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ABSTRACT 

The propagation of waves in both fully and partially ionized gases, both 

with and without magnetic fields, has been treated by a number of workers; 

e. g. Tanenbaum and Mintzer in 1962 obtained the dispersion relations for a 

linearized and spatially uniform gas of electrons, positive ions and neutrals. 

The present report discusses the basic formulation and mathematical treatment 

of wave propagation in a linearized electron-ion-neutral gas, with static 

magnetic field, in which the ambient gas parameters have an arbitrary varia- 

tion with the vertical coordinate and are uniform in the horizontal direction. 

The first part of the report discusses a rather standard formulation of the 

general problem, via the Boltzmann equation and the Maxwell equations.    By 

appropriate momentum-space averaging, the Boltzmann equation yields motion, 

continuity and dynamic adiabatic state equations.    These are then combined to 

yield neutral and composite plasma equations of motion, continuity and adia- 

batic state and a generalized Ohm's Law.   Steady state plane-wave solutions 

are suitable in the horizontal coordinates, reducing x, y and t dependence to 

algebra but the equations must remain differential in the vertical coordinate z. 

This gives rise to a system of 10 simultaneous, highly coupled ordinary first 

order differential equations and 11 simultaneous algebraic equations. 

The second part of the report is a discussion of the mathematical solu- 

tions of this coupled algebraic differential equation system, which is equivalent 

to the system of equations arising in analysis of coupled linear electrical net- 

works.   Referring to both the mathematical literature of differential equations 

and the modern "state-space" approach to automatic control systems, various 

IV 



purely analytical approaches are discussed with emphasis on their deficiencies 

in obtainiug practical numerical results with an arbitrary z-variation.    The 

Runge-Kutta step-by-step procedure was eventually invoked and a Fortran 

program was written based on this technique.    The program can be used  to 

obtain accurate numerical solutions to many problems involving wave propaga- 

tion in a linearized, vertically non-uniform electron-ion-neutral gas without 

the necessity for making drastic simplifying assumptions for the vertical non- 

uniformity.    This program can be used to treat, by changing input parameter 

values, such diverse problems as the perturbing effect of acoustic-gravity 

waves on ionospheric electron density, electromagnetic wave propagation in 

the vertically inhomogeneous ionosphere, MHD waves high in the ionosphere, 

or   other   kinds of wave propagation in     plasn^a media    with a 

vertical        inhomogene ity.   Numerical solutions for the acoustic-gravity wave- 

plasma interaction problem and their interpretation will be presented in a later 

report. 
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1.    Introduction 

Dispersion relations for a homogeneous, linearized three fluid gas, 

consisting of electrons, ions and neutrals, with a static magnetic field, have 

been investigated by a number of workers, including Tanenbaum and Mintzer 

2 
^ and more recently by Cronson and Clark .    The latter focusses attention on 

the specific problem of the ionosphere.   A very thorough analytical and 

f numerical studv of the dispersion relations at frtquencies below a few cycles 

f. per second, using the latest and mbst reliable ionospheric data at the time of 

writing (June,  1964), shows that of the four permissible modes of propagation^ 

fl 
(neutral acoustic, plasma acoustic and two Alfven modes), the only ones that 

are not prohibitively damped out by collisions between charged and neutral 

particles are neutral acoustic waves.   Perturbation of the plasma gas at 

appreciable distances from the exciting source at low frequencies are very 

likely to be due to such waves.    The extreme damping of other plasma-induced 

propagation modes is due to the very small fractional ionization in the iono- 

sphere. 

Vertical gradients in static ionospheric parameters, e. g. neutral gas 
! 
i. 

density, plasma density and collision frequency are in some cases sufficiently 

steep so that the parameters change appreciably within a wavelength of these 

f \ low frequency acoustic waves.    For this reason, an analysis assuming complete 

? 

I 

homogeneity of the medium might exclude some important effects.    In particu- 

3 4 5 4 
lar, .lines  '   ''  and Pitteway   have analyzed the propagation of gravity waves 

that arise in a neutral gas with a vertical gradient in ambient gas pressure and 
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4  5 3 
density, both with ' and without, consideration of viscosity and heat conduc- 

tion. An analysis not accounting explicitly for these gradients would not have 

predicted the ^"istence of such waves. 

The present work could be considered as a generalization of Mines 1960 

3 
paper   to include the interaction of the gravity waves propagating in the neutral 

gas with the electron-ion plasma embedded in the gas.    From another point of 

view, it could be considered as a generalizati xi of the work of Tanenbaum and 

1 2 
Mintzer   or Cronson and Clark   to include the effect of vertical nonuniformity 

on wave propagation in a composite gas consisting of electrons, ions and 

neutral particles. 

The present paper covers the formulation of the general problem and its 

mathematical solution.    The investigation of the analytical problem that 

finally led to the use of a numerical technique for solution is described in 

some detail.   The numerical results and their interpretation will be treated 

in a later report. 

2.   Formulation of the General Problem 

The formulation of the general problem (under the assumption that no 

ionization processes take place on the time scale of the phenomena of interest) 

begins with the Boltzmann equation for each of M constituent ideal gases and 

the Maxwell equations for electric and magnetic fields.    These are: 
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dn        an        3      an 3      an      F (i) an 

-dT* -it-+ * 7if)u + .^ rm^w'i-w)''^1'-™        ^ 1=1 ax 1=1 au     m v     /c 
8h 

V X e = - u  -5- (2) 
,' O   at 

ae 
VxÜ-i + co^r (3) 

where 
XL» 

n   s ni,^r' u't^ = nun^ber density of particles of the k— species at a point 

(r, u) in phase-space at time t, 

\gr—/   = partial time-rate of change of n   due to collision effects, 
c 

vhere r =(x     ,x     , x       ] represents position, and 

u = ( u     , u     , u      j the velocity vector, where "phase space" is defined as 

the six-dimensional space of position and velocity (rather than position and 

momentum). 

F   = f F       ' F       < F        ] = force on particles of k— species. 

e = electric field vector in volts/meter 

h s magnetic vector in amperes/meter 

2 
j = current density vector in amperes/meter 

.*. 
-7 

(JL    = magnetic permeability of free space = 4*- x 10     henry/meter 

1 -9 e    = diele^Hc coefficient of free space -  —— x 10     farad/meter 
o 367r ' 

Note that all quantities are in MKS units. 

6 
in the standard way, following Spitzer ; we define an average over all 

velocity space of a general function G(u) as: 
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■üTIiy-/--/G(u)n,(rJu;t)d3u//--/ n.(r,u;t)d3u (4) 

All u-space All u-space 

and note that the number density of k-type par+icles of all velocities at r at 

time t is 

N, (r,t) = /-- SnAr>n:m3\x (5) 
All u-space 

By setting G(a) = 1 in (4), we are led to an equation of continuity or mass 

or number conservation In each of the constituent gases.    By setting G(u) equal 

to a velocity component, we are led to equations of i, otion for each gas.    Two 

key assumptions in these developments are: 

(a) The i— component of the average force F     is independent of (i) but 

may depend on x     , x     , x      and/or u ^   where j i i.   Note that electric and 

gravitational forces are independent of velocity while the i— component of the 

Lorentz forces /x (u x h) depend only on velocity components other than u    . 
o -*    .* 

These are the three types of non-collision forces that will be considered in 

/8nk \ our analysis.    Collision effects are contained in the term f -7—  ]   and hence 

are not included in the force F    . 

(b) The number density N (r, t) at a point r is not changed by collisions, 

i. e. 
r 8N. (r;t) -| 
~4±~        = 0 (8) 

at ■ - 
*- -'c 

where the subscript c denotes "due to collisions". 

