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ABSTRACT

The propagation of waves in both fully and partially ionized gases, both
with and without magnetic fields, has been treated by a number of workers;

e. g. Tanenbaum and Mintzer in 1962 obtained the dispersion relations for a
linearized and spatially uniform gas of electrons, positive ions and neutrals.
The presentreportdiscusses ihe basic formulation and mathematical treatment
of wave propagation in a linearized electron-ion-neutral gas, with static
magnetic field, in which the ambient gas parameters have an arbitrary varia-
tion with the vertical coordinate and are uniform in the horizontal direction.

The first part of thereportdiscusses a rather standard formulation of the
general problem, via the Boltzmann equation and the Maxwell equations. By
appropriate momentum-space averaging, the Boltzmann equation yields motion,
continuity and dynamic adiabatic state equations. These are then combined to
yield neutral and composite plasma equations of motion, continuity and adia-
batic state and a generalized Ohm's Law. Steady state plane-wave solutions
are suitable in the horizontal coordinates, reducing x, y and t dependence to
algebra but the equations must remain differential in the vertical coordinate z.
This gives rise to a system of10 simultaneous, highly coupled ordinary first
order differential equations and 11 simultaneous algebraic equations.

The second part of the reportis a discussion of the mathematical solu-
tions of this coupled algebraic differential equation system, which is equivalent
to the system of equations arising in analysis of coupled linear electrical net-
works. Referring to both the mathematical literature of differential equations

and the modern '"'state-space' approach to automatic control systems, various

iv
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purely analytical approaches are discussed with emphasis on their deficiencies
in obtainiug practical numerical results with an arbitrary z-variation. The
Runge - Kutta step-by-step procedure was eventually invoked and a Fortran
program was written based on this technique. The program can be used to
obtain accurate numerical solutions to many problems involving wave propaga-
tion in a linearized, veitically non-uniform electron-ion-neutral gas without
the necessity for making drastic simplifying assumptions for the vertical non-
uniformity. This program can be used to treat, by changing input parameter
values, such diverse problems as the perturbing effect of acoustic-gravity
waves on ionospheric electron density, electromagnetic wave propagation in
the vertically inhomogeneous ionosphere, MHD waves high in the ionosphere,
or other kinds of wave propagation in plasma media with a
vertical . inhomogeneity. Numerical solutions for the acoustic-gravity wave-
plasma interaction problem and their interpretation will be presented in a later

report.
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1. Introduction

Dispersion relations for a homogeneous. linearized three fluid gas,
censisting of electrons, ions and neutrals, with a static magnetic field, have
been investigated by a number of workers, including Tanenbaum and Mintzerl
and more recently by Cronson and Clarkz. The latter focusses attention on
the specific problem of the ionosphere. A very thorough analytical and
numerical studv of the dispersion relations at frequencies bel>w a few cycles
per second, using the latest and mbst reliable ionospheric data at the time of
writing (June, 1964), shows that of the four permissible modes of propagation,
(neutral acoustic, plasma acoustic and two Alfven modes), the only ones that
are not prohibitively damped out by collisions between charged and neutral
particles are neutral acoustic wave3. Perturbation of the plasma gas at
appreciable distances from the exciting source at low frequencies are very
likely to be due to such waves. The extreme damping of other plasma-induced
propagation modes is due to the very small fraétional ionization in the iono-
sphere.

Vertical gradients in static ionospheric parameters, e. g. neutral gas
density, plasma density and collision frequency are in some cases sufficiently
steep so that the parameters change appreciably within a wavelength of these
low frequency acoustic waves. For this reason, an analysis assuming complete
homogeneity of the medium might exclude some important effects. In particu-
3.4,5

lar, .Iines and Pitteway4 have analyzed the propagation of gravity waves

that arise in a neutral gas with a vertical gradient in ambient gas pressure and
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density, both with4' 5 and without3 consideration of viscosity and heat conduc-
tion. An analysis not accounting explicitly for these gradients would not have
predicted the <-listence of such waves.

The present work could be considered as a generalization of Hines 1960
paper3 to include the interaction of the gravity waves propagating in the neutral
gas with the electron-ion plasma embedded in the gas. From ancther point of
view, it could be considered as a generalizati .1 of the work &f T'anenbaum and
Mintzerl or Cronson and Clax'k2 to include the effect of vertical nonuniformity
on wave prcpagation in a composite gas consisting of electrons, ions and
neutral particles.

The present paper covers the formulation of the general problem and its
mathematical solution. The investigation of the analytical problem that
finally led to the use of a numerical technique for solution is described in
some detail. The numerical results and their interpretation will be treated

in a later report.

2. Formulation of the General Problem

The formulation of the general problem (under the assumption that no
ionization processes take place on the time scale of the phenomena of interest}.
begins with the Boltzmann equation for each of M constituent ideal gases and

the Maxwell equations for electric and magnetic fielus. These are:
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dn on 3 on 3 on F (1) on
k _ k k (i) k k _ kN
—-t———az'—-'*'z"—('_i)u +E (i) (k) - at ,k-l,...M
i=1 Ox i=1 du m \ c
o
\Y XS = - Mo'—at-
o¢
V"B =3+€o at
where

n = nk(r, u;t) = number density of particles of the km speclies at a point

(:j, _';1) in phase-space at time t,

on

3/ partial time-rate of change of n due to collision effects,
c

where r = (x(l),x(z), x(3)> represents position, and

u-= (u(l), u(z), u(3)> the velocity vector, where '"phase space' is defined as

a0

the six-dimensional space of position and velocity (rather than position and

—=

momentum).
e (D @GN - th
Fk \Fk , Fk , Fk = force on particles of k— species.

e = electric field vector in volts/meter

h = magnetic vector in amperes/meter

j = current density vector in amperes/meter2

ko= magnetic ~ermeability of free space = 47 x 10.7 henry/meter
€, dielen*ric coefficient of free space = 3—2; X 10-9 farad/meter
Note that all quantities are in MKS units.

