoid tne problem, the first SET
should have been a SETN so that a
unique numeric value cell would have
been assigned for A.

I171-8

+-» PR MR SR Pee e T s EN) @GN W W Sy P ™D DO s SR

'Mo.,:e»uuqmrm.“ [T

setqq{x;]

setng(x;y]
FEXP

R

putd[x;y]
SUBR

putdqlx;y]
FEXPR

getd[x]
SUBR

fntyp(x]
SUBR

eval({x]
SUHBR

Identical to setq except that nelther

argument is evaluated.

This FEXPR is identical to setn
except that the first argument 1s
quoted,

putd places the value of y into the
function cell of the atom which 1s
the value of x. This 1s the basic
way of defining functions, putd 1s
mnemonic for put definition on x.
Value of putd is the definition
(value of y).

This functlon 1s similar to putd,
but both argumenis are considered
quoted, and its value 1is x.

This function gets the definition

of the function whose name 1s the

value of x. If x 1s not a defined
function, the value of getd[x] is

NIL; if x 1s a SUBR or FSUBR, the

value is a number,

This function gives EXPR, FEXPR,
SUBR, FSUBR or NIL depending on
whether x 1s an EXPR, FEXPR, SUBR,
FSUBR or not defined, respectively.

eval evaluates the expression x and
returne thls value,

111-9

errorset{ fom;arg)
SUBR

ersetq(x;
FEXTR

nlsetq(x)
FEXPR

error{x]
SUBR

quit(]
SUBR

eQual{x;y]
SUBR

This function calls eval with the
value of form, and returns with a
1list of this value if no error 1s
encountered. If an error is
encountered on the call to eval,
errorset returns with the value

NIL. If arg is T, the message from
error 1s printed; the message is not
printed if arg = NIL.

This FEXFR is defined as

(ERRORSET (CAR X) T);

that is, it is the same as errorset
with the argument quoted and the
error flag set to T.

This F:ZXPR is identical to ersetq
except that the error flag 1s set
to NIL and the error comment from
error will not be printed out.

error induces an error with mes-
sage X,

quit induces a "strong" error, 1i.e.,
will unwind 2 program through
errors2ts to the top level.

The value of this function 48 T if

X and y are equal, that is, 1denti-

¢cal S-expressions, and NIL otherwise.
It 1s as fast as eq for a'.oms.

111-10

Sipu O

and

[x]

FCUBR

or{x]
FSUBR

rdflx{x]
EXPR

app
E

end[x;y]
XPR

™is function is an FSUBR and can
take an indefinite number of argu-
ments. Its value is T if none of 1ts
arguments has value NIL, and 1s NIL
otherwise,

or is also an FSUBR and may have an
indefinite number of arguments {in-
cluding O). or has value NIL if all
of its arguments have value NIL,
ctherwise, it has value T.

If x is NIL this functlon will try

to read one S-expression from the
typewriter with read[]; if no error
occurred in reading, it will return
with 1list of the S-expression that,
was read. If an error occurs in
reading, 1t returns with NIL. If x
is not NIL, 1t will attempt to read
an S~expression and keep attempting
to read it until 1t gets one without
en error; each time it trles to read
an S-expression and gets an error,

1t will print out x. In thls cace

it returns with the =-erpression
itself (not list of the S-expression).

This function copies 1ist x and
appends 1ist y to this copy. The
value 1s the combined list.

III-11

nconc[x;y]
SUBR

nnconc[x;y]
SUBR

attachlx;
EXPR[Y]

teconc([x;p]
EXPR

This function is similar to
append, in effect, but it actual-
ly causes this effect by modify-
ing the list structure x, and
making the last element in the
list x point to the 1list y. The
value of nconc is a pointer to
the first 1ist x, but since this
first list has now been modified
it is a pointepr to the concate-
nated list.

This function is the same as
nconc. nnconc is used by the
trace programs so vhat nconc it-
self can be traced.

This function attaches x to the
front of the list y by doing an

rplaca and an rplacd.

