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ON THE INFLUENCES OF CHANGES OF CARRIER DENSITY ON
THE CURRENT FLOW IN A CHANNEL
ABSTRACT
A study is made of the effect of varying the density of free charge
carriers in a semiconductor channel under the influence of a retarding
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dielectric permittivity of free space
y component of electric field
transconductance per unit current
exponent in power series

Boltzmannts constant
dielectric constant of space-charge region

Ke

O

value of K for germanium
value of K for silicon

length of channel in direction of current flow
exponent on y

number of acceptors in gate

number of acceptors as a function of y in channel
ate

number of doners as a function of y in channel

charge density in channel at y >b + A (a small increment)

maximum charge density for modified catenary distribution
charge density in n+ region

charge density constant, in arbitrary units

charge density in channel

maximum charge density for inverted parabola distribution

total available mobile charge density
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TABLE OF SYMBOLS (Contd)
charge on electron
absolute temperature
potential difference

potential difference from the point y =y to y = a(= 1)

potential across the space-charge region

value of W for b = O

coordinate at right-angles to y and L

transverse coordinate in channel (toward gate from center)
direction of source-to-drain field

infinitessimal

Fermi constant

mobility

conductivity
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transistor has been treated in some detail in many recent papers , and

generally is consequently rather well understood. In fact, it appeared

it 4] o gereral Tami+at+inana nra
v 11C 5 ICli ad Ll v v LUl ‘H-L <

complied with, and that as a consequence, no further analytical study

would be required.

A new limiting condition applying to these devices has recently

been found by the authors. This makes necessary a reconsideration of

S S
certain nf the th hehavi
e VA L o N v M\ ddlA V A

acnecrt
I asSpeclu

n

a transconductance -per-unit-current limitation of the kind encountered

with both bipolar transistors and electron tubes. It was not predicted

conductance and current.

The transconductance-per-unit-current limit is the same one that is
encountered with bipolar transistors, namely, 39,000 micromhos per milli-
ampere. It occurs at very small values of channel current, values less

than a microampere in general, and may exist for several orders of

of pinchoff as it is applied to these devices. Strictly, pinchoff in
the precise meaning of the term would be a condition of total cutoff, or
a reduction of the channel current to zero value, or at most the
uncontrollable leakage current. The word pinchoff as normally applied
with these devices is a dynamical kind of limitation in that a condition
is reached in which an increase of source-to-drain voltage results in
almost no change of current, or a condition of near-infinite dynamic

impedance develops.

This hehavior s what ocht
inls behavigor S what 1e migh

l..lc

in that over a range of applied voltage, a certain number of charges

could diffuse through a gate area, and the magnitude of the voltage

o bibliography is presented on page 24 of this report.
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applied on the drain or collector then would be relatively unimportant.
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Such a condition could develop
carriers at the exit end of the channel through the gate region, and

the process of getting through the gate region then was one of diffusion.

With such a situation, as the gate bias is increased to limit the
channel size, a point could be reached at which the gates might make

h+ roamntin
¢ conTinue t oug tnnhel_

il [oigigl
o

ing. Under such conditions, the operation of the transistor might

approximate that of a conventional bipolar transistor, with the gate

region forming an incipient base region. e conventional transconduc

tance limitation applicable to bipolar transistors could be expected t

C

apply. It is the purpose of this paper to re-examine the conventional

theory for field-effect devices to see how it can be used as a basis

THEORY

The discussion to follow is based on, and parallels closely up to
a point, the study presented by Shockley in his paper "A Unipolar 'Field-

ect?

Hb

-1
I

=3

ings of the I. R. E. First the theory of the channel as given there is

reviewed briefly, and then a further analytical look is taken at some of

+ione
UL UILS

iven to see how they might be modified to clarify ideas

0]

on device behavior. It will become evident from these relations that
the nominal transconductance efficiency can readily be changed by some

changes in the characteristics built into the channel.