. . . S .
in the standard way, following Spitzer ; we define an average over al}

velocity space of a general function G(u) as:

(1)

(2)
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N oD a3
Gl = J-- fG(u)nk(r,u;t) du/f--[ nk(r,u;t)d u (4)
All u-space All u-space

and note that the number density of k-type particles of all “elocities at r at
time t is
N, (r,t)=f--fn (r u't)d3u (5)
k'’ - f f ka’s’ a
All u-space

By setting G(a) = 1 in (4), we are led to an equation of continuity or mass
or number conservation in each of the constituent gases. By setting G(u) equal
to a velocity component, we are led to equations of 1. otion for each gas. Two

key assumptions in these developments are:

(a) 'The im component of the average fcrce Fm

(n (2 (3)

>

is indenendent of (i) but

may depend on x @

and/or u*’ where j # i. Note that electric and

gravitacional forces are independent of velocity while the iLrl component of the
(i)

Lorentz forces uo(u x h) depend only on velocity components other than u

These are the three tvpes of non-collision forces that will be considered in

on
our analysis. Collision effects are contained iu the term < a_tk> and hence
¢

are not included in the force F.

(b) The number densily Nk(r, t) at a point r is not changed by collisiors,

ON, (r;t)
[ k‘—] =0 ()
at 1 *

where the subscript ¢ denotes ''due to collisions''.
If assumptions (a) and (b) are invoked in (1) and the averaging process
indicated by (4) and (5) is carried out with G(u) = 1, the result is a set of

continuity or number-conservation equations.
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_ 8Nk
A — =0; k = _ Y
vV (Nk}-lk) < ot O;k=1,..., M ¥

where Gk is the average velocity of particles of the kt—Irl species or equivalently
- %y
V'(Pk_l.lk)'*' F=O;k=1' v.o, M (75°

where Py = mka the mass-density of k-type particles.

Application of the same averaging process with the assumptions (a) and
(b) to the case where
cw=ui=1,23 (8)

. X . t . . .
results in the vector equation of motion for the k—h particle species, 1i.e.

Du du . P9,
= + - :
Pk Dt - Pk <8t L val-lk\ Ve = (e“‘ ol X1V
M —
+ +
kaqb 321 Py kJ(d *j) (9)
itk

where the forces accounted for are electric, magnetic, and gravitational field
forces, the latter being proportional to the gradient of a gravitational potential
function qbg, Q. ‘s the charge of a particle of the kﬁl— species; the collision
forces are assumed to be of the siraple "irictinnal" type, as obtained from

simple kinetic theory arguments, i.e. proportional to the velocity difference

between colliding particles. The collision frequencies are given by Vi and

the stress tensor w(k) is defined as a matrix whose elements are:
. k) _ () () (m) _  (m) -
T S AR S ) o e,

Assumption of a Maxwell-Boltzmann distribution of velocities diagonalizes ire
g

stress-tensor and by very elementary kinetic th.ory arguments, we obtain




(11)

—Z_ 37w Tw
where v, = Z [uk - Uy ] = mean square deviation of k-type particle
=1
speed
th .
pk = scalar pressure of k— gas species.
Auxiliary to eq. (9) is the statement that ti:e net momentum exchange in

collisions between any two types of particles must be zero, required by

Newton's third law. Thus:

u -u,)=- u.-w);j k=1, ..., M 2
P ) Py w5 (e
as a consequence of which
P. m.N,
.S Il R B (13)
v P m N
jk k k k

We now perform the standard linearization procedure on the equations
(2), (3) (7) or (7)' and (9); i.c. we assume that the variables Nk or p.. Py

and the components of h each consist of a large zero-order part, denoted with

L J

subscript 0, plus a small first order perturbation part, denoted with subscript

1, while the components of u and e are assumed to have vanishing first order
-> i
i.e. to be of "smeall perturbation" magnitude.

parts, We then neglect all terms

of second order, e.g. the term Ek : Vﬁk in (9) or the term V - u ) in (7).

(pkl

We then assume that the pressure and density of each gas are related by an

adiabatic state equation whose general and linearized forms are:

p p p
d k _ 9 k = gk Lo
T = ) * 31 -—-—Y> Tu \7( Y ) =0 (general) (14)
Py Py P
————— e s ——————
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kl 2 "kl = 2 . . .
ot Csko ot rk [Vpko Csko VpkoJ (linearized) (14)

where vy is the ratio of specific heat at constant pressure to that at constant
2_ YPyo
Pko

order sound velocity in the k:CE gas species. Eqn. (14) is based on the

volume, assumed to be the same for all gases, and ¢ is the zero

i

sko

assumption that no heat flows in or out during the short periods associated
with the perturbation of the gas, although the ambient or "'zero order'" state
of the gas is by no means necessarily adiabatic.

Finally, we write the set of linearized equations required to describe the

system, dropping the lines over the uk's which indicate averaging, as follows:

-

P,
-k _ _ko’k
- kal+ m

k

(E * “olik xl:o) * Pk1 vq,)g

et pkovkj(gk- .‘j) ;k=1,...,M

II-k;V-(pkogk)+—=0;k=l, ..., M Eq. (7)

2
) o ) o |
5t Csko &t u o (VR ey “ Ve lik=L.... M Eq. (14)

IV; Vxe = - _ Eq. (2)

V; Vxh =it e s Eq. (3)

_ Pro%ik

where J_ = Nkoqk‘ik T mk

Note that the condition expressed by eq. (13) must hold.

= NPT, —
— n .- et e e ‘“ e~ - i
4

Eq. (9)

(15)
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Each of the vector equations I-k, IV and V has 3 component equations
(which we will denote by eq. I-k-1, I-k-2, I-k-3, IV-1, ... etc.). Thus the
system I-k through V contains a total of (3M + M + M + 3 + 3) = (5M + 6)
equations. The zero order parameters are assumed to be known. The un-
knowns are the perturbed or first order parameters, i.e. all components of
l:k's, constitucing a total of 3M, all of ‘he pkl's and pkl's, each of which
constitutes a total of M parameters, and the components of N and .1.1 which
adds another six. The total number of unknowns, then, is (5M+6), which is
the same as the number of parameters. The components of l are not addi-
tional unknowns, because j is a linear combination of the u 's.

