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MAGNETIC STUDIES OF THE ANTIFERROMAGNET RbMnF3 

ABSTRACT 

Magnetic properties of the antiferromagnet RbMnF3 have been studied. Below T^, 

the magnetic ions order into a two-sublattice system with the spins antiparallel. 

RbMnFo exhibits high exchange and low anisotropy; the form of the anisotropy sur- 

face is cubic. Consequently, for applied DC magnetic fields less than about 

3000 oe, the static equilibrium position of the sublattice magnetization is, in 

general, multivalued. 

Measurements of the DC susceptibility x have been made on powder and single 

crystal specimens of RbMnF~ for the range of applied field 0 to 12 koe and over the 

temperature range 4.2 to 300°K. The observed value of T^, was about ten degrees 

higher than the previously published value. When plotted as a function of applied 

field, Xn i n shows no abrupt discontinuity analogous to the spin flopping exhibited 

by uniaxial antiferromagnets. 

A simple model, in which H_r and M are restricted to the (110) plane, has en- 

abled solutions of the static equilibrium problem to be obtained. X-band resonance 

experiments are reported, and a resonance theory is presented which incorporates 

the equilibrium solutions. The predicted antiferromagnetic resonance spectrum 

shows reasonable agreement with the experimental data. The possibility of parallel 

pumping spin waves in RbMnFg is considered, and an attempt to measure the spin 

wave linewidth is described. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief,  Lincoln Laboratory Office 

*This report is based on a thesis of the same title submitted to the Department of 
Electrical Engineering at the Massachusetts Institute of Technology on 11 August 
1965, in partial fulfillment of the requirements for the degree of Master of Science. 
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MAGNETIC STUDIES OF THE ANTIFERROMAGNET RbMnF3 

CHAPTER I 

INTRODUCTION 

This report describes certain aspects of the static and dynamic properties of RbMnF- — a 

perovskite material which has a simple cubic structure and is antiferromagnetic at temperatures 

less than 82.6°K.    Below the Neel temperature,   the Mn      ions order into a two-sublattice con- 
figuration with the magnetic moments antiparallel.    According to published data,   '    RbMnF. 

exhibits low anisotropy and high exchange fields [356 and 7.08 X 10   amp/meter (4.47 and 
8.9 X 10   oe),   respectively].    Thus,   antiferromagnetic resonance (AFMR) experiments can be 
performed without the need for extremely high DC magnetic fields and at convenient microwave 
frequencies (e.g.,   X-band).    The form of the anisotropy appears to be entirely cubic,   with no 

uniaxial component.    The anisotropy constant is negative,   so that the four cube diagonals are 

equivalent easy directions of magnetization. 

Because RbMnF- is chemically quite stable,   it is a very convenient material for general 

antiferromagnetic studies.    It is possible to prepare relatively large single crystals which may 

be readily cut by conventional techniques.    In the single crystal form,  the material shows little 
or no tendency to absorb moisture. 

The equilibrium position of the sublattice magnetizations under the action of an applied DC 

magnetic field,   determined by minimizing the total free energy of the system,   is not,   in general, 
unique for an antiferromagnet that possesses cubic anisotropy.    However,   for sufficiently large 

values,   the applied field and the magnetization will be almost orthogonal,   regardless of the 

direction of the applied field with respect to the cube edges.    In this case,   the equilibrium posi- 

tion of the sublattice magnetizations is well defined.    For RbMnF.,,   experimental evidence shows 

that the perpendicular configuration is quite an accurate model for fields in excess of 8 koe. 

Freiser,   et al.,    have performed a comprehensive investigation of AFMR for the high field case 

which has enabled them to investigate the anisotropy surface. 
To the author's knowledge,   no work has been published concerning the nature of the AFMR 

3 
spectrum in RbMnF-, in the low field region.    For weak fields,   Neel    has postulated the existence 
of domains in cubic antiferromagnets which,   since the dipolar fields are small,   are probably ill 

defined.    Because of the likelihood of their existence,   the resonance spectrum can be expected 
to be much more complicated. 

Measurement of the DC magnetic susceptibility as a function of applied field for various 
4 

crystal axes gives some insight into the equilibrium position of the magnetization.    McGuire 

has determined Xrinoi at 4-2°K and 1 koe by measuring the force on a single crystal of RbMnF- 



placed in a nonuniform magnetic field.    He found Xr^QQi to De °-^Xi and concluded that the spins 
were distributed equally along the four cube diagonals.    This simple picture cannot be correct, 

since the torque due to the applied field must,   at least,   rotate the magnetization vectors toward 

the [110] axis. 

A study of the DC magnetic susceptibility was made using a vibrating sample magnetometer. 

The results are presented in Ch. II.    Measurements at 4.2°K were made on a powder sample as 

well as on a single crystal.    The results show that Xr^QOl anc* XMI-H 
are Doth increasing functions 

of H^p,   but approach an asymptotic value at about 8koe.    No effect was observed which corre- 

sponded to the abrupt spin flop transition of uniaxial antiferromagnets. 
Susceptibility measurements were also recorded as a function of temperature,   from 4.2° to 

300°K,   enabling the Neel temperature and the exchange constants W. . and W.-, to be determined. 

