Annual Summary Report N° 1

June 1961

GENERATION OF TURBULENCE IN COUETTE FLOW BETWEEN EXCENTRIC CYLINDERS

by

F. Schultz-Grunow

Institut fuer Mechanik
Technical University
Aachen, Germany

The research reported in this document has been sponsored by the AIR RESEARCH AND DEVELOPMENT COMMANDT UNITED STATES AIR FORCE, under Contract AF 61 (052) - 303, through the European Office, ARDC.
1.) **Introductory**

Couette flow is besides the Hagen-Poiseuille flow the fundamental experiment for the study of the flow properties of liquids and the study of stability and transition to turbulence in ducts. Although the theory of stability was most successful by discovering the generation of cellular vortices [1] when the centrifugal forces act stabilizing there does not exist a complete understanding of the transition phenomenon to turbulence which was observed [1,2,3,4] when the centrifugal forces act stabilizing. An example for the first case is a rotating inner cylinder and the outer cylinder at rest and for the second case the outer cylinder rotating and the inner cylinder at rest. Only recently it was pointed out [5] that the observed transition could have been caused by vibrations or excentricities which were produced by imperfections of the Couette apparatus used in the experiments. The use of ball bearings, large ratios of the length to the diameter of the cylinders, large dimensions and cylinders bent from sheet point to the likelihood of such imperfections. When annihilating excentricities and vibrations it indeed was found [5] that the flow is completely stable up to Reynolds numbers jet not attained. Also the theoretical stability proof on the basis of small two-dimensional perturbations shows stability [5,6]. Furthermore with determined excentricities transition to turbulence was obtained with a definite dependency on the Reynolds number. There seem to be enough indications for the creation of turbulence by excentricities. It is the purpose of this investigation to give a theoretical explanation of this transition phenomenon in the presence of excentric cylinders.
Transition can be caused either by flow instability or by separation. In the latter case there occurs near the wall counter flow which initiates transition. Preliminary experimental observations gave strong evidence for this type of transition. Therefore the investigation will deal with the separation effect opposite to the original intention.

2.) General assumptions and notations.

As mentioned before a rotating outer cylinder and the inner cylinder at rest will be assumed. Plane motion will be regarded. This means that this investigation refers to relatively long cylinders so that end effects will not influence the middle part of the flow.

The center of the inner cylinder will be regarded as center of reference (fig. 1). The excentricity of the outer cylinder of radius \(r_1 \) will be denoted by \(e \). The ratio \(e/r_1 \) is regarded as small so that higher orders of this ratio can be neglected. The discussion of the boundary conditions will show
that the satisfaction of these conditions at the excentric boundary involves rather cumbersome numerical calculations. Therefore the outer boundary will be altered somewhat in the way that the boundary conditions will be shifted from the excentric to a hypothetic centric circular boundary with the same radius as the excentric boundary. In the case of a small ratio of the excentricity to the mean width of the gap this is of negligible influence whereas at larger excentricities the boundary conditions give a periodically alternating in- and outflow at the hypothetical boundary. One may say that these conditions are still in the neighborhood of the real boundary conditions if the excentricity is a larger fraction of the average width of the gap.

Navier-Stokes equations will be considered without neglecting any terms. However the inertia terms will be linearized by assuming as mean flow the Couette flow between centric cylinders. Therefore only small perturbations should be generated by the excentricity. This means that the investigation is restricted to excentricities which are small in comparison to the mean width of the gap.

The linearization is not in agreement with the physical problem of separation. Indeed separation is an effect of finite inertia forces as fluid particles are subjected to a finite deceleration. Therefore the calculations presented here can only show the tendency to separation. One can not expect that the calculated values of the parameter which characterizes separation will be in good agreement with experimental values. The comparison with own experiments will show that the calculated values are too small. But this lack in agreement characterizes all calculations of similar problems as the mathematical difficulties are invincible without the simplification of linearization.

3.) Boundary conditions.