If assumptions (a) and (b) are invoked in (1) and the averaging process 

indicated by (4) and (5) is carried out with G(u) = 1, the result is a set of 

continuity or number-conservation equations. 

r::^^.^ 
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V'  (NÄ)+   -9—  =0;k^ 1,....  M (7) 

where VL  is the average velocity of particles of the k— species or equivalently 

9pk 
V •  (P^) +   -gf = 0; k « 1 M (7)' 

where p   s m N , the mass-density of k-type particles. 

Application of the same averaging process with the assumptions (a) and 

(b) to the case where 

G(u) =u(l); i = 1,2.3 (8) 

results in the vector equation of motion for the k— particle species,  L e. 

Du /9U _  N . .     p  q 
p, -~r- - P, (-ir- + u. " vu, )= - v • r } + ^~ie + n u  xh) rk Dt        rk V 9t       --k       -Mc/ J- mk  -      o-k   - 

M 

^k^g^Vkj^k"^ (9) 

where the forces accounted for are electric, magnetic, and gravitational field 

forces, the latter being proportional to the gradient of a gravitational potential 

function (p , q.  's the charge of a particle of the k— species; the collision 
o 

forces are assumed to be of the simple ' irictional" type, as obtained from 

simple kinetic theory arguments, i.e. proportional to the velocity differenct- 

between colliding particles.    The collision frequencies are given by v    , and 
k] 

(k) 
the stress tensor f      is defined as a matrix whose elements are: 

(k) ,    (i) (iK ,    (m) (m). 
Vim      Spk(]ik      -^k     )(.Uk        ^k      >     ' (10) 

Assumption of a Maxweil-Boltzmann distribution of velocities diagonalizes the 

stress-tensor and by very elementary kinetic theory arguments,  we obtain 
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hm 
NkmkVk2 

3 Pk 

o 
2       1 

re v,      =2 
k        i=l 

r   (i)       CO" u.        - u. 
_ k           k 

(11) 

= mean square deviation of k-type particle 

speed 

p = scalar pressure of k— gas species. 
IV 

Auxiliary to eq.  (9) is the statement that tlie net momentum exchange in 

collisions between any two types of particles must be zero, required by 

Newton's third law.    Thus: 

VIA- üj) = - Y^Y y ■ j'k =! M <i2) 

as a consequence of which 

v p.        m.N. 
— = -JL

   = —t1- • (13) 
vjk     pk      mkNk 

We now perform the standard linearization procedure on ehe equations 

(2), (3)   (7) or (7)' and (9); i.e. we assume that the variables N   or p  , p 

and the components of h each consist of a large zero-order part, denoted with 

subscript 0, plus a small first order perturbation part, denoted with subscript 

1, while the components of IL  and e are assumed to have vanishing first order 

parts, i. e. to be of "small perturbation" magnitude.    We then neglect all terms 

of second order, e. g. the term u   • Vu   in (9) or the term V •  (p, ^ ) in (7)'. 

We then assume that the pressure and density of each gas arc related by an 

adiabatic state equation whose general and linearized forms are: 

£ (-T-)= i(-^Hk • <-4)"(generai)        ^ 
pk pk pk 
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apkl 28pkl -        r„ 2, 
f IT ' Cslco   -Br~--*k'   [VPko " Csko"Vpko^    <lin^rized) (14). 

where y is the ratio of specific heat at constant pressure to that at constant 
5* 

I 2      YPko f volume, assumed to be the same for all gases, and c ,      =     is the zero 
sko p. rko 

fth 
order sound velocity in the k— gas species.    Eqn.  (14) is based on the 

p» assumption that no heat flows, in or out during the short periods associated 

with the perturbation of the gas, although the ambient or "zero order" state 

of the gas is by no means necessarily adiabatic. 

r- Finally, we write the set of linearized equations required to describe the 

I 
system, dropping the lines over the IL's which indicate averaging, as follows: 

a-k pkoqk I-k; p.    —- = - Vp. , + --^-^-(e +u   u,  xh ) + p. .V^ rko    9t rkl m       *       O^K    ^o        kl    ^g 

M 

J 

Eq.(9) 

8p 
Il-k; V ■  (Pk0uk) + -J~ = 0 ; k = 1,   . . . . M Eq. (7)' 

apkl 2  apkl 2 
m.k;__-Csko   ^-^u^   [V%0-Csko   VPko];k = l,...,M Eq.(14)' 

% 
IV; Vxe =-M0-9r- Eq. (2) 

8e 

V;   Vxh1 =2+ ^0äf 
Ecl-(3) 

where the current density j is defined by 

M 
3 =   2 j (15) 
-    k=l-fC 

pkoqk\ 
where 3k . N^q^ = mk • 

■■, « 

Note that the condition expressed by eq. (13) must hold. 
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Each of the vector equations I-k, IV and V has 3 component equations 

(which we will denote by eq. I-k-1, I-k-2, I-k-3, IV-1,  . , . etc,).    Thu«? the 

system I-k through V contains a total of (3M +M + M + 3 + 3) = (5M + 6) 

equations.   The zero order parameters are assumed to be known.    The un- 

knowns are the perturbed or first order parameters,  i.e. all components of 

IL's, constitucing a total of 3M, all of the p. Js and P. /s, each of which 

constitutes a total of M parameters, and ihe components of e and h, which 

adds another six.    The total number of unknowns, then, is (5M+6), which is 

the same as the number of parameters.    The components of j are not addi- 

tional unknowns, because i is a linear combination of the u, 's. 
-1 -k 

We now note that each gas was assumed to obey an ideal gas law 

^=-^=kT (16) 
Nio        p*o i0 

where k is Boltzmann's constant and T     the zero-order absolute temperature 

of the i— constituent gas. 

3.    The Neutral-Electron-Ion Gas 

We will now specialize to the three-fluid (neutral, positive ion, electron) 

gas, the homogeneous case of which was treated by Tanenbaum and Mintzer 

2 
and by Cronson and Clark .   In this case: 

k = 1; neutral gas; subscript  n   replaces subscript 1 on all quantities; 

q.-q^O. 

k = 2; ion gas, subscript   i   replaces subscript 2 on all quantities; q   = + eZ, 

where e is the electron charge* and Z the degree of ionization. 

* Not to be confused with e, the electric field, or its components, although 
the same letter is used to represent both quantities. 

^mi^mmtF^T* ■^ 
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k = 3; electron gas; subscript e replaces subscript 3; q   = - e. 

We now invoke the following definitions and assumptions,  most of which 

2 
were used by Cronson and Clark , 

Definitions; 

p   =   partial pressure of plasma (electron plus ion gas) = p. + p 
p i       e 

p   s   mass density of plasma = p.+p    =N.m.+Nm 
p J      r ri    Ke       i   i       e   e 

= p. u. + p    u 
f? i i     i. lo-i      eo*e u  =    average plasma velocity =  ;  
I ^P ^ p.   + p rio       eo 
_ i   =     eZN. u. — eN    u 

i ici eo^e 

i 

i - 

r 

c 
i i 

m. 
i 

Assumptions: 

P- P 
 Z = N.   Z = N      =      ; electrical neutrality {in zero-order) (17) 
m. IO eo      m J 

i e 

from which it follows, through the definition of 3 above, that 

t» Zm 
 « m., or ^ « 1; (Electron mass is extremely small compared to ion 

i 
mass and Z is a number of order unity) (19) 

1 
1 

from which it follows, through the above definition of u , that 

N m 
I                          _       ,      eo      e 

u   = u  +     u 
^D    ^i     N. m.   ^.e        u. + £ u 
••* 10       \ -1       -e L ,. 
 —r nT"     "i+l"e 

N. m. 
io    1 

From the ideal gas law. 

(20) 

T p    N. 
eo        eo   10     , _   . 

io io   eo 

I 
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i. e.  T     and T.   the zero-order electron and ion temperature are assumed equal, 
eo IG 

or equivalently, thermal equilibrium between electrons and ions is assumed. 

