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SUMMARY

An investigation was made of the effects of
propeller slipstream on several aspects of V/STOL aircraft
performance and stability. Specific areas investigated
include wing stall during transition, minimum wing size for
stall-free transition, and the effects of slipstream on
alrcraft pitching moments. In addition, a stability analysis
was performed, and analog compiiter techniques were used to
determine the feasibility of utilizing the slipstream for .
stability augmentation. Finally, the effects of the
nonuniformity of slipstreanm velocity and wing geometry
modifications on performance were analyzed.
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FOREWORD

This report presents the results of the investiga-
tion made for the U.S. Army Aviation Materiel Laboratories*
(USAAVLABS), Fort Eustis, Virginia, under Phases IV through
VI of Contract DA 44-177-AMC-48(T), during the period April
1964 through March 1965.

The results of vhe work performed for the preceding
phases ¢f the above mentioned contract are covered by TRECOM
Technical Report 64-47, publishea in august 1964,

*Formerly, U.S. Army Transportation Research Command
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INTRODUCT ION

The present work 1is a continuation of the inves-
tigation of propeller-wing aerodynamics reported in
Reference 3. In Reference 3, simple analytical expres-
sions are presented for the lift and drag of a wing
immersed in propeller slipstream. These expressions were
correlated with experimental data and it was found that
fair to good agreement is obtained for unstalled wings.
Also, a preliminary investigation of wing stall was pre-
sented. Furthermore, the previously mentioned expressions
were utilized to evaluate the use of slipstream to augment
stability and it was found that the use of a servo-flap on
the wing trailing edge results in positive dynamic stability
in the hovering flight condition.

In the program reported herein the problem of
wing stall is further investigated and an expression is
given for the determination of wing stall within the
slipstream. This expression is then utilized to formulate
a method for the determination of the minimum wing size
for stall-free transition of tilt-wing type VIOL aircraft.
The above analyses for stall and minimum wing size are
presented in the two following sections.

The effect of propeller-wing interaction on
pitching moments is presented in the section titled
Propeller and Slipstream-Induced Moments. Data are
given for propeller normal force and pitching moment with
and without the presence of a wing. Furthermore, the effect
of propeller slipstream on wing pitching moment and center
of pressure is examined for a range of flap deflections.

In addition, slipstream effects on the horizontal tail are
discussed.

The next topic in the present investigation per-
tains to stability during the transition maneuver and is
presented in the section title Slipstream Effects on VTOL
Aircraft Stability. The derivatives, which in Reference 3
are obtained for the hovering flight condition, are
extended to the transition conditions. A number of stabil-
ization augmentation systems are investigated by means of
&n analog computer study.



B st

- — et e -

In the section titled Modificatior of
Siipstream to Augment Lift and Control, an analysis
s made on the possibility of increasing the lift
of a siipstream-immersed wing by changing the
propeller-induced velocity profile of the slipstream.
Finally, the effects of large flap deflections, wing
twist and relative propeller-wing orientation and pesi-
tion on wing lift are investigated.
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STALL OF A WING IMMERSED IN PRCPELLER SLIPSTREAM

Wing stall constitutes a serious problem if
encountered during the transition maneuver of a tilt-wing
VIOL aircrift. The stalled wing not only modifies the lift
and drag characteristics of the aircraft but also has an
advevrse effect on stability and control.

In formulating z method for the prediction of
stall of a wing immersed in a slipstream, it is useful to
review the analyses which are being utilized for conven-
tional wings.

The first and probably st:.1 the most successful
approach to the analysis of wing stall is contained In
NACA Report 572 {Reference !) published in 1936. This
method can be summarized as follows:

1. The spanwise distribution of the maximum
section lift coefficient, Cpmer of the
wing is determined using experimental two-
dimensional airfoil data.

2. The sparwise distribution of local lift
coefficient, C(,, is calculated for
ircreasing angles of attack, until the
Ce curve first reaches the Clnex
curve. When this occurs initial stall is
considered to begin at the point of tangency
of the two curves.

Initial wing stall as defined by the above method
is iilustrated in the sketch below.

Point of Initial Stall
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As reported in Reference 8 the above method has

Leen used with success in analyzing unswept wings of mild
taper.

Following World War II, the above method was
applied to the analysis of swept wings, but it was found
that the resulting stall predictions were less accurate than
those for unswept wings. In part this is due to the bound-
ary layer flow which for swept wings is significantly cif-
ferent from what occurs on a two-dimensionzl airfoil.

As indicated in Reference 8, the difference in boundary
layer conditions is, for the most part, due to the spanwise
component of velocity over the swept wing, although the
wing planform also contributes to this difference. In
spite of these inaccuracies, the above method provides use-
ful resuits for the swept wing in that it gives a conserva-
tive estimate of the condition of initial stall.

It is assumed that this method is applicable 2lsc
to wings partially or fully immersed in a siipstream. The
formulation of the appropriate equations for the wing-pro-
peller case is now presented.

STALL ANALYSIS

The slipstream is assumed to consist of a circular
jet of uniform velocity with a linear variation of flow
direction between the jet centerline and the jet to free
stream boundary, as illustrated in Figure 1,

Spanwise Distr.bution of Maximum Section Lift Coefficient

Experimental data show that C/me. is affected
both by Reynolds number and flow turbulence. The present
analysis utilizes data from Reference 13, which are cor-
crected for tunnel turbulence.

A typical spanwise Clmaxr distribution of a wing

immersed in a uniform slipstream is shown in the skeftch
at the top of page 6.
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FIGURE 1. Velocity and Angle-of-Attack Distribution
of Assumed Slipstream at the Wing.
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The step in the C/max distribution is due to the different
Reynolds numbers in and outside of the slipstream.

Spanwise Distribution of Local Lift Coefficient
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Using the approach of Reference 3, the lift
coefficient of a wing partially immersed in a slipstream
1s obtained by the addition of a basic wing lift coeffi-
cient and an increment due to the slipstream effects.
The spanwise distribution of (, outside of the slip-

stream is obtained using Schrenk's method (Reference 24),
as follows:

Y P - A '
Cp = z[an ! (b/a)] (1)

The total 1ift coefficient, C(_
from the relationship,

- .

, 1s obtained %

C,=a sino (2)
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where
a,
a= a 2 Qa
o+ (wg) + e

In Equation (2), s/« is used rather tben o
to better approximate C, at large values of ¢, .

Within the slipstream, the basic distribution,
Equation (1), is modified to account for the slipstream
dynamic pressure and is expressed in terms of )/rs .
The equation for the increment 1lift coefficient, A C,s ,
is obtained from Reference 3. Hence, the lift coefficient
distribution inside the slipstream is given by

7~ o~ 99 . a AN
Crs=Cp g 28 (3)
For a rectangular wing, ¢</¢ =1, and
~ aSIhar i b+)’ 2 90
“e=T |- "27‘2‘1)]71:
I %
87 (2 0-a)os (1 % i+ 7
+1870e] - b=
" re =7 (4)
where
Agz= P + Ly~ O+ &g — A0 (5)

The term A0, accounts for the change in local angle of
attack due to slipstream rotation, and is given by
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CORRELATION

To determine its accuracy, the above method is
correlated with test data presented in Reference 27. The
geometric parameters of the test model are as follows:

Span 5.0 feet
Chord 1.0 feet
Taper Ratio 1.0
Aspect Ratio 5.0
Airfoil Section NACA 0015
Propeller Diameter 2.0 feet
Number of Propellers 2

The predicted region of wing stall and estimated
spanwise distributions are shown for this model at an angle
of attack, XNy = 15 degrees, and thrust coefficient,

Cys = 0.58, on Figures 2 and 3 for difterent directions
of propeller rctation, respectively. The C(/mar curves
are based on "Effective Reynolds Number" data from
Reference 10. For Cgzs = 0.58,

]

Hn = 550,000 (in the slipstream)
Rn = 356,000 (outside of the slipstream),

In Figures 2 and 3, stall has occurred over the inboard
portion of the wing outside cf the slipstream. On the
other hand, wing stall has not occurred in the slipstream
since Css< Cstmar . Calculations performed for increasing
anglcs of attack show that the immersed portion of the wing
begins to stall at oW =19 and 23 degrees for the pro-
peller rotating down and up at the wing tip, respectively.
This difference in stall angles results from the shift of
the maximum value of Cg¢ toward the wing tip.
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Similar calculations were performed for 9w = 50
degrees and Cys = 0.88. The C/mer curves are based on
Reynolds numbers of 550,000 and 346,000 in and outside of
the slipstream, respectively. The results are presentec. in
Figures 4 and 5 for the propeller rotating down and up at
the wing tip. It is noted again that stall within the slip-

stream occurs earlier for the case of the prop:ller rotating
down at the wing tip.