The circumferential velocity of the outer cylinder will be denoted by \(U^* \). With the center of reference i.e., the center of the inner cylinder one has according to Fig. 2 the tan-
tial and radial components

\[U^* = U^* \cos \gamma, \quad U^*_r = -U^* \sin \gamma \] \hspace{1cm} (1)

Introducing the geometric relations

\[\tau \sin \gamma = e \sin \varphi, \quad \tau \cos \gamma + e \cos \varphi = \ell \] \hspace{1cm} (2)

one obtains

\[U^*_\ell = U^* \frac{\ell}{\tau} \left(\frac{e}{\ell} - \frac{e}{\tau} \cos \varphi \right), \quad U^*_r = -U^* \frac{\ell}{\tau} \frac{e}{\tau} \sin \varphi \] \hspace{1cm} (3)

From (2) one derives

\[\ell = e \cos \varphi + \tau \sqrt{1 - \left(\frac{e}{\tau} \right)^2} \sin^2 \varphi \]

The series expansion is, if the dimensionless excentricity

\[\varepsilon = \frac{\ell}{\tau} \] \hspace{1cm} (4)
is introduced

\[\xi \text{, } \eta = \varepsilon \cos \varphi + \frac{\varepsilon}{\varepsilon} \left[1 - \frac{4}{\varepsilon} \frac{\xi^4}{4!} \varepsilon^2 \left(1 - \cos 2 \varphi \right) \right] \quad (5) \]

With the above mentioned assumption

\[\varepsilon^3 \ll 1 \quad (6) \]

and the notations

\[\sigma = \frac{\xi}{\varepsilon}, \quad \varphi = \frac{\eta}{\varepsilon}, \quad \lambda = \varepsilon / \varphi \quad (7a) \]

one obtains

\[\sigma = \varphi \left(1 + \lambda \cos \varphi \right) \quad (7b) \]

This gives when introduced in (3) the following expressions for the tangential and radial components of the circumferential velocity \(U^* \) of the outer cylinder

\[U_t^* = U^*, \quad U_r^* = -U^* \lambda \sin \varphi \quad (8) \]

Introducing the mean width

\[h = r - r_0 \quad (9) \]

and

\[\delta = \frac{h}{r_0} = \varphi - 1 \quad (10) \]

the second equation (8) can also be written

\[U_r^* = -U^* \frac{\delta}{(1 + \delta_0)} \sin \varphi \quad (11) \]

This shows that excentricities of the order \(\varepsilon^3 \ll 1 \) influence only the radial velocity component.

The width of the gap is

\[h = r - r_0 + \varepsilon \cos \varphi \quad (12) \]
Then
\[h = h_o (1 + \frac{e}{h_o} \cos \varphi) \]

Later the variable
\[y = \frac{r - \xi}{r_o} \]

will be introduced. It is the dimensionless distance from the inner wall. The value of \(y \) at the outer boundary is \(\delta \) according to (10). (13) gives
\[\delta = \frac{h_o}{r_o} (1 + \frac{e}{h_o} \cos \varphi) \]

With the notation
\[\frac{h_o}{r_o} = \alpha \]

one obtains
\[\delta = \delta_o (1 + \alpha \cos \varphi) \]

As the calculations will be restricted to
\[\alpha = \frac{h_o}{r_o} \ll 1 \]

the higher powers of \(\delta \) can be approximated by
\[\delta^2 = \delta_o^2 (1 + 2 \alpha \cos \varphi), \quad \delta^3 = \delta_o^3 (1 + 3 \alpha \cos \varphi), \ldots \]

It will be shown that the limitation (18) is not absolutely necessary. Nevertheless it will be introduced as otherwise the calculations get too extensive.

4.) Basic equations.

Denoting by \(u \) the tangential by \(v \) the radial velocity (fig. 1) by \(p \) pressure, by \(\nu \) kinematic viscosity, by index \(r, \varphi \) differentiations with respect to \(r, \varphi \) the Navier-Stokes equations for the circumferential and radial direction referring to the twodimensional motion are
\[rv_r + uv_r +uv = -\frac{1}{r} p_r + \nu \left[u_r + \frac{u}{r} - \frac{u}{r} - \frac{u}{\varphi} + \frac{1}{r^2} v_r \right] v \]

\[vv_r + u^2_r - \frac{u^2}{r} = -\frac{1}{r} p_r + \nu \left[v_r + \frac{v}{r} - \frac{v}{r} - \frac{v}{\varphi} - \frac{1}{r^2} u_r \right] \]
Introducing the stream function ψ defined by

$$u = -\psi_r, \quad v = \frac{1}{r} \psi$$

and differentiating (20) with respect to r, (21) with respect to φ then eliminating the pressure and introducing Laplace's operator

$$\Delta \psi = \psi_r \cdot \frac{1}{r} \psi_r + \frac{1}{r} \psi$$

one finally obtains

$$\psi_r \Delta \psi - \psi \Delta \psi_r = vr \Delta \psi$$

(22)

