POLARIZATION EXTENSIONS OF THE MONOSTATIC-BISTATIC EQUIVALENCE THEOREM

JANUARY 1966

S. H. Bickel

Prepared for

DIRECTORATE OF RADAR AND OPTICS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Sponsored by
The Advanced Research Projects Agency,
Project Defender
ARPA Order No. 596

Project 8051
Prepared by
THE MITRE CORPORATION
Bedford, Massachusetts
Contract AF19(628)-5165

Distribution of this document is unlimited.
When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.
POLARIZATION EXTENSIONS OF THE MONOSTATIC-BISTATIC EQUIVALENCE THEOREM

JANUARY 1966

S. H. Bickel

Prepared for

DIRECTORATE OF RADAR AND OPTICS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 8051
Prepared by
THE MITRE CORPORATION
Bedford, Massachusetts
Contract AF19(628)-5165
ABSTRACT

For convex non-depolarizing bodies, the monostatic-bistatic approximation is exact to first order terms in the bistatic angle. The second order error effect causes widening of the lobe structure with increasing bistatic angle. For depolarizing bodies, the error is again second order in the bistatic angle provided that the depolarizing edges have parallel orientation. Consequently, the theorem can be extended to convex bodies of revolution.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

HARRY M. BYRAM
ESD Project Officer
Project 750
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>MONOSTATIC-BISTATIC EQUIVALENCE FOR POINT SCATTERERS</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
</tr>
<tr>
<td>DIPOLE POLARIZATION EFFECTS</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>9</td>
</tr>
<tr>
<td>EXTENSION TO GEOMETRIC THEORY OF DIFFRACTION</td>
<td>9</td>
</tr>
<tr>
<td>IV</td>
<td>14</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
MONOSTATIC-BISTATIC EQUIVALENCE FOR POINT SCATTERERS

The monostatic-bistatic theorem states that the voltage which is developed at the receiver terminals of a bistatic radar is the same as that which would be developed at the receiver if both the transmitting and receiving antenna are located on the bisector of the bistatic angle ξ_\circ. See Figure 1.

The theorem is most simply demonstrated from Snell's law for speculars. Here the angle of incidence is equal to the angle of specular reflection so that the monostatic equivalent radar sees a specular whenever the bistatic radar sees one.
In order to extend the monostatic-bistatic theorem beyond specular returns, consider a set of \(n \) point scatterers and let the vector \(\rho_i \) designate the location of the \(i \)'th scatterer from the point 0 and let \(\hat{r}_1 \) and \(\hat{r}_2 \) be unit vectors in the direction of incidence and observation. See Figure 2. Neglecting interaction between the scatterers, then at large distances the field scattered in the direction of observation is proportional to

\[
E_B = \sum_{i=1}^{n} e^{jk\rho_i} \cdot \left(\hat{r}_1 + \hat{r}_2 \right),
\]

where:

\[
k = \frac{\omega}{c}.
\]
For the monostatic return, the direction of incidence and observation coincide. Setting \(r_1 = r_2 = \hat{r} \), Equation (1) for the monostatic return becomes

\[
E_M = \sum_{i=1}^{n} j2k\rho_i \cdot \hat{r} = 1
\]

Now take the vector \(\hat{r} \) to be in the direction of the bisector of the bistatic angle \(\xi \) defined by \(\hat{r}_1 \) and \(\hat{r}_2 \) in Figure 2. Hence,

\[
\hat{r} = \frac{\hat{r}_1 + \hat{r}_2}{|\hat{r}_1 + \hat{r}_2|} = \frac{\hat{r}_1 + \hat{r}_2}{2 \cos \frac{\xi}{2}}.
\]

Substitution of Equation (3) into (1) yields

\[
E_B = \sum_{i=1}^{n} j2k \cos \left(\frac{\xi}{2} \right) \rho_i \cdot \hat{r}.
\]

Comparing Equation (2) with (4), one finds that the bistatic return is identical to the monostatic return on the bisector of the bistatic angle if the monostatic frequency is given by

\[
\omega_M = \omega \cos \frac{\xi}{2}.
\]

Although this frequency shift is second order in the bistatic angle, it may or may not be important depending upon the size of the body in wavelengths and the region where the monostatic-bistatic approximation is being used. The effect will tend to be small near speculars and to increase in the regions of the sidelobes.
This can be demonstrated by considering monostatic scattering from a line scatterer of length L. The location of the n'th null in the scattering pattern is given approximately by

$$\theta_n \approx \frac{n\lambda}{2L} \approx n\theta_o,$$ \hspace{1cm} (6)

where θ_o is the 3-db beamwidth and is given approximately by $\frac{\lambda}{2L}$. From Equation (5) frequency is shifted for the bistatic return so that the error in the location of the nulls in beamwidths is given by

$$\delta = \frac{\theta_n' - \theta_n}{\theta_o} = n \frac{\lambda' - \lambda}{\lambda} \approx \frac{n\xi^2}{8}.$$ \hspace{1cm} (7)

Since the error is second order in ξ, then for small ξ the shifting of the lobe structure is negligible for the sidelobes near the specular. Figure 3 illustrates the broadening of the lobe pattern and the resulting shifts in the null locations for a fixed bistatic angle.