Correlation between estimated stall and experimen-
tal data for the model analyzed is shown in Figure 6. The
experimental data points shown correspond to the wing angle
of attack where the lift curve slope begins to rhange
noticeably as illustrated in the sketch at the top of
Figure 6. It is seen that at constant (s , the calcu-
lated values of the wing angle of attack at initial stall
correlate well with test data up to Cys = 0.5. At
larger thrust coefficients, the predicted stall angle
increases more rapidly than the measured value. Additional

test data are required to determine the reason for this
discrepancy.
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MINIMUM WING SIZE FOR VTOL AIRCRAFT
TRANSITION WITHOUT STALL

The stall analysis of the preceding section is
now utilized to determine the minimum wing size for VTOL
aircraft transition without stall of the slipstream-immersed
portion of the wing. This is accomplished as follows:

1. For an aircraft of a particular gross weight
and configuration, a wing size is selected in
accordance with the mission requirement of the
aircraft, i.e., high-speed flight or stalling-
speed considerations. Also, the span should
be such that most of the wing is immersed within
the propeller slipstreams.

2. Next, the trim values of the thrust coefficient,
Cyrs ,and airspeed, Vo, , are determined for
a number of wing tilt angles between 10 to 90
degrees. This is accomplished by use of the
lift and drag equations of Reference 3. First,
at a selected wing tilt angle, the total longi-
tudinal force coefficient, Cxs , including
fuselage and tail drag, is calculated using the
following expression (all angles in degrees):

Cru= TN G,y cosey ~ 0000338 NE( B 1-pi o os (- #)

- 0.0653 ——-(—‘-):(/-/ut) ol Sin (cY’ ¢)

ND Cin %

2_5__".:.(0)(‘”3 cos(ofp—¢)—-—-l-é A

_ 2NDcs ( r, q q
[,_ == ’(—.f)] Coo gt~ (Coop + Gout) €
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Calculations are made for several values of
C;s for each value of &, . Curves of
Cxs versus Crs are plotted as shown in

the following sketch:

? d*- 10 zo. 30. 400 5.00 6 o. 700 30.
i / /
Cxs O /
l / / "7 / / /
The values of (3¢ at Cxs = 0 are deter-
mined for each % . These values are then

utilized to calculate the 1lift coefficient,
C.s , where

N
CL".—-" 7(4 SD CfSSIﬂQ/P + C q:

+ooesaﬁ’§o— (1-u?) s cos (tp - $)

- Q000338 —— 5 (@(/,«’)’d Sin (Ay~ )

- 2NDE (), i (ty- ) (8)
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Next, the airspeed is calculated as follows:

[2
V= ?r?;

= [2W(I—Cr,s) (9)
J #SCs

3. The spanwise lift coefficient distribution of
the slipstream-immersed portion of the wing is
calculated for each trim condition using
Equation (4). The resulting peak values of

Cys are plotted versus o, .

4. The local C/mac corresponding to the peak
value of (gs 1in step 3 above is determined
as discussed In the preceding section. These
values are plotted on the same graph as the

Css values in step 3 above.

5. If the maximum value of Cgs 1s nearly equal
to but not greater than the corresponding value
0of C/mex , the wing size selacted above corre-
sponds to the minimum size for stall-free tran-
sition.

6. If the above is not the case, the calculation
procedure is repeated for another wing size,
and so on, until the condition of step 5 is
satisfied.

To illustrate the above procedure sample calcula-
tions were performed and the results of these calculations
are now discussed.

The basic aircraft analyzed corresponds to the
Vertol V-76. The characteristics of this vehicle are
summarized in Table I. Calculations were performed for
three different wing chords, at constant wing span, corre-
sponding to aspect ratios of 3.0, 5.24,and 7.0. The calcu-
lated values of the longitudinal force coefficient, Cxs |,
are presented in Figure 7. The trim values of total 1lift
coefficient, C_,s5 , are presented in Figure 8

17
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FIGURE 7. Estimated Longitudinal Force Coefficients for a
3500-Pound, Tilt-Wing VIOL Aircraft, Showing Conditions of

Cx’s = 0.
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for alil three aspect ratios. The corresponding trim speeds
are plotted versus wing tilt angle, o, , in Figure 9. Also
shown in *his figure are test data obtained from Reference
21. Good agreement is evident between the theory and test
data.

The calculated peak values of local 1lift coefficients
are compared with Cy,., values on Figure 10. It is noted
that for the basic aircraft, AR = 5.24, the wing is stalled
for the range of wing tilt angles between 19 and 43 degrees.
Also, it is seen that an increase of aspect ratio to 7.0,
which corresponds to a decrease of wing area, results in wing
stall over an increased range of wing tilt angle. On the
other hand, a wing size corresponding to an R = 3.0
results in stall-free transition.

The aspect ratio for minimum wing size for stall-
free transition, as approximated by interpolation of the
data presented in Figure 10, is equal to 4.5. This corre-
sponds to a wing area of 138 square feet.

The stall boundary is plotted as airspeed versus
aspect ratio in Figure 11. Also shown are two flight
conditions of the V-76 aircraft obtained from Reference 21l.
The tringular symbol corresponds to a condition of poor
handling qualities, and the circular symbol corresponds to
a condition of unacceptable flying qualities. As indicated
in Refexci 2 21, thoce conditions of unfavorable flying
qualities are related to wing stall.
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FIGURE 11. Estimated VIOL Stall Regime as a Function of
Aspect Ratio (Wing Size) for a 3500-Pound, Tilt-Wing VTOL
Aircraft (Wing Span 24.88 feet).
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PROPELLER AND SLIPSTREAM-INDUCED MOMENTS

The propeller forces and moments and the effects of
the slipstream on the VTOL wing pitching moment are discussed
in this section. These forces and moments are defined in
Figure 12.

PROPELLER SIDF FORCE

The measurements made in Reference 30 indicate that
the propeller side force is negligible for the range of
flight parameters occurring throughout tilt-wing aircraft
transition.

PROPELLER NORMAL FORCE

A summary of propeller normal force data is shown
in Tigure 13. This figure serves to indicate trends of
magnitude of Cup for conditions of o, and J’ corre-
sponding to the entire range of the transition maneuver. It
should be noted that all (,, data have been converted to
correspond to the definition of C,», wused in this report.

In general, at constant &p , Caup increases
with J’ . The figure also indicates that throughout the
transition the magnitude of Cp varies between 0 and
0.01. The figure shows isolated propeller data (plain
symbols) as well as data for propellers mounted on wings
(solid symbols). The scatter of the data is due to the
effect of propeller configuration. Information on these
configurations is presented in Table II. All data on Figure
13 were obtained for a blade pitch angle, ﬁhuq equal to
8 degrees.