We now note that (see eqn.   11) 

p N    m|u-ul/3       |u-u| e eo   e'*e     ^.e1/     _   ' *e     -»e' 

^Pl     |N.  m.|u. -u.^S        |u. -ü.|: 

-   .2 

(22) 

and assume that the electrons, being many times lighter than the ions, attain 

much higher rms fluctuation velocities.    This assumption results in the state- 

ment that 

Pe»^Pi         • 

/Iso, from (17) and (21) 

p           N reo          eo      ^ 
p.          N.      "Z    ' rio              lO 

Note that, from (24) 

2 
c                PP. seo           eo     IO 

2       p.      P c  .              io      eo 
=   Z. » 1 

1 

(1+4) 

and note that 

c no 
sno 

(23) 

(24) 

(25) 

sio 

We now define a "plasma sound velocity" c       by 

2 2 
YP c  .    p.   + c        p Y(p.   + p    ) 

2 po sio    io       seo reo io      eo 
spo p p.+p (p.+p) v rpo rio     Keo rio     reo 

Csio2(1 + Z)  » c     \x* Z) ,„. 
sio (26) 

2 

!B£0     = Z20. .   J_ (27) 
2       P„^        <* 

where 
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no 
a =  —^-   - fractional icnization. 

' no 

By solving (18) and (20) simultaneously for u. and u   , with the aid of (19), 

we obtain 

u. « u   + -^- 
*i      ^p       Tip 

po 

u » u   - 
-e   ^p      TI^ p 

(28) 

(29) 
po 

where TI H — 
m 

We now write the equations I-k,  Il-k, Ill-k for the case under considera- 

tion 

I'-l rno 
-2    i   V at - i 
-3    e e 

8u N Vp  , + p  HV0   + p    v   .(u - u.) + p    v    (u - u ) 
-  jn = -      nl     rnl   ^g     rno m *n   *.i        no ne ^.n   ^e 

i 

e 
i 

e 
iinin        xiei      e 
e   en   e     h        e    ei   e      i 

c+ (e + u   u   x h ) 
-»      OJI    ^o 

+ {+ eZN. 
eN IO 

eo 

i 

e 

TT,   i   V • (p    u ) + (&)   , = 0 
II'-l Kno n      \.9tynl 

i     i 

3 e    e 

- lU'-l ( 
-2 

' 8p\   1     c 
2 

äf jnl-    sno 

-3 e          e 

1 

e 

är)nl 
7
 1 

u       [ Vp      - c        Vp    ] 
*n • no       sno     rno 

i 

e 
i 

e 
i 

e 
i 

e 

\ 

The following operations are now performed: 

(A) Add V-2 to r-3 

(B) Subtract (I'-S multiplied by — ) from (I'-2 multiplied by—) 
m m. 

e i 
(C) Add ir-2 to ir-3 

(D) Subtract (II'-3 multiplied by — ) from (11»-2 multiplied by —) 
e i 

(E) Add III1-2 to III'-3 

^•^g^^^ 
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(F)   Subtract (III'3 multiplied by— ) from IIP2 multiplied by — ) 
m m. e i 

Peri'ormance of these operations and use of the definitions of p  , p , u 
P     P   *P 

and j given above, eq.  (17), together with eqs.  (13) and eqs.  (17), (19),  (21), 

(23), (25), (26)    (28) and (29), results in the following set of equations describ- 

ing the syfatem. 

I"-n. P      -Ir2 = - Vp     +p   , Vd>   + OR    (v.   +|v    ) (u   - u )+f   e:i ■m)i rno   at ^nl     rnl    rg        rno   in    s   en   Un    ^.p       \     f)      JJ 

(Motion equation for neutral gas) 

8u 
i"-p; P      -# = - Vp     + p  , Vrf>   + j XB   + p    (v.   + ^v    ) (u   - u ) r   rpo   St ^pl     rpl    rg   jl   ^o     rpo   in    s  en   ^.p    >n 

(where B   has replaced n   h ) 
jkO o^o 

9j e2N 

e 

+ Tip    i(v     -v.)(u-u) + (v      +|v.    +v,)j-i (gp    ) irpo^    en     in   ^.n  ^p en    ^   in      ei 1      z &rcl 

2 2 
e N .e N 

+  — u   xB   - ^T (3 xB ) 
m o      o     m rip    | ^    .0 

e      ^^   -» e rpo^ ■J,   "* 

where p^n (^ Pil- Pel) 

(generalized Ohm's Law for plasma) 

n 1 
II"-n V • (p    u ) +      "   = 0 (continuity for neutral gas) 

no_»n ot 

appl II"-p: V ■  (p    u ) + —rr-   = 0 (continuity for plasma) 
po-p      at 

0pcl II"-0: V • j + —r—   = 0 (electrical equation of continuity or charge conservation) 
.»at 
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where p     s   eZN.    = eN      = perturbed or first order charge density, 
not necessarily zero 

Iir-n: at 
2  ^i              r^                2v7     i ■   " C               -r-— =  - U     •   [Vp        "  C             Vp      1 

sno      8t          ^n           no       sno      rnüJ 

(Adiabatic state for neutral gas) 

mn-p: 8p
Pi 

8t 
2  %!               r ^                2t7     T ■    ■ C              ■—rf— =  -  U     • L   Vp        " C           Vp      1 

spo       8t           -*p          rpo       spo     rpoJ 

+ ■ 
Zi                   r^                    2„       .,          Z 

|T)p    (1 + Z)      ^ vPpo     Lspo  Vh'po]       (1+Z) 

2 
c 
spc 

In 
8Pcl 
8t 

(Adiabatic state for plasma) 

2 
8p Zc 8p 

III-'-O: -11-  + -^^p —Hi =  -^  u   • [ Vp      - c      2VP     ] 
8t (lf-Z)       8t (1+Z)   *p rpo       spo       po 

Zi „ c    .    8p 
j • r r- 2T7       i  +    trpo       cl 

" 0+Z)T£ p O 
l ^no " Cspo VPpoJ   +    |T1       8t 

85l 
pm.   Vxe = -M0   -gr 

r 8e 
J 

Note that there are other equally satisfactory ways to describe the three- 

fluid (electron-ion-neutral) gas, such as the retention of the original equations 

r-1,2,3, ir-1.2,3, III'-l^.S, wherein the unknowns are u    .        p    .          
n.^e, ^,1.6. 

etc. , instead of u      , p      , i, as in the present formulation.    Tanenbaum and 
n, p     n, p 

-1 2 
Mintzer   use the (n, i, e.) form of the equations, while Cronson and Clark , 

following Spitzer , use the in, p) form.    The latter approach conveniently lumps 

I 
the electron and ion gas equations into a single plasma equation, and the current 

density j appears in the Maxwell equations as a single unknown vector instead of 
t 

a linear combination of the vectors u. and u .   However, there is no real 
i e 
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difference in principle or in mathematical difficulty between these two methods 

of approach.   Both leave the same number of equations and unknowns, but the 

equations appear different in form and the unknowns are changed. 