If one takes the structure of the field-effect device to be essentially

as given by Shockley in Figure 1 (his

Figure 1, also), it is clear that a —_ T

channel exists which is widened

and narrowed through the space-

charge action by the n+ gate re- .//ff\*::?“\\\\ﬁ:Léj?’\“

gions, and a current flow from the R

FIG. | ~ SPACE - CHARGE REGION AND CHANNEL
, = e A m .o W A (n+) pin+) STRUCTURE
source TO Tne draln wlild pbe 1niiu-

enced by the widths of the space-charge regions.
10



Generally, the assumption is made that the magnitude of the reverse

bias across the semiconductor juntion as seen from source to gate and

r +ho ama a+t
=29

. . e
ely the same, east in the initial

it~ Aaan S A et Aaea AMMWAYTSIMA
Lol uradllil LW HgalLtc alT appluaLiuc 3 S U VT & L ia

stages of the calculation. This assumption assures approximate parallelism
of the two sides of the channel, a situation which cannot be exactly true

Qiinrh an gcaimn
MAL Ll vl e o4

tion is convenient for an initial approximation,
however. It is also assumed that the doping in the gate layers, marked

n+, is large compared to that in the channel. For our approximation,

this is assumed to be true, but for more precise determination, some
alterations in the calculation might be required. Based on the definitions
listed in the Table of Symbols, the charge densities in the p and n+

regions are:

p(y) = ali_ () - Ny(y)] in the p-region (12)

hs) (N, -N_) in the n+-region (1b)

n ag ag

where q is the charge on the electron, and the various N's are the numbers
of the donor and acceptor centers in the respective layers. Clearly,

only part of the p-region may be assumed to be a conducting channel, as
the charge carriers in the space-charge region are essentially bound by

S P B
uiie pouell

Hence, the density of the holes in the central region of the channel
is a function of the carrier density, and the conductivity may be written

in terms of the number and the mobility in the equation:

where p is the mobility of the holes.

- Lo

The charge distribution in the space-charge region on either side
of the channel is assumed tc be symmetrical about the point y = O through
the source and the drain terminals. In the simple case considered by
Shockley, the density is constant and negative within the space-charge

region, and practically constant, positive, and very much larger within



the terminal, or n+, region. In practice, of course, neither of these
is truly constant, but both may be idealized to satisfy some chosen

arbitrary form, such as the constant values chosen by Shockley.

Because of the necessary existance of charge equality across the

to be noted

e
[97]

region, 1t
that the total charge within the space-charge region must equal that

collected opposite it in the n+ or gate region. Otherwise, there will

distribution which is obtained by considering the structure to be a
section of an infinite structure in the "z" coordinate, and assuming
that within the region where O < x < L the field is independent of the
:oordinate x. This condition

source -to-gate diode voltage is substantially equal to the drain-to-gate

voltage. The resulting equation is:

2 2
Ke d“V/dy” = - ke dE_/dy = - p(y) (3)
o] c ¥y
where p(y) is, as before, the charge density as a function of the coordi-
nate y.
Near the point y = b, the space, or bound, charge changes from a

value of zero with y Jjust less than b to a value equal to - p

[
o

ust greater than b. Shockley points out that this transition region

s about one "Debye Length" thick, and that in it

}.J'

the potential across

J
m/ -

—~ A el e s T
T/q = A where k is

~

the barrier changes by the Fermi potential, or
Boltzmann's constant, and T is the absolute temperature. Understandably,
the "Debye Length" must be small compared to the lengths, a, b, and L,

and the Fermi potential must be small compared to the junction potential,
W, and accordingly may be neglected in comparison. As a consequence of

these relations we have:

[
[\V]



J
dE_/dy = - p/ke_ = - p(y)/Ke_; y>b . (5)
Now, in the case where the charge density is uniform, Equation (5) may
be integrated to give:
E =-p (y -b)/Ke_ . (6)

In this instance, the magnitude of the electric field increases linearly
across the space-charge region, and decreases back to zero across the nt

semiconductor material for the terminal of the junction.