A specific propeller configuration (3a of Table II)
is examined in more detail in Figure 14. The transition
regime is bracketed by arrows. It is seen that Cy,
increases withJ' at constant o) . Also the derivative
3G, /o is positive for all values of o, . Finally, as
expected, C,, 1increases with 4, at constant J’ and

o .
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FIGURE 12. Propeller-Wing Force and Moment Notation.
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The effect of the wing on Cus is presented in
Figure 15 for flap angles of 0 and 50 degrees, respectively.
It is noted that in all cases the presence of the wing
causes an increased value of Cu, .

Correlation between several published theories and
experimental data of C,, 1is presented in Figure 16. It
is noted that the theory of Reference 6, which actually was
derived for helicopter rotor drag force, results in very
poor correlation. Better agreement is obtained by use of
the theories presented in References 7 and 23.

PROPELLER PITCHING MOMENT

A summary of propeller pitching moment data is pre-
sented in Figure 17. It is seen that, as in the case of
normal force, the magnitude of Cu, varies between 0 and
0.01 throughout the transition range. The figure also
shows isolated propeller data (plain symbols) and data for
propellers mounted on wings. The effect of propeller config-
uration on the magnitude of Cu, is apparent from the
scatter of the data. Again thes data are for a blade pitch
of 8 degrees.

Pitching moment coefficient data for propeller 3a
of Table II are plotted separately on Figure 18. The range
of J’ typical of the transition maneuver at each op 1is
bracketed by the arrows. From these curves it is apparent
that Ca, 1increases with J’ at constant o) . At angles
of attack below 45 degrees, 9C,,/da, is approximately 0; how-
ever, for op from 45 degrees to 85 degrees, 9Cu,/d%, becomes
increasingly positive. Also at angles of attack below 45
degrees the effect of fBoss on Cpp 1is small. At op = 45,
60 and 75 degrees, the effect of [,,s 1is significant but

Cwmp is nonlinear.

The effect of a wing on Ca, 1is illustrated in
Figure 19. It is noted that the presence of the wing
results in a substantial increase of Cu, . This increase,
in part, is believed to be due to a wing-induced change in
axial velocity distribution through the propeller. No
applicable analytical methods have been found in the reviewed
technical literature pertaining to prediction of propeller
pitching moment.
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WING PITCHING MOMENT AND CENTER OF PRESSURE

Pitching moment and center of pressure data of
several wing-propeller configurations are evaluated in this
section. The physical characteristics of these configura-
tions are presented in Table III. The pitching moment
coefficient, C,, , as used herein, is

Cop = Mwsy (10)

where

€ = chord, measured from the wing leading edge
to the trailing edge of the flap

ﬁ%g‘==pitching moment about quarter chord
(definition of chord as above).

9s = slipstream dynamic pressure

S = wing area based on the chord as defined
above

The center of pressure location, x/C , is
defined as

x L Muse <
c c [(was«,,-'-owsina.,) t 4] (11)

To utilize the data from References 4 and 5, the
propeller contribution to the pitching moment was deducted,
where such was included in the test data. Also, the data
of Reference 4 were corrected to account for the above
mentioned definition of chord.

The resulting data are presented in Figures 20
through 24. The solid symbols correspond to data obtained
with windmilling propellers, and the plain symbols refer to
propelier-off conditions. These data cover angles of attack
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o¢ = 0.
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Pressure Location as a Function of Angle of Attack and Thrust
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Pressu.e Location as a Function of Angle of Attack and Thrust
Coefficient, for &y = 50 and 70 Degrees.

42

s




from 0 to 9C degrees and flap angles from 0 to 70 degrees.
Thte data are presented versus ™, at Cps =0, and
versus Cgs at o, = 0., Data are not presented for
simultaneously nonzero values of Czs and ™ , since no
direct measurements of the wing aerodynamic pitching moment
were made for these conditions.

From the data presented it can be concluded that

the effects of Gy (which is a function of Ve and

V; ) on center of pressure location are small for values
of Crs Dbetween 0 and 0.8. However, the data for Czs =0
show that the ce .ter of pressure location is affected by
angle-of-attack changes. This implies that the data for

Czs = 0 are useful for approximating the center of pres-
sure location and wing pitching moments in the G, range from
0 to 0.8. At values of C(ys above 0.8, however, there
exists a sharp rearward shift in the center of pressure
location to about the 70-percent chord point at Czs = 1.0.
Due to the predominant thrust effect at high values of

Czs (corresponding to a low speed and high tilt angle
flight condition) the data from the % =0, G20
curves may be used to approximate the actual center of pres-
sure location and wing pitching moment.

The data also show that for models of the same
geometric characteristics (the models of References 4 and
5) the Fowler and the slotted flaps produce equivalent wing
pitching moments and center of pressure locations. The use
of a plain flap results in lower negative values of Cayy
than either the Fowler or the slotted flap. The effect of
the slipstream (thrust) on the center of pressure location
is about the same for all flap types analyzed.

The rc_ative magnitude of the propeller and wing
contributions to the total pitching moment is obtained by
examining the data of Reference 14, which are reproduced
in Figure 25. It is seon that for the specific conditions
illustraced, the magnitude of the propeller pitching moment
is two to three times that of the wing.
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SLIPSTREAM EFFECT ON THE HORIZONTAL TAIL

Data.on the effects of propeller slipstreams on the
flow in the vicinity of the horizontal tail of aircraft are
presented in References 15, 25, 26 and 27. The data of
Reference 25 are found to be the most applicable to the case
of tilt-wing VIOL aircraft. These data are reproduced on
Figures 26 and 27. Figure 26 presents the downwash angle at
the tail, & , as a function of Cpz¢ and o4, for several
vertical positions of the tail above the wing quarter-chord
line. For C%s = 0 the downwash angles are zero for loca-
tions 2/c >0 . These angles remain relatively small for
values of Cy; up to 0.6. For larger values of Czs ,
i.e., where the slipstream effects are very large, the down-
wash angle, € , increases rapidly with the angle of attack,

% . As noted in the figure, a downwash angle of 40
degrees occurs for some of these conditions.

The effects of the slipstream on the velocities at
the tail, W& , are presented in Figure 27. It may be noted
that in general Vt/Vo 1is less than unity. This implies
that the tail is in a region of reduced dynamic pressure.

The data indicate that an increase oi slipstream velocity
(an increase of C;, ) results in decrease of velocity at
the tail.

GROUND PROXIMITY

No general analyticai method has been available for
the determination of the effect of ground proximity on the
aerodynamic characteristics of a wing immersed in a slip-
stream. However, a number of experimental investigations
have been performed on this subject, and the results of
these tests are now discussed. As reported in References
21, 22, and 28, buffeting, unsteadiness, and abrupt yaw
disturbances were experienced during ground proximity tests
of the Vertol V-76 aircraft. Similar results were obtained
from model tests as reported in Reference 18. In the latter
report,it is indicated that the unsteadiness may be the
result of slipstream recirculation through the projeller.

In general, the test data show that fuselage design has a
pronounced effect on hovering stability in ground effect.