Despite the complex nature of the problem concerning the static equilibrium position of the 

magnetization,   the situation is considerably simplified if H^p is restricted to lie in one of the 

crystal symmetry planes.    A discussion of the static equilibrium is presented in Ch. III.    The 

analysis,   based on the molecular field approximation,   assumes that the magnetization is uniform, 

i.e.,   the discussion is limited to a single domain,   and that H„r lies in a (110) plane.    As ex- 

pected,   even for the restricted problem,   the solution is multivalued. 

A discussion of AFMR for a cubic material is presented in Ch. IV.    Analysis of the linear- 

ized equations of motion yields two independent solutions for the resonant frequency of the system. 

The particular solutions obtained when H~r is chosen to lie along a [111] axis are derived from 

an equation which is equivalent to the result obtained by Keffer and Kittel. 

X-band resonance data were obtained at five different frequencies.    The resonances were 

studied in detail at 4.2°K as a function of angle and Hn„.    Plots.of Hn„ required to excite reso- 

nance vs angle of applied field with respect to the cube edges indicate at least two resonances for 

each frequency.    For at least two frequencies,   many resonances are apparent which are clearly 
inexplicable on the basis of the simple theory.    However,   at least one resonant mode has been 
correlated as a function of frequency.    Some of the characteristics of this mode can be predicted 

and are in agreement with the theory presented. 
Spin wave instability and premature saturation of AFMR have been discussed by Heeger and 

Pincus.     The mechanism of spin wave growth and instability was first analyzed for the ferro- 
g 

magnetic case by Suhl.     He showed that such instabilities could be explained by a coupling of 
energy from the uniform precessional mode (spin wave number k = 0) to spin waves (k ^ 0) which 

are degenerate in energy with the uniform mode.    The spin waves in turn couple energy to dissi- 
pative processes such as lattice vibrations.    When the threshold driving field for the excitation 
of spin waves has been exceeded,   the amplitude of the uniform precessional mode remains con- 

stant.    Any further increase in incident power is coupled to the spin wave spectrum.    The analy- 

sis by Heeger and Pincus for the antiferromagnetic case is similar.    By considering the equations 
of motion for a two-sublattice system,   they have calculated the critical field for the onset of 
instability and premature saturation of the AFMR. 

The spin wave linewidth in KMnF~,   a material similar in structure to RbMnF,,   has been 
9 measured by Heeger.     He observed the apparent saturation of the susceptibility of the uniform 

mode at resonance and demonstrated that the critical field was anomalously low.    The experi- 
_3 

mental data indicated that AH,   was about 5X10     oe,   which is nearly four orders of magnitude 

less than the linewidth of the uniform precessional mode;  AH,   was inferred from a measurement 

of the response of the resonant sample to amplitude modulated incident power. 



Heeger's measurements indicate that the mechanisms responsible for the line broadening in 

spin wave excitation must be very different from those associated with the uniform mode for the 

material KMnF,.    The question arises whether RbMnF- exhibits similar behavior and whether 

the spin wave linewidth is the same order of magnitude.    Chapter V describes a method and an 

experimental attempt to obtain AH,   in RbMnF» by measuring the threshold magnetic field for 

longitudinally pumped spin waves.    The attractive feature of the so-called parallel pumping 

technique is that the uniform precessional mode is suppressed.    This permits a more accurate 
measurement of spin wave linewidth,   since the losses associated with the uniform precessional 

mode are absent.    The result of the experiment was negative,   which,   however,   was not inter- 
preted as having set a lower limit to the value of AH, .    Analysis of the instability threshold makes 

the basic assumption that the pumping field is parallel to the magnetization and that the spin wave 

frequencies excited are very low.    The negative result of this experiment,   together with the re- 

sults of the DC susceptibility and AFMR experiments,   was taken to imply that these conditions 

were violated. 





CHAPTER II 

DC SUSCEPTIBILITY MEASUREMENTS 

A.    GENERAL DISCUSSION 

The sublattice magnetizations of RbMnF, are quite well described by the Brillouin function 

for J = 5/2. The saturation magnetization MQ has been calculated from the formula, assuming 

a g-factor of two and the lattice constant equal to 4.24 A, and was found to be 3.04 X 10 amp/ 

meter (47rM„ equal to 3820 gauss). 

According to the molecular field theory as applied to antiferromagnets,  the fields acting on 

the respective sublattices are 

Hl ■ HDC + WUM! + W12M2 

where 

and 

H2 " «DC + W22M2 + W
21

M! 

Wll ■ W22 

w     = w W12      W21 

The sum of the exchange constants W., and W.-,,   defined by the above equation,   may be 

evaluated from a plot of l/x vs temperature within the paramagnetic region.    The plot is a 

straight line of the form 

i=T(^)-|(W11 + W12) 

where 

n(Peff)2 H0 
C =  ®i* ° (1) 

3k 

k  is Boltzmann's constant,   n  is the number of Mn      ions per unit volume,   and P  ., is the mag- 
2 + netic moment of the Mn      ion. 