The stream function will be composed of two parts ψ^e of the mean flow and ψ' of the perturbation

$$\psi = \psi^e + \psi'$$

As mentioned before for the mean flow the Couette flow between centric cylinders will be introduced the velocities of which are

$$\psi^e = -U = -\frac{U_{1,2}}{r} \left(\frac{1}{r} - \frac{1}{r'} \right), \quad \frac{1}{r} \psi_r^e = V = 0$$

(23)

With this (22) is transformed to

$$U \Delta \psi^e - \psi_r^e \Delta \psi^e - \psi^e \Delta \psi^e = vr \Delta \psi$$

(24)

Linearizing this equation by neglecting the second order terms in ψ' writing ψ for ψ' and introducing the abbreviation

$$K = \frac{U_{1,2}}{[\frac{1}{r}]^{2}-1}$$

(25)

one obtains

$$K \left(\frac{1}{r} - 1 \right) \Delta \psi^e = \Delta \psi$$

(26)

The variable y defined by (14) will be introduced. Then the equation

$$K(2y + y^2)[(1+y)^2 \psi + (1+y) \psi_y + \psi_{yy}] = [(1+y)^2 \psi_{yy} + 2(1+y) \psi_{yy} -$$

$$-(1+y)^2 \psi_{yy} + 4 \psi_{yy} - 2(1+y) \psi_{yy} + 2(1+y)^2 \psi_{yy} + \psi_{yyy}]$$

(27)

is obtained.
5.) Solution for zero inertia terms.

According to the geometry of the problem a solution periodic in the circumferential angle \(\varphi \) (fig. 3) is to be expected. Solutions with this property are well known for vanishing inertia terms as the basic equations then are reduced to the biharmonic differential equations. One has with the dimensionless radius \(r = r/r_0 \)

\[
\mathbf{y} = a_0 + a_2 \ln r + a_3 r^2 + \cos \varphi (b_0 y + b_1 r^2 + b_2 r^4 + b_4 r^6 + b_6 r^8 + b_8 r^{10}) \\
\cos 2\varphi (c_0 y + c_2 r^2 + c_4 r^4 + c_6 r^6 + c_8 r^8 + c_{10} r^{10}) \\
\cos 3\varphi (d_0 y + d_2 r^2 + d_4 r^4 + d_6 r^6 + d_8 r^8 + d_{10} r^{10}) \\
\cdots
\]

From this one obtains the velocity components

\[
u = \frac{\partial \mathbf{y}}{\partial r} = - \{ a_2 \ln r + a_3 r^2 + \cos \varphi (b_0 + b_1 r^2 + 3b_2 r^4 + b_4 r^6 + b_6 r^8 + b_8 r^{10}) \\
\cos 2\varphi (2c_2 r + 2c_4 r^3 + 4c_6 r^5 + 6c_8 r^7 + 10c_{10} r^9) \\
\cos 3\varphi (2d_2 r + 2d_4 r^3 + 2d_6 r^5 + 2d_8 r^7 + 2d_{10} r^9) \\
\cdots \}
\]

\[
v = \frac{1}{r} \frac{\partial \mathbf{y}}{\partial \varphi} = - \{ \sin \varphi (b_0 + b_1 r^2 + b_2 r^4 + b_4 r^6 + b_6 r^8 + b_8 r^{10}) \\
\sin 2\varphi (c_0 y + c_2 r^2 + c_4 r^4 + c_6 r^6 + c_8 r^8 + c_{10} r^{10}) \\
\sin 3\varphi (d_0 y + d_2 r^2 + d_4 r^4 + d_6 r^6 + d_8 r^8 + d_{10} r^{10}) \\
\cdots \}
\]
The boundary conditions \(u = v = 0 \) at \(r = 1 \) give

\[
\begin{align*}
b_i + b_i + b_i &= 0 \\
c_i + c_i + c_i + c_i &= 0 \\
2c_i - 2c_i + 4c_i &= 0
\end{align*}
\]