Equation (7) can also be used to establish the maximum permissible bistatic angle for a given error in the location of the n'th null in the scattering pattern. Suppose that the maximum tolerable error is 1/16 of a beamwidth. In this case, restriction on the bistatic angle is

$$\xi \leq \frac{1}{\sqrt{2n}}.$$ \hspace{1cm} (8)

For example, a pattern with 20 lobes restricts the bistatic angle to 10 degrees.

The results of analysis of the far field scattering in situations where physical optics applies (i.e., the total magnetic field is approximated by twice
the incident magnetic field on the surface in the illuminated region and zero elsewhere) are essentially the same as in the point scattering case just discussed. [1, 2]
SECTION II

DIPOLE POLARIZATION EFFECTS

The previous section considers the cases where scattering bodies do not depolarize. In order to study polarization effects on the monostatic-bistatic equivalence first consider an infinitesimal dipole oriented along the axes of a spherical polar coordinate. See Figure 4.

\[\bar{E} = \frac{j \omega \mu L_o h}{4\pi r} e^{jkr} \sin \theta \hat{\phi} \]

Figure 4.

The electric and magnetic fields are polarized in the \(\hat{\theta} \) and \(\hat{\phi} \) directions, respectively, and are given by (9)
\[H = \sqrt{\frac{\varepsilon}{\mu}} \mathbf{r} \times \mathbf{E} \quad , \] (10)

where \(I_0 \) is the current induced in the dipole of length \(h \). If the receiving antenna is a unit dipole oriented in the \(\theta_2, \phi_2 \) plane with its axis given by

\[\mathbf{b}_2 = \hat{\theta}_2 \cos \eta_2 + \hat{\phi}_2 \sin \eta_2 \quad , \] (11)

then the current induced at the receiver is given by the projection of \(\mathbf{E} \) on \(\mathbf{b}_2 \) or

\[I_1 = \frac{j \omega \mu I_0 h}{4 \pi r_2} e^{jkr_2} \sin \theta_2 \cos \eta_2 \quad . \] (12)

By reciprocity, the current induced in the dipole \(h \) for unit transmission vector with coordinates \(r_1, \theta_1, \) and \(\eta_1 \) is given by

\[I_0 = \frac{j \omega \mu h}{4 \pi r_1} e^{jkr_1} \sin \theta_1 \cos \eta_1 \quad . \] (13)

Substituting Equation (13) into (12) gives an expression for the received current,

\[I_1 = A(r) \left(\sin^2 \frac{\theta}{M} - \sin^2 \xi' \right) \cos \eta_1 \cos \eta_2 \quad . \] (14)

where, taking the scalar distances \(r_1 = r_2 = r \),

\[A(r) = \left(\frac{j \omega \mu}{4 \pi r} \right)^2 e^{j2kr} \quad . \] (15)

and

\[\theta_M = 1/2 \left(\theta_1 + \theta_2 \right) \quad . \] (16)
\[\xi' = \frac{1}{2} \left(\theta_1 - \theta_2 \right). \]

From the monostatic propagation direction \(\hat{\mathbf{r}} \) defined in Equation (3), \(\theta_M \) is the angle between \(\hat{\mathbf{r}} \) and the dipole axes \(\hat{\mathbf{z}} \), while \(\xi' \) is the projection of the bistatic angle onto the \(\hat{\mathbf{r}}, \hat{\mathbf{z}} \) plane. Since the projection of the bistatic angle is always less than or equal to the angle, then it follows from Equation (14) that the maximum error introduced by assuming the monostatic-bistatic theorem is second order in the bistatic angle. Using the results of Section III, the theorem can be extended to a collection of parallel dipoles or to a dipole of finite length.
SECTION III

EXTENSION TO GEOMETRIC THEORY OF DIFFRACTION

The law of edge diffraction states that the angle of diffraction is equal to the angle of incidence. Thus, the incident wave sets up a cone of diffracted waves at an angle β which is defined by

$$\cos \beta = I \cdot T = D \cdot T,$$

where I, D, and T are unit vectors that define the directions of the incident wave, diffracted wave, and tangent, respectively. See Figure 5.

Figure 5.
The monostatic vector is defined by \(M = I - D \). From Equation (18) it is clear that \(M \cdot T = 0 \), and \(M \) is the plane orthogonal to the wedge. See Figure 6.

Here \(I' \) and \(D' \) are the projections of \(I \) and \(D \) in the normal plane, and \(\alpha \) and \(\theta \) are the angles between the projected incidents and diffracted rays and the normal to one wedge face.