The potential difference between any point within the space-charge

and the boundary of the gate terminal may also be determined through

+
Ll

d.
0
o

he use of a definite integral, or ctly a pair of de

one over the space-charge region, and the other over the nt region.
Because of the relatively high charge density in the n+ region and its
' ly that across the

J Vi v i<

Tl a+Sara
lTlauvlilve

space-charge, or p, region. The general integral takes the form:

Ve=-, Edy (7)

2q

where K, the dielectric constant, has the value Keo, and is measured

normally in farads per meter in the mks system. For the problem at

hand; it can be equally well taken in terms of farads per centimeter by
2 P A A

e A PN
per volt-second, and cond

using mobilities in cm
centimeter. Typical values of K of 16 and 12 respectively for germanium

and silicon lead to the values of K for germanium and silicon of:

12

Kge = 1.42 x 1077 farads per centimeter (9)
-12 )
K., = 1.06 x 10 farads per centimeter . (10)

13
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In terms of the previous equations and relations, the potential which will

a
V= - jb Eydy . (1)

For the uniform-charge case, this leads to the potential on the edge of

the active channel as:
_ . 2
W= -v()=1[1-(o/a)lW (12)
where the value of Wb is given by:
W= pa‘/oK . (13)
o o

Clearly, the value of WO is the voltage required to yield a minimum value
of y, or b, equal to zero, or the voltage required just to "close"” the
channel.

Actually, the problem which really concerns us is the determination
of how to minimize the total voltage required to "close" the channel for
it is
important to restudy the simplified problem to attempt to find the form
which p(y) should take in order to assure that the value of the integral,

Equation (11), will be as small as possible subject to the integral:

& N
pr = Jo PW)dy . (1%)

For simplification of calculations, we now take the value of a as unity.

Superficially, the problem of minimizing the voltage would appear
to be one in the calculus of variations, and it should be examined to see

if there is in fact a minimum, and if there is not, under what conditions

1~ . . -

4. P e | £ ~s s
UL gelleral 10ru cal

(- K Y e miih ioaad A Aot S A
darf'u o INLIl LIl aluc sSubpJeci L0 COLWL LI'UCLLOIl

-~ i - | Py ~ ——
pe 1eu uvo
*
limitations . In addition, it is of interest to examine the variation of

the width of the space-charge region with the applied potential across 1it.

* Dr. C. Masaitis of the Ballistic Research Laboratories has pointed out

to the authors that a tractible variational problem probably does not
exist. This is also the implication of the manner of variation to be
noted as a function of n.

E R
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to
the basic general forms for the equations for the channel current and the

space-charge voltage expressed in terms which can be related to channel

ame haa
Ca.

. .
. The same sis e s which hav

(D
o

een used above are again
applicable, with the only difference being a somewhat greater complexity

in the expressions.

ILet it be assumed for an initial consideration that the expression

for the charge in the channel takes the form:

P =Dy (15)
n
where the value of p_ is such that the total integrated charge within
n g
the entire channel region will be oy In each case, jo is the density

of the charges corresponding to the channel under consideratio

a channel having a

s &

(¢]

n
onstant charge density, that is, with n = O. The
range for the values of y is O =y = 1.

Equality of maximum total conduction (the full-on condition) for
the channel requires that the integral of available carriers across the
channel for each configuration be the same, and in each case, this total
is taken to be P_. Setting up the basic integral on the assumption that

n s
p = py , one obtains:

p y'dy = p/(n+1) . (16)

Clearly, the value required for P is (n + l)pT. Substituting in the

basic differential equation, one gets:
dE_Jdy = - p yn'K . (17)
y n
Integrating between the limits zero and y gives:

n+l- y

Y - o - \ PR
B o= - /K, [o vy = - D/ke DTG (9

15



Substituting for pn and inserting the limits gives
n+l
E = - (p,/K)y — - (19)

This equation may be integrated once more to determine the voltage
required to bind the charge in the space-charge region. The limits in

this instance are from y to unity instead of from zero to y:

f‘l WL
11v L
Vo= - (p,/K) Jy y Tdy - (20)
Integrating gives:
+2 (1 +e
v = - [p, /K(n + 2)ly" | = [pT/K(n +2)) -y . (21)

y

It is evident from this equation that the voltage changes very little for
values of y near zero and values of n greater than three or four. Since

the overall value of Vy across the channel takes the form:

V_=p./K(n + 2) (22)
O T

i+ 4q ey’
+uv 1S €Vl

inversely proportional to (n + 2), or the required voltage decreases
r apidly with an increase of exponent. A set of curves showing the

of the exponent are shown

in Figure 2.