Introducing (7,8) in (28,29) one obtains for the outer boundary, when powers of \(\sigma \) are developed into power series of \(\lambda \) and only first order terms in \(\lambda \) are regarded

\[
- U^\sigma = a_i \sigma^2 (1 - \lambda \cos \varphi) + 2 a_i \sigma (1 + \lambda \cos \varphi)
\]

\[
+ \cos \varphi \left[b_i - b_i \sigma^2 (1 - 2 \lambda \cos \varphi) + 3 b_i \sigma^4 (1 + 2 \lambda \cos \varphi)
\right.
\]

\[
\left. + b_i (1 + \ln \sigma) - b_i \ln (1 + \lambda \cos \varphi) \right]
\]

\[
+ \cos 2 \varphi \left[2 c_i \sigma (1 + \lambda \cos \varphi) - 2 c_i \sigma^3 (1 - 3 \lambda \cos \varphi)
\right.
\]

\[
\left. + 4 c_i \sigma^5 (1 + 3 \lambda \cos \varphi) \right]
\]

\[
\ldots
\]

\[
U^\sigma \lambda \sin \varphi = \sin \varphi \left[b_i + b_i \sigma^2 (1 - 2 \lambda \cos \varphi) + b_i \sigma^4 (1 + 2 \lambda \cos \varphi) + b_i \ln \sigma
\right.
\]

\[
\left. + b_i \ln (1 + \lambda \cos \varphi) \right]
\]

\[
+ 2 \sin 2 \varphi \left[c_i \sigma (1 + \lambda \cos \varphi) - c_i \sigma^3 (1 - 3 \lambda \cos \varphi)
\right.
\]

\[
\left. + c_i \sigma^5 (1 + 3 \lambda \cos \varphi) - c_i \sigma^7 (1 - \lambda \cos \varphi) \right]
\]

\[
\ldots
\]

Rearranging terms with respect to multiples of \(\varphi \) one obtains

\[
- U^\sigma = a_i \sigma^2 + 2 a_i \sigma + b_i \sigma^2 \lambda - 3 b_i \sigma^4 \lambda + \frac{3}{2} b_i \lambda
\]

\[
+ \cos \varphi \left[- a_i \sigma^2 \lambda + 2 a_i \sigma \lambda + b_i - b_i \sigma^4 + 3 b_i \sigma^4 \lambda + b_i (1 + \ln \sigma)
\right.
\]

\[
\left. + c_i \sigma \lambda - 3 c_i \sigma^3 \lambda + 6 c_i \sigma^5 \lambda \right]
\]

\[
+ \cos 2 \varphi \left[b_i \sigma^2 \lambda + 3 b_i \sigma^4 \lambda + \sigma^2 \lambda b_i + 2 c_i \sigma - 2 c_i \sigma^3 + 4 c_i \sigma^3 + \ldots \right]
\]

\[
\ldots
\]

\[
U^\sigma \lambda \sin \varphi = \sin \varphi \left[b_i + b_i \sigma^2 + b_i \sigma^4 + b_i \ln \sigma + c_i \sigma \lambda - 3 c_i \sigma^3 \lambda + 3 c_i \sigma^5 \lambda - c_i \sigma^7 \lambda \right]
\]

\[
+ \sin 2 \varphi \left[- b_i \sigma^2 \lambda + b_i \sigma^4 \lambda + \frac{3}{2} b_i \lambda + 2 c_i \sigma + 2 c_i \sigma^3 + 2 c_i \sigma^3 + 2 c_i \sigma^5 + \sigma^3 \right]
\]

\[
\ldots
\]
Equalizing terms with the same multiples in ψ on the right and left side one obtains 5 equations which together with the 5 equations (30) for the inner boundary determine the 10 constants a_2, a_3, b_1, b_2, b_3, b_4, c_1, c_2, c_3, c_4.

The numerical evaluation of the constants is given in table I for $\lambda = 0.08$. Terms including 6ψ are considered to show the convergence. One sees that it is sufficient to consider coefficients up to d that means up to the terms containing 3ψ.

This solution surely would not be sufficient to show the separation effect. It merely should demonstrate the satisfaction of the conditions at an eccentric boundary. However this solution is part of the solution which considers the linearized inertia terms. This will be shown later.

<table>
<thead>
<tr>
<th>Table I</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_2 = -7.792011232$</td>
</tr>
<tr>
<td>$a_3 = -0.896005614$</td>
</tr>
<tr>
<td>$b_1 = -2.103841400$</td>
</tr>
<tr>
<td>$b_2 = 7.431828025$</td>
</tr>
<tr>
<td>$b_3 = -5.327986714$</td>
</tr>
<tr>
<td>$b_4 = 25.519622761$</td>
</tr>
<tr>
<td>$c_1 = -3.047627428$</td>
</tr>
<tr>
<td>$c_2 = -1.135004752$</td>
</tr>
<tr>
<td>$c_3 = 0.955861333$</td>
</tr>
<tr>
<td>$c_4 = 5.227670622$</td>
</tr>
<tr>
<td>$c_5 = -7.792011232$</td>
</tr>
<tr>
<td>$c_6 = -5.327986714$</td>
</tr>
<tr>
<td>$c_7 = 25.519622761$</td>
</tr>
<tr>
<td>$c_8 = 7.431828025$</td>
</tr>
</tbody>
</table>

6.) Solution considering linearized inertia terms.