- -K

We now note that each gas was assumed to obey an ideal gas law

P m p
Io= llo:kT (16)

Nlo pL' o to

where k is Boltzmann's constant and Tlo the zero-order absolute temperature

of the lg—l constituent gas.

3. The Neutral-Electron-Ion Gas

We will now specialize to the three-fluid (neutral, positive ion, electron)
gas, the homogeneous case of which was treated by Tanenbaum and Mintzer1
and by Cronson and Clarkz. In this case:
k = 1; neutral gas; subscript n replaces subscript 1 on all quantities;
q.=q_ =0.
k = 2; ion gas, subscript i replaces subscript 2 on all quantities; q, = + eZ,

where e is the electron charge* and Z the degree of ionization.

* Not to be confus~d with e, the electric field, or its components, although
the same letter is used to represent both gquantities.

P P Ty = 3, - " -ﬂ-_‘_,_ — ,w car e i_;@
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k = 3; electron gas; subscript e replaces subscript 3; g = - €.

We now invoke the following definitions and assumptions, most of which

were used by Cronson and Clarkz,

Definitiors:
pp = partial pressure of plasma (electron plus ion gas) = P; + P,
= i =p,+p =Nm, +N r
pp mass (lensity of plasma Pyt e Nlm1 Nerne
p. u +p u
. io=i "eo=e
u_= average plasma velocity = =
=P Pio " Peo
j = €eZN, u, —eN_ u
- ioai eo_e
Zme
£ = m,
i
Assumptions:
Pio Peo . . .
—Z =N, Z=N__=—— ; electrical neutrality (in zero-order)
m, io €0 m,

from which it follows, through the definition of j above, that

epeo
_1 ) m (_l.li -Ee)
Zm

. €

— << m,, or £ << 1; (Electron mass is extremely small compared to ion

i
mass and Z is a number of order unity)

from which it follows, through the above definition of u , that
-h

N m
u =u 2 S
i N, m, _e u +§&u
= L =2 =S 2y +Eu
N 1 1+¢ | -€
eo
1+ ——
N,
io i

(17)

(18)

(19)

(20)

(21)
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i.e. Tea and Tio the zero-order electron and ion teinperature are assumed equal,
or equivalently, thermal equilibrium between electrons and ions is assumed.

We now note that (see eqn. 11)

E— E—
p N mju -u |/3 fu -u |
e _ €0 e'se ae _ lee_ e (22)

— 2 =3
woylfs du -yl

ana assume that the electrons, being many times lighter than the ions, attain
much higher rms fluctuation velocities. This assumption results in the state-
ment that
>> .
p,>>Ep; (23)

21so, from (17) and (21)

Peo Neo
P "N "% {24)
io io
Note that, from (24)
c 2
sS€eo - €0 plO - _:Z_>> 1 . (25)
c . 2 pio pec) §
sio

We now define a ''‘plasma sound velocity" Cspo by

2 2
, .+ .+
= 2 _ Yppo ~ Csm Pio Cseo preo _ Y(pm peo) _
= = E = = =
Spo ppo pio peC) (pio peo)
c 2(1 + Z) 2
sio xC (1+2Z) (26)
(1+E) S10
and note that
c . p
spc)2 - _po _1_ (27)
o
C no
sno
where
T R R T ;s . = oy 77':*j;‘:;7— = ?—?l?
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o} . . .
a L fractional icnization.
pno

By solving (18) and (20) simultaneously for u, and u_, with the aid of (19),

we obtain
i
uiz u + ‘n-. (28)
-~ Y eppo
3
u=u - (29)
-€ .Pp nippo
= &
where n = m_ .

We now write the equations I-k, II-k, III-k for the case under considera-

tion
) + + - + -
I'-1 Pno <fg > n=- anl pnlv(l’g pnovni(lin Ei) pnovne(l'ln Ee)
-2 1 ot 7 i i i i in i n i ie i e
-3 e e e e e en e n e el e i

I o
0 ST HEoin XEO)
+ Q-eZN. > i
eN 10 e
eo0

. 9p\ .
m-1 Vv (Pnoun)+<at ng - °

2 i 1 i
3 e e e
N 2 ’ _ 2
IIr'-1 (-{;—tp)nl- csno <g—tp>n1 = -Bn . [VPno csno ano]
-2 i i i i i i i
-3 e e e e e e e

The following operations are now performed:

(A) Add I'-2to I'-3

e
m

(B) Subtract (I'-3 multiplied by ——) from (I'-2 multiplied by ;TZ-)
e 3

(C} Add II'-2 to II'-3

(D) Subtract (II'-3 multiplied by ——) from (II'-2 multiplied by ‘:'n—z)
e i
(E) Add IIT'-2 to III'-3
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(F) Subtract (III's multiplied by —— ) from 1’2 multiplied by r‘i-z-— )
e i

Periormance of these operations and use of the definitions of pp, pp, up
&
and j given above, eq. (17), together with eqs. (13) and egs. (17), (19), (21),
-

(23), (25), (26, (28) and (29), results in the following set of equations describ-

ing the syscem.

du ea Y
. T ) /_ea .in\ .
SNE anl Py V¢g ¥ apno(vin +§ven) W -‘nlp) ¥ < n >J

(Mction equation for neutral gas)

du
i _A__B = - i + + =
I"-p; ppo at val * pp1 qug +_‘1 XPO ppo(vin §Ven) (_‘.lp f’n)

‘Vin' v
N < en >j
n >

h
(where .},.30 has replaced u o..o)