This function provides an effi-
cient way for placing an item x
at the end of a 1ist p. This
list is the first item on p, that
is, car{p]; cdr[p] is a pointer
to the last element in this list;
X 1s placed on the end of the
list by modifying this structure,
and x is placed on the list as an
item. The effect of this function
is equivalent to nconc[car(p];
1ist{x]], with cdr[p] updated to
point to the las! element of the
modified 1list.

I1I-12

r~

TS e G2 R e R G ey v T D SO SN

FIIEPp——Y

TER R B e o=

leonc[x;p)
EXPR

last{x]
EXPR

length{x]
EXPR

.
o

srettyprint[x]
EXPR

prettydef[x]
EXPR

This functlion 1is similar to tconc,
except that in this case x 1s a 1list.
An entire 1ist will be tacked on the
end of car{pl,and cdrlp] will be
adjusted to be a pointer to the last
element of this new comblned 11ist,
Both tconc and lconc work correctly
glven null arguments,

This function has as 1ts value a
pointer to the last cell in the 1list
X, and returns NIL if x is an atom.

This function has as a value the
length of the list x. If x 1s an
atom, it returns O,

The argument of prettyprint is a
list of names of functions; it
prints and/or punches (depending on
the settings) the definitions of
the named functions in a pretty
format., It utllizes the functions
printdef, endline, and superprint.
This latter functlon does &all the
work.,

This function of one argument (a
liat of function names) prints and/
or punches "(DEFINEQ", followed by
the prettyprint listing of each of

I1I-12

define(x]
EXPR

these functicns, followed by a right
paren. tape punched by prettydef
can be loaded by the function load
if a STOP 1s punched on the end of

the tape. The value of prettydef
is x.

—

The argument of define is a 1ist.
Each element of the list is 1itself
a list containing either two or
three items, In a two-item list
the first item of each element of -
the 1list is the name of a function
to be defined, and the second item
is the defining lambda or nlamda
expression, In a three-item list
the first item is again the name of
the function to be defined. The
second is the lambda. list of vari-
ables and the third is the form for
the expression. As an example
consider the following two equiva-
lent expressicns for defining the
function null,

1) (NULL (LAMBDA (X) (EQ X NIL)))
2) (NuLL (X) (EQ X NIL))
III-14

e O & o

TS NS WS BN ap W ey ey ey

Sosmamasnn

P e Sl G e

defineqlx;...;z]
FEXPR

load[x]
EXPR

This FEXPR 1is closely related to
define, However, 1t can take an
indefinite number of arguments, and
it will treat them literally, as if
they were quoted. ZEach of the argu-
ments must be & list of the form
described as an element of the list
which 1s the argument for defilne.
Using defineq instead of define
allows one to eliminate two pairs
of parentheses in writing functions
to be defined for loading with the
function load.

load is a functlon which reads suc-
cessive S-expressions from the paper
tape reader, and evaluates each as
it 1s read. If x = T, then load
prints the value; otherwise it does
not. oad contlnues reading S-ex-
pressions and evaluating them, until
it reads the single atom STOP fol-
lowed by a carriage return, at which
point it returns the value NIL,
Using load 1s the standard way of
getting functions in from the paper
tape reader; it saves having to
write sequences of

E(EVAL (READ)),

II1-15

unpack{x]
SUBR

pack[x]
3 .UBR

remob[x]
SUBR

member{x;y)
SUBR

The argun>nt of unpack should be an

atom. The value of unpack is a list
which contains, in order, the char-

acters which make up the print name

of thit atom,

The argument x of pack must be a
1list of atoms. The value of pack 1s
a single atom whose print name 1s a
packed version of the print names of
all the atoms glven in the list.
Thus |

pack([(a be def g)] = abedefy,

The argument of remob must be an

atom, The effect of applying remodb

to this atom is to remove all traece-
of this atom from the system. THis
1s a good way of reclaiming spuce

from atoms which are no lomger . reeded

but 1t is very dangerous, and remob
should be used with cafe. A future
mention of the same atom name will
have no connection with the old one
that was formetly there. In addi-
tion, any lists which point to this
old atomr will now be incorrect.

This SUBR checks to see if

X 158 a member of the list y, If so,
it returns the value T; if not, it
returns the value NIL,

I111-16