Similar to the solution for zero inertia terms the expression:

$$\psi = \xi f_0(y) \cos s\varphi + \xi g_0(y) \sin s\varphi$$ (3)

will be introduced with the power series

\[f(y) = \sum_{i=0}^{\infty} a_i y^i, \quad g(y) = \sum_{i=0}^{\infty} m_i y^i \]

The coordinate \(y \) is defined by (14). Introducing this expression into the basic equation (27), then putting the terms of \(\cos s\varphi \), \(\sin s\varphi \) to zero and comparing equal powers of \(y \) one obtains equations with which the coefficients of each series can be expressed by the first four ones. To satisfy the conditions at the outer boundary one has to introduce the expression (17, 19) for \(y \) and its powers. Powers and products of \(\cos s\varphi \), \(\sin s\varphi \) will occur which can be expressed by the sinus and cosinus of multiples of the angle \(\varphi \) as shown in section 5 for zero inertia terms. Then each \(s \)-term in (32) would demand the determination of four constants from the boundary conditions.

These evaluations indeed would be exceedingly cumbersome. Therefore the limitation (18) will be introduced so that the excentric boundary may be replaced by a centric boundary with radius \(r_1 \). Now instead of (31) the expression

\[\psi = e[f(y) \cos \varphi + g(y) \sin \varphi] \]

with

\[f = \sum_{i=0}^{\infty} a_i y^i, \quad g = \sum_{i=0}^{\infty} m_i y^i \]

is sufficient.

The following procedure is similar to the one mentioned before: Putting the terms of \(\cos \varphi \) and of \(\sin \varphi \) to zero and comparing equal powers of \(y \) one obtains equations which allow to express the series coefficients by the first four ones of each series. This is a similar method used by Görtler to treat the free boundary layer flow near a corrugated plate [7].

The following expressions are obtained for the various coefficients \(a, m \). The laborious derivation will be omitted here.
Following this way one first obtains by introducing (33) in (27) the differential equation

\[
\{ \cos \varphi (-f'' - 2f'' + 3f' - 3f' + 3f) \\
+ \sin \varphi (-g'' - 2g'' + 3g' - 3g' + 3g) \}
\]

\[+ y \{ \cos \varphi [-4f'' - 6f'' + 6f' - 3f' + K(-2g + 2g' - 2g')] \]

\[+ \sin \varphi [-4g'' - 6g'' + 6g' - 3g' + K(2f - 2f' + 2f')] \]

\[+ y^2 \{ \cos \varphi [-6f'' - 6f'' + 3f' + K(-9 + 3g' + 5g')] \]

\[+ \sin \varphi [-6g'' - 6g'' + 3g' + K(-3f' - 5f'')] \]

\[+ y^3 \{ \cos \varphi [-4f'' - 2f'' + K(g' + 4g')] \]

\[+ \sin \varphi [-4g'' - 2g'' + K(-f' - 4f'')] \]

\[+ y^4 \{ \cos \varphi [-f'' + Kg'] + \sin \varphi [-g'' - Kf'] \} = 0 \]

Then introducing the series expansions (34) for \(f, g \) and expressing the series coefficients by the first four ones of each series the following expressions are obtained, when the conditions \(u = v = 0 \) at the inner boundary are introduced (See (44)).

\[
a_{4} = -0.5 \frac{a_{3}}{m_{3}} + 0.25 \frac{a_{2}}{m_{2}} \\
\]

\[
a_{5} = 0.15 \frac{a_{3}}{m_{3}} - 0.25 \frac{a_{2}}{m_{2}} + K \left(+0.016 \frac{m_{2}}{m_{2}} \right) \\
\]

\[
a_{6} = -0.425 \frac{a_{3}}{m_{3}} + 0.25 \frac{a_{2}}{m_{2}} + K \left(+0.016 \frac{m_{2}}{m_{2}} \right) \\
\]
\[a_7 = 0.410714 \frac{a_3}{m_3} - 0.25 \frac{a_2}{m_2} + K(\pm 0.0380952 \frac{m_3}{a_3} \pm 0.0142857 \frac{m_2}{a_2}) \]