45




Symbol : 2 E ﬁ 2 z Solid Symbols, &f = 50°
Gs : 0 0.3 0.6 0.9 0.95 Plain Symbols, s = 0°
| v
40
: !
v H
o v ¢ v
a Y ®
.20 > ¢—o
W
* <§ i %"°
O O
0 ‘r t -B- 4]
40 I y /
-]
1]
g"o v v
2 ¢
' 20 Y » &
v % A/"-'4=0.5
’ c
0
40 4
o v
::;)0
2 v
~ 20 v *_
v ° o @
Z c= 1.0
. é
0 | |
t & Q000
-20 0 20 40 60 80 100
’\’ oy , Degrees
FIGURE 26. Slipstream Effects on Wing Downwash Angle
(Data from Reference 15).
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In particular, the shape of the fuselage bottom surface is
of importance. In Reference 18, it is reported that the in-
ground-effect flying qualities of a model of the Vertocl V-76
aircraft were greatly improved by attaching deflector v=res
to the bottom of the fuselage as shown in the sket:ch beiow.

Fuselage Bottmm——j;7

1;:—)>\_; Agl/ 4,(«,f-thes
Y

VLSOOI dd

Ground

ENGINE FAILURE

Cunditions of sudden power failure have been analyzed
to determine the instantaneous aircraft response to power loss
during the transition maneuver. The analysis was conducted
for the Vertocl V-76 aircraft operating at several transition
trim ccrditions.

Partial engine failure effects are assumed to

correspond to a reductlon of propeller rotational speed to
a value equal to Ji/2 n, , where 7, is the power-on
trim value of the propeller speed. It is also assumed that
the propeller speed is reduced instantaneously, and that

Voo and &% remain unchanged. The propeller advance ratio,
J’' , following power failure, is therefore a function of

N only. Values of propeller thrust, power, and normal
force coefficients are estimated <t the new J’ , using the
data of Reference 30. Next, Cj5 1is calculated as

Cpo = ’” (12)
(l 4en'p? C)
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Then the 1ift and longitudinal force coefficients are calcu-
leted for thie power failure condition. Wing pitching moment
coefficients, C,gs , which include nacelle and propeller con-
tributions, are estimated from data of Reference 5. These
coefficients are utilized to determine the instantaneous
change from the trim values of the forces and moments acting
on the aircraft. The resulting longitudin~l, normal, and
pitching accelerations are presented in Figure 28. A change
of #/2 of the normal acceleration occurs near the hovering
condition. The maximum pitch acceleration (26 degrees per
second per second) occurs at 9, = 30 degrees.

In addition to aircraft trim changes, power failure
can also cause the slipstream-immersed portion of the wing
to stall. For example, before power failure, for a trim con-
dition corresponding to &w = 45 degrees, Cys = 0.74 and
V6 = 60 feet per second, Figure 10 shows that the slipstream-

immersed portion of the wing is unstalled. However, following

power failure, Cgs decreases to 0.64, which results in a peak
value of Cps = 1.99. The corresponding Cy,,. is 1.55, and
hence wing stall is resulted.
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SLIPSTREAM EFFECTS ON VTOL AIRCRAFT STABILITY

The primary objective of the analysis presented
in this section is tc¢ evaluate the use of propeller slip-
streams to augment the stability of a tilt-wing VTOL air-
craft during transition. The stability analysis is conduc-
ted for a four-propeller tilt-wing VTOL transport aircraft
similar in configuration to the XC-142 Tri-Service VTOL
aircraft. Details of this aircraft are shown in Figure 29
and Table IV. The aircraft analyzed differs from the XC-142
in that it employs a full-span Fowler flap and has a wing
area of 747 square feet when the flap 1s in the extended
position. The analysis which is made for the longitudinal
degrees of freedom at transition airspeeds of 30 to 70
knots is similar to that of References 31 and 32.

A body axes coordinate system is used in the analysis.
The body axes system refers to a right-handed, orthogonal
system of axes fixed at the aircraft center of gravity,
rotating and translating with the aiccraft. As shown in
Figure 30, the X-axis is aligned along a reference line
(datum line) fixed to the fuselage (positive pointing
forward). The Z-axis is perpendicular to the X-axis,
positive towards the bottom of the fuselage, and the Y-axis
is mutually perpendicular to the X- and Z-axes.

EQUATIONS OF MOTION

The longitudinal equations of motion are as
follows:

ZX= [ Ly SN -DWCaso(,] + [LF sincolg = Dp cos “p]

+[Lts:'n (- €)- DtCos(o(,_--e‘)]

N

g , e . W * *
-Zé’l['f;,jcos L@"N/’iwm"}] -Wsine~ -5,-(“ +w8)=0 (13)
'
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TABLE 1V
VTOL TRANSPORT CHARACTERISTICS
FUSELAGE:
Length, feet 50.0
WING:
Area (flap retra:ted), square feet 535
Area (flap extended), square feet 747
Span, feet 67.5
Aspect ratio (flap retracted) 8.53
Aspect ratio (flap extended) 642
Mean aerodynamic chord (flsp retracted), feet 8.07
Mean z2rodynamic chord (fla, extended), feet 10.50
Taper ratio J.61
Airfoil section NACA 4415
FLAP:
Type Fowler
Chord, percent of wing chord 39
Span Full
HORIZONTAL TAIL:
Area, square feet 140
Aspect ratio 5.68
Span, feet 31.1
Mean aerodynamic chord, feet 5.5
Tail length, center of gravity to 0.25-max.,feet 25
PROPELLERS:
Main: Number of blades 3
Diameter, feet 15,5
Tail: Number of blades 3
Diameter, feet 8.0
{oment arm, wing pivot to rotor center, 32.0
feet
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S Z= -[ Lycoso.t+ D, sfnor,]-[LF coso + D,s;,.o(,]

- [Lt cos (dF—G)TDt.ilb (d;—é)] -Tr

N
- [7; $in 1_,, + N,, cost}.] + Wecos@ - W (w- ug)=o0
j=/ / J J J 7 (14)
1
- [LWS,'}, O(F - Dw cosS dFJ z, -+ MF
(L siot - €)- Dy coslip-0)] 2
- [[_tCos(o(F— €)+ D, sin (o4 - é)] X, = Tr Xy
N ) .
..Jg [7-104 cos Lc, - ij S LPJ'] zPJ'
) ‘ ' 54 5 (15)
*J{:[Tfa sinep; + Np; cos ‘P,-] xp. —I,,6 +J§/ ij= o

The three independent variables in the above
equations are the longitudinal component of the aircraft
velocity, U , the normal velocity component, w, and the
aircraft pitck attitude, 6 .

Following the usual stability procedures, Reference
31, perturbation equations about the trim conditions can be
obtained by linearizing Equations (13), (14), and (15).
There results
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e . a o

Xu+Xga+ Xow+Xow+Xe0 4+ X56 =0 (16)
Zuu+2ad+ZWW+Z¢,W+Zee +Zéé"0 17
Muu+Mia+Myw + M+ Mg6 + Ms6 + Mzé =0 (18)

In Equations (16), (17), and (18), u, w, and @
now represent perturbation variables; i.e., u is the change
of the longitudinal component of velocity from the equilib-
rium value, etc., Also, XU’ Z, etc., are the total sta-
bility derivatives; that Is, X, = 3X/du, Z =9Z/du. These
derivativ.s, which cre evaluated at the trim conditions,
are obtained by performing the appropriate partial dif-
ferentiation of Equations (13), (14), and (15).