The straight line plot intercepts the negative temperature axis at a point given by 

e = c(wld + w12)     . (2) 

The value of the slope and intercept enable (W   . + W  _) to be found;   W, , and W  ? may be com- 

pletely determined from a measurement of the large field susceptibility,   which is equal to l/W.7, 
10 below T^.    The magnitude of the slope of the line enables P ff,   whose value is well known,      to 

be verified.    This provides one check of the accuracy of the measurements. 

In addition to providing values of TN,   W.. and W,2,   measurements of the DC susceptibility 

can give some insight into the equilibrium position of the magnetization. 

' The quantum defect has not been taken into account. 



A series of measurements of the magnetic susceptibility  x  was made on powder and single 

crystal specimens of RbMnF_.      The single crystal was cut so that it could be rotated about an 

axis perpendicular to the (110) plane.    Measurements of  x  with H^p applied parallel to the [111] 

and [100] axes enabled two determinations of W. . and W. 2.    In the case of a powder,  the density, 

which enters into the calculation for the exchange constants,   is not well defined.    Hence,   the 

powder measurements were not used to determine W. . and W.2. 

B.    EXPERIMENTAL ARRANGEMENT 

Magnetic susceptibility measurements were made using a vibrating sample magnetometer 
previously described by Hunt      and more recently modified by Santoro.       A block diagram of 

13 the instrument,   which is modeled after Foner's design,      is shown in Fig. 1.    The magnetometer 

measures the magnetic moment of a sample placed in a uniform magnetic field.    The sample is 

made to vibrate in a direction perpendicular to the DC field by a voltage which is induced in a 

pair of stationary pickup coils that surround the sample.    The vibrational motion of the sample 
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Fig. 1.    Block diagram of magnetometer. 

* All the RbMnF3 samples used in this work were grown and donated by Dr. M. Kestigian of the Sperry Rand 
Research Center, Sudbury, Mass. 
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originates in a loud speaker cone.    The sample is fastened to the end of a rod which is in turn 

rigidly attached to the cone.    A second pair of pickup coils surrounds the upper part of the sup- 

port rod.    A small piece of ferrite attached to the rod at this point induces a reference voltage 

in the second pair.    By the use of amplitude and phase adjustments,   the signal and reference 

signals are balanced against each other,   after appropriate amplification,   to obtain a null condition. 

The magnetization per unit mass of the sample is then equal to KR/W,   where  K is a constant re- 

lated only to the magnetometer,   W is the weight of the sample,   and R is the attenuator reading. 

The factor  K is found experimentally by calibrating the instrument with a sample whose magneti- 

zation is known.    The actual standard used was a nickel sphere (x/p = 54.4emu/gm at 300°K and 

is independent of applied field for HD^ > 2 koe). 
The constant  K is a function of sample position and the appropriate electromagnetic con- 

version factors.    As a function of position,   K(x, y, z) has a saddle point.    It is necessary to locate 

the sample as near as possible to this point; otherwise, a slight displacement of the sample causes 

a change in the value of K.    This is an important consideration in order to obtain good reproduci- 

bility of measurements and accuracy of calibration. 

For the purpose of making susceptibility measurements as a function of temperature,  the 

sample is cooled to liquid helium temperature and then allowed to return to room temperature 
over a period of several hours.    Since there is little room between the pole pieces of the magnet, 
the magnetometer is equipped with a special narrow-necked dewar of somewhat limited capacity. 

The sample rod extends down into the dewar neck,   and the helium is drawn up around the sample 

through a glass capillary tube that encases the sample rod and extends down into the body of the 

dewar vessel.    The helium supply can maintain the sample at 4.2°K for about 10 minutes. 

Temperature is measured by means of a copper constantan thermocouple.    For the lowest 

temperatures,   the liquid helium itself is used as the reference bath.    As the sample warms and 

the helium in the reservoir becomes depleted,   an ice bath is adopted as the reference. 

C.    EXPERIMENTAL RESULTS 

The magnetic susceptibility per unit mass x/p (p = density) of a powder specimen was meas- 

ured as a function of DC magnetic field at 4.2°K over the range 1 to 11 koe.    The results are 
plotted in Fig. 2.    It can be seen that x/p rises rapidly at first and then levels off at about 3 koe 

Above 3 koe,   x/p increases almost linearly,   but at a much slower rate. 

The susceptibility at 10 koe was measured as a function of temperature over the range 4.2° 
to 300°K.    The results,   shown in Fig. 3,   clearly illustrate the Neel temperature.    The suscepti- 

14 bility in the antiferromagnetic region follows the Van Vleck theory.       This indicates that although 

the sublattice magnetizations are antiparallel within each domain,   the static equilibrium position 

of the magnetization vectors must be randomly distributed throughout the powder.    The single 

crystal anisotropy is ineffective in determining the orientation of the sublattices with respect to 

Hj-.^.    If it were effective,   the spins would assume a position almost perpendicular to Hnr, for a 
field as large as 10 koe,   and x/p would be fairly independent of temperature. 

The considerable discrepancy between the measured value of TN of 94°K and the previously 
published value    of 82.6°K was at first attributed to the fact that the thermocouple junction was 

not in direct contact with the powder sample.    This source of error was later discounted because 

the same discrepancy was noted in the single crystal experiments in which it was possible to 

locate the junction much closer to the sample. 