Still another method, that used by Cowling , lumps the three gases 

together into a composite neutral-plus-plasma gas, defining variables for that 

composite gas.    The approach illuminates different physical parameters than 

the present approach, but does not change the degree of difficulty in solving the 

equations.    Moreover,  solutions obtained with one of these approaches can al- 

ways be used to obtain the solutions that would have been obtained by another, 

since the former sets of solutions are linear combinations of the latter, 

4.    The Vertically Non-uniform Neutral-Electron-Ion Gas 

We now further specialize to the case where the ambient three-fluid gas 

has parameters that are constant in time and horizontally uniform, but vary 

with vertical position.    To treat this case, we use a right-handed cartesian 

coordinate system (x, y, z) and look for plane wave solutions in the xime t and 

the horizontal coordinates x and y, reducing the problem to a system of ordinary 

differential equations in the vertical coordinate z.   Thus each first order (un- 

known) parameter, designated generically by u, has a complex Fourier solution 

of the form 
-i(cot - k   x - k y) 

u(x,y,z,t) = U(k ,k   z,a))e x y       , (30) x   y 
(i.e. the wave solution corresponding to a given lower case letter is denoted 

by its corresponding capital letter, except for the solution corresponding to p, 

which is denoted by öl) where k   and k   are in general complex while the angular 
x y 

frequency w is real. 

jip_    tmm ■—ww—wy i.    ■— 
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Wo define a horizontal wave vector K  by 

k,   = i k   + i k (3r) 

where (i , i , i ) are unit vectors in the x, v, z directions resulting in the ^x *y ^z 

following forms for eqs. I" through V". 

r"-n;   iwp    U    - - ik, P  , - i    —H-1 + i (ft       £ 
no^n ^n   nl    ^z      Bz      -z   nl     a^. 

ap , d(h nl ^' 
z 

•v        -   V. 

no   in     s  en   ^n    ..p7     \        r]        JX 

BP B(h 
In,-p;  iup    U   = - ik P      - i    —Bi + i (R        i 

po^p >.   pi    ^z     &z        ^z   pi    8z 

+ P    (v.   +4v    ) (U    -U)+!— £ll ^ j + T xR rpo   m    s  en    ^p    j;n       \       « y J + J XB 

v.    - v 

r"-0;(-iw-v      -4v.    - v   .)J+     e     eo      jxB    = 
en    ^   in       el*       m r-    £   i ^o 

2 2 
e NU e N BP 
 !2±£ XB   -h   —£2   E - ik, P      - i     _li 

+ rip     | (v       - v.   ) (U    - U  )  - i   /offi     \ ,rpos     en       m   ^n    ^p'     lz
(g(H

cl
, 

8U 8p 
n!'--n; ip     k       U+p       ~-J^- + u       —il2   - iw(ft      =0 

"noji    ^n       no      Bz nz    8z nl 

au ap 
IIm-p; ip    k    ■  U   + p       —2L  +   u PQ  _ .   (ß      _ n HpoJi     ^p     Ppo      Bz      +   Upz     Bz        ll4,<Kpi " 0 

SJ 
II,"-0;   ik    •  J + i     ^ - iu(ft o 

_^l>.    ^       z     Bz cl 
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inM!-n; - iuP  , + c in(R  , « - U 
nl       sno nl nz 

r 9P 2       no 
8/ sno       8z 
no 

- c 

Ilio'-p; iu;?     + c        iw(ft 
pi       spo spo pi 

U 

j r  Op 
z po 9 ^ 2 po 

(1+Z)   4 'HP       1     8z        "spo dz 
po -'- 

PO  . c       2     rpo 
pz 1_    3z spo       9K 

2 
c 

H- 
(l+,?i) ^ cl 

Zc 
III--0; - iwPi 1 -   -^^g-   i-öl 

ZJ r 9p 

pi (1+Z)r^p 
po 

po 
az 

- c 
o     9P 2       po 

spo        3z 

9p 
U 

po 9    8P   . 2        po 
(1+Z)      pz |_     dz spo        8z 

8E    v ,8E 
IV";   ik^E^   {- ^Jt-yi^^JL = iw^t   H, 

o^l 

V":   ilc   x H   + i 
-n    ^ 1     *x 

an.   v        , an. 

dz    J -*y \    dz 
iwe E + J 

o^.   _„ 

It is convenient to normalize the quantities in the equations V"-n through 

V",   such that each quantity in the equations is dimensionless.    To this end we 

denote each normalized parameter by its symbol with a karet above it and in- 

voke the following definitions: 

en, m.ei 
en, in, ei 

sko 
sko 

; k = n, p. i, e 

c = light velocity in vacuo = 

v    o   o 

Q      s r)ji H    = electron cyclotron frequency 
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CO 

to 
ce 

ce {ji 

8p 

pn,pp      p 
no, po 

no, po 
8z 

1 sko 
'ck ~   c . 9z 

sko 
K ,  = ; k ^ n, p, i, 

k   = free space electromagnetic wave number =  -   = w jjr~e 
o r 0 coo 

K k 

•"h"   k     '   kx=   k 
o o 

2      , 

u    = electron plasma resonant frequenc/ =~\ —-^— 

D 
U)      =    —»— 

p w 

U 
^n, p 

U 

\ 

nl, pi 
nl,pl       p 

no, po 

(R nl. p3 
nl,pl      p 

no. po 

P.. = 
il 

1      P po 

z = k z 
o 

j =         
1     po 

E = f 2_ ^ E 

^^V ;- 
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.1     q, i   v nl ppo y 

H 
n„=    i;T -r = unit vector in direction of H 
^B        H ^c 

(ft 

(ft   .s 
Cl        T]| p 

DO 

We also assume that: 

m 
where g a acceleration to gravity = 9. 8 —:~ and g = g 

sec ooC 

and conclude from (23) that 

Pi   S  ^i-PeÄ-Pe 

(32) 

(33) 

i.e. the parameter p , which enters into later discussions, is approximately 

equated to the negative of electron pressure. 

In terms of the normalized parameters and with the aid of the assumption 

(32), we have 

I-n:(l + ia(v.   +|v    ))U   -ia(v.    +|v    )U   + i (ig) (ft   , 
m en   ^n m    ^   en ^ p    „z   0      nl 

I .     /     sno 
+    iz  f      0"v    Kk     + 2 k    ) - k. 

pn en     -h 
sno 

,ic v    8P 
sno /   sno    \        nl    , .     y. i v       - v.   ) J = 0 

en       m -* 

I-p: (1 + i(v.    + | v     )) U    - i(v     + £ v     ) U   + i (ig) tfl   , 
in en   ^ p m    ^   en _». n   „.z   ^     pi 

IP c 

i f^^-^k +2k )-k f-^-^lp, 
.js v   v    y   pp      cp   ^h v  Y    /J pi 

ic 
+ i r^E^_^_&L -iK v      - v.  ) J - f w      (J x n^) = 0 

en       m _» ce ^     .»B 
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A A *\ A 

1-0:   (1 + i[ v      + £ v.    + v  .1) J - i(v      - v.  ) U   + i( -      - v.  ) U 
^   en     ^   m       ei   ^ en       in ^ p en       m ^ n 

.*       2 A       2 

P.. + i 

2     8Pdi 
ic K      tl 

.*z V   Y^        J    PP cpJ     rhV   Y|     yj   ^1      z V   Yl       /   9Z 
A A 

AO^^^ AA y Igut       v 
iu      E - iw    (U   x a,,) + iw    (J x nT,) - i f 2i \ = o 

P   - ce^ p    AB ce^    _»B     ~*z\    ^ 

A A A A A 

II-n:   k    ■  U    - ik     U      - i 
* h    ^ n        pn    nz 

au 
nz 

8z 
(ft      = 0 

nl 

A A 

II-p:   k    • U   - ik      U      - i —^ - (ft  , = 0 
^    ^p        pp    pz /■ pi 

8U 

A 

8z 

A A 
8J 

II-O:   ikL ■ J + k     J   + —~ - Kft  , = 0 
h pp   z        Ö

A cl 

Ill-n:   P  , - Y(ft     + i[k    (1 - y) + 2k    ] U      = 0 
nl nl pn cnJ     nz 

iZ .    YZ(ft 
cl m-p: P      - Y(ft   , +i[k    (l-Y) + 2k    ]U      -     *~ [k    (1 - Y) + 2k    ] J +-—^rC 

pi pi pp cpJ     pz       (l+Z)    l   pp cp     z    (1+Z) 

m-O:   \—i-fl ! 
+ Y^T + Ujk^d-Y) + 2k^J   - iU_[k_(l-Y) + 2k_J - Y(ft  ,--0 pi zu    pp cp pz     pp cp cl 

A A 

TV:   ikxE + i 
-».    -»x 

8E 
—y - ic E   ) + i 

öZ     PP y J -y 

8E 
A A \ A 

~  + k    E    1   = iB, 
8z      fp xy    ^ 

A A .«. 