The transconductance per unit current for active devices is one of
the more important parameters first because solid-state devices are
subject to a limitation in terms of this parameter (the Fermi constant),

and second because this parameter tends to indicate the relative efficiency

Fh
0
je
%)
G
=
c
0
<
’_
G
(T
U

0]

is now derived.

It is not possible to make the differentiation to determine dI/dV
directly inasmuch as both the current and the voltage are functions of
the variable y, and often it is difficult to convert functions of this
kind into explicit form for direct differentiation. Fortunately,

16
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however, the derivative may be found by taking the partial derivative of

both the function for I and the function for V with respect to the variable

v, and the aguotient gives th
Vs 1d4 Thne quotlent glves Th

-The current flow in the channel is proportional to the number of

unbound charges available as a function of y within the channel:

=

n n+l n+l
I=p p y'dy = wp yo /(n+1) | = upy (23)
0

JO °n ’ n |
where, as before, the mu is the mobility of the carriers. Since this
integral is taken from zero to the variable as the upper limit, its

derivative takes the form:

1
il v -

n .
oy - (24)

Differentiating Equation (21) with respect to y gives the result:
n+l

v /dy = - (pc/K)y " - (26)

Dividing Equation (24) by Equation (25) then gives:

g, /I = (dI/dy)/I(dvy/dy) = - K(n + 1)/pTy“+2 . (27)

contours for which are plotted in
Figure 3. 1In the plots, the constants K and p; have been taken to have
a ratio of unity, and different values of n are used as the plotting

contour. It is interesting to note that the transconductance per unit

e A AN e 4 e Bl I A A
t n is increased as 1o

In order to determine how these results
expected in typical kinds of structures, it is interesting to compute
both the voltage curve and the transconductance-per-unit-current curve

t1rmAav Fha acalimmn 42 bl
unaer ULIle dasoWlpudiOll Ul
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p=p (1 - y2). (This probably gives the carrier distribution most
nearly like that which is obtained with ordinary devices. In any case,
the representation normally will be between that given by this relation
and thebabove relation (Equation 15) with n = 0.) In this instance, the

total charge over the channel is found to be:

Pl ; 2 . ?: « ] — 1 VAP
Pr =D, Jo (L -¥)dy =p,(y -y7/3) | =2p,/3 - (28)

The equation for the channel current takes the form:

v 2
T= Gpw/2) [y (- y)ay = (ou/2)3y - 570 (29)
As before, the derivative of I with respect to y removes the integral sign.

The voltage across the space-charge region is obtained from the

integral:
V) = - (/20 [ Dy - ¥y = - (o e0ln” - ¥'/21 [P (50)
y

Once again, taking the ratio of p_ to K to be unity, a curve expressing

V as a function of y may be plotted as in Figure 2.

Now, the transconductance per unit current may be obtained by differ-

entiation and division. The resulting equation for this charge distribution
is
2 3,2
g /I = -6k -y)/lp(3y -¥y)7] . (31)
This equation has also been plotted on Figure 3 subject to the condition

that the ratio of o to K have a value unity.

Another possible distribution worthy of examination is a modif

hyperbollic cosine function in the form:
p = pleoshy - 1] . (32)

The value of 19N in terms of P is then given by the equation:

n
O



1
(cosh y - 1)dy = p(sioh y -y) |~ = 0.175p, . (33)

The general equation for the channel current is:

oy
I=yp Jﬁ 5.714(cosh y - 1)dy = 5.71bkp(sinh y - y) . (34)
The ratio of dI/dy to I then is:
dI/Idy = (cosh y - 1)/(sinh y -y) . (35)

The binding voltage in the space-charge region is given by:

1
I(y) = - (5.704p_/K) | (sinhy - y)ay
T Jy
2,4 1t
= (5.714pT/K)[cosh y -y /2] \y . (36)
The voltage curve is plotted in Figure 2.
By differentiation, as before, the value of dV/dy is:
ver /2 /= =) J=r\ f { ~7\
av/dy = (O.(1l4p /8)\8s1nl y - ) (51)
and the transconductance per unit current is given by
2
g /I = 0.175K(cosh y - 1)/[p (sinh y - y)7] . (38)
This curve is also plotted in Figure 3.