A plot of (x/p)      vs temperature,   shown in Fig. 4,  yielded a straight line in the paramagnetic 

region.    From the slope of the line and Eq. (1),   P  ff was calculated to be 5.96 Bohr magnetons, 
10 which is in excellent agreement with the value of 5.92 quoted by Bates. 

The powder specimen,  which weighed 0.82 gm,   was prepared by grinding down a quantity of 

polycrystalline material and was sealed in a phenolic holder to prevent water absorption.    Be- 

cause of its size,  not all the sample contributed fully to the magnetic moment.    A correction 

factor was applied which was equivalent to using an effective mass,   rather than the actual mass, 

in the susceptibility calculations.    The correction factor was determined from a comparison with 

susceptibility data obtained from experiments with a single crystal sample which was much 

smaller (0.48 gm). 

Figure 5 shows the variation of x/p with H„„ for a single crystal oriented so that Hn„ was 

applied along the [111] axis.    The figure indicates a rapid increase in x/p as H„„ is increased 

from 1 to 4 koe,   followed by a gradual asymptotic leveling off to a value of 8.55 X 10~    emu/gm. 

^jr—   = 47T X Density X (x in emu/gm) 
W12 

Hence, 

and 

W,, = -216 12 

HE =  lW12'MS = 216 X 3,°4 X 1()5 = 636 X 10? amP/meter 

(or 8.27 x 105oe) 

In Fig. 6,   x/p has been plotted as a function of temperature for the same crystal orientation. 

In the temperature range below TN,   two curves are shown corresponding to H„„ equal to 2 and 

10 koe.    The high field susceptibility,   which is essentially equal to Xi/p.   is constant up to a 

temperature of 80°K and then increases until TN is reached.    The low field susceptibility is equal 

to 0.765xi/p at 4.2°K,   climbs with temperature,   and is roughly equal to x i/p at T„.    Clearly, 

in the low field case,   all the magnetization cannot be along the easy axis parallel to H^^;   other- 

wise,   the susceptibility at 4.2°K would be much smaller. 

Figure 7 shows the variation of (x/p)~    with temperature.    The value of P ff,   calculated 

from the slope of the curve in the paramagnetic region,   is 5.96 Bohr magnetons.    The negative 

temperature intercept is — 160°K.    From Eq. (2), 

Hence, 

-160 = C(Wdl + W12) 

W14+ W12=^238 

and therefore, 

WH==22 

v-1 Curves of x/p vs Hnr,   x/p vs temperature,   and (x/p)~    vs temperature are shown in 

Figs. 8 through 10 for the case of Hn~ parallel to a [100] axis.    The same general trends are 

observed as for the previous orientation.    The value of |W,2|,   calculated from the large field 
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susceptibility at 4.2°K,  is 216.    The value of P  ff,   calculated from the (x/p)~    vs temperature 

plot,   is 5.8 Bohr magnetons,   which is somewhat low.    The negative temperature intercept is 

-192°K,   giving a value of -80 for W 

D.    DISCUSSION OF RESULTS 

The measured value of TM was about 94°K for both the single crystal and powder samples of 
2 

RbMnF,.   This result is significantly different from the value reported by Freiser, et al.    Errors 

due to incorrect location of the thermocouple junction have already been discounted.    The liquid 

nitrogen boiling point was checked for calibration purposes by first using the ice point and then 

the boiling point of liquid nitrogen for the reference temperature.    In both cases,   the calibration 

was within the accuracy (77.5 ± 1°K).    During the experiment,   the sample was cooled by a con- 

tinual flow of gas rising from the evaporating coolant.    Since the gas had low heat capacity,   it 

is possible that conduction of heat along the thermocouple leads raised the junction temperature 

sufficiently to account for the discrepancy. 

The absolute accuracy of the vibrating sample magnetometer ultimately relies on locating 

the sample exactly at the saddle point.    The same precaution must be observed when calibrating 

the instrument with the nickel sphere.    It was estimated that the absolute accuracy was not better 

than ±3 percent.    The relative accuracy,   i.e.,   repeatability of the measurements once the sam- 

ple has been positioned at the saddle point,   can be much less than 1 percent.    However,   con- 

siderable care must be taken to avoid the many sources of error.    Common problems encountered 

were:    (1) condensation of water vapor onto sample and capillary,   (2) mechanical obstruction 

caused by the sample touching the capillary tube,   (3) error signal induced in the pickup coil due 

to contact between the pickup coil and dewar vessel,   (4) drift in the amplifiers due to fluctuating 

battery voltages. 

There is excellent agreement between the calculated and published value of P  ff for the 

powder sample and for the single crystal with H^p along the [111] axis.    However,   the calcu- 

lated value of Hp and W12 are 7 percent lower than the value given by Freiser,   et al.,   whereas 

the value of W.. is considerably lower (—22 compared to —95).    It is important to note that W.. 

is calculated by taking the difference between two quantities fairly equal in magnitude,   so that 

the above discrepancy is not surprising.    The data calculated from the measurements with H„„ 

along the [ 100] axis are considered less reliable because of the low value of P  ff. 
15 

It has been shown      that for the N§el ground state to be stable, 

W11M1 1 
W^MT   must be >- 2      . 

