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MAGNETIC STUDIES OF THE ANTIFERROMAGNET RbM’\F;

ABSTRACT

Magnetic properties of the antiferromagnet RoMnF3 have been studied. Below LINT]
the magnetic ions order into a two-sublattice system with the spins antiparallel.
RbMnF4 exhibits high exchange and low anisotropy; the form of the anisotropy sur-
face is cubic. Consequently, for applied DC magnetic fields less than about
3000 oe, the static equilibrium position of the sublattice magnetization is, in

general, multivalued.

Measurements of the DC susceptibility x have been made on powder and single
crystal specimens of RanF3 for the range of applied field 0 to 12 koe and over the
temperature range 4.2 to 300°K. The observed value of Ty wos about ten degrees
higher than the previously published value. When plotted as a function of applied
field, X1 shows no abrupt discontinuity analogous to the spin flopping exhibited

by uniaxial antiferromagnets.

A simple model, in which HD and M are restricted to the (110) plane, has en-

C
abled solutions of the static equilibrium problem to be obtained. X-band resonance
experiments are reported, and a resonance theory is presented which incorporates
the equilibrium solutions. The predicted antiferromagnetic resonance spectrum
shows reasonable agreement with the experimental data. The possibility of parallel

pumping spin waves in RanF3 is considered, and an attempt to measure the spin

wave linewidth is described.
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MAGNETIC STUDIES OF THE ANTIFERROMAGNET RanF3

CHAPTER 1
INTRODUCTION

This report describes certain aspects of the static and dynamic properties of RanF3 —a
perovskite material which has a simple cubic structure and is antiferromagnetic at temperatures
less than 82.6°K. Below the Néel temperature, the Mn2+ ions order into a two-sublattice con-
figuration with the magnetic moments antiparallel. According to published data, 1,2 RanF3
exhibits low anisotropy and high exchange fields [356 and 7.08 X 107 amp/meter (4.47 and
8.9 X 105 oe), respectively]. Thus, antiferromagnetic resonance (AFMR) experiments can be
performed without the need for extremely high DC magnetic fields and at convenient microwave
frequencies (e.g., X-band). The form of the anisotropy appears to be entirely cubic, with no
uniaxial component. The anisotropy constant is negative, so that the four cube diagonals are
equivalent easy directions of magnetization.

Because RanF3 is chemically quite stable, it is a very convenient material for general
antiferromagnetic studies. It is possible to prepare relatively large single crystals which may
be readily cut by conventional techniques. In the single crystal form, the material shows little
or no tendency to absorb moisture.

The equilibrium position of the sublattice magnetizations under the action of an applied DC
magnetic field, determined by minimizing the total free energy of the system, is not, in general,
unique for an antiferromagnet that possesses cubic anisotropy. However, for sufficiently large
values, the applied field and the magnetization will be almost orthogonal, regardless of the
direction of the applied field with respect to the cube edges. In this case, the equilibrium posi-
tion of the sublattice magnetizations is well defined. For RanF3, experimental evidence shows
that the perpendicular configuration is quite an accurate model for fields in excess of 8 koe.
Freiser, et a_l.,2 have performed a comprehensive investigation of AFMR for the high field case
which has enabled them to investigate the anisotropy surface.

To the author's knowledge, no work has been published concerning the nature of the AFMR
spectrum in RanF3 in the low field region. For weak fields, Néel3 has postulated the existence
of domains in cubic antiferromagnets which, since the dipolar fields are small, are probably ill
defined. Because of the likelihood of their existence, the resonance spectrum can be expected
to be much more complicated.

Measurement of the DC magnetic susceptikility as a function of applied field for various
crystal axes gives some insight into the equilibrium position of the magnetization. McGuire4

has determined x[iOO] at 4.2°K and 1 koe by measuring the force on a single crystal of RanF3




placed in a nonuniform magnetic field. He found X[iOO] to be O'BXl and concluded that the spins
were distributed equally along the four cube diagonals. This simple picture cannot be correct,
since the torque due to the applied field must, at least, rotate the magnetization vectors toward
the [110] axis.

A study of the DC magnetic susceptibility was made using a vibrating sample magnetometer.
The results are presented in Ch.II. Measurements at 4.2°K were made on a powder sample as
well as on a single crystal. The results show that x[iOO] and x[“” are both increasing functions
of HDC’ .
sponded to the abrupt spin flop transition of uniaxial antiferromagnets.

but approach an asymptotic value at about 8 koe. No effect was observed which corre-

Susceptibility measurements were also recorded as a function of temperature, from 4.2° to
300°K, enabling the Néel temperature and the exchange constants W“ and W12 to be determined.