The total stability derivatives are:

X
Xu= ‘57
= [%&L'!SI‘INYF - %% COSO(F] + ['g-i‘-‘eSIﬂdF - %%ECOSNF]
+ %‘Z"—*— sin (o(F-G)- %%Ecos (dp—e)
=13 .
- -S-‘T[Lt cos (O(F- E) + Df sn (dF" E)]
o7 . No, . .
+J§ [-é—&&COSIIDJ" %—f‘-:m ‘RJ'J (19)
Nom DX e - ;V (20)
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/I ifa
== ;‘:[[ ai:*‘*Dw]-SfﬁdF +[LW ?“P JCOﬁdF

{2 0t o - 2] o

ool
[ d€1[al
o ] [aat sin (o-¢) "—_m@-e)}

[
4 .,— -g—g;][l.ccos (dF—E)‘}-Dtsﬁ:n (OIF"G)]

N
aT y aN’ LA
+J§[-§£ Ccos l’;'.-*é—df'\flntpj]} (21)
) ) 4
X dw I on,

Le
Rl V,[gd s:n(ﬂ;-é)——%wsfdr -€)

+ Lt_c:os(o(p-G) + DtSI.n (dp -G)J"g"‘e‘

(22)
A
X--g-g:a-Wcose (23)
%=35
~ zw{-g-ii’ $iN0G - g—-ﬁ’casclf]

-l—/f'-{[—g-t—‘! + Dw] Sindlg + [L,,- %%;"-] cosog}
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-2, [-z—ffsin (v-¢)- 30‘ cos (o1 - e)]

% [ol . 9D
+ T/.t [;;: .Sm(Q’F-G>' éf.,‘; C'-‘(“F"‘)

+4 cos (e~ €) + D, - ICA -e)]

- on N,
XL % cos ¢, ~ L g0
jz’ { 5 Sa oS q}, Sin L&J

Jdu
+ -—L[ iz cos L‘,J, 3’;’” Sin 4,‘,”
- Ysinet
Z~2
- r_i_La!as o — %—%-" sinog,] [ii’ cosol. + ng s:ne-;.]

ol .
- {[3“_* Cos (c(p-e) + 3—2—’ sin (o(F-e)]
+[L sin (o ~ €) — Dy cos{of ~e)]§-—‘36]
¢ F Ok «
aT Ny .
T Jg’:[ a“ .f/n (,P au" (OJLPI.

3
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+Z [ gﬁ cos(o, —e) + —sm (% G)]

- é‘_[ g% co,;(d ..6)1--5-9‘-.!:;. (O(F-G)

~Le sin (% - €) + D¢ cos (o - G)]
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"?f;lTu&"’”‘P +. 3’)‘,’ ml’j}
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+[tc¢.s(d €)-D; sin (% - 1:;

- E|3 o9+ 2Rcin - )

~Lgsin (o= €)+ Dycos (- )] 25 (34)
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INCORPORATION OF SLIPSTREAM EFFECTS INTO THE VTOL STABILITY
DERIVATIVES

The derivatives X, Z,, M, etc., defined in the
preceding section consist of contributions from propeller
forces and moments, wing forces and moments, and horizontal
tail and tail rotor forces. The methods used to determine
the contributicns of each of these items to the derivatives
are now discussed.

Wing Derivatives

The wing X and Z stability derivatives are estimated

bf using the lift and drag analysis of Reference 3 for
wings immersed in slipstreams. "The wing moment derivatives

are estimated from the test data of Reference 15.

The slipstream 1lift and drag analysis is summarized

by the following equations. Wing lift and drag are expressed
as

Ly=Clw 955 (57)
and

The 1ift and drag coefficients, (., and C,, , based on
slipstream dynamic pressure, are

C‘w = (I~ Cr,s)ad-i' 3.74(1-/011)("3')1"~S—D:% Cos (%“‘¢)
- [:-;-lcm-& 1113 (l-ﬂ‘)'(%)zﬂs—o-ad:]sm(dp-c#) (59)

Cowm (1= Gos)[ (1 §) Cagt 2] + $1Gy, cos(ety-9)
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The wing stability derivatives can be obtained
by differentiating Equations (59) and (60) with respect

there follows
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In the above equations,
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TR e BRI,
= [1=Gs cos(p=9) an
aa ;-77(%'-:)3(‘,, f_c,-, sin (op-4) (78)
%:—P- ;-“:57_%:? 32‘ +'/_E"_‘[ a«]*""(%-‘i’) (79)

The drag coefficients, Cp, and Coes , are esti-
mated by making use of Figure 31 which presents profile
drag coefficients of a wing equipped with a Fowler type
flap. These data are derived from Reference 4 by sub-
tracting the wing induced drag contribution from mea-
sured values of the longitudinal force coefficient. It
should be noted that the profile drag coefficients of
Figure 31 are based on the total wing area including
that resulting from the extension of the flap, i.e.,

S= b(T+cp) (80)

The wing pitching moment, Mw., , and the derivatives,
Mw,. and Mw,. , are based on the data of References 4
and 15.

Propeller Derivatives

The propeller derivatives, Tp, , Tow > Mpu. »
Mpg s Nou » @nd Apy , are based on propeller test data such
as those of Reference 30. These data are adjusted to
account for the effect of wing proximity as indicated by
the data of Reference 15.
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Horizontal Tajil Derivatives

The mumerical evaluation of the horizontal tail
derivatives is based on the data of Reference 15. These
data are reproduced, in part, as Figures 26 and 27. Tail
rotor derivatives are obtained from the data cf Reference
29 using a tail rotor advance ratio and a tail rotor angle
of attack, based on values of € and {4 from Reference 15.
In the analysis, consideration was given to the fact that at
30 knots control moments are generated by means of a hori-
zontal tail rotor, and at 70 knots by means of a horizon-
tal tail surface.

Slipstream Stabilizer Derivatives

From Equation (5) it is seen that the angle of
attack in the slipstream, o5 , is affected by flap deflec-
tion, dr . It follows that the lift and drag derivatives
of the wing can be readily varied provided chat a means
for changing o«; is incorporated into the aircraft control
system. Accordingly, the use of a wing trailing-edge
flap for stability augmentation is investigated. The
general flap stabilizer characteristics are described by
the following equation:

k,S+ko+k,é+kywe=0 (81)

Equation (81) includes pitch attitude and rate feedback,
ke + ka6 , and vertical velocity feedback, s.

The appropriate stabilizer derivatives for the three air-
craft equations of motion are:

{

D
%K= A-37 (82)
1 3Z 1 [ oL
L4 -H-54 (83)
| oM I [oMy _2Z . X
T, 38 " T, 08 28 W a5 ™ (84)
.
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Values of L./98 ,90,/38 and OM/d8 are obtained from
the test data of Reference 12.

NUMERICAL VALURS OF DERIVATIVES

The trim conditions for 30 and 60 knots are as

pN: T

follows:

30 Knets
Ces = 0.9275
Nw = Op = 40 degrees
8¢ = 50 degrees
W = 35,288 pounds
7r = -650 pounds (for ZMcg= 0)
C., = 0.516
Cow = 0.718
Coo = 1.22
Cas = 0.15

10 Knots
Cs = 0.35
of = Op = 8§ degrees
df = 50 degrees
W = 34,200 pounds
Le = -2070 pounds (forZMcg= 0)
C, = 1.85
pr = 0.313
Ca, = 0,13
Cos = 0.11

The numerical values of the derivatives are summarized
in Table V.
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TABLE V
DERIVATIVE SUMMARY

AIRSPEED

DERIVATIVE Vo =30 Knots V,=70 Knots
L 220 329
Lo -19,966 64,208
Dwau 102 19.18
D wu 21,108 19,833
Tpu '10 "41
Tre 420 620
N’ﬂ. 3.5 0
Np 160 935
Mpu 60 0
M« 8,150 9,980
HKu/m -0.1293 -0.1677
X /m -1 -1
KXuw /m -0.0717 0.1186
X /m 0 0
Xo /m -32.2 ~32.2
KXo /m 0.3936 -0.2070
Zu/m -0.1872 -0.2506
Zi/m 0 0
Ew /m -0.0783 -0.6475
2o /m -1 -1
Zo /m 0 0
Ze /m 51.38 117.16
M‘/lyy -0-0027 0¢0112
Ma/1,, 0 0
My /1yy 0.0089 -0.0145
M /1, 0 -0.0006
Me /1.y 0 0
M"/Iyy -0.0260 -0.4345
Ms /1,y -1 -1
Xs/m ~-10.62 -16.85
Zs/m -2,32 -17.75
My /Zyy -0.483 -0.948
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ANALOG COMPUTER STUDY