9j ezNeo
"_ __: - -
T Ve, + m N

* nppOE, (ven— vin) ﬁln- up) * (ven *¢ Yin * vei) l ) iz(gpcl)

-

eo R T
t u xB - §(J xfo)

where p, 1= (& Py pel)

(generalized Ohm's Law for plasma)

oy
nm"-nVv - (pnoun) + a?l = 0 (continuity for neutral gas)
dp

"op: V- +—L 2o inui 1
In'-p: V (ppogp) 5 (continuity for plasma)

%
n"-0:v. j+ —-a—:-l = 0 (electrical equation of continuity or charge conservation)
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where Per™ eZN.. = eNe = perturbed or first order charge density,

il .
not necessarily zero
op do
N, —BL _, 2 _nl__ _—
" -n: ot csno ot n [ano “sno ano]
(Adiabatic state for neutral gas)
op op
nop. —PL 2_pl __, . - i
e ot spo ot .t.lp [ vao cspo vao]
2
i 0
Z.g. [Vp -c 2V ] - Z cspc Pel
£ e o1+ Z) po spo 'Ppo’ " (1+Z) “gn ot
(Adiabatic state for plasma)
9p Zc 2 Op
11 Spo pl Z 2
||_ + _ = . -
Ir-0: —5 (1+z) ot (1+2) ip [v"pa Cspo vao]
2
Zj c . Op
- 2 opo cl
. - +
(1+Z)nE p [ Pro ~ “spo vppO] En ot
ahl
IV Vxe=-#k_ 5
de
L =3 _‘
vV x.l.x i+ €, 31

Note that there are other equally satisfactory ways to describe the three-
fluid (electron-ion-neutral) ges, such as the retention of the original equations

1'-1,2,3, 1I'-1,2,3, IlI'-1, 2, 3, wherein the unknowns are u_ | P . -—-
n,1,¢€, "n,1,¢,

etc., instead of un, p’ pn, D’ j,» as in the present formulation. Tanenbaum and
Mintzerl use the (n, i, e,) furm of the equations, while Cronson and Clarkz,
following Spitzers, use the (n, p) form. The latter approach conveniently lumps
the electron and ion gas equations into a single plasma equation, and the current

density j appears in the Maxwell equations as a single unknown vector instead of

a linear combination of the vectors ui and u . However, there is no real
e




e ee——
-14-
difference in principle or in mathematical difficulty between these two methods
of approach. Both leave the same number of equations and unknowns, but the
equations appear different in form and the unknowns are changed.

Still another method, that used by Cowling7, lumps the three gases
together into a composite neutral-plus-plasma gas, defining variables for that
composite gas. The approach illuminates different physical parameters than
the present approach, but does not change the degree of difficulty in solving the
equations. Moreover, solutione obtan.ed with one of these approaches can al-
ways be used to obtain the solutions that would have been obtained by another,

since the former sets of solutions are linear combinations of the latter.

4. The Vertically Non-uniform Neutral-Electron-Ion Gas

We now further specialize to the case where the ambient three-fluid gas
has parameters that are constant in time and horizontally uniform, but vary
with vertical position. To treat this case, we use a right-handed cartesian
coordinate system (x,y, z) and look for plane wave solutiors in the iime t and
the horizontal coordinates x and y, reducing the prebiem to a system of ordinary
differential equations in the vertical coordinate z. Thus each first order (un-
known) parameter, designated generically by u, has a complex Fourier sclution
of the form

-i{wt -k x -k y)
u(x,y,z,t) = Uk ,k z,wje X y , (30)
I 4

(i. e. the wave solution corresponding to a given lower case letter ic denoted
by its corresponding capital letter, except for the solution corresponding to p,

which is denoied by ®) where kx and ky are in general complex while the angular

frequency w is real.
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W< define a horizontal wave vector kh by

k =ik +1ik (319
- XX yy
where (1x, ly’ 1Z) are unit vectors ia the x,y, z directions resulting in the

AX Ay =

following forms for eqs. I' through V",

0P, ¢
I''-n; dwp U =-ik P - i L +ig &
no.n ah nl sz

oz -2 nl 9z

v = v,
en in
-+ - ————————
apno(vin * gven) (_gn Ep) * ( n J
ar 1 ad
1 = - - 1 _l.,. _g
I'''-p; lmp U’ lkl’P L _:Z(Rpl 5%

+p_ (v, +Ev )(UP-U)+< in en\J+JxB

po m €n - - >
egNeo
I''-0; ( - iw - v -fv, -v )J4+ ——_ JxB =
en n €l meT"" !)E I o |
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It is convenient to normalize the quantities in the equaticns I'''-n through
V' such that each quantity in the equations is dimensionless. To this end we
denote each normalized parameter by its symbol with a karet abave it and in-

voke the following a<finitions:
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free space electromagnetic wave number
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We also assume that:

V¢g=§=-g‘iz=-§wc_.iz (32)
where g = acceleration to gravity = 9.8 5 and g = £

sec we

and conclude from (23) that

P, = P, - P ®-P, (33)

i.e. the parameter p 0 which enters into later discussions. is approximately
equated to the negative of electron pressure.
In terms of the normalized parameters and with the aid of the assumption

(32), we have
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4.1. Thc Two-Dimensional Caue
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Consider the case where the source of the wave disturbance under study

is a uniform infinitely long line-source along the y-axis and the ambient gas
parameters are independent of x and y. With this kind of symametry, the un-

knowns cannot be functions of y. We can therefore set k

= 0 and the horizontal
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propagation vector kh becomes ix kx. We now resolve the vector equations

', IV and V'"! into component equations, assigning the anpropriate

symbols to denote component equations x, y and z.
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4.1.1. Matrix Formulation

Eqgns. T-n-x through V-z constitute a set of 21 coupled equations in
21 unknowns, of which 11 are purely algebraic and 10 are first order

differential. To solve them by matrix methods, we first express them in

the form
WEN . Ar2) u(e) + B(2) via) (34)
¢ = CY(z) u(z) + D'(z) v(z) (35)

where AY(z), B'(z), C'(z) and D'(z) are matrices consisting of known elements
composed of certain coefficients of our equation system, while u(z) and v(z)
are vectors whose elements are the unknown parameters. The matrices A',
B!', C' and D' and the vectors of u and v are shown in Tables 1 and 2.