Despite the complex nature of the problem concerning the static equilibrium position of the
magnetization, the situation is considerably simplified if HD(‘ is restricted to lie in one of the
crystal symmetry planes. A discussion of the static equilibrium is presented in Ch. III. The
analysis, based on the molecular field approximation, assumes that the magnetization is uniform,
i.e., the discussion is limited to a single domain, and that HDC lies in a (110) plane. As ex-
pected, even for the restricted problem, the solution is multivalued.

A discussion of AFMR for a cubic material is presented in Ch, IV. Analysis of the linear-
ized equations of motion yields two independent solutions for the resonant frequency of the system.
The particular solutions obtained when HDC is chosen to lie along a [111] axis are derived from
an equation which is equivalent to the result obtained by Keffer and Kittel.

X-band resonance data were obtained at five different frequencies. The resonances were
studied in detail at 4.2°K as a function of angle and HDC' Plots. of HDC
nance vs angle of applied field with respect to the cube edges indicate at least two resonances for

required to excite reso-

each frequency. For at least two frequencies, many resonances are apparent which are clearly
inexplicable on the basis of the simple theory. However, at least one resonant mode has been
correlated as a function of frequency. Some of the characteristics of this mode can be predicted
and are in agreement with the theory presented.

Spin wave instability and premature saturation of AFMR have been discussed by Heeger and
Pincus.7 The mechanism of spin wave growth and instability was first analyzed for the ferro-
magnetic case by Suhl.8 He showed that such instabilities could be explained by a coupling of
energy from the uniform precessional mode (spin wave number k = 0) to spin waves (k #0) which
are degenerate in energy with the uniform mode. The spin waves in turn couple energy to dissi-
pative processes such as lattice vibrations. When the threshold driving field for the excitation
of spin waves has been exceeded, the amplitude of the uniform precessional mode remains con-
stant. Any further increase in incident power is coupled to the spin wave spectrum. The analy-
sis by Heeger and Pincus for the antiferromagnetic case is similar. By considering the equations
of motion for a two-sublattice system, they have calculated the critical field for the onset of
instability and premature saturation of the AFMR.

The spin wave linewidth in KIVlnF3, a material similar in structure to RanF3, has been
measured by Heeger.g He observed the apparent saturation of the susceptibility of the uniform
mode at resonance and demonstrated that the critical field was anomalously low. The experi-
mental data indicated that AHk was about 5 X 10_3 oe, which is nearly four orders of magnitude
less than the linewidth of the uniform precessional mode; AHk was inferred from a measurement

of the response of the resonant sample to amplitude modulated incident power.




Heeger's measurements indicate that the mechanisms responsible for the line broadening in
spin wave excitation must be very different from those associated with the uniform mode for the
material KMnF3. The question arises whether RbIVInF3 exhibits similar behavior and whether
the spin wave linewidth is the same order of magnitude. Chapter V describes a method and an
experimental attempt to obtain AHk in RanF3 by measuring the threshold magnetic field for
longitudinally pumped spin waves. The attractive feature of the so-called parallel pumping
technique is that the uniform precessional mode is suppressed. This permits a more accurate
measurement of spin wave linewidth, since the losses associated with the uniform precessional
mode are absent. The result of the experiment was negative, which, however, was not inter-

preted as having set a lower limit to the value of AH Analysis of the instability threshold makes

k'
the basic assumption that the pumping field is parallel to the magnetization and that the spin wave
frequencies excited are very low. The negative result of this experiment, together with the re-
sults of the DC susceptibility and AFMR experiments, was taken to imply that these conditions

were violated.







CHAPTER II
DC SUSCEPTIBILITY MEASUREMENTS

A. GENERAL DISCUSSION

The sublattice magnetizations of RanF3 are quite well described by the Brillouin function

for J = 5/2. The saturation magnetization MS has been calculated from the formula, assuming

5

K
a g-factor of two and the lattice constant equal to 4.24 A, and was found to be 3,04 X 10 amp/

meter (47M, equal to 3820 gauss).

S
According to the molecular field theory as applied to antiferromagnets, the fields acting on

the respective sublattices are

Hy =Hp o + W M, + WM,
Hp = Hpo + Woo My + Waghy
where
Wi = Wao
and
Wiz = Way

The sum of the exchange constants W, , and W, ,, defined by the above equation, may be
evaluated from a plot of 1/x vs temperature within the paramagnetic region. The plot is a

straight line of the form

1 _ply_ 1
¥ - Nzg) =z (W, +W,,)
where
2
C = n(Peff) Mo (1)
3k

k is Boltzmann's constant, n is the number of Mn2+ ions per unit volume, and Pef

netic moment of the Mn2+ ion.