V:   ik,   xB, + i 
-h    ^1    *z 

8B 
IZ A A 

az 
'    i   ^—^ k   Bi    ) + -   ^ 

PP iy/  ^y V 

A A \ A, A 

+ k    B,      ] --■ - iE + J 
az PP   lx> -    - 

4. 1.    The TvyO-Dimensional Ca^e 

Consider the case where the source of the wave disturbance under study 

is a uniform infinitely long line-source along the y-axis and the ambient gas 

parameters are independent of x and y.    With this kind of symmetry,  the un- 

knowns cannot be functions of y.    We can therefore set k    = 0 and the horizontal 



-20- 

propagation vector K  becomes i  k .    We now resolve the vector equations 

I'", IV"' and V" into component equations, assigning the appropriate 

symbols to denote component equations x, y and z. 

I-n-x: 

y 

1Y 

sno 

[1 + ia(v.    + | v    ) ] Unx + 
m en 

y k     +2k 
pn        cn< 

P   i + nl 0 
8P 

nl 

dz 

^S   (v.    +|v     ) in en J 
U 

sno 

px + 

y 

Ygj; 
T (ven " "-Jj 

sno 

= ü 

T-p-x: -  T^T [ 1 + iiv^ + |0en)] Upx +/
ikx 

v       c y      0 
z SP0 z     V    +2k    / 

Pp        cp 

l^+l 
^    8z 

(v.    + £ v    )       nx 
in en j 

spo y 
z 

Jl 
2    en       m 

spo 

x +/ 0      \(ft 
y / o    \ P

1 

z   |_Y£ 

iy^ u spo 
ce 

spo 
Bz     y       By     z 

x     z z     x 
y   x       x   y 

* ivf r * * 
I-0-x: - ^-öU + i(v      +i v. 2 ^ en    ^   i 

J     c spo 

+ v  .)]    x - 
in       ei 

y      c 

Y? „    v      - v.  ^        px+/ 0       \ cl 
L *       2      en       m J     ^ , Ät 

spo y 
z 

^ü 
;po 

J^i -,   (V -   V.    ) 
^     en       in 

spo 

u     a  / ik 
nx + /      x 

y   L0 
z      \ £      + 2k 

PP cp 

/    i 9P 
|PÄ1 +/0\    ril 

11   'o 
1 8/, 

Y£ w      . E 
 E. \    x 

spo 

Y|u) 
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IT-     Bz   y 

spo 
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A A, 
au 
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4. 1. 1.    Matrix Formulation 

Eqns. i-n-x through V-z constitute a set of 21 coupled equations in 

21 unknowns, of which 11 are purely algebraic and 10 are first order 

differential.    To solve them by matrix methods,  we first express them in 

the form 

—^ =     A'(z) u(z) + B'(z) v(z) (34) 
dz 

C = C'U) u(z) +D'{z) v(z) (35) 

where A'U), B'(z), C^z) and D'(z) are matrices consisting of known elements 

composed of certain coefficients of our equation system, while u(z) and v(z) 

are vectors whose elements are the unknown parameters.    The matrices A1, 

B', C and D! and the vectors of u and v are shown in Tables 1 and 2. 

To cast Eqns.  (34) and (35) into the desired form, we perform the 

following matrix operations: 

(D'f^C'u + D'v) = 0 = (D')'1 C'u + v  ; 

or 

v = - (D')"1 C'u (36) 

^   = A'u+ B' [- {(D')'1 C!}u]  = [A! - B«(D')"1C,]u (37) 

or more concisely 

~   =Au (37)' 
dz 

where 

As A' - B'fD')"1«:' 

&      --— 
--•ö 



-23- 

Note that th^ operation indicated in matrix notation by Eq.  (36) is that of 

solving the set of 11 simultaxieous eqaadons for the elements of v, considered 

unknown,  in teiü.b of those of u,  considered known.    The next step represents 

the subsequent operation of substituting these solutions of (34) into (35) in 

order to obtain a system of coupled first order d iferential equations of the 

form (37). 

4.1.. 2.    Analytical Methods of Solution 

The theory of systems of the class (37) is discussed in both the purely 

(8  9   10   11   12) mathematical literature of differential equations    '   >     •     •        anc| ^ ^g 

literature of modr~n generalized systems and automatic control theory 

'       .    In particular, the system (37) with constant A elements is 

the foundation of the "state-space1, apprc-^ch to modern automatic control 

theory     '       .    The literature was reviewed in an effort to find techniques 

for solution of the system (37) that apply to matrices k(z) with z-dependent 

elements.    If these elements are independent of z, or, even if z-dependent, 

if they have the property of self-comn.utativity,  i.e. 

A(z1) A(22) = A(z2)A(21) (38) 

then solutions can be obtained in closed form      ''       ; the problem degenerates 

into that of finding eigenvalues of the matrix / A(z)dz.    If A(z) does not have 

the property (38), then each of the elements : - 'y be separable into a major 

part that fulfills (38) and a "small perturbation" part that does not.    The 

system is then solved with the assumption that the entire matrix is the self- 

commutative part, and this solution is used as the zero-order tferm of a 

perturbation solution for the more realistic problem involving the non self- 

I 
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commutative matrix.    The difficulty with this approach is that it is very 

difficult to find a meaningful separation of A(z} into self-commutative and .ion 

self-commutative parts. 

Another possible analytical technique applies to periodic elements of 

A(z)    '   '     '       .    If the z-range is divided into strata, then in each stratum 

the elements A(z) could be considered periodic with a period equal to the 

(9) 
size of the stratum.    General theory exists on the periodic coefficient case     , 

but its implementation requires knowledge of the "fundamental solutions" of 

the system, which is not easily attainable, or what amounts to a perturbation 

around the constant coefficient case, which may be very inaccurate unless 

the coefficients are nearly constant or unless many terms of a Fourier series 

solution are invoked. 

Another possibility that was studied is the straightforward diagonalization 

of A(z) which effectively uncouples the differential equations (37) and trans- 

forms them into a set of first order differential equations in single variables, 

which are trivially simple to solve.    The difficulty with this approach is that, 

because of the z variation of the elements of A(z), the diagonalization equation 

involves a "Liapounov transformation"      and takes the form 

(T-1 AT - T"
1
-—),.. = 6     B., (39) 
dz ik       ik    ik 

where 6..   is the Kronecker delta and B.,  the i— element of a matrix, 
ik ik 

To find the transformation matrix T(z) that diagonalized A(z), it would be 

necessary to solve a set of first order coupled ordinary differential equations 

that may be,  in the genera case, as complicated as the original set, thus the 

problem is not reduced to the purely algebraic one of find the roots of the 

characteristic equation, as it would if A(z) were independent of z. 
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Still another analytical technique is the direct use of the "matricant series" 

, which evolves naturally from an iterative solutun of the equation 

system (37) and which is known to converge to the exact solution.    In certain 

cases, e. g. where the matrix elements can be represented by the first two o'" 

laree terms of a power series in z or by a constant term plus two or three 

exponential or Fourier terms, we migl»t obtain a series whose oonvergence is 

fast enough to offer a possibility of practical solution.    The actual implementa- 

tion of this method to obtain useful solutions requires a high-speed computer. 

In the case of self-commutative matrix elements (i. e.  if Condition (38) above 

holds,) the matricant series closes, and, as remarked above, the solution of 

the equation system becomes tantamount to finding the eigenvalues of the 

matrix A.    This point will be discussed in further detail below. 