The equations utilized in the analog computer
study are as follows:

d-%u——,{"‘w—é&ﬁr-{za—{ié*-}”—?Jﬁ'o (85)
By By Ty Zog Ziy 240 (86)

oM, Mi, Mo, Mi. Mg, My Mg o (87)
keS+ k6 +kyw=0 (88)

The corresponding machine equations for the 30- and 70-
knot conditions are:

30 Knots

(2) + 0255(%)+ a0m7 (33)+ 0 1268 (;2)-0s06ss (L} o4z5(£)-0  (89)

(.2_';) +0./872 (-z‘-‘;)+ 0.0783 {1‘!;-) -0822] (3’-;)4- o.osz7(-§) =0 (90)

(-5%-)4» o.tm(}%-qssso (—2‘%.-)+o.ozso(-;};)+l.za7 ( f =0 (91)

g‘(-;{)m,d,(%).;z:k,(—g -0 (92)
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70 Knots
(&)+as677 (L)-0n86(Z)+0.2183 (ﬂ+aoau(£)+azﬁ6(§-}- 0 193)
(£)+0.2506 (,—‘;)ma?s(,—‘;)-oyw(-o%)oqsoos(-‘,2)-o (94)
(2)- 1-648(4) + 2,145 (35) + 00081 (25)s 0345 () 2.37() =0 (95)
ke ($)+ 04k (&) + 59K, (E)=o0 (96)

The computer schematic, applicable to both the 30- and 70-
knot conditions is presented in Figure 32. The values of
the potentiometer settings are shown in Table VI.

Computer Solution at 30 Knots

The response of the unstabilized aircraft to a
pulse disturbance, 6 , is shown in Figure 33. It is
noted that the response consists of an unstable aperiodic
mode with a time to double of 0.9 seconds.

The effect of a number of combinations of stabilizer
settings is now discussed.

The stabilizer system investigated is described by
the following equation:

S+ ko + kw=0 (97)

The effectiveness of the various stabilizers
analyzed was determined by examining the aircraft transient
response to a pulse input of the flap deflection, & .

The use of only vertical velocity feedback,
i.e., k; = 0, in Equation (97), results in the responses
presented in Figures 34 and 35 for two values of k3. For
kq = -0,08, Figure 34, the predominant mode is an unstable
oscillation having a period of 13 seconds and a time to
double amplitude of 4 seconds. For k3 = -0.16, Figure 35,
the aircraft exhibits a stable oscillatory mode having a
period of 4 seconds and a time to half amgiitude of 2.8
seconds. Hence, a vertical velocity feedback with suitable
gain, which for forward flight conditions is equivalent to
an angle of attack feedback, can be used to obtain positive
dynamic stability at 30 knots.
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TABLE VI
ANALOG COMPUTER POTENTIOMETER SETTINGS
FOR VTOL LONGITUDINAL STABILITY ANALYSIS

(WITHOUT STABILIZER)
POTENTIOMETER POTENTIOMETER SETTING*
NUMBER 30-Knot Airspeed  70-Knot Airspeed
Q0 0.7170 0
Po1 0.1293 0.1677
1 0.0629 0
Po2 0.5152 0.2183
2 0.1000 0.1000
Q3 0 0.1186
04 0 0.0014
Pos 0.1689 0
s 0.5560 0
Po7 0 0.2145
Q7 0 0.1648
Pos 0.0260 0.4345
s 0 0.0881
P13 0.0100 0.0100
P18 0.1207 0.2370
P19 0.0927 0.3008
Qg 0.0425 0.0286
Pa1 0.8221 0.7943
Q1 0.0783 0.6475
oy 0.1872 0.2506

*The remaining potentiometers shown in Figure 32 were
used to simulate the stabilizer or for static check.
Hence, they were set at zero for the unstabilized flight

conditions.
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FIGURE 33. Transient Response of Unstabilized Aircraft
to a Pulse Disturbance (Vo = 30 Knots).
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FIGURE 34. Transient Response with Vertical Velocity
Feedback Stabilization (Vo = 30 Knots).
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FIGURE 35. Transient Response with Vertical Velocity
Feedback Stabilization (Vo = 30 Knots).
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The effect of using attitude stabilization,
i.e., kg = 0 in Equation (97), can be seen from Figures 36,
37, and 38 for ky = -3.75,-7.5, and -15, respectively.

Figure 36, the aircraft longitudinel notion consists
of a slightly stable oscillatory mode with a period of 3.5
seconds and an aperiodic mode with a time to double amplitude
of alout 3 seconds.

An ir:rease in tire gain of the attitude stabiliza-
tion to ky = -7.5 as shown in Figure 37, results in a
decrease }n the instability of the aperiodic mode which now
has a time to double amplitude of 4.5 seconds. The period
of oscillation is reduced to 2.4 seconds.

A further increase in the gain of the attitude
stabi'ization to kqy = -15 as shown in Figure 38, results in
the aircraft neutral stability with an oscillatory mode
having a period of 1.6 seconds. The stabilizer equation
for this case is given by

S-150=0 (98)

Thus, it can be inferred that an attitude feedback
stabilizer with a gain (kj < -15) could be used to obtain
positive dynamic stability at aircraft transition speed of
V, = 30 knots. It can be noted however, comparing Figures
3% and 38, that the vertical velocity feedback (kj =-0.08

and k, = 0) provides a more effective means of stabiliza-
tion with lower gains required.

The transient response of the aircraft with both
"w" and "e" feedback is shown in Figure 39. The stabilizer
for this case is given by

§—156 - 032w=0 (99)

It can be seen that the aircraft becomes very
stable with this type of stabilization.

The effect of propeller normal force and pitching
moment derivatives Npy and Mp, is seen in Figure 40. The
aircraft response is similar to that of the basic aircraft,
Figure 33. However, the use of reduced values of Np« and
Mpy results in slightly less instability of aircraft response,
i.e., the time to double amplitude in this case is 1.2 seconds
as compared with 0.9 seconds for the basic aircraft.
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Stabilizer: §-3756=0

FIGURE 36. Transient Response with Attitude Feedback
Stabilization (V, = 30 Knots).
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FIGURE 37. Transient Response with Attitude Feedback
Stabilization (V, = 30 Knots).
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FIGURE 38. Transient Response with Attitude Feedback
Stabilization (V, = 30 Knots).
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FIGURE 39. Transient Response with Vertical Velocity and
Attitude Feedback Stabilization (V, = 30 Knots).
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FIGURE 40. Transient Response of the Unstabilized Air-
craft with Reduced Values of Np, and M, (V= 30
Knots).
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Computer Solutiun at 70 Knots

The basic, unstabilized, aircraft response to
a pulse disturbanc: is shown in Figure 41. As expected,
the response for this flight condition is similar to
that of a typical fixed-wing aircraft. The aircraft
response consists of a long period oscillation (phugoid
mode) with a period ¢I 10 seconds and a time to half
amplitude of 9 seconds.

The use of a stabilizer corresponding to
S§-150 ~ 0.169 w=0 (100)

results in the response shown in Figure 42. As noted
from this Figure, the response is very rapid and stable.