12    2 

For the two pairs of experimental values,  W-./W^ < 1/2.    At 4.2°K,   M    = -NU.    Hence,   it 

follows that the stability criterion is satisfied.    (Note that the value of T^ quoted in Ref. 1 would 

violate the criterion.) 

The measurements of x/p  vs Hn„ for the single crystal do not indicate any abrupt spin 

flopping over the entire range of applied field.    The simple theory outlined in Ch. Ill predicts 

that flopping should occur for at least the [111] direction,   provided  M  and  H  are in the same 

quadrant of the (110) plane,   although misalignment of Hnr would reduce the effect (see Fig. 12). 

13 





CHAPTER III 

STATIC EQUILIBRIUM PROBLEM 

A.     THE  MODEL 

The determination of the static equilibrium of the magnetization in a two-sublattice anti- 

ferromagnet is a four-variable problem.    The variables may be taken to be the spherical position 

coordinates (0., cp.),   i = 1, 2,   of each sublattice.    The process of finding the equilibrium position 

involves minimizing the total free energy of the system.    For a cubic antiferromagnet,   this re- 

quires the solution of four inhomogeneous simultaneous transcendental equations.    The result is, 
in general,   multivalued.    However,   by restricting H~r to lie in the (110) plane,   the problem be- 

comes much simpler.    Despite the loss in generality,   the restricted solution of the equilibrium 

problem is still very pertinent to the analysis of resonance experiments,   particularly those re- 
ported in Ch. IV. 

Figure 11 illustrates the directions of Hn„ and the sublattice magnetizations in the (110) 

plane.    The direction of Hnr, makes an angle ip  with the [100] axis.    The directions of M.  and 

M2 are 0 and 0 + IT + A0,   respectively. 

~[I-M - »Ml | 

[100] T7 

~^7\ 

/ 

A* 

'P/ 

Fig. 11.    Illustration of M and Hnr 

lying in the (110) plane. 
[100] 

The model is based on the assumption that the magnetization is locally uniform,   i.e.,   a 

single domain is considered.    A second assumption is that H„„,   M.,   and M2 are coplanar.    The 

statement is correct for certain directions of HDC and is expected to hold for a range of ip  from 

symmetry considerations.    The fact that the anisotropy surface is continuous and has a stationary 
value in the (110) plane indicates that the total energy can have a stationary value,   which may or 

may not represent stable equilibrium.    However,   if these assumptions lead to a correct predic- 

tion of any of the observed microwave resonances,   they will be justified. 

is 



B.    DERIVATION OF THE EQUILIBRIUM EQUATION 

The total free energy may be written as 

K=  K      +  K     + JU 
an        ex        Z 

where the subscripts refer to the anisotropy,   exchange,   and Zeeman energies,   respectively. 

K 4 2 2 4 2 2 
K      = — -j- (sin    9. sin    2<p    + sin    26^+sin    92sin    2<p    + sin    292) 

where  K is a positive constant. 

(Pi
=(Pz=\     ,      ©4 = ©     ,      e2=e1+7r+AG 

Hence, 

K      = - ^ [sin4 9 + sin2 29 + sin4(0 + A6) + sin2(29 + 2A9)1 an 4   l J 

The intersublattice exchange energy is 

K       =-|JI   W,9M,   •   M9 - y p.   W,, IM, I2 - 4 HL  W,,|M,r ex        ro    12    1 2      2 ro    ll1     l1 2 ^o    22'     21 

where 

M,  = M = -M,      and      W,,=W,, 1 2 11 2<i 

Assuming that the lengths of the vectors M, and M-, remain fixed,   the second two terms in  K 

do not enter into the minimizing of the total free energy with respect to the positions of M . and 

M-, and can be dropped. 

Thus, 

K       = -|i  W-, M,   •   M_ = p.  W,,M2 cosAG ex o    12      1 L      'o    12 

and 

KZ = ~^o^\ + M
2) *   H 

= —|JL  MH[cos(9 -0) - cos (9 + A9 - ip)] 

where  H  is the DC field. 

Hence,   the total energy is given by 

K = \x  W12M   cosA9 - n  MH[cos(9 - ip) - cos(9 + A9 - ip)] 

- ^ [sin4 9 + sin2 29 + sin4 (9 + A9) + sin2 2(9 + A9)l       . (3) 

By minimizing   K with respect to A9, 

M.   =0 
8A9 

which,   after some manipulation,   becomes 

1   , _K 

o 
[Hgx - H cos(9 - ip)] sinA9 = H sin(9 - ip) cosA9 + -|  (—^ ) [2 sin 2(9 + A9) 

+ 3 sin4(9 + A9)] 

It, 



where 

H      =    W,0  M ex      '     12' 

In conformity with the usual definition of effective anisotropy field, 

A       aMo„ 
H      =--1 

^o     dM. 

and H    = 4K/3p.  M,   where H    is the effective anisotropy field along the fill] axis.    By expanding 

the terms involving A0 and rearranging the equation, 

3H. 
H sin(0 -ip) + 

A0 = 
H sin(6 -ip) + -y^ (2 sin 20 + 3 sin 40) 

3H 
Hgx-H cos(0 -0) + (cos 20—3 cos 40) 

We now examine the magnitude of the various quantities in the above expression.    The largest 

value of H that will be considered is lOkoe.    Since H    and H      are 4.47 and 8.9 X 10   oe,   respec- a ex . K 
tively,   there is clearly negligible error in the approximation: 

A0 a H sin(0 -ili) 
H (4) 

The term involving H  in the denominator can be discarded because,   if H  is large,   cos(0 — ip) = 

90°.    Hence,   the term is always small.    The above result shows that even for the largest value 
of H to be considered,  A0 is only a fraction of a degree. 