To cast Eqns. (34) and (35) into the desired form, we perform the

following matrix cperations:

o) Mcu+DW)=0=D)  Cu+v ;

or
v=-0"!cu (36)
B - A+ B - (D) Chu) = (A" - BUDY'Cu (37)

or more concisely
CLge Au (37)
dz

where

A=Al -B'(DY) ‘¢

e S N ==l
T ; e :-—Ww = ==
H
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Note that the cperation indicated in matrix notation by Eq. (36) is that of
solving the set of 11 simultaneous equaaiions for the elements of v, considered
unknown, in te...s of those of u, considered knowr. The next step represents
the subsequent opcration of substituting these solutions of (34) into (25) in
order to obtain a system of coupled first order d {ferential equations of the

form (37).

4.1. 2. Analytical Methods of Solution

The theory of systems of the class (37) is discussed in both the purely

(8,9,10,11, 12)

mathematical literature of differential equations anrd in the

literature of mod- ~n generalized systems and automatic control theory

{88, fEo L, 16). In particular, the system (37) with constant A elements is

the foundation of the ''state-space’ approoch to modern automatic control

theory(ls’ 16).

The literature was reviewed in an effort to find teciiniques
for solution of the system (37) that apply to matrices A(z) with z-dependent
elements. If these elements ar= independent of z, or, even if z-dependent,
if they have the property of self-comm utativity, i.e.
A(z ) A(z,) = A(z,) Alz ) (38)
1 2 2 1

. . . (13, 14)
then solutions can be obtained in closed form ; the problem degenerates
into that of finding eigenvalues of the matrix [ A(z)dz. If A{z) does not have
the property (38), then each of the elements ::~ - be separable into a major
part that fulfills (38) and a ''small perturbation" part that does not. The
system is then solved with the assumption that the entire matrix is the self-

commutative part, and this solution is used as the zerv-order térm of a

perturbation solution for the more realistic problem involving the non self-
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commutative matrix. The difficulty with this approach is that it is very
difficult to find a meaningful separation of A(z) into self-commutative anc .1on
self-commutative parts.
Another possible analytical technique applies to periodic ¢lements of
(8,9,10,11)

A(z) . If the z-range is divided into strata, then in each stratum

the elements A(z) could be considered periodic with a period equal to the

(9)

)

size of the stratum. General theory exists on the periodic coefficient case
but its implementation requires knowledge of the ''fundamental solutions'" of
the system, which is not easily attainable, or what amounts to a perturbation
arcund the constant coefficient case, which may be very iraccurate unless

the coefficients are nearly constant or uniess many terms of a Fourier series
solution are invoked.

Another possibility that was studied is the straightforward diagonalization
of A(z) which effectively uncouples the differential equations (37) and trans-
forms them into a set of first order differential equations in single variables,
which are trivially simple to solve. The difficulty with this approach is that,
because of the z variation of the elements of A(z), the diagonalization equation

. . 11 .
involves a "Liapounov transformation'' ™~ and takes the form

14T B (39)

-1
- Z2y. =6
(T “AT-T dz )1k ik Tik

ik

To find the transformation matrix T(z) that diagonalized A(z), it would be

where &, is the Kronecker delta and Bik the it—h element of a matrix.

necessary to solve a set of first order coupled ordinary differential equations
that may be, in the generw. case, as complicated as the original set; thus the
problem is not reduced to the purely algebraic one of find tiie roots of the

characteristic equation, as it would if A(z) were independert of z.

S — - — - T — = y = CEmEn B - e
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Still another analytical technique is the direct use of the "matricant series”
(i1, 12), which evolves naturally from an iterative solution of the equation
svstem (37) and which is known to converge to the exact solution. In certain
rcaseg, e.g. whkere the matrix elements can be represented by the first two or
laree terms of a power series in z or LY a constant term plus two or three
exponential or Fourier terms, we mig.t obtain a series whose sonvergence is
fast enough to offer a possibility of practical solution. Thie actual implementa-
tion of this method to obtain useful solutions requires a high-speed computer.
In the case of self-commutative matrix elements (i.e. if Condition (38) above
holds, ) the matricant series closes, and, as remarked above, the solution of
the equation system becomes tantamount to finding the eigenvalues of the
matrix A. This point will ke discussed in further detail below.

The matricant method, although not necessarily practical in a given case,

is nevertheless worth discussing because of the light it shrds on the nature of

the solutions. Consider the general system of inhomogeneous equations in

matrix form

du(z)
dz

= A(z) u(z) + £(z) (40)
where f(z) is a vector congisting of known "source' elements. Integrating

(40) once, we have

u(z) = ulz ) +sz dz' A(z') u(z?) +fzz f(z') dz' . (41)
(0] (0]

Repeated substitution of ui{z) as given by (41) into the integrand of the first

integral on the right-hand side of (41) yields
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zl
u(z)=l_1+fzdz 'A(z ')+fzdz "A(z ') [ 1dz YAz, ")
RS | 1 z 1 1'% %2 z
o) ) o
‘2..1' Zz'
Z t ! f ' f t t
+fz dzl A(zl )fz dz2 A(az )fz dz3 A(23)+...] u(zo)
o o) )
z !
i f g & f f 1 f !
+[_]‘Zof(:r1 )d.a1 +J"zodz1 A(zl )fzo dz2 f(z2)
z ! zz'
z f ! 1 ! f f !
+fzo dzl A(zl )on dz2 A(22 )J‘ZO dz3 f(23)+...] (42)

where I is the identity matrix.
Let us find ""Green's function" of th¢ equation system (40) i.e. the response

to forcing functions f(z) that are impulses at z = z_, where z > zo. We write

1’ H
= 5(z - : < < (
f(z) f1 (z zl) 9 zo z1 z {43)

where f 1 is a constant, and we choose Z, at a point where
u(z ) =0 (44)
o
which is always allowable since the choice of N is perfectly arbitrary.