In reality, of course, it is not possible to cobtain charge distributions
which fit any of the above considered forms. For this reason, it is
desirable to establish the representation in terms of a power-series
expansion, and to perform the analysis based on the power series. The

handling of the problem can be simplified by taking the power series in

the form:

o

1
p=Dp |l+ ay l . (39)

21



In the instance, the value of o takes the form:

e}
[

N TS L po[l e ) (e g™/ + l))]ﬁ

I

V"1
Vo [ 1)
L A, -
PO‘- v / \O'J/\d 4/

This equation may be solved for p_ and substituted into Equation (39).

Since as before the current flow is proportional to the integral in
Equation (40), but with the limits from O to y, the value of dI/dy and I

are readily shown to be:

T N O S he RO V] PR M CWICIRIED)) IR CEY
i J e e )

at/ay - upT[l e L e ] e
The quotient of these two equations gives:
a/my = L+ 5 eyl T eyt G et . )
L e e

In a similar manner, the equation for the binding voltage may be determined:

Vl r
V.= - (PO/K) ly

h
[

4

r < 140 . R l T
S R ) (e )G 2)| | (1)
W —d J J 1

n

y

where the value of p_ again may be found from Equation (40). This
equation may be used directly if the value of the voltage is required,
or it may be differentiated to give dV/dy for the problem at hand. When

this is done, the result is:

N
N



avfay = 2,1+ ) (a0 + )]
e PR e EEN I VS N CW/C D IR CE)

As a result, the transconductance per unit current is given by the

A 1

g
—]
N
—~~
N
p—"a

This equation gives, in terms of power expansions, the transconductance
h

1m

ner i+ ecrvirr
per Ulliiv < I

distribution.

CONCLUSIONS

It is shown that the distribution of charge within the channel for
a field-effect transistor Both
the total potential difference required to switch the channel from
fully conducting to completely off, and the transconductance per unit

current are shown to be strongly dependent on the distribution of charge

within the channel. In fact, both of these characteristics are improved
through the use of doping profiles of the form
n
P =D,y (47)
l—l
where the value of n is positive and significantly greater than unity,
as large as possible, in fact.
KEATS A. PULLEN, JR. LEE EVANS
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APPENDIX
CALCULATION TABLES

TABLE I
VALUES OF POTENTIAL AS A FUNCTION OF y AND n
0 1 2 3 b Pera
0.50 0.33 0.25 0.20 0.17 0.62
0.50 0.33 0.25 0.20 0.17 0.62
0.48 0.33 0.25 0.20 0.27 0.60
0.46 0.33 0.25 0.20 0.17 0.56
0.42 0.31 0.24 0.20 0.17 0.51
0.38 0.29 0.23 0.19 0.16 0.4k
0.32 0.26 0.22 0.18 0.16 0.37
0.26 0.22 0.19 0.16 0.15 0.28
0.18 0.16 0.15 0.13 0.12 0.20
0.10 0.09 0.09 0.09 0.08 0.10
0.00 0.00 0.00 0.00 0.00 0.00
TABLE II
VALUES OF gm/I AS A FUNCTION OF y AND n
0 1 2 3 b Para
® ® ® @ ® ®
100 500 3300 25000  2x10° 66.3
25 62.5 208 780 3100 16.3
11.1 18 L1 103 270 7.12
6.2 7.8 13 2L L9 3.84
4.0 4.0 5.3 8.0 12.8 2.ko
2.8 2.3 2.6 3.2 L.2 1.52
2.0k 1.5 1.4 1.5 1.7 0.96
1.56 0.97 0.81 0.76 0.76 0.59
.23 0.69 0.57 0.42 0.37 0.30
1.00 0.80 0.33 0.25 0.20 0.00

n
U
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