¢ is the mag-

The straight line plot intercepts the negative temperature axis at a point given by
0=ClW, +W,) . (2)

The value of the slope and intercept enable (W“ + Wiz) to be found; W11 and W,

pletely determined from a measurement of the large field susceptibility, which is equal to 1/W1 2

may be com-

below T,;. The magnitude of the slope of the line enables P whose value is well known,10 to

N eff’
be verified. This provides one check of the accuracy of the measurements.
In addition to providing values of TN‘ W“ and WiZ‘ measurements of the DC susceptibility

can give some insight into the equilibrium position of the magnetization.

* The quantum defect has not been taken into account.




A series of measurements of the magnetic susceptibility x was made on powder and single
*
crystal specimens of RanF3. The single crystal was cut so that it could be rotated about an
axis perpendicular to the (110) plane. Measurements of x with HDC applied parallel to the [111)]

and [100] axes enabled two determinations of W, , and WiZ' In the case of a powder, the density,

11
which enters into the calculation for the exchange constants, is not well defined. Hence, the

powder measurements were not used to determine W“ and W12.

B. EXPERIMENTAL ARRANGEMENT

Magnetic susceptibility measurements were made using a vibrating sample magnetometer
previously described by Hunt“ and more recently modified by Santoro.12 A block diagram of
the instrument, which is modeled after Foner's design,“’ is shown in Fig. 1. The magnetometer
measures the magnetic moment of a sample placed in a uniform magnetic field. The sample is
made to vibrate in a direction perpendicular to the DC field by a voltage which is induced in a

pair of stationary pickup coils that surround the sample. The vibrational motion of the sample
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Fig.1. Block diagram of magnetometer.

*All the RbMnF3 samples used in this work were grown and donated by Dr. M. Kestigian of the Sperry Rand
Research Center, Sudbury, Mass.
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originates in a loud speaker cone. The sample is fastened to the end of a rod which is in turn
rigidly attached to the cone. A second pair of pickup coils surrounds the upper part of the sup-
port rod. A small piece of ferrite attached to the rod at this point induces a reference voltage

in the second pair. By the use of amplitude and phase adjustments, the signal and reference
signals are balanced against each other, after appropriate amplification, to obtain a null condition.
The magnetization per unit mass of the sample is then equal to RK/W, where K is a constant re-
lated only to the magnetometer, W is the weight of the sample, and R is the attenuator reading.
The factor K is found experimentally by calibrating the instrument with a sample whose magneti-
zation is known. The actual standard used was a nickel sphere (x/p = 54.4 emu/gm at 300°K and

is independent of applied field for Hp~ > 2 koe).

The constant K is a function of sample position and the appropriate electromagnetic con-
version factors. As a function of position, K(x,y, z) has a saddle point. It is necessary to locate
the sample as near as possible to this point; otherwise, a slight displacement of the sample causes
a change in the value of K. This is an important consideration in order to obtain good reproduci-
bility of measurements and accuracy of calibration.

For the purpose of making susceptibility measurements as a function of temperature, the
sample is cooled to liquid helium temperature and then allowed to return to room temperature
over a period of several hours. Since there is little room between the pole pieces of the magnet,
the magnetometer is equipped with a special narrow-necked dewar of somewhat limited capacity.
The sample rod extends down into the dewar neck, and the helium is drawn up around the sample
through a glass capillary tube that encases the sample rod and extends down into the body of the
dewar vessel. The helium supply can maintain the sample at 4.2°K for about 10 minutes.

Temperature is measured by means of a copper constantan thermocouple. For the lowest
temperatures, the liquid helium itself is used as the reference bath. As the sample warms and

the helium in the reservoir becomes depleted, an ice bath is adopted as the reference.

C. EXPERIMENTAL RESULTS

The magnetic susceptibility per unit mass x/p (p = density) of a powder specimen was meas-
ured as a function of DC magnetic field at 4.2°K over the range 1 to 11 koe. The results are
plotted in Fig. 2. It can be seen that x/p rises rapidly at first and then levels off at about 3 koe
Above 3 koe, x/p increases almost linearly, but at a much slower rate. '

The susceptibility at 10 koe was measured as a function of temperature over the range 4.2°
to 300°K. The results, shown in Fig. 3, clearly illustrate the Néel temperature. The suscepti-
bility in the antiferromagnetic region follows the Van Vleck theory.14 This indicates that although
the sublattice magnetizations are antiparallel within each domain, the static equilibrium position
of the magnetization vectors must be randomly distributed throughout the powder. The single
crystal anisotropy is ineffective in determining the orientation of the sublattices with respect to
HDC' If it were effective, the spins would assume a position almost perpendicular to HDC for a
field as large as 10koe, and x/p would be fairly independent of temperature.