The matricant method,  although not necessarily practical in a given case, 

is nevertheless worth discussing because of the light it shods on the nature of 

the solutions.    Consider the general system of inhomogeneous equations in 

matrix form 

= 

du(z) 
dz 

= A(z) u(z) + f(z) (40) 

where f(z) is a vector consisting of known "source" elements.    Integrating 

(40) once, we have 

u(z) = u(z ) + fZ dz' A^') u(z') + f2 f(z:) dz'   . 
o        z Jz 

o o 
(41) 

Repeated substitution of u(z) as given by (41) into the integrand of the first 

integral on the right-hand side of (41) yields 



-26- 

u(z) = [l 
Zl, 

1 I + /   dz • A(z •) + f   dz ■ A(z ') f ^dz < A(z ') 
L        ^o 1 o    1 1       o 

.*  i z  i 

+ /z
Z dz^ A(zl') /z

1 dz2' A<z2') /z 
2 dz3' A(z3') + u(z ) 

6 

,z 
z 

o 

z   ' 
1 /^(z^dz^+^dz^ACz^j/dz^f^) 

I V 
+ ;z   dz^ACz^^^.A^')^   dz3'f(z3.) + (42) 

where I is the identity matrix. 

Let us find "Green's function" of the equation system (40)   i.e. the response 

to forcing functions f(z) that are impulses at z - z,, where z, > z   .    We write 
1 I      o 

f(z) = f   6(z - z) ; z   < z   < z (43) 
1 1       o       1 

where f   is a constant, and we choose z   at a point where 
1 o ^ 

u(z ) --■■ 0 
o 

which is always allowable since the choice of z   is perfectly arbitrary. 

In this case,  (4'^) has the form 

(44) 

u(z) = 
1 

I + /z
Z dz' A(zl')+/z

Z dz^ A(zl')4 1dz?' A(z2') + • • •   f 1    • 
1 I 2 J  J- 

(45) 

From (42) and (45), we see that solving the homogeneous equation (37) for 

a fixed set of values of the elements of u(z ) is equivalent to solving the 
o 

inhomogeneous equation (40) with u(z ) = 0 and with impulse sources at z = z  , 
  o 1 

where z   < z   < z.    The method to be used here is that of assigning values to 

u(z ) and s living the homogeneous equation.   Our solutions, then, will relate 

to a fixed set of values of u(z ) with the "forcing function" f(z) set equal to 

zero, and we will dall z   the "position of the source". 
o 
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Referring back to (42) with f(z) = 0,  it is not difficult to see that, if 

the condition (38) holds, then the third term of the matricant series is 

z  ' 
f* dz^Aiz ') S^ dz2<Aiz2*) = -~ /z

ZdZ  'dZ2'A(Zl')A(z2') = 
o o '     o 

-^(V^'Atz')^ (46) 
" ^   o ^ 

and the general term of the series is 

z  • z' , .N 
/^dz^Afz O/^dz^z^)—/z "-^Atz^j^^^dz'^z'))     . (47) 

o o o o / 

The series then becomes th   matrix analog of the power series for an 

exponential function and is denoted by 

/z
Z A(z,)az' 

u(z) =(e   0 ^ u(z : . (48) 

In the particular case where the matrix elements are constant between 

z   and z, 
o 

A(z - z ) 
u(z) = e 0 u(z )       . (49) 

o 

The exponential function of a matrix B can be evaluated from Sylvester's 

Theorem        obtainable by Laplace transform techniques        and has the form 

A(z-z)       n       V2-^ 

i fk ' 

whej a the ^   's are the n independent (nor-degenerate) eigenvalues of the matrix 

A.    If degenerate eigenvalues exist, then a modification of (50) is required,  as 

discussed by Rekoff 

The solution of (37) with condition (38) in effect,  then,   is given by (50), 

with modifications if degenerate eigenvalues exist, and its determination 

___ 
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requires that the eigenvalues of B be found.    If A is independent of z,  the 

eigenvalues of B are those of A(z-z ); hence the problem reduces to that of 

finding the eigenvalues of A.    This is the same problem that must be solved 

in a dispersion analysis, where the entire   ystem of equations is complex- 

Fourier or Laplace transformed and is therefore reduced to a homogeneous 

set of simultaneous algebraic equations.    The condition required for existence 

of nontrivial solutions of this system is the \ mishing of the determinant of 

coefficients.    Tnis condition is exactly the same as the indicial polynomial 

equation, whose solution yields the eigenvalues of the A-matrix. 

If the elements of the A-matrix have certain simple z-variations, 

then solutions can be obtained through integral transforms or orthogonal 

function expa.isions. 

We have investigated a number of such possibilities and found them 

all wanting in one way or another.    For example, a stratified medium theory 

can be formulated in which the z-variation of the elements of A(z) is linear 

or exponential.    In the former case, Laplace transformation leads to a first 

order differential equation system with coefficients that are linear in s, the 

transform variable.    Thus the problem is not reduced to algebra as it is in 

+he constant coeTficient case, but rather to a system of differential equations 

of the same degree of difficulty as the original system.    In the case of 

exponential elements of A(z), the transformation leads to difference equa- 

tions which can be solved numerically.    Since inversion would be required 

after solution, in order to transform from the s-domain back to the z-domain, 

this did rot seem like a satisfactory method.    The same sort of limitations 

seemed to exist in the use of orthogonal function expaasions.    The case of 
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periodic coefficients,  tor example,  can be treated by expanding both the 

elements of A(z) and the solutions in Fourier series on i, but the result is 

a set of coupled recursion relations for the coefficiems,  instead of the 

simultaneous equations that vould appear if the A-elements were constant. 

These recursion relations could be solved but the numerical work required 

to obtain the Fourier coefficients of the A(z) elements would be considerable. 

Another approach that was attempted in the early stages of investiga- 

tion was reduction (by algebra and differentiation) of the original 20-equaticn 

system down to single differential or integro-differential equations of high 

order in single unknowns.    This method is feasible and perfectly valid, but 

it has some very serious practical limitations if the coefficients have 

arbitrary z-variation.    Fix st, the coefficients obtained for the resulting 

differential equations are extremely complicated algebraically and the 

probability of eliminating errors in setting up compute^ solutions would be 

small.    Secondly,  in order to solve the high order differential equations 

(e. g.   12— order, as in one such development that was carried out), it might 

be necessary to reduce them to sets of coupled first order differencial equa- 

tions, v/hich amounts to traveling in a circle. 

Thirdly, the coefficients of the equations finally obtained contain many 

z-derivatives of the ambient gas parameters,    TMs computation of these 

derivatives would be required before the coefficients of the differential equa- 

tions could be specified.    The derivatives,  whose evaluation would require 

an enormous amount of computational labor, would be highly inaccurate since 

they would be obtained from very crude experimentally derived data curves. 

Thus a method that contains as few z-derivatives as oossibJe in the co- 
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efficients is most desirable from the viewpoint of accurac-y. 

4. 1. 3.    The Runge-Kutta Step-by-Step Method 

No general solution obtainable by purely analytical methods was found 

that is suitable for the general problem, e. g. cases where the z-variation 

of the elements of A(z) is obtained from experimental data and where these 

elements are allowed to have any arbitrary z-variation and do not obey the 

condition (38).   Such is the case in an accurate study of wave motions in the 

ionosphere; hence, we will invoke a purely numerical (stop-by-step) technique 

which does not lead to convergence problems even if the elements have a 

particularly complicated variation with z. 

After studying the relative advantages of various numerical techniques 

for solution of the equation system      '        in the general case, it was decided 

to use the Runge-Kutta step-by-step procedure.    This method has the 

advantage of high attainable accuracy without a prohibitively large expenditure 

of computer time. 