\[a_8 = -0.4017857 \frac{a_3}{m_3} + 0.25 \frac{a_2}{m_2} + K(\pm 0.0380952 \frac{m_3}{a_3} \pm 0.0142857 \frac{m_2}{a_2}) - K^2(0.0007956 \frac{a_2}{m_2}) \]

\[a_9 = 0.39583 \frac{a_3}{m_3} - 0.25 \frac{a_2}{m_2} + K(\pm 0.0380952 \frac{m_3}{a_3} \pm 0.0142857 \frac{m_2}{a_2}) + K^2(-0.000661375 \frac{a_2}{m_2}) \]

\[a_{10} = -0.3916 \frac{a_3}{m_3} + 0.25 \frac{a_2}{m_2} + K(\pm 0.0380952 \frac{m_3}{a_3} \pm 0.0142857 \frac{m_2}{a_2}) + K^2(0.00128307 \frac{a_3}{m_3} \pm 0.001150476 \frac{a_2}{m_2}) \]

\[a_{11} = 0.38863 \frac{a_3}{m_3} - 0.25 \frac{a_2}{m_2} + K(\pm 0.0380952 \frac{m_3}{a_3} \pm 0.0142857 \frac{m_2}{a_2}) + K^2(-0.00180014 \frac{a_3}{m_3} \pm 0.001257815 \frac{a_2}{m_2} + K^3(\pm 0.000001128732 \frac{a_2}{m_2}) \]

\[a_{12} = -0.3803 \frac{a_3}{m_3} + 0.25 \frac{a_2}{m_2} + K(\pm 0.0380952 \frac{m_3}{a_3} \pm 0.0142857 \frac{m_2}{a_2}) + K^2(0.00215007 \frac{a_3}{m_3} \pm 0.00125005 \frac{a_2}{m_2}) + K^3(\pm 0.000000001667 \frac{m_3}{a_3} \pm 0.0000000024837 \frac{m_2}{a_2}) \]
These expressions show clearly the influence of inertia forces which is represented by the terms dependent on K. Indeed in the expressions for the coefficients the first two terms which are independent of K represent exactly the before mentioned solution for zero inertia terms. One confirms this easily by replacing the variable r by y and by developing in power series of y. One notices that the series are not absolutely convergent in K and this means according to the definition of K also in the Reynolds number. The first influence of inertia forces occurs in a_5, a_6, m_5, m_6 with the first power of K. Then in the three following expressions for the pairs a, m the quadratic power of K is added. The next three expressions contain also the third power and so on. Therefore this series expansion only can be used for relatively small Reynolds numbers. This is a well known peculiarity which for example also occurs when applying the method of successive approximation [8].

The expressions (35 to 43) refer to the boundary condition $u = v = 0$ at the inner cylinder where $y = 0$. This gives

$$f(0) = f'(0) = g(0) = g'(0) = 0$$

what means, that

$$a_5 = a_6 = m_5 = m_6 = 0$$

It may be added, that for arbitrary boundary conditions at $y = 0$ the expressions (35 to 43) contain the following additional terms

$$a_4 = \ldots - a_0, 125 (a_1 - a_0)$$

$$m_4 = \ldots - m_0, 125 (m_1 - m_0)$$

$$a_5 = \ldots + a_0, 15 (m_1 - m_0) + K (\pm \frac{1}{16} m_1 \pm a_0, 016 m_0 \pm a_0, 016 a_0)$$

$$m_5 = \ldots - m_0, 1625 (m_1 - m_0) + K (\pm \frac{1}{3} a_1 \pm a_0, 025 m_0 \pm a_0)$$
\[
\begin{align*}
\Delta_7 &= \ldots + o,169643(a_1 - a_0) + K(\pm o,0428571 a_1 \\
&+ o,02619047 a_0) \\
\Delta_8 &= \ldots - o,1741071(a_1 - a_0) + K(\pm o,0498512 a_1 \\
&+ o,02619047 a_0) + K^2(-o,000396825 a_1 + o,000396825 a_0) \\
\Delta_9 &= \ldots + o,177083(a_1 - a_0) + K(\pm o,0551587 a_1 \\
&+ o,0258433 a_0) + K^2(o,00102513 a_1 - o,000859783 a_0) \\
\Delta_{10} &= \ldots - o,17916(a_1 - a_0) + K(\pm o,0592808 a_1 \\
&+ o,0254117 a_0) + K^2(-o,00167659 a_1 + o,00123677 a_0) \\
\Delta_{11} &= \ldots + o,180681(a_1 - a_0) + K(\pm o,0625446 a_1 \\
&+ o,0249851 a_0) + K^2(o,00229736 a_1 - o,00152898 a_0) \\
&+ K^3(\pm o,0000561167 a_1 + o,0000561167 a_0) \\
\Delta_{12} &= \ldots - o,18(a_1 - a_0) + K(\pm o,065172 a_1 + o,0245920 a_0)
\end{align*}
\]
\[+ \mathbf{K}^2(- 0,00286902 \mathbf{a}_1 + 0,00175295 \mathbf{a}_0) + \mathbf{K}^3(+ 0,000184384 \mathbf{a}_1 + 0,000164342 \mathbf{a}_0) \]