The considerable discrepancy between the measured value of TN of 94°K and the previously
published value2 of 82.6°K was at first attributed to the fact that the thermocouple junction was
not in direct contact with the powder sample. This source of error was later discounted because
the same discrepancy was noted in the single crystal experiments in which it was possible to

locate the junction much closer to the sample,




A plot of (x/p)_1 vs temperature, shown in Fig. 4, yielded a straight line in the paramagnetic
region. From the slope of the line and Eq. (1), P ;s was calculated to be 5.96 Bohr magnetons,
which is in excellent agreement with the value of 5.92 quoted by Bates.10

The powder specimen, which weighed 0.82 gm, was prepared by grinding down a quantity of
polycrystalline material and was sealed in a phenolic holder to prevent water absorption. Be-
cause of its size, not all the sample contributed fully to the magnetic moment. A correction
factor was applied which was equivalent to using an effective mass, rather than the actual mass,
in the susceptibility calculations. The correction factor was determined from a comparison with
susceptibility data obtained from experiments with a single crystal sample which was much
smaller (0.48 gm).

Figure 5 shows the variation of x/p with HDC for a single crystal oriented so that HDC was
applied along the [111] axis. The figure indicates a rapid increase in x/p as HDC is increased

from 1 to 4koe, followed by a gradual asymptotic leveling off to a value of 8.55 X 10-5 emu/gm.

W—1 = 47 X Density X (x in emu/gm)

12
Hence,
W,, = —216
and
Hp = |[W,,|Mg = 216 X 3.04 X 10> = 6.56 x 10" amp/meter

(or 8.27 X 105 oe)

In Fig. 6, x/p has been plotted as a function of temperature for the same crystal orientation.
In the temperature range below TN’ two curves are shown corresponding to HDC equal to 2 and
10koe. The high field susceptibility, which is essentially equal to xl/p, is constant up to a
temperature of 80°K and then increases until TN is reached. The low field susceptibility is equal
to 0.765 xl/p at 4.2°K, climbs with temperature, and is roughly equal to Xl/p at TN’ Clearly,
in the low field case, all the magnetization cannot be along the easy axis parallel to HDC; other-
wise, the susceptibility at 4.2°K would be much smaller.

Figure 7 shows the variation of (x/p)-1 with temperature. The value of Peff’ calculated
from the slope of the curve in the paramagnetic region, is 5.96 Bohr magnetons. The negative

temperature intercept is —160°K. From Eq. (2),

—160 = C(W11 + W1Z)

Hence,

W11 +W12 = —238

and therefore,

Curves of )(/p Vs HDC' x/p vs temperature, and ()(/p)—1 vs temperature are shown in
Figs. 8 through 10 for the case of HDC parallel to a {100} axis. The same general trends are

observed as for the previous orientation. The value of |W12], calculated from the large field
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Fig. 9. x/p vs temperature for RbMnF3 single crystal;

Hpye parallel to [100] axis.
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susceptibility at 4.2°K, is 216. The value of P .., calculated from the ()(/p)°1 vs temperature
plot, is 5.8 Bohr magnetons, which is somewhat low. The negative temperature intercept is

—192°K, giving a value of —~80 for W, ,.

D. DISCUSSION OF RESULTS

The measured value of T,, was about 94°K for both the single crystal and powder samples of

RanFB' This result is signi?]icantly different from the value reported by Freiser, et ::1_1.2 Errors
due to incorrect location of the thermocouple junction have already been discounted. The liquid
nitrogen boiling point was checked for calibration purposes by first using the ice point and then
the boiling point of liquid nitrogen for the reference temperature. In both cases, the calibration
was within the accuracy (77.5 £ 1°K). During the experiment, the sample was cooled by a con-
tinual flow of gas rising from the evaporating coolant. Since the gas had low heat capacity, it

is possible that conduction of heat along the thermocouple leads raised the junction temperature
sufficiently to account for the discrepancy.