Sommerfeld's exact solution for diffraction of a plane wave by an infinite wedge consists of the incident and reflected waves of geometrical optics plus a third or "diffracted" term. When the third term is expanded asymptotically for large values of \(kr \) the following diffraction coefficients result: \[3 \]
\[d^+ = \frac{e^{j1/4} \sin \frac{\tau}{q}}{q (2\tau k)^{1/2} \sin \beta} \left[\left(\cos \frac{\pi}{q} - \cos \frac{\theta - d}{q} \right)^{-1} \right] \]

\[
\overline{d} = \cos \frac{\pi}{q} - \cos \frac{\theta + \alpha + \tau}{q} \right)^{-1} \right]_{(19)},
\]

where \(\beta \) is the angle of incidence (or angle of diffraction) which is \(1/2 \tau \) in the monostatic case. The upper sign in Equation (19) applies for Dirichlet boundary conditions and the lower for Neumann type boundary conditions, (i.e., incident polarization parallel and perpendicular to the edge). The parameter \(q \) is given by

\[q = 2 - \frac{\gamma}{\tau}, \quad (20) \]

where \(\gamma \) is the included wedge angle.

It is convenient to define the quantities \(b_\pm \) as the following linear combination of \(d_\pm \)

\[b_\pm = \frac{1}{2} \left(d_+ \pm d_- \right). \quad (21) \]

Now from Equations (19) and (21) the ratio of \(b_- \) to \(b_+ \) is given by

\[\frac{b_+}{b_-} = \frac{2 \left(\sin \frac{\tau}{2q} \right)^2}{\cos \frac{\tau}{q} - \cos \left(\frac{\theta + \alpha + \tau}{q} \right)} - \frac{2 \left(\sin \frac{\theta - \alpha}{2q} \right)^2}{\cos \frac{\tau}{q} - \cos \left(\frac{\theta + \alpha + \tau}{q} \right)} \quad (22) \]
From Equation (22) we see that this ratio is independent of the incidence angle. Furthermore, the first term represents the monostatic return for an angle of incidence of

$$\theta_M = \frac{1}{2} (\theta + \alpha)$$

(23)

while the second term represents the error which is due to a projected bistatic angle of

$$\xi' = \frac{1}{2} (\theta - \alpha)$$

(24)

The fractional error in assuming monostatic-bistatic equivalence is given by the ratio of these two terms or by

$$\text{error} = \left(\frac{\sin \frac{\xi'}{2q}}{\sin \frac{\pi}{2q}} \right)^2$$

(25)

It is interesting to note that the percentage of error depends only upon the projected bistatic angle and the wedge angle, which is represented in terms of q by Equation (20). For circular transmission the ratio of b_- to b_+ represents the ratio of the return with the same hand to that with the opposite hand as the transmitted polarization. Equation (25) then expresses the fractional error that is introduced in this ratio by assuming that the monostatic-bistatic equivalence theorem applies.

Figure 7 which illustrates this error in db as a function of bistatic angle for 0, 90, and 179 degree wedge angles shows that the error is less than .1 db for projected bistatic angles up to 10 degrees and less than .5 db for angles up to 30 degrees.
Figure 7.
SECTION IV

CONCLUSIONS

The monostatic-bistatic equivalence theorem can be made exact for non-interacting scattering centers and for those bodies for which the scattering can be described by physical optics, if the frequency of the equivalent monostatic antenna is given in terms of the bistatic angle by Equation (5),

\[\omega_M = \omega \cos \frac{\xi}{2} \]

This causes a widening of the bistatic lobe pattern which is second order in the bistatic angle.

When the equivalence theorem is extended to depolarizing bodies, all of the error terms cannot be accounted for in a simple manner, such as a frequency change. However, in the case of dipole scatterers with parallel directions or acute wedges, the error in the equivalence approximation is again second order in the bistatic angle. For example, the error for acute wedges is less than one half a db for bistatic angles up to thirty degrees.

On the other hand, for such depolarizing bodies as a collection of dipoles with random orientation or obtuse wedges where multiple reflections occur, the theorem is no longer valid. For these reasons the theorem must be restricted to convex bodies where any depolarizing edges have a parallel orientation. A convex body of revolution, for example, satisfies these restrictions.
REFERENCES

Polarization Extensions of the Monostatic-Bistatic Equivalence Theorem

For convex non-depolarizing bodies, the monostatic-bistatic approximation is exact to first order terms in the bistatic angle. The second order error effect causes widening of the lobe structure with increasing bistatic angle. For depolarizing bodies, the error is again second order in the bistatic angle provided that the depolarizing edges have parallel orientation. Consequently, the theorem can be extended to convex bodies of revolution.
INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. **ORIGINATOR’S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ______."

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ______."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through ______."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.