The first boundary condition in (5) for the outer boundary \(y = \delta \) is satisfied by the mean flow whilst the second one in (8) has to be satisfied by the secondary flow. Hence the boundary conditions for the secondary flow are

\[u = 0, \quad v = -U^* \frac{L}{\delta + 1} \sin \varphi \] \hspace{1cm} (46)

Introducing (33,34) one obtains

\[f''(\delta) = g'(\delta) = 0, \quad g(\delta) = 0, \quad f(\delta) = U^* \] \hspace{1cm} (47)

The boundary conditions (44,47) give eight equations to determine the eight constants \(a_0, a_1, a_2, a_3, m_0, m_1, m_2, m_3 \). As mentioned above the conditions (44) yield \(a_0 = a_1 = m_0 = m_1 = 0 \). So that the four equations (47) still have to be solved. This work was carried through numerically with the aid of computers.

7.) Numerical calculations.

The numerical quantities inserted for \(\delta, \varphi \) (10) are

\(\delta = 0,2, \quad \varphi = 4,2 \)

Due to the before mentioned semi-convergence of the seri expansion there exist certain limits for the Reynolds numb beyond of which the convergence is not any more satisfactory. With the assumed value \(\delta = 0,2 \) the limit is \(\mathbf{K} = 10^{-4} \). With (25) this corresponds to a Reynolds number

\[\text{Re} = \frac{U^* \delta}{v} = 4 \cdot 10^3 \]

The calculations were performed for two values of \(\mathbf{K} \), respectively \(\text{Re} \). The boundary conditions (47) give the follow expression

1.) \(\mathbf{K} = 3 \cdot 10^3, \quad \text{Re} = 1,32 \cdot 10^3 \)
\[f(d) = 0.026049 a_1 + 0.006206 a_2 + 0.025806 m_1 + 0.004302 m_2 = U^* \]
\[g(d) = -0.025806 a_1 - 0.004302 a_2 + 0.026049 m_1 + 0.005206 m_2 = 0 \]
\[f'(d) = -0.15057 a_1 + 0.01557 a_2 + 0.54345 m_1 + 0.09745 m_2 = 0 \]
\[g'(d) = -0.54345 a_1 - 0.09745 a_2 - 0.15057 m_1 + 0.01557 m_2 = 0 \]

The solution is
\[a_2 = 56.03833 \text{ U}^* \quad m_2 = -54.48119 \text{ U}^* \]
\[a_3 = -161.82191 \text{ U}^* \quad m_3 = 416.26530 \text{ U}^* \]

2.) \(K = 10^h \), \(Re = 4.4 \cdot 10^3 \)

\[f(d) = -0.01805 a_1 - 0.006182 a_2 - 0.00515 m_1 - 0.015541 m_2 = U^* \]
\[g(d) = 0.030515 a_1 + 0.005541 a_2 - 0.118805 m_1 - 0.096182 m_2 = 0 \]
\[f'(d) = 0.578207 a_1 - 0.090818 a_2 + 0.443482 m_1 - 0.046402 m_2 = 0 \]
\[g'(d) = -0.443482 a_1 - 0.146802 a_2 + 0.578207 m_1 + 0.090818 m_2 = 0 \]

The solution is
\[a_2 = -30.40309 \text{ U}^* \quad m_2 = 2.63489 \text{ U}^* \]
\[a_3 = 119.69097 \text{ U}^* \quad m_3 = 38.27269 \text{ U}^* \]

Now the excentricity can be evaluated for which separation will occur. It is to be expected that separation first occurs at the inner boundary \(y = 0 \). The beginning of separation will be characterized by the zero value of the derivative of the total circumferential velocity in radial direction. This means

\[U'(0) + u'(0) = 0 \]
(23) gives

\[U(y) = \frac{\delta + 1}{\delta (\delta + 2)} \ U^* (y + 1 - \frac{4}{y+y^2}) \]
\[U'(y) = \frac{\delta + 1}{\delta (\delta + 2)} \ U^* (y + \frac{4}{(y+y^2)^2}) \]