The absolute accuracy of the vibrating sample magnetometer ultimately relies on locating
the sample exactly at the saddle point. The same precaution must be observed when calibrating
the instrument with the nickel sphere. It was estimated that the absolute accuracy was not better
than #3 percent. The relative accuracy, i.e., repeatability of the measurements once the sam-
ple has been positioned at the saddle point, can be much less than 1 percent. However, con-
siderable care must be taken to avoid the many sources of error. Common problems encountered
were: (1) condensation of water vapor onto sample and capillary, (2) mechanical obstruction
caused by the sample touching the capillary tube, (3) error signal induced in the pickup coil due
to contact between the pickup coil and dewar vessel, {4) drift in the amplifiers due to fluctuating
battery voltages.

There is excellent agreement between the calculated and published value of Peff for the
powder sample and for the single crystal with HDC along the [111] axis. However, the calcu-
lated value of H;, and W

E 12
the value of W“ is considerably lower (—22 compared to —95). It is important to note that W“

are 7 percent lower than the value given by Freiser, et a\_l.,2 whereas

is calculated by taking the difference between two quantities fairly equal in magnitude, so that
the above discrepancy is not surprising. The data calculated from the measurements with HDC
along the [100] axis are considered less reliable because of the low value of Peff'

It has been shown15 that for the Néel ground state to be stable,

Lt

w,,M

must be > — %
1272

For the two pairs of experimental values, W“/W12 < 1/2. At 4.2°K, M,1 = -—MZ. Hence, it
follows that the stability criterion is satisfied. (Note that the value of TN quoted in Ref. 1 would
violate the criterion.)

The measurements of x/p vs HDC for the single crystal do not indicate any abrupt spin
flopping over the entire range of applied field. The simple theory outlined in Ch. III predicts
that flopping should occur for at least the [111] direction, provided M and H are in the same
quadrant of the (110) plane, although misalignment of HDC would reduce the effect (see Fig. 12).

13







CHAPTER III
STATIC EQUILIBRIUM PROBLEM

A. THE MODEL

The determination of the static equilibrium of the magnetization in a two-sublattice anti-
ferromagnet is a four-variable problem. The variables may be taken to be the spherical position
coordinates (ei, qpi), i =1, 2, of each sublattice. The process of finding the equilibrium position
involves minimizing the total free energy of the system. For a cubic antiferromagnet, this re-
quires the solution of four inhomogeneous simultaneous transcendental equations. The result is,
in general, multivalued. However, by restricting HDC to lie in the (110) plane, the problem be-
comes much simpler. Despite the loss in generality, the restricted solution of the equilibrium
problem is still very pertinent to the analysis of resonance experiments, particularly those re-
ported in Ch. IV,

Figure 11 illustrates the directions of H and the sublattice magnetizations in the (110)

DC
plane. The direction of HDC makes an angle ¢ with the [100] axis. The directions of 1VI1 and

M2 are © and © + 7 + AO, respectively.

4 <
5, W, E
[1o0]] w
L4
(3
Fig. 11. [Iliustration of M and HDC % |
lying in the (110) plane. -
M, [100)
8, ",
H
v
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The model is based on the assumption that the magnetization is locally uniform, i.e., a
single domain is considered. A second assumption is that HDC’ Mi’ and M2 are coplanar. The

statement is correct for certain directions of HD and is expected to hold for a range of ¢ from

C
symmetry considerations. The fact that the anisotropy surface is continuous and has a stationary
value in the (110) plane indicates that the total energy can have a stationary value, which may or
may not represent stable equilibrium. However, if these assumptions lead to a correct predic-

tion of any of the observed microwave resonances, they will be justified.
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B. DERIVATION OF THE EQUILIBRIUM EQUATION

The total free energy may be written as
K= Han + J{ex+ }(z
where the subscripts refer to the anisotropy, exchange, and Zeeman energies, respectively.
Kan = — % (sin4 Gisin2 2<,91 + sin2 291 + sin4 G)Zsin2 2<p2 + sin2 262)
where K is a positive constant,

g, =T E =
¢, 9,5 , ©,=6 , ©6,=06,+1+40

Hence,

K

—— %{— [sin4 e + sin% 20 + sin4(e + AB) + sin 2(ze + 2A0)]
The intersublattice exchange energy is

2 2
I wzlezl

=4

1 1
oWieMy - My — o W My |7 = 5w

where

and W = W22

11

Assuming that the lengths of the vectors 1\711 and I_\/’[2 remain fixed, the second two terms in Hex
do not enter into the minimizing of the total free energy with respect to the positions of M1 and
M2 and can be dropped.

Thus,

I S n_ 2
}(ex =—p Wy, My - M, = bW oM™ cosAB

and

=
]}

—p (M, +M,) - H

—poMH[cos(G —9) —cos(0 + A6 — )]

where H is the DC field.