Correlation with Experimenta! Data

The calculations made herein can be compared only
qualitatively with existing test data. Available data,
such as those of Reference 17, and still unpublished data
obtained from the Princeton University long track facility,
are for model aircraft with scaled-up gross weights and
moments of inertia which substantially exceed the design
values utilized herein. However, the trend shown in the
present calculations agrees with the experimental data, in
that the instability exhibited at low speeds is gradually
reduced as che speed increases.

Conclusions

From the above analog computer study, it may be
concluded that propeller slipstream can be used to augment
the dynamic stability of a tilt-wing VTOL aircraft through-
out the entire transition flight regime. This includes
the hovering condition as repcrted in Reference 3. It is
noted that a combination of attitude and angle-of-attack
ieedback results in stable responses both at 30 and 70

nots.
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FIGURE 41.

|
—14.0 Sec

Transient Response of the Unstabilized Aiv-
craft to a Pulse Disturbance (V, = 70 Knots),
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FIGURE 42, Trarsient Response with Vertical Velocity
end Attitude Feedback Stabilization (V, = 70 Knots).
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MODIFICATION OF SLIPSTREAM TO AUGMENT
LIFT AND CONTROL

This section presents the results of an analytical
study of the effect of the nonuniformity of the velocity of
a jet o.. the 1ift coefficient of an immersed wing.

The equation of the 1lift coefficient for a rectangu-
lar wing totally immersed in a circular jet, as presented in
Reference 3, is

_ 869 |_¢m®_
0= “we [H' 7/1(7 I)] (101)
where & = angle of attack, radians

r's = radius of the jet, feet

¢ = chord of the wing, feet

/4 = ratio of free-stream to jet velocity

This equation has been derived with the assumption that the
velocity of the jet is uniform throughout any cross section
perpendicular to the direction of flow. In that case there
exists a single velocity potential in the jet, ¢, , which
satisfies Laplace's equation and is also subject to the jet
boundary conditions.

In extending the theory to cover a jet with non-
uniform velocity distribution, it is necessary that the velo-
city pattern is such that tne jet flow 1Is still a potential
one. A flow with a number of concentric velocity zones in
each of which the velocity is uniform, such as illustrated
in Figure 43, meets this requirement.

In this particular case, the whole jet is considered
to consist of four separate concentric "sub-jets", in each
of which there exists a velocity potential. Each potential
has to satisfy its own boundary conditions.
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As can be expected, the velocity potentials of the

various concentric "sub-jets" will by no means be in a

simple

form similar to that presented in Reference 3. This is due
to the fact that far more complex boundary conditions are

involved. It is thus preferable to consider first the

sim-

plest case, where only two velocity zones exist, as shcwn in

Figure 44 .

In this case the jet consists of two separate

con-

centric "sub-jets", having velocity potentials &, and

$, , due to which resultant velocities V, and V,
occur respectively.

Before going further, it will be necessary to deter-

mine the resultant flow velocity pattern of such a jet
a given induced velocity pattern. As it is desired to

from
deter-

mine the effect of the nonuniformity of the jet velocity dis-
tribution on the wing lift coefficient, a uniform jet with
the same thrust and outside radius is taken for comparison.
From Referernce 3, it is seen that the thrust of a jet is

2

(V=Y ) 4

I

£
2
Lltw+ul-v] 4

where mass density of air, slugs per cubic foot

jet velocity, feet per second
free-stream velocity, feet per second
cross sectional area of the jet, square £
induced velocity of the jet, feet per sec

CRKK®
nnn ni

Hence, 1if the thrust remains unchanged,

(102)

eet
ond

‘N (v, U+ -‘-zj-z-}/{,- = constant (103)
1
,
98
b
;< . ot - B e




B e -~ - m———— T e v s e — ¥

Velocity Zones

Velocity Pattern

FIGURE 44, Circular Jet with Two Concentric Velocity Zones.
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— By defining

<i

wy

it follows that

it

induced velocity of the uniform jet,
feet per second

induced velocity in the outer veloc:ty
zone of the nonuniform jet, feet per
second

induced velocity in the inner velocity
zone of the nonuniform jet, feet per
second

radius of the uniform jet and also radius
of the nonuniform jet, feet per second

radius at the common boundary of the two
velocity zones of the nonuniform jet,
feet per second

U;z 2 2 ’ Uy 2 ~ U’ 2
(out Z)a(r-m)+(iber L)t = 4T+ L)art (104

This equation can be rewritten as

(hut -‘-;f) zr[ r:’-(7n)‘]+[ Blryt %Qﬁqv(yr.)’w (60+L)nr?  (105)

where

TR A RAThee, WP P

100

S e S~

o




Upon introcucing the following nondimensionalized

variables,

Equation (105) is transformed into

2, 2[1-7'(1=-¥)] U240 _
U+ ,_rlz(,_rz) Y, 1_72(,_71)“’0 (106)

The solution of Equation (106! 1is

o A=mi-y) [a-7t0-n2 . G/ (2+0)
U= [/-7‘(:—r‘)_§ =] (107)
and it follows that
- 1-90-v) [ 1-7'¢-0]" U'(2+0)
U=V {- 1-n3(1-7%) [./— 12(1- ¥Y) I-Q"(l-r‘) (108)

Furthermore, by defining

Y /
A=Ur0 1O (109)
Ve /
- (110)

=TT TG

e !
My = W+l [+Us (111)
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it is possible to evaluate «, and &, 1in terms of _« ,
and Y as a result of the use of Equations (107) and
(108), as follows:

/

/U,= j-78 \2 -2
_ 1= 1) 1-7%-v) I-fa } (112)
‘4'{ ,_’lg(’-‘rg) + [‘_’?.(‘_ Y')] + ﬁ ,_.7 ('_ Y.)

= A
& I+Y{- ’.7.('-124- -0-n 3 I~ 4 ] (113)

’- 7('(,- 7Y - 71'('- 1’)] + ;('(I- 7’(1- Y;)-I

The new boundary conditions for the jet with two
velocity zones are as follows:

%;g:.;--v,a at Zz=0and L Sy=<r, (114)
%%!=-Vza at Z=0and O0<LY</; (115)
0% X4

;4.3..'__.-_-.%-5-;-,!- at r=p (116)
V,§‘= Voi at r=r,; (117)
¥ o8 .

1/2.3.;1.;_-_ L,;..a.;_!. at r=rn, (i18)
b@=1g at r=r, (119)
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-
=0 as r—» 0o (120)
@, finite at r=0 (121)
The general solution of Laplace's equation in
polar coordinates, i.e.,
§ / b | '8 _
is
m L) P, - .
§=Z[a,,r 'cosm@ + br Sinm@® 4 Cpyr Cosme + dmr smme] (123)
ms0
It can be shown thut by satisfying the above boundary con-
ditions, the respective velocity potentials of the two zones
at the wing surface are
F = 2(14pl)Vor,
5 A,
4 4sena [u- W) Bf-trepi o))
Kol (M) (s pi3) 4 (1-pe2)( /.,')(.ﬁ)”‘
4 4un 2 (1R pR) )+ - pi) 2 x*‘f .] i
"’/“' )t epg) + (-pad) (uil-)(2)" | () 57"
' (124)
103
| : '
o e R ST i Y . -
z"t_-m_‘;qw - - . .:,-f ""T‘ o




where

A
il
NE

and

=l
IA
~|
IN

VoX | A4 1 ]
8, = 24 28 (11 ) + o (]