To apply the Runge-Kutta method to (37). we first choose a z-interval 

h.    We then begin with a set of values of the elements of the vector u(z) ac 

z = z ,    The i— element is denotea in general by u.(z).   Its value at z = z    is o & J    ^  ' 0 

denoted by u. J    i,o 

The long-hand expression f r the matrix equation (37) is 

du (z)      N 
—r^—  =  S A.,(z) u.(z) ; i = 1,   . . .   ,  N    . (37)' 

dz ,   ij        i 
3 = 1    J        J 

The Runge-Kutta formula for the value of u.(z) at z = z, = z   + h, to 
i 1       o 

be denoted by u      ,  is 



I 
-3x 

i5 i        ., o       6     i, 1 x, 2 i, 3 i,4 (51) 

I 

where 

(1) 
N 

k.   /*' =h  S A..(z )u. 
i.l .j = 1   i]   o   3,0 

k.   „(1) =h 2 A..(z   + 5) 
i, 2 •   1 i]   o      2' 

m       N H 
k.   .u; *h £ A..(z   + §) 
1,3 13   o      2 

J 

k. (1) 
.1 U. +   —Ji 

. J^0 2 

(1) 

u.      +  -J^ 
L 3'° 2 

(1) 
N 

k.  /*' = h 2 A..(z   +h) u.     + k.  .. 
.3'°       J^3 

(1) 

The values of u.(z) at z = z   + (p + Dh, where p is a positive integer, are 

denoted by u.       , and are given bv J    i, p+1 s 

u.    „ = u.      + I (k.    <P+1) + 2k.    <P+1) + 2k.    <P+1) + k.   ,(P+1)) 
i, p+1       i^      6     1,1 1.2 i,3 1,4 ' (51)! 

where 

k.   .{p+1) =h  2 A..(z   +ph)u. 
i. 1 j = 1   13   o     ^     ],p 

(P+D 

l>o ._!   13   0 *        \ 3'P 2 

(p+D 

1 
I 

(p+D 
i,4 

N / h   2 A..(z    + [p + llh) ( u.      + k. 
j = ]   13   o     lF       J      V 3.P       3, 3(P+1)) 

Beginning with values of u.      for j = 1,  . . . , N, we can proceed to find 
3' o 

the successive values of u.   ,,  u.  _..... u,     . . to any desired number of 
3.1     3  2 j,p+l 

steps by the u.^e of eq.  (51)'.    The accuracy attainable by this method is 
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fourth order in h.    The sharner the gradients in the elements of A.,,  the 
ij 

smaller the value of h required for a given level of accuracy. 

A Fortran program (soon to be run on the IBM-70S 0) has been prepared 

based on the coupling of a simultaneous equations routine with a Runge-Kutta 

routine.    In effect, this program implements the steps between eqns.  (35) and 

(37), then solves (37) by the Runge-Kutta routine.    We originally carried out 

the steps from (36) to (37) algebraically, resulting in eqn. (37) where the 

A A 

elements of u(z) are the 10 variables U    , U    , P  ,, P  ,, P, ,, E , E  , H,   , J 
nz      pz      nl      pi      il      x      y      Ix     z 

and H,   .    It was then decided that the direct computer solution of the entire 

system is more efficient, because some of the 11 variables that appear only 

algebraically (U    , U    , U    , U    , (ft  ^ J , ?T ,ÖJ-     E , B,  ) will be desired & "      nx      ny      px      py     nl     x     y    er     z       Iz 

as outputs, and the computer can produce them directly wither■• difficulty. 

By means of this program, it is possible to study manytypesof linear wave 

propagation in a neutral-electron-ion gas that is non-uniform in only one 

direction.    Any desired sets of source functions, horizontal propagation constant 

k , frequency « and z-variation of ambient neutral and electron density, 

collision frequency and static magnetic field magnitude and direction can be 

studied by merely changing the input numbers.    The computer outputs will 

consist of any desired components of the velocities U   and U , the current 

A A A 

density J, the perturbed electric and magnetic fields E and B , the densities 

A A A A A 

(Si  , or (Si  , or the pressures P  ,, P  ,,  P,, ,. 
nl pi ^ nl      pi      il 

4. 2.   Applications 

The possible applications of the analysis discussed in this report ate 

manifold.    The computer program is sufficiently general to cover many types 
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of linear wave propagation in a neutral electron-ion gas.    By merely changing 

input parameter values,  the computer can produce answers to such diverse 

„ questions as (a) the effect of acoustic-gravity waves on properties of the 

electron-ion plasma in a vertically inhomogeneous ionosphere,  (b) the effects 

I of vertical non-uniformity in electron density,  collision frequency and/or 

ambient magnetic field on the propagation of MHD waves high in the ionosphere 

and that of electromagnetic waves in various parts of the ionosphere.    In ".e 
f 

case of electromagnetic waves, the point of view to be taken is that the neutral 

gas parameters U  ., P  1 and (ft     are set to zero in the system equations   and 
i 

the plasma equations are used to find a conductivity tensor.    The latter is 

vertically non-uniform,  its exact functional variation with z being determined 

by the z-variation of the static plasma parameters.    The conductivity tensor 

is then substituted into the Maxwell equations IV and V in our system.    This 

particular facet of vertically inhomogeneous ionospheric wave * .eory has been 

treated quite extensively in the literature.    Examples of studies of radio wave 
= 

propagation with altitude-varying conductivity tensor are provided by the work 

(19) (20) (21) 
of Clemmow and Heading       , Budden and Clemmow       , Barron        and others. 

The acoustic-gravity wave plasma interaction problem is based on an 
I 

entirely different point-of-view.   Over most of the ionosphere, the fractional 

ionization is so small that the terms in the neutral gas equations relating to the 

effects of the plasma are negligible,  except at frequencies that are extremely 
! -; 

low relative to neutral-plasma collision frequencies.    The neutral gas wave 
I 
i  
1 

This reflects the fact that, because of low fractional ionization in the 
ionosphere,  an electromagnetic wave would not significantly perturb the 

i neutral gas. 

I 
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prop-igation is thus only very weakly influenced by the presence of plasma. 

The neutral waves,whose equations are now uncoupled from the plasma equa- 

(3) tions,  can by analyzed by the methods of Hines' 19^0 paper      and the result- 

ing neutral gas parameters U   ,,  P  , and (ft  , can then be used as source terms 
^nl      nl nl 

in the plasma equations.    In this way, the systerm which in its general form is a 

system of 10 homogeneous differential equations and 11 homogeneous algebraic 

equations in a total of 21 unknowns, now becomes a system of 8 inhomogeneous 

differential equations and 8 algebraic equations in a total of 16 unknowns and 

with known source terms determined by solving the first 5 equations of the 

original system. 

This technique, which takes advantage of the extremely low value of a 

that prevails in the ionospnsre, reduces the magnitude of our computer problem 

in treating this particular ionospheric effect,   A detailed discussion of the 

acoustic gravity wave plasma interaction problem will be presented in a later 

report. 