It is noted that Eq. (4) does not contain H    explicitly.    Hence,   finding the equilibrium position 
a. 

first involves a trade-off between Zeeman and exchange energies,   followed by a rotation of the 
magnetization to minimize the total energy. 

By using the small angle approximations,  sinA0 a  0 and cosA0 =  1 - i(A0)  ,   and neglect- 

ing the effect of A0 on the anisotropy energy,   Eq. (4) enables the total free energy equation to be 

written as 

Ju - -Hex[* - I (H^)
2
 sin2<e -„] -H cos.e -„ (#-)» [-*?£=!} ro I x    ex' J v    ex'     I 

(f^-) sin2(0 -</>)||        \ HJsin4© + sin220 (5) 

By minimizing   K  with respect to 0,   (l/u  M) (dK/dQ) = 0,   which leads to the result: 

4H 
3H     H ex   a 

sin 2(0 -ip) + (21^-) sin(0 - 4>) [1 + 3 cos 2(0 - ip)] = -sin 20(1 + 3 cos 2©) (6) 

The second term on the left side of Eq. (6) is quite negligible compared to the first term, since 
H/H = l/lOO, except in the pathological case of sin 2(0 — 0) = 0. Even for this case, the re- 

sulting error in 0   is small.    Hence,  the final expression for the equilibrium is 

4H 3j|—P|-   sin 2(0 -ip) = -sin 20(1 + 3 cos 20) 
ex   a 

(7) 

and the total free energy at equilibrium is given by 

17 



2 3 
-H      - -^—  sin 2(0 -ip) - -^y-  sin 2(e - ij>) cos (0 - $) 

2Hex 

- 1 H  (sin40 + sin220)      . (8) 8     a 

Whether the equilibrium is stable or unstable may be determined by examining the second 

derivative of the energy and finding whether it is positive or negative.    After differentiating and 

simplifying, 

1      32H H2 ,,„       M H3 /rt       |W,     n    .   2 | = - j^— cos 2(0 -4>) 2__  cos(e _ jj,) yi _ 9 Sin   (e _ ^)] 

ex %M   90" -ex 2H 

- | Ha (cos 20 + 3 cos 40)      . (9) 

C.    PARTICULAR EQUILIBRIUM SOLUTIONS 

Case 1:   H= 0 

Equation (7) reduces to sin 20 (1+3 cos 20) = 0.    Hence,   either 

sin20 = 0 ,        i.e.,   0 = (2n + 1)  | 

or 

cos20=-|      ,        i.e.,   0 = ±54.7°       or       ±( 180° - 54.7°) 

For 0 = [(2n + l)n]/Z,   Eq. (9) shows that these are unstable equilibria.    The solutions represent 

the magnetization along the cube edges,   which are the hard directions. 

The solutions for which cos 2© = — (l/3) represent the four <111 > axes.    Equation (9) shows 

that these are stable equilibria. 

Case 2:   H Along a <111> Direction U = 54.7°) 

Unless H = 0,   as already discussed,   sin 20 = 0 is no longer a solution.    Two solutions exist: 

either 

sin2(0-0) = O      and      (l+3cos20)=O 

4H2 

sin 2(0 -</,)=- sin 20(1 +3 cos 20) 
3H    H ex   a 

The first solution corresponds to the spins lying along the [111] axis and parallel to H. 

Substitution of the constraint 0  = ip = 54.7° into Eq. (9) gives the condition 

8 K + 2H     > 0 
^oM   302  "      Hex       H2 a 

ex 

for stability.    By neglecting the second term,   H    < 2H     H  . 
6X     3. 

For the second solution,   when H = 0,   0 = (180° - 54.7°);   and when H = »,   0 = (90° + #),   i.e., 

the spins are orthogonal to H.    It follows that 125.3° < 0 < 144.7°.    From this inequality,   it can 

be shown that the second solution always represents a stable equilibrium. 
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Hence,   as  H  is increased from zero strength,   any spins initially directed along the fill] 

axis parallel to H will remain there until H  exceeds the value   /2H    H .    The only other stable 

equilibrium position is then at an angle lying between 125.3° and 144.7°,   and the magnetization 

will suddenly rotate,   or flop,   to the new position.    This is analogous to the spin flopping in a 

uniaxial antiferromagnet.    There is,   however,   an important difference.    The spins will not flop 

back when H  is reduced again,   but will slowly rotate.    At zero field,  the spins will point in the 

direction 0 = 125.3°,   i.e.,   along the other [111] axis in the (110) plane.    According to the simple 

theory,   at least 25 percent of the magnetization will initially point in the latter direction.    These 

spins will never flop,  but will rotate slowly under the action of varying field strength as outlined 

above. 