?
B

AT f <»/¢)9:-ﬂ:>(-7;_ﬁo-/:)w-4x—:fﬁzmﬂ»p:(-’,:)] g (125)
T gl (A0 (s pad)s Qo m)ul d) (27 m-|

where

O
Ta)
X
IA
RIR

It is seen that the second item in the denominator
of the general expression of the infinite series appearing
in Equations (124) and (125), viz. (1-ml)(u’-ui)(rn/r)*™,
i3 in most rases of a higher order and can be neglected.
Also, an approximation of Equations (124) and (125) can be
achieved by taking m =2, 4, 6, and 8, snd disregarding

the remaining terms of the infinite series which converge
fast. There follows:
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&=

s

+ 2l )V {,,L[@-i]ih[iii }

+ _ﬂz-/f)‘/ord{ [(,; % ] [H(J)-;',

= Z%d[‘ﬁ(l I+ -ﬂa)"]

201+ ) VoNot
T,

: 1+(3)y
20-63) (42 Vo ryet 7 j
+ Tt (14 4 )(,u,+/(’)[ —[( ) (7‘))‘.' - ]

- a2

maued) V2T @ M e

]} (125)

LA

\'0

+ 2(/(:_/“[:)%,;«{ [(,., - L .JI [I*f(%);n
LY

T (i o) (27l

" "( n
el (U G B )711"[: (3 ]}
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The 1ift coefficient of the totally immersed wing,
based on free-stream dynamic pressure, ¢, , 1is

n
L4}
C. ,u,v./ ﬂVc_/§z,df (128)

[«

where §5 and P, are the functions of y given in
Equations (126)and (127).

Two sample calculations are now made using the
following velocity patterns:

W 7="F=F
U

~~

N

N
D

The 1ift coefficient of the wing has been calculated
for the two cases as follows:

1) C.= 9827 (129)
?
(2) ¢ =031 (130)
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Also, by setting
s=17r
M=pu =05

In Equation (101), there results that the 1ift coefficient of
a wing immersed in a uniform jet with the same thrust as
that in each of the two nonuniform jets is

C,, = l0.02 -%g{- (131)

It 1s seen from the above that a jet with an induced velocity
in the outer zone doubie that in the immer zone gives a lift
coefficient about 2 percent less than a uniform jet having
the same thrust. On the other hand, a jet with an induced
velocity in the inner zone double that in the outer zone
gives a 1lift coefficient about 3 percent more than a uni-
form jet having the same thrust.

The velocity pattern of an actual slipstream is
usually very nonuniform. However, this can be well approxi-
mated by a jet consisting of a number of concentric "sub-
jets", by means of which an analysis similar to that
performed above for the case of two "sub-jets" can be worked
out. Without finding the solution in detail; it can be
concluded qualitatively at this stage that by shifting the
peak velocity at any cross section of the jet toward the
center, the 1lift on the wing will increase.

The result of the above analysis is substantiated
by the test data of References 2 and 13. As reported therein,
the propeller with a blade angle, /3075 , of 3.7 degrees
gives a higher lift coefficient than the one with a blade
angle of 8.0 degrees. As can be seen from the dynamic
pressure survey diagram (see Figure 45, reproduced from
Reference 2), for Jfozs = 3.7 degrees the velocity pattern
is such that the peak is closer to the slipstream center.
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It should also be noted that an increase of lift
corresponds to an increase of pitchning moment about the
alrcraft centet of gravity. Hence, increased wing p:rformance,
at constant propeller thrust, can be utilized to increase the
controllability of the aircraft.
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THE EFFECT ¢~ WING GEOMETRY ON LIFT

TRAILING EDGE FLAPS

This section presents the result of an investigation
of the effect of large flap deflections on the lift coeffi-
clent of a wing immersed in a propeller slipstream.

The effective angle of attack, o , of the portion
of the wing immersed in the propeller slipstream, as indi-
cated in Reference 3, is

o= 1, +P -+ d; (132)

The above equation indicates that a change in flap
deflection angle is equal to an equal change of augle of
attack of the wing. This relationship gives quite satis-
factory results when compared with test data for small flap
deflection angles, i.e., less than 15 to 20 dwgrees. How-
ever, for larger deflection angles the use of Equation (132)
often results in values of 1ift which exceed the experimen-
tal values.

This region of higher flap deflections is of
particular interest for V/STOL aircraft which utilize flap
deflections up to 60 degrees. No theoretical analysis has
been found to determine the wing 1ift for very high flap
deflections, and hence the determination of the lift must
be accomplished by use of experimental data.

Existing experimental data for the special case of
zero forward speed, 4 = 0, have been used here to formu-
late empirical correction factors to the basic theory of
Reference 3. Under this condition, the increment 1lift
coefficient accounts for the entire wing lift and can be
written as follows:

Vs .
AC%-:: I.87'c—’(‘-r"d4°+’<6{) (133)
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where K 1is an empirically derived correction factor.

The experimental data utilized for this purpose are
obtained from References 2, 4, 12, and 13 for plain, single-
slotted, and rowler flaps. The data are compared in Figures
46 through 49 with values calculated using Equation (130)
with different values of K . It is noted that the test
data can be approximately reproduced by use of a correction
factor A =cosK,d . 1In particular, by comparing the test data
with the curves plotted on Figures 46 and 47, it is noted
that for ¢/c = 0.3, K, ranges between 0.75 and 0.85,
whereas for ¢/c¢ = 0.6, X, = 0.75 provides reasonably
accurate results., Similarly for the single-slotted flaps,
the data on Figure 48 indicate values of K of 0.7 and
0.6 for ¢/c of 0.3 and 0.6, respectively, Also, Figure
49 indicates that for Fowler flaps with &/¢ = 0.4, a
value of K, = 0.875 is appropriate.

WING TWIST

The theory presented in Reference 3 for the lift
increment of a wing immersed in a slipstream was developed
for a rectangular, untwisted wing. To a first-order approxi-
mation, twist can be introduced into the equations as a local
change of angle of attack. There follows that for a linear
twist distribution, the lift coefficient increment due to
the slipstream can be written as

mTutc

1 -
2C, = 2L / (+&5) LMDy e
-1

where €g 1s the wing twist between slipstream center and
periphery. Since it can be shown that

&/7 IR0 @2
-l
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the theory used here indicates that linear twist does not
change the wing lift. Because of a lack of appropriate test
data, this conclusion could not be verified.

PROPELLER-WING ORIENTATION AND POSITION

Orientation

The theory presented in Reference 3 can be used to
evaluate the effect of propeller-wing orientation angle,
ty . This angle appears in the expression for the effective
angle of attack in the slipstream as follows:

o = 1, +P-o,+ Kd; (136)

where

_ -4 sin (dp-ir>

C“z(dp— i,.) * 1- Cys

The theory is compared in Figure 50 with the test
data of a double-slotted flap of Reference 13. The correction
factor K, = 0.75 was utilized in the calculations. It
is noted from Figure 50 that except for the low values sf
flap deflection; the correlation between theory and test
data is very good.

Position

No theoretical analysis of the effect of the posi-
tion of the slipstreams on the lift coefficient of a wing
partially immersed in one or more propeller slipstreams has
been found in the literature. The following represents a
summary of findings from test results contained in a number
of experimental reports:
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TEST DATA
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FIGURE 50. Effect of Wing Incidence on Lift Coefficient
(Test Data from Reference 13, Figure 9a; Double-Slotted Flap,
CT,S = 1.0)0
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Longitudinal

References 2, 9, and 11 show some data on the effect
of the longitudinal position. These data, which are not
entirely consistent, indicate that the optimum wing-propeller
relative position is such that the wing leading edge is about
0.3 to 0.5 propeller diameter behind the propeller disc plane.

Vertical

The test data presented in References 2, 9, and 11
indicate that maximum lift is obtained when the vertical
position of the wing is close to the propeller center.
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