In this case, (4?) has the form

z'
t t Z t t 1 t A t -l
dz A(zl)+fz‘dz1 A(zl)J;1 dz2 A(zz)+..._]f1 . (45)

A
u(z) = [I + fz
1 1

From (42) and (45), we see that solving the homogeneous equation (37) for

a fixed set of values of the elements of u(zo) is equivalent to solving the

inhomogeneous equation (4C) with u(z ) = 0 and with impulse sources at z = Z,
o

where Zo < z1 < z. The method to be used here is that of assigning values to
u(zo) and s ,lving the homogeneous equation. Our solutions, then, will relate
o a fixed set of values of u(zo) with the "forcing function' f(z) set equal to

zero, and we will dall z the "position of the source'.
o

i i
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Referring back to (42) with f(z} = 0, it is not difficult to see that, if
the condition (38) holds, then the third term of the matricant series is
Z J
Pz Az [ Y dz tAfz.) =+ 1% dz 'dz'Adz, A(z)) =
'z 1 17z 2 2 2! Yz 1 2 1 2
0 o 0
1 z 2
— ! 1
AR )> (46)
0
aund the general term of the series is
z ! z!

z . 1
( 1 [ 1Yy m=e= [
f, dz,'Alz, ), " dz, A(zz) J,
o o o

N
N-1 1y = _1_ & 1 1
dzNA(zN ) = N!(fzodz A(z )) . (47)

The series then becomes th matrix analog of the power series for an

exponential function and is denoted by

& 1y3t
j‘z A(z')dz

u(z) = <e ° s S : (48)
/ 0
In the particular case where the matrix elemerts are constant between
z and z,
o
A(z ~z )
u(z) = e o u(zo) ) (49)

The exponential function of a matrix B can be evaluated from Sylvestcr's

Theorem(lz) obtainable by Laplace transform techniques(ls) and has the fcrm
A -
A(Z - ZO) n e k(z zo)
= K - 1
© =}_:1 T =) 1;1{[ . 00
Tk

wher 2 the A k's are the n indep>ndent (nor-degenerate) eigenvalues of the matrix
A. If degenerate eigenvalue; exist, then a modification of (50) is required, ac

discussed by Rekoff( 16).

The solution of (37) with condition (38) in effect, then, is given by {50),

with modifications if degenerate eigenvalues exist, and its determination




requires that the eigenvalues of B be found. If A is independent of z. the
eigenvalues of B are those of A(z—zo); hence the problem reduces to that of
finding the eigenvalues of A. This is the same problem that must be solved
in a dispersion analysis, where the entire ~ystem of equations is complex-
Fourier or Laplace transformed and is therefore reduced to @« homogeneous
set of simultaneous algebraic equations. The condition required for existence
of nontrivial solutions of this system is the 1 inishing of the determinant of
coefficients. Thnis condition is exactly the same as the indicial polynomial
equation, whose solution yields the eigenvalues of the A-matrix.

If the elements of the A-matrix have certain simple z-variations,
then solutions can be obtained through integral transforms or orthogonal
function expa.asions.

We have investigated a number of such possibilities and found them
all wanting in one way or aaother. For example, a stratified medium theory
can be formulated in which the z-variation of the elemcnts of A(z) is linear
or exponential. In the former case, Laplace transformation leads to a first
order differential equation system with coefficients that are linear in s, the
transform variable. Thus the problem is not reduced to algebra as it is in
the constant coeificient case, but rather to a system of diffe.~ential equations
of the same degree of difficl.ity as the original system. In the case of
expon~ntial elements cf A(z), the transformation leads to difference equa-
tions which can be solved numerically. Since inversion would be required
after solution, in order to transform from the s-domain back to the z-domain,
titis did rot seem like a satisfactory method. The same sort of limitations

seemed to exist in the use of orthogonal function expausions. The case of
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periodic coefficients, tor example. can be treated by expandirg both the
elements of A(z) and the solutions in Fourier series on z, but the result is
a set of coupled recursion relations for the coefficients, instead of the
simultaneous equations that vould appear if the A-elements were constant.
These recursion relations could be solved but the aumerical work required
to obtain the Fourier coefficients of the A(z) elements would be considerable.

Another approach that was atiempted in the early stages of investiga-
tion was reduction (by algebra and differentiation) of the original 20-equaticn
system down to single differential or integro-differential equations of high
ocder in single unknowns. This method iy feasible and perfectly valid, but
it has some very serious practical limitations if the coefficients have
arbitrary z-variation. First, the coefficients obtained for the resulting
differential equations are extremely complicated algebraically and the
probability of eliminating errors in setting up computer solutions would be
small. Secondly, in order to solve the high order differential equations
(e.g. 12@- order, as in one such development that was carried out), it mignt
be necessary to reduce them to sets of coupled first order differential equa-
tions, which amounts to traveling in a circle.

Thirdly, the coefficients of the equations finally obtained contain many
z-derivatives of the ambient gas parameters. 7~ "is cocmputation of these
derivatives would be required before the coefficients of the differential equa-
tions could be specified. The derivatives. whose evaluation would require
an enormous amount of computational labor, would be highly inaccurate since
they would be obtained from very crude exper.mentally derived data curves.

Thus a method that contsins as few z-derivatives as possible in the co-
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efficients is most desirable from the viewpoint of accuracy.

4.1.3. The Runge-Kutta Step-by-Step Method

No general solution obtainabie by purely analytical methods was found
that is suitable for the general nroblem, e.g. cases where the z-variation
of the elements of A(z) is obtained from expcrimental data and where these
elements are allowed to have any arbitrary z-variation and do not obey the |
condition (38). Such is the case in an accurate study of wave motions in the
ioncsphere; hence, we will invoke a purely numerical (stop-by-step) technique
which does not lead to convergence problems even if the elements nave a
particularly complicated variation with z.