Case 3:   H Along a <100) Direction (0 = 0) 

Solutions to Eq. (7) are 

sin2G = 0      ,        i.e.,   G  = (2n + 1)   | 

or 

4H2 

= -(1 + 3 cos 29) 3H     H ex   a 

The solution,   sin 20 = 0,   is stable if H2 > 3H     H  /Z. ex   a 

The second solution becomes imaginary if H    > 3H    H  /2,. but for lower values of H,    it is 

the only solution and is stable. 

Case 4:   H Along a <110> Direction (fl = 90°) 

Equation (7) becomes 

4H2 

sin 20 = sin 20(1 + 3 cos 20) 
3H    H ex   a 

The two solutions are either 

sin 20 = 0      ,       i.e.,  0 = nir 

or 

4H2 

= 1 + 3 cos 20 3H    H ex   a 

The first solution is stable if H    > 3HH  . 
cX     3.   -^ 

The second solution does not exist if H    > 3H     H ,   because cos 20 is greater than unity. 

For the second solution to be stable, 

T2        3H   v 9H 
^ ^ ) cos 20 ^ cos 40 > 0       . 

The inadequacy of the model may be noted by considering the effect of a strong field applied 

along a <110> direction.    The above result states that the magnetization will be perpendicular to 

H  and directed along the [100] axis.    However,   the [100] axis is a hard axis,   and the spins are 

free to rotate out of the (110) plane that contains  H,    while maintaining the orthogonality condition 

with respect to H,   until they lie along the [110] direction.    Clearly,   this is a lower energy state. 
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Case 5:   H in an Arbitrary Direction 

For the general case, the transcendental Eq. (7) must be solved, and the solution must then 

be checked for stability. This was done for five values of ip. The results are shown in Fig. 12. 

The dotted portions of the curves for ip = 10° and ip = 45° represent unstable regions. 
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Fig. 12.    Equilibrium position of sublattice magnetizations as a function of H 
DC 

D.     CONCLUSIONS 

The model enables a simple expression for the equilibrium position of the magnetization to 

be found.    It appears to give reasonable solutions for H parallel to the [100] and [111] axes,   but 

leads to a contradictory result for a large field applied along a [110] axis. 

The magnetic field acts differently on the magnetization depending on whether M  and H are 

in the same quadrant of the {110} plane or in different quadrants.    For the latter case,   as  H  is 

increased,   the magnetization rotates away from  H.    For very large fields,   M  and  H  are perpen- 
dicular.    If M  and H  are initially in the same quadrant,   with H  along the [111] axis,   M  will 

keep its orientation along the same [111] axis until H  exceeds a certain value,   equal to  / 2HH , 

when M  will abruptly flop into the adjacent quadrant.    If  M  and H  are initially in the same 

quadrant and H  is not along the [111] axis,   M  gradually rotates away from H  as it is increased. 

After a certain rotation,   depending on the magnitude and orientation of H,   M  will flop into the 

adjacent quadrant and remain there. 

The simple model predicts that under the action of a DC magnetic field,   a single crystal of 

RbMnF3 can act like a two-state device.    If a strong field is applied to one quadrant in the (110) 

plane,   it will cause any magnetization lying along an axis within that quadrant to rotate into the 

adjacent quadrant in the plane and remain there when the field is removed.    If the field is then 
applied within the quadrant to which  M  rotated,   it will cause M to rotate back to its original 
quadrant and remain there. 

20 



CHAPTER IV 

ANTIFERROMAGNETIC RESONANCE 

A. RESONANCE ANALYSIS 

The equation of motion for the two-sublattice antiferromagnet is 

- (M. + ÖM.) = a  (M. + ÖM.) X [H   . + W..(M. + 6M.) + W..(M. + 6M.)1 + f. + öf. 
y       l r     ro     l l      l   01 li     L l ij     j J i i 

i,j = 1,2      and      i ^ j 

The capital letters represent the steady state values, the deltas refer to increments about the 

equilibrium position, and T represents the torque resulting from the anisotropy energy. De- 

magnetizing effects are neglected. 

H   . = HDp + H^.,   where H»^. is the nuclear hyperfine field    and acts in the direction of M.. 