Hence, the total energy is given by

i po\Vizl\/IZCOSAG —~ 1 MH[cos (6 ~y) — cos(© + A6 — )]

- -4& [sin4 6 +sin’ 26 + sin? (6 + A0) + sin® 2(0 + Ae)] . (3)

By minimizing K with respect to AO,

K _
a6 - °
which, after some manipulation, becomes

[Hex —H cos(6 —9)] sinAa6 = H sin(6 — ) cosAB + 1 ——}—{—)

8 ‘o m [2 sin2(6 + AO)
o

+ 3 sin4(6 + A0))

16




where

H,, = |W12|M
In conformity with the usual definition of effective anisotropy field,

i o---L
an v

BHan

aM,
i
and Ha = 4K/3qu, where Ha is the effective anisotropy field along the [111] axis. By expanding
the terms involving A6 and rearranging the equation,
3Ha
H sin(6 —y) + 53 (2 sin26 + 3 sin46)

3H
- —a —
Hex—H cos(6 — ) + 8 (cos 26 — 3 cos 46)

We now examine the magnitude of the various quantities in the above expression. The largest
value of H that will be considered is 10koe. Since Ha and Hex are 4.47 and 8.9 X 105 oe, respec-

tively, there is clearly negligible error in the approximation:

A = H SiII'lI(O —i’) ) (4)
ex

The term involving H in the denominator can be discarded because, if H is large, cos(6 — ) =
90°. Hence, the term is always small. The above result shows that even for the largest value
of H to be considered, A6 is only a fraction of a degree.

It is noted that Eq.(4) does not contain Ha explicitly. Hence, finding the equilibrium position
first involves a trade-off between Zeeman and exchange energies, followed by a rotation of the
magnetization to minimize the total energy.

By using the small angle approximations, sinA©® = 6 and cosA© = 1 — é(Ae)Z, and neglect-
ing the effect of A© on the anisotropy energy, Eq. (4) enables the total free energy equation to be

written as

Koo 1 ( H
m = _HGX [1 -3 (H ) sin (9 —IJJ)] —H
(o}

ex

+ (L) sinte -]} -
e

X

cos(e—z/) [sm (6 —y)

H (s1n4e + sin 29) . (5)

By minimizing X with respect to ©, (1/;10M) (a}/00) = 0, which leads to the result;

4H%

T = —sin26(1 + 3 cos 20) . (6)
ex a

sin2(6 — ) + (EHL) sin(6 —y) [1 + 3 cos 2(6 —¥)]
ex

The second term on the left side of Eq. (6) is quite negligible compared to the first term, since
H/Hex = 1/100, except in the pathological case of sin2(6 — ) = 0. Even for this case, the re-

sulting error in © is small. Hence, the final expression for the equilibrium is

4H2

3H H
ex a

sin2(6 — ) = —sin26(1 + 3 cos 26) (7)

and the total free energy at equilibrium is given by
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2 3

Ko H® 2 H® .2 B
S M T —Hex— I sin (6 —y) — 5— sin (0 ¥) cos (O — )
o ex ZHex
——g- Ha(sin4e + sinz?.e) . (8)

Whether the equilibrium is stable or unstable may be determined by examining the second

derivative of the energy and finding whether it is positive or negative. After differentiating and

simplifying,
2 2
1M Q—};— =— I?_ cos 2(6 — ¢) — HZ cos(® —y)[2-9 sinz(e — )]
Mo 00 ex 2H
ex
3
— 7 H, (cos26 + 3 cos40) . (9)

C. PARTICULAR EQUILIBRIUM SOLUTIONS
Casel: H=0

Equation (7) reduces to sin20 (1 + 3 cos26) = 0. Hence, either

sin20 = 0 ., ie, @=(2n+1)3

or

c0529=-% . ie., © =%54.7° or #(180° — 54.7°)

For © = [{2n + 1)1]/2, Eq.(9) shows that these are unstable equilibria. The solutions represent
the magnetization along the cube edges, which are the hard directions.
The solutions for which cos 26 = —(1/3) represent the four <111> axes. Equation (9) shows

that these are stable equilibria.

Case 2: H Along a <111} Direction (y = 54.7°)

Unless H = 0, as already discussed, sin260 = 0 is no longer a solution. Two solutions exist:

either
sin2(6 —y) =0 and (1 +3cos20)=0
or
4H2
3H 0 sin2(6 —y) = — sin26(1 + 3 cos 20)
ex a

The first solution corresponds to the spins lying along the [111] axis and parallel to H.