After studying the relative advantages of various numerical techniques

for solution of the equation SYStem(”’ 18)

in the general case, it was decided
to use the Runge-Kutta step-by-step procedure. This method has the
advaniage of high attainable accuracy without a prohibitively large expenditure
of computer time.

To apply the Runge-Kutta method to (37), we first choose a z-interval
n. We then begin with a set of values of the elements of the vector u(z) a:
2=z The ij:E element is denotea in general by ui(z). Its value at z = 2 is
denoted by ui’ o

The long-hand expression f r the matrix equation (37) is

du(z) N

= Z
dz j=1

A (z)u((z);i=1, ... , N . (37
1] J

The Runge-Kutta formula for the value of ui(z) atz = z_ = 2+ h, to

1
be denoted by u, 1 is(ll)

e . T —— T




_ 1 (1) (1) (1) (1)
~ YTt gty Tk G gy ) (51)
where
— N
i k. Dohzaz)
i, 1 =1 ij- o’ j,0
; by N ) n 1(1)
k12 =hZA1(Zo+§)uo+ ,2 :]
y , jo1 i
i (1)
)y . N h Ki 9
= k. =h T A.(z + —)[u. + —J—]
i, 3 .. 1) o 2 i, 0 2
j=1
B . N r
k. MohzA @z +h) Lu. PEVARY
i,4 j=1 ij o Js0 i, 3

The values of ui(z) atz = Z, + (p + 1)h, where p is a positive integer, are

denoted by u, and are given by

, pt+l

- 1 (p+1) (p+1) (p+1) (p+1)
Ty o = B o * 3 (ki, 1 + Zki_ 5 + Zki, 3 + ki, 4 ) (51)
where
N
k, Py 5 A (z +ph,
i, 1 ., 10 s
j=1
(p+1) 8] 1 kj 1(p+1)
ki,2 =hj§1Ai§(Zo+[p+ i]h) <uj,p+ 5 ———->
(p+1)
N k
(p+1) _ 1 3,2
ki,3 -hji:lAij(zo+{p+ 2]h) uj,p + > >
(p+1) N (p+1)
ki, 4 = [, jElAij(zO +[p + 1]h) <uj, 2 + kj, 3 > .

Beginning with values of u, o for j=1, ..., N, we can proceed to find

L]

i the successive values of uj, 1’ uj. 90 e ’uj,p+1

e

to any desired number of

steps by the use of eq. (51)!. The accuracy attainable by this method is

Py

e i -~ % -
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fourth order in h. The sharver the gradients in the elements of A‘ij’ the
smaller the value of h required for a given level of accuracy.

A Fortran program (soon to be run on the IBM-70£0) has been prepared
based on the coupling of a simultaneous equations routine with a Runge-Kutta
routine. In effect, this program implements the steps between egns. (35) and
(37), then solves (37) by the Runge-Kutta routine. We originally carried out
the steps from (38) to (37) algebraically, resulting in eqn. (37) where the

-~ ~

elements of u(z) arethe 10variablesff s {I , P, f’ s ‘ij' ,E,E 6 H, ,J
nz” "pz° nl "pl" 41" "x Ty T1lx "z

~ ~ ~

and fi i It was then decicded that the direct computer solution of the entire
system is more efficient, because some of the 11 variables that appear only

- -~ A » -~

algebraically (ﬁnx’ U ,U ,U R J,J.®

, E , B, ) will be desired
ny’ px’ py nl’ "x’ "y el Tz’ Tlz

as outputs, and the computer can produce them directly withor* difficulty.

By means of this program, it is possible to study manytypes of linear wave
propagation in a neutral-electron-ion gas that is non-uniform in only one
direction. Any desired sets of source functions, horizontal propagation constant
f{x’ cequency w and z-variation of ambient neutral and electron density,
collision frequency and static magnetic field magnitude and direction can be
studied by merely changing the input numbers. The computer outputs wiil
consist of any desired components of the velocities ﬁn and ffp, the current
density :I, the p~rturbed electric and magnetic fields E and 1‘:%1, the densilies

(Rnl or mpl or the pressures Pnl’ Ppl’ PI X

4. 2. Applications

The possible applications of the analysis discussed 1in this report ate:

manifold. The computer program is sufficiently general to cover many types
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of linear wave propagation in a neutral electron-ion gas. By merely changing
input parameter values, the computer can produce answers to such diverse
questions as (a) the effect of acoustic~gravity waves on properties of the
electron-ion plasma in a vertically inhomogeneous ionosphere, (b) the effects
of vertical non-uniformity in clectron density, collision frequency and/or
ambient magnetic field on the propagation of MHD waves high in the ionosphere
and that of electromagnetic waves in various parts of the ipnosphere. In “.e
case of electromagnetic waves, the point of view to be taken is that the neutral

~

gas parameters Gnl’ Pnl and &nl are set to zero in the system equations* and
the piasma equations are used to find a conductivity tensor. The latter is
vertically non-uniform, its exact functional variation with z being determined
by the z-variation of the static plasma parameters. The conductivity tensor

is then substituted into the Maxwell e guations IV and V in our system. This
particular facet of vertically inhomogeneous ionospheric wave t+ eory has been
treated quite extensively in the literature. Examples of studies of radio wave
propagation with altitude-varying conductivity tensor ar« provided by the work

(19) (20) (21)

of Clemmow and Heading , Budden and Clemmow °, Barron

and others.
The acoustic-gravity wave plasma interaction problem is based on an

entirely different point-of-view. Over most of the ionosphere, the fractional

ionization is so small that the terms in the neutral gas equations relating to the

effects of the plasma are neglig:ble, except al frequencies that are extremely

low relative to neutral-plasma collision frequencies. The neutral gas wave

This reflects the fact that, because of low fractional ionization in the
ionosvhere, an electromagnetic wave would not significantly perturb the
neutral gas.
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prop-gat:on is thus only very weakly influenced by the presence of plasma.
The neutral waves,whose equations are now unccupled from the plasma equa-
(3)

tions, can by analyzed by the methods of Hines' 18530 paper and the result-

~ >

ing neutral gas parameters Pnl’ Pnl and &{nl can then be used as source terms
in the plasma equations. In this way, the system, whichinits generalformica
systemof 10 homogeneous ditfferential equations and 11 homogeneous algebraic
equations in a total of 21 unknowns, now becomes a system of 8 inhomogeneous
differential equations and 8 algebraic equations in a total of 16 unknowns and
with known source terms determined by solving the first 5 equations of the
original system.