Our computer program is  by no means restricted to the ionosphere.    It 

can be applied to any linear neutral-electron-ion gas with static parameters 

that are non-uniform in a single direction.    The normalization of the parameters 

in our equations wou'd enhance the convenience of studying such gases,  L e. , 

the normalized parameters could be varied in such a way as to produce 

universal curves.    Wave problems that involve complicated one-dimensional 

spatial variations of parameters, simple degenerate cases of which have been 

solved by purely analytical methods,  can be treated by our computer program 

without the necessity for either drastically simplifying the parameter varia- 

tions or resorting to perturbation techniques.    The latter, of course, are 

* Provided, of course, that the assumptions and approximations used here 
are applicable. 
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severely limited in accuracy when the departure from the idealized case is 

large. 
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TABLE 1 

Ordering of Equations und Vectors in Equations (34) and (35) 
" 

= ul 

U2 

I 

1 

U8 

U9 

U10 
» 

where 
A, 

U    =P 
1       nl 

v = Vl 
where v, = Ü 

1        nx 
A 

u0 = P  A 2       pi V2 
v0 = U 

2       ny 

u    = P 
3     ril 

i v„ = U 
3        px 

u. = U 
4       nz 

i 
A 

v. =U 
4      py 

u   = U 5        pz V10 5        nl 

u„ = E 
6     y 

vll V6 = %! 
A 

U7=Ex V7 = J'X 
* 

U
8 

= 6iy 

A 

ve=Jy 
U9 = 6lx v9 = Kl 

U10 ="Jz 
vio = K 

Ordering of Equations 

A 

v      = B 
11        Iz 

Equation 34 Equation 35 

Eq.   (1) f-n-z Eq .    (1) 
* 
I-n-x 

(2) I-p-z (2) 
2 
I-n-y 

(3) 
Ä 

I-O-z (3) 
A 

I-p-x 

(4) 
A 
A 

n-n (4) i-p-y 

(5) 
A 
A 

n-p (5) 
A 

I-0-x 

(6) 
A 

IV-x (6) I-0-y 

(7) 
A 

IV-y (7) Öl-n 

(8) 
A 

V-x (8) 
A 

UT-p 

(9) 
A 
A 

V-y (9) 
A 

m-o 

(10) II-Ü (10 1   IV-z 
A 

(11 1   V-z 

"'_ _■'!- ■ m ■ 
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TABLE 2 

0 

Matr 

0 

ices in Equatic •ns 34 and 35 

0            0 0 0 
A' A 11 A1 

A 14 
A' A 15 A' Ai,io 

0 
A'22 

0 A' A25 
A' A25 

0 0 0 0 A' A2,10 
0 0 A' 

33 
A' 
A34 

A' A35 
0 0 0 0 A' 

3.10 
0 0 0 

44 
0 0 0 0 0 0 

1, 

0 0 0 U A' A55 
0 0 0 0 

i 

■■ 

0 

0 0 0 0 0 A,66 
0 0 A« 

69 i 
0 0 0 0 0 0 A,77 A' 

78 
0 0               I 

0 0 0 0 0 0 A'87 A« 
88 

0 0 

0 0 0 0 0 A,96 
0 0 A' 

99 0 

0 0 0 0 0 0 0 0 0 "A' A 10,10 j 

1 
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TABLE 2 (cont'd) 

Matrices in Equations 34 and 35 

B! = 

r 
0 0 0 0 B 

15 
0 0 0 0 0 0 

0 0 0 0 0 B' 
26 B,27 B,28 

0 B'2, 10 
0 

0 0 B« 
33 

B' 
34 

0 0 B,37 B,38 
B' 

39 B,3, 10 
0 

B1 

41 
0 0 0 B1 

45 
0 0 0 0 0 0 

0 0 B! 

53 
0 0 B'56 

0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
B'7. 10 

0 

0 0 0 0 0 0 B' 
87 

0 0 0 0 

0 0 0 0 0 0 0 B'98 
0 0 B'9.a 

0 0 0 0 0 0           B\nn 10,7 
0       B1 

10,9 
0 0 

- 

% 
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TABLE 2 (cont'd) 

Matrices in Equations 34 and 35 
1— -r 

c 
■) 

0 .0 0 0 ö 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 c 
32 

0 0 0 0 Ö 0 0 
^ 3,10 

0 0 0 0 0 0 0 0 0 
4, 10 

0 0 c 
53 

0 
^55 

0 r1' C57 
0 0 

^5,10 

0 0 0 0 C65 
c 

66 
0 0 0 r1 

U
 3,10 

c 
71 

0 0 0 0 0 0 0 0 

0 c 
82 

0 9 C85 
0 0 0 0 

*- 8,10 

0 0 c 
93 

0 C95 
0 0 0 0 

^ 9,10 

c 0 0 0 0 C" 
10,6 

0 0 0 0 

0 0 0 0 0 0 0 
11, 8° ^ 11,10 

-•>■   ^(«4Bu .^ 
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TABLE 2 (cont'd) 

Matrices in Equations 34 and 35 

D' = 

D,ll 
0 D' 

13 
0 0 0 D'l7 

0 0 0. 0 

0 D'2. 
0 D,24 

0 0 0 D'28 
0 0 0 

D1 

31 
0 D' 

33 
0 0 0 D,37 D'38 

0 0 0 

0 D'42 
0 D,44 

0 0 D'47 D'48 
0 0 0 

D,51 
0 D,53 D'54 

0 0 D'57 0'58 
0 0 0 

0 D' 
62 D,63 D,64 

0 0 D' 
67 

D' 
68 

0 0 0 

0 0 0 0 D'75 
0 0 0 0 0 0 

0 0 0 0 0 D 
86 

0 0 D 
89 

0 0 

0 0 0 0 0 D' 
96 

0 0 D 
99 

0 0 

0 0 0 0 0 0 0 0 0 D' 

0 0 0 0 0 0 0 0 0 D' ,rt o- 

10, 11 

11, 10 
J 

■f 
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where: 

A'^ = - (k     + 2k     ) ,   A'      = 
11 pn en7 '        22 

—      [l + ia(v.    K f *     )]    = - D» 

(k      +2k    ) = A' 
PP cp 33 

A'l4=+-2 
c 

sno 

A'      = + -:^- 15 *2 
c 

sno 

m in 11 
D' 

22 

(v.    +| v     ) = - D'      = - D' x in    ^   en 13        " 24 

Afi   in = "   ^-   ^.    - C.  ) = - D'      - - D' !' 10 "2 in       in 17 28 
sno 

A'      = + Y 
OA o       (v.    +^ v     ) = - D'      = - D" 
24 -2 m    ^   en 31 42 

spo 

21 
25 -   [l + i(v*.   +| v     )]    = - D1 

in    ^   en 33 44 
spo 

.2 

spo 

A'     ,n = - A1      =  -£— (v      - v    ) = A'      = - D' 2' 1° 34      *2      ^en    Vin;     A 35        D 37 c 
D»     =0«    = - n«    =0'    =-n' 

48     "51       U 53       62      D 64 

lY 
3, 10 *ii       i- en    ^   in       ei . D'      = - D' 

57        u 68 
spo 

A,AA   =   -   k 
44 pn 

55 k      =A,      =A,      =At      =A,      -A« 
pp     A 66     * 77     A 88     A 99     A 10, 10 

A,69 -  - i = - A» 

= 

B,15 = - 
Yg 

-2 
c 

sno 

Y§ 
-2 
c 

spo 

i 

^ ^ce 

spo 

I 

78 ■ A,87 = A,96 = " B,45 = - ^ 56 D' = - B' 
11,10 D 10,9 

J  n,,    =-18'      = i B'      = - i C*      = C* -in* 
By ö33     lö37 ' C 55     C 3, 10 " ' C 5, 10 
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B'       = + 
28 

B 

ce 

c 2 
nBx = -iB,34 = iB,38 = -iC, 65 4,10 

= i C 
6, 10 

spo 

39        *2 
c 

spo 

B,3,10 = + ^ = -C,57 = -C,66 
c spo 

B'41--ikx = B'53 = -B,7,10 = -B,9,ll = -C'll ^32 ^53 ^10,6 

C - B' 
^1L8 10,7 

B!       = -  1 = - R«       = - P' 0 87 1 B 98 ^ 71 82 10,11     ^11.10 

C'74^i[kpn(l-Y) + 2kon] 

C,85 = + i ty1 " V) * 2Kcp]   = - C.95 = - ^.) C.8i 10 = C.9_ 10 

93 
1 + Z" 

D' 
iy* u 

ce 
38        -2 

c spo 

nBZ-
D'47 = -1D,54 iD'58-iD,63 = -iD,67 

D'      = - v = D'      = - D1      =0' 
75 "86 96 99 

D' YZ 
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