Substitution of the constraint @ = ¢ = 54.7° into Eq. (9) gives the condition

2 2 3
=g -5t >0
Fo™ 80 ex H__ @

for stability. By neglecting the second term, HZ < ZHexHa'
For the second solution, when H = 0, © = (180° — 54.7°); and when H = =, © =(90° + ¢), i.e.,
the spins are orthogonal to H, It follows that 125.3° < © € 144.7°, From this inequality, it can

be shown that the second solution always represents a stable equilibrium.
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Hence, as H is increased from zero strength, any spins initially directed along the [111]
axis parallel to H will remain there until H exceeds the value «/@1' The only other stable
equilibrium position is then at an angle lying between 125.3° and 144.7°, and the magnetization
will suddenly rotate, or flop, to the new position. This is analogous to the spin flopping in a
uniaxial antiferromagnet. There is, however, an important difference. The spins will not flop
back when H is reduced again, but will slowly rotate. At zero field, the spins will point in the
direction ® = 125.3°, i.e., along the other [111] axis in the (110) plane. According to the simple
theory, at least 25 percent of the magnetization will initially point in the latter direction. These
spins will never flop, but will rotate slowly under the action of varying field strength as outlined

above.

Case 3: H Along a <100> Direction (¢ = 0)

Solutions to Eq. (7) are

sin20 =0 , ie, ©=(2n+1) %
or
2
4H
3H—H = —(1 + 3 cos 26)
ex a

W celtisen, SmEE) = 0, fE e (B 3H_H_/2.

The second solution becomes imaginary if H2 > 3HeXHa/2,. but for lower values of H, it is

the only solution and is stable.

Case 4: H Along a <110)> Direction (¢ = 90°)

Equation (7) becomes

41°

3H _H
ex a

sin 26 = sin26(1 + 3 cos 20)

The two solutions are either

sin20 =0 i.e.,, © =nr
or
2
4H -
30 H =1 + 3cos 26
ex a

The first solution is stable if H2 > 3HexHa'
The second solution does not exist if HZ > 3HexHa’ because cos 26 is greater than unity.

For the second solution to be stable,

9H
4

2 3H
(Hl - 4_a) cos 20 —
ex

4 cos40 >0

The inadequacy of the model may be noted by considering the effect of a strong field applied
along a <{110) direction. The above result states that the magnetization will be perpendicular to
H and directed along the [100] axis. However, the [100] axis is a hard axis, and the spins are
free to rotate out of the (110) plane that contains H, while maintaining the orthogonality condition

with respect to H, until they lie along the {110] direction. Clearly, this is a lower energy state.
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Case 5: H in an Arbitrary Direction

For the general case, the transcendental Eq.(7) must be solved, and the solution must then
be checked for stability. This was done for five values of ¢. The results are shown in Fig. 12.

The dotted portions of the curves for § = 10° and = 45° represent unstable regions.

160

B ¢ =54.7°
140 e
- 35.3°
120
—— 10°
100
0°
=
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©
@
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froo] -
1
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8
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(2n, H )2

ex o

Fig. 12. Equilibrium position of sublattice magnetizations as a function of HDC'

D. CONCLUSIONS

The model enables a simple expression for the equilibrium position of the magnetization to
be found. It appears to give reasonable solutions for H parallel to the [100] and [111] axes, but
leads to a contradictory result for a large field applied along a [110] axis.

The magnetic field acts differently on the magnetization depending on whether M and H are
in the same quadrant of the {110} plane or in different quadrants. For the latter case, as H is
increased, the magnetization rotates away from H. For very large fields, M and H are perpen-
dicular. If M and H are initially in the same quadrant, with H along the [111] axis, M will

keep its orientation along the same [111] axis until H exceeds a certain value, equal to ZHexH

B

a
when M will abruptly flop into the adjacent quadrant. If M and H are initially in the same

quadrant and H is not along the [111] axis, M gradually rotates away from H as it is increased.
After a certain rotation, depending on the magnitude and orientation of H, M will flop into the
adjacent quadrant and remain there.

The simple model predicts that under the action of a DC magnetic field, a single crystal of
RanF3 can act like a two-state device. If a strong field is applied to one quadrant in the (110)
plane, it will cause any magnetization lying along an axis within that quadrant to rotate into the
adjacent quadrant in the plane and remain there when the field is removed. If the field is then
applied within the quadrant to which M rotated, it will cause M to rotate back to its original

quadrant and remain there.
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CHAPTER IV
ANTIFERROMAGNETIC RESONANCE

A. RESONANCE ANALYSIS

The equation of motion for the two-sublattice antiferromagnet is

1 1 (o]

<[~

(M. + 6M.) = p (M, + 6M.) X [H_. + W..(M, + 6M,) + W, (VM. + 6M.)] + T, + 67T,
i i oi i i ij' g j i i
i,j=1,2 and i# j

The capital letters represent the steady state values, the deltas refer to increments about the
equilibrium position, and T represents the torque resulting from the anisotropy energy. De-
magnetizing effects are neglected.