This technique, which takes advantage of the extremely low value of a
that prevails in the ionospnere, reduces the magnitude of our computer problem
in treating this particular ionospheric effect. A detailed discussion of the
acoustic gravity wave plasma interaction problem will be presented in a later
ieport.

Our computer program is by no means restricted to the ionosphere. It
can be applied to any linear neutral-electron-ion gas with static parameters
that are non-uniform in a single direction.* The normalization of the parameters
in our equations wou d enhance the convenience of studying such gases, i.e.,
the normalized parame‘ers could be varied in such a way as to produce
universal curves., Wave problems that involve complicated one~dimensional
spatial variations of parameters, simple degenerate cases of which have been
solved by purely analytical methods, can be treated by our computer program

without the necessity for either drastically simplifying the parameter varia-

tions or resorting to perturbation techniques. The latter, of course, are

= Provided, of course, that the assumptions and approximations used here
are applicable.
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severely limited in accuracy when the departure from the idealized case is

large.
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where u. = P
1 n

Eguation 34
Eq. (1) f-n-z

(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)

-36-

TABLE 1

v =

Ordering of Equations

where

Ordering of Equations and Vectors in Equations (34) and (35)

V1 ) Ejnx
V2 = Uny
v3 = pr
4T Upy
Vg * (ﬁnl
vg = cﬁpl
v =3
vg =9,
V9 i &cl
V1o © Ez
V117 By,

Equation 35

Eq. (1) f-n-x
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z TABLE 2

Matrices in Equations 34 and 35

- AL 00 A, A 0 0 0 0 A
0 Al 0 Ay Al 0 0 0 0 Ay o
;’ 0 0 AL Ay, Ay 0 0 0 o0 A
[ 0 0o 0 A, 0 0 0 0 0 0
A= 0 0 0 0 Al 0 0 0 0o .o |
] 0 0 o0 0 0 Alge 0 U |
B 0 0o 0 0 0 0 Alyy AL 0 0
0 0 o0 0 0 0 Algy Al 0 0
) 0 0 o0 0 0 Al 0 0 A o
—0 0 0 0 0 0 0 0 0 "A'lo,10
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TABLE 2 (cont'd)

Matrices in Equations 34 and 35

0 0 0 0o B0 0 0 0 o 0
t ] 1] 1]
0 0 0 0 0 By B B0 By 1o O
t B! t ' t '
0 0 Bl BL0 0 Blg7 B'sg Blygg B'y o O
1] 1]
B,y O 0 0 B0 0 0 o0 o 0
1 = 1 1
B'=f0 o0 B0 0 B0 0 0 o0 0
© 0 0 0 0 0 0o 0o o o 0
' 0
© 0 o0 0 0o o o o o B', 1o
O t
o 0 o0 o0 0 B0 0 o0 0
] t
0 0 0 0o 0 0 0o B0 o B'g 1
' r0 0
0 0 0 0 0 0 B0 B
e =
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{ TABLE 2 (cont'd)

E ‘Matrices in Equations 34 and 35

B c, 0 0 0 0 0 0 o o0 o
. 0 0o o0 0 0 0 0 o 0 0
; 0 c'y, © 0 0o 0 0 0 0 ¢y
r 0 0 o 0 0 o 0 0 0 ¢y,
0 0o ¢, 0 . 0 Cyy 0 0 Cy o
c =|o 0 0 0 Clyp Clyg O o 0 Cy o,
c,, 0 0 c., 0 0 0 0O o0 0
0 Clgy O 9 Clyp O 0 U
) 0 0 C4y O Clg, O 0 0 0 Cy 0
c 0 0 0 0 C'oe 0 0o 0 0
0 o 0 0 0o o 0 ' 0 C o
. L |
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TABLE 2 (cont'd)

Matrices in Equations 34 and 35

D'll 0 D'13 0 0 0 D'17 0 0 0. 0
0 D'Z}; 0 D'24 0 0 0 D'28 0 0 0
D'31 0 D'33 0 0 0 D'37 D'38 0 0 ¢
0 D'42 0 D'44 0 0 D'47 D'480 ' 0 0
D'51 0 D"53 I)'54 0 0 D'5,7 D'58 0 0 c
D'=}| 0 D'62 D'63 D'64 0 0 D'67 D'68 0 0 0
0 0 0 0 D'75 0 0 0 0 0 0
0 0 0 0 0 D'86 0 0 D'89 0 0
0 0 0 0 0 D'96 0 0 D'gg 0 0
0 C 0 0 0 V 0 0 0 0 D'IO, 11
0 0 0 0 0 0 0 0 0 D'll, 10 o
L |
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where:
Al =-§+2? '=-A+“ = Al
11 (pn {cn)’ A22 (kpp 2kcp) A.‘%S
1y .~
Al =+ —L + 3 =-D' =-D'
14 <2 [1 (v, €= )] D177 Dy
Sno
T (-] (v. +¢&v )=-D' _=-D'
15 22 in en 13 24
sno
' - . Yag & _ - D! = -
A1,10 62 (vin vl) D17 D28
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Y ~
! = + ) + Y = o ! = - 1
Aoy 2 i Dl = "Dy
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