Inserting \(\delta = 0.2 \) one obtains

\[U'(y) = 2.72 \ U^* (1 + \frac{4}{(y+y^2)^2}) \]
\[U'(0) = 5.45 \ U^* \]

By differentiation of (33) one derives

\[u'(y) = -\epsilon \left\{ f''(y) \cos \varphi + g''(y) \sin \varphi \right\} \]
\[= -\epsilon \left\{ [2a_4 + 6a_3 y + \ldots] \cos \varphi + [2m_2 + 6m_3 y + \ldots] \sin \varphi \right\} \]
\[u'(0) = -\epsilon \left\{ 2a_4 \cos \varphi + 2m_3 \sin \varphi \right\} \]

Introducing (51,52) in (50) one obtains

\[5.45 \ U^* - \epsilon \left(2a_4 \cos \varphi + 2m_3 \sin \varphi \right) = 0 \]

The coefficients were calculated before for two values of \(K \) in (47,48). Therefore (53) determines the critical excentricity for certain angles \(\varphi \). The smallest excentricity obtained should be regarded as the critical value. It is sufficient to calculate the excentricity in each case for two angles.

1.) \(K = 3 \cdot 10^3 \)

\[\varphi = 0^\circ \quad 5.45 \ U^* - 2 \epsilon a_2 = 0 \]
\[\epsilon = 0.04867, \ e = 1.01392 \ mm \]
\[\varphi = 270^\circ \quad 3.45 \ U^* + 2 \epsilon m_3 = 0 \]
\[\epsilon = 0.05006, \ e = 1.0420 \ mm \]

2.) \(K = 10^4 \)

\[\varphi = 180^\circ \quad \epsilon = 0.0827, \ e = 1.86875 \ mm \]
\[\varphi = 90^\circ \quad \epsilon = 1.03506, \ e = 21.56375 \ mm \]
8.) **Comparison with experiments.**

To prove the theory experiments were performed with a Couette apparatus the cylinders of which were eccentric. The dimensions of the apparatus were the following:

\[r_0 = 21 \text{ mm} \quad \epsilon = 1.19 \]
\[r_1 = 25 \text{ mm} \quad \delta = 0.19 \]
\[e = 0.5; 1; 2; 2.5; 3 \text{ mm} \quad \epsilon = 0.04/\varepsilon (\varepsilon = 1\text{ mm}) \]

As shown in Fig 3 no ball bearings were used for the support of the inner cylinder. The occurrence of separation was observed visually with a technique described earlier \[9\]. With the eccentricity \(e = 1.5 \text{ mm} \) there was found a critical Reynolds number for separation \(\text{Re} = U^* r_0 / \nu = 1.09 \times 10^4 \) \[5\]. These experiments were now extended to the before mentioned eccentricities. With \(e = 0.5 \text{ mm} \) no separation could be observed up to the Reynolds number \(4.10^5 \). The critical Reynolds numbers which were observed are plotted in Fig 4. As this figure shows there exists a definite dependence on the eccentricity. This confirms the supposition that turbulence is generated by separation.

The calculation for \(\text{Re} = 1.3 \times 10^3 \) gave separation with \(\varepsilon = 0.048 \). This eccentricity was realized in the experiments and as Fig 4 shows the corresponding Reynolds number for separation is \(2.1 \times 10^4 \). One sees that the theoretical value is 16 times to small. This seems to be a satisfactory agreement for a first order approximation.

It may be mentioned that earlier calculations of the separation at a corrugated plate showed a sensitive influence of the corrugation \[7\]. Now according to the experimental comparison this sensitivity seems to be more influenced by the degree of approximation than by physical effects. This makes an evaluation of the inertia forces necessary.
First disturbances

\[\frac{s}{\eta} = \frac{4}{25} = 0.16 \]

\[\epsilon = \frac{6}{\eta} \text{ dimensionless eccentricity} \]
List of references.

2) M. Couette, Ann. chim. phys. 21, 433 (1890).

4) F. Wendt, Turbulent flow between rotating coaxial cylinders, Ing. Arch. 4, 577 (1933).

7) H. Görtler, Influence of small wall undulation on laminar boundary layer flow Zamm 25/27, 233 (1947); 28, 13 (1948).