ﬁoi = ﬁDC + ﬁNi’ where ﬁNi is the nuclear hyperfine field2 and acts in the direction of 1-\7[i.
The nuclear hyperfine interaction is important for RanF3, since at low temperatures, it is
comparable in magnitude [(= 9.46/T °K) oe] to the effective crystalline anisotropy field. The terms

that contribute to the static equilibrium condition may be separated from the dynamic terms:

M,
—Lz0=u M X(H_ +W M +W.M)+T,
Y o i ol i1 i ij ) 1
Therefore,
6M > - - — == -
—2 =p [6M. X (H . + W, M)+ M, X W, 6M_] + 6T, . (10)
0% o i oi iy ] i ij° ] 1

The anisotropy energy for the two-sublattice cubic system can be expressed as

K 2R 2R 2 2 2 2 2. 2 2 2 .2
an F (MixMiy ’ MixM1z ’ Miniz * MZxMZy N MZxMZZ ’ MZyMZZ)
and
LI T —
X,y Mo aMi
X,y

neglecting intersublattice anisotropy. The anisotropy torques are found by taking the vector
product 17\7[.1 X ﬁai' Assuming that the axes of the Cartesian coordinate system are chosen to coin-

cide with the cube edges,

T. =M, H . —M. . :Z—KM. M, (M.2 —M.Z)
ix iy "aiz iz aly — 4,4 iy izt iy iz
=M, H_. -M_H_=2K M M (M.2 —M.Z)
iy iz aix ix ‘iz M4 ix iz iz ix
T, =M. H. -M _H._=2£ M M, (M.2 —M.Z)
iz ix aiy iyix 4 ixiy ix iy
Hence,
2K 2 2
T. +o6T. =-—r (M, +6M, )(M, +6M.)[(M, +6M. )" —(M, +86M, )]
ix ix M4 iy iy iz iz iy iy iz iz
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(44

2 (Hoiz * wiZMZz) —(Hoiy * wiZMZy) Y —WIZMPI. wiZM 1y
—(Hgy, + WipMp,) Y Hygy + WioMp ) WMy, Y WMy
Hygy + WipMpy)  —(Hg g ¥ WioMp) Y “WiMyy WMy, 8
[A)] =
0 “WoMa, WMy g Hopp, * WipMy,)  —(Hgp  + WipMy )
WMy, Y ~WioMay —{Hyp, + WiopMy,! v Hozy ¥ WMy )
_wiZMZy WiZMZx Y (HoZy * wiZM 1y) _(Hon + wiZM 1x) Y ]
[ 2K 2 3 2K a2 _ a3

0 F (3MizMiy_Miz) ¥ (3M12M1y Miy) 0 Y 0

2K 2 3 2K .02 3

T4 (3Mix iz_Miz) g o (3M11M1X—Mix) g g 0
2K (3MixM1y M‘:y) - (3Min1x -M3) 0 0 0 0
. M
B} = i
[+]
2K 2 3 2K 2 3
0 0 0 0 i My, M, - Mp,) - 25 (3M3, M, —M3 )
2K 2 3 2K 2 3
] ] 0 - F (SMZXMZZ - MZZ) [} '-NF (3MZZMZX - MZX)
2K 2 3 2K 2 3

0 0 o F (BMZXMZy - sz) ] ;d—i (3MZyMZx - sz) o




It follows that

_ 2K 2 .3, 2. .3
0Tix = 4 My M Miy = Mig) = OM;, (3M, My = M)
Similarly,
2K 2 3 2 3
GTiy N F BN (R, Ty — M) — BN MM, — M)
and
2K 2. .3 2 3
0Tip = 4 [OMpx3My My = M) — OM; (3M My — My )]

Equation (10) is now linearized and written in terms of Cartesian components. Six simul-

taneous equations are obtained; the variables are the six differential increments éMix, GMiy,
GMiz. In matrix notation, the set of equations may be written as
AL (6M] = [A] [6M] + [B] [6M] . (11)
RAPS

Matrix [A] contains the coefficients of 6M which are invariant to a rotation of the coordinates;
[B] contains the anisotropic terms which are affected by a rotation.

The coordinates are now rotated through an angle © in the (110) plane so that the new z-axis
and the equilibrium direction of the magnetization coincide. The<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>