The nuclear hyperfine interaction is important for RbMnF^,   since at low temperatures,   it is 

comparable in magnitude [(= 9.46/T°K) oe] to the effective crystalline anisotropy field.    The terms 

that contribute to the static equilibrium condition may be separated from the dynamic terms: 

M. 
—- = 0 = a   M. X (H   . + W..M. + W..M.) + f. 
y ro    l 01 li    l ij    j l 

Therefore, 

ÖM. 
 - = a  föM. X (H   . + W..M.) + M. X W..6M.1 + öf.       . (10) 

7 Kol       l oi ij    3 l ij      jJ l 

The anisotropy energy for the two-sublattice cubic system can be expressed as 

K    = - -^r (M, M2:  + M
Z

4 M2:  + M2: mz
A   + M^ M^ •+ M^ M

2
   + M^ M^ ) an M4        lx    ly lx    lz ly    lz 2x    2y 2x    2z 2y    2z 

and 

1        OK H   . 
aix,y ^o   8M. 

neglecting intersublattice anisotropy.    The anisotropy torques are found by taking the vector 

product M. X H   ..    Assuming that the axes of the Cartesian coordinate system are chosen to coin- l ai 
cide with the cube edges, 

T.    = M.  H   .    -M.  H   .    = -^ M.  M.  (M2   - M2 ) ix ly   aiz IZ   aiy      yA      ly    IZ      ly iz 

T.    = M.  H   .    -M.  H.    =^r M.  M.   (M     -M    ) ly iz   aix ix   iz      ».4      ix    iz      iz ix 

T.    = M.  H   .    -M.  H.    = -^  M.  M.   (M2   - M2 ) iz ix   aiy ly   ix      M4      ix    ly     ix ly 

Hence, 

T.    + ÖT.    = ^ (M.    + <5M.   ) (M.    + <5M.   ) [(M.    + <5M.   )2 - (M.    + <5M.   )21 ix ix       M4 iy iy iz iz' lv     ly iy' iz iz'   J 
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[A] 

(H   .    +W,,M,  ) -(H   ,    +W,,M,  ) *   oly 12    2y '   olx 12    2x 

-W.,M, 12    2y 

-(H   .    + W4,M,   ) oly 12    2y 

(H   ,    + W.-ML   ) W.,M. olx 12    2x 12    lz 

12    2y 

-W„M 12'"2x 

0 

W12Mly 

-W12Mly 

-(Ho2« + W12Mi«> 

(H   ,    tW0M,   ) -(H  ,    +W.,MJ   ) o2z 12    lz o2y 12    ly' 

(H  ,    + W.,M.   ) o2x 12    lx 

(H  0    +W.,MJ   ) -(H  ,    +WJ,MJ   ) 1   o2y 12    ly' o2x 12    lx 

N 
N 

(B)   -    -2- 

-7^<3MixMiz-M3iz> M 

^(3MlxMly-Mly) 

«   (3MlzM^y - lljj - «   (3M^zMly - M3
ly) 

^(3M^Mlx-M3
lx, 

^<3M?yMlx-M3ix> 

^JMLM2,-M!,' 

—*  (3M?  M-    -M3  ) %r 

^ (3M2zM^y - M3
z) -  «   (3M^M2y - M3

y) 

T^^Zz^x-^x» 

^(3M^yM2x-M3
x) 



It follows that 

Similarly, 

and 

ÖT.    = ^ [ÖM.  (3M.  M2   - M3 ) - ÖM.  (3M2 M.    - M3 )] ix      M4  l      iy        iz    iy iz IZ        IZ    iy ly ' 

7K 2 "^ 2 "^ 
ÖT.    = ^ [ÖM.  (3M    M.    -M    ) -ÖM.  (3M    M.    - M    )] iy      M4 l      iz        iz    ix ix ix        ix    iz iz J 

ÖT.    = ^ [ÖM.  (3M2 M.    - M3 ) - <5M.  (3M2 M.    - M3 )] iz      M4  l       ix        ix    iy iy iy        iy    ix ix J 

Equation (4 0) is now linearized and written in terms of Cartesian components.    Six simul- 

taneous equations are obtained; the variables are the six differential increments <5M.  .   <5M.   , ix iy 
ÖM.   .    In matrix notation,  the set of equations may be written as 

IZ 

-£- [ÖM] = [A] [ÖM] + [Bl [ÖM]      . (11) 
rHo 

Matrix [A] contains the coefficients of <5M which are invariant to a rotation of the coordinates; 

[B] contains the anisotropic terms which are affected by a rotation. 

The coordinates are now rotated through an angle 0   in the (110) plane so that the new z-axis 

and the equilibrium direction of the magnetization coincide.    The new coordinates will be re- 

ferred to as (x,y,z).    Thus,   M    = M,   and M    = M    =0. .j, '       z ' x y 
If [T] is the transformation matrix from the new to the old axes [ÖM] = [T] [öm],   where [<5m] 

represents the dynamic components of the magnetization in the new coordinate system.    Hence, 

from Eq. (11), 

&  [öm] = [AJ [6m] + [T]"1 [B] [T] [öm] 

where the components in [A] are written in terms of the new coordinates.    The equation 

J^   [6m] = [a] [öm]+ [b] [öm] (12) 

defines the new matrices [a] and [b]. 

The derivation of the transformation matrix is given in the Appendix.    For the two-sublattice 

system,   it becomes a 6 X 6 matrix: 
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[Tl     = 

, cos 6 + 1 >        , cos 6 — 1 x        sin 6 Q 

2 2 NT2 

, cos 9 — 1 >        , cos 8 + 1 v        sin6 0 

— sin 8 — sin 8 

NT2 

NTI 

cos 8 

, cos8 + 1 x 

, cose — i v 

— sine 
^ 

(cose-^ 

* cos e + i v 

— sine 

>T2 

sine 

sfZ 

sine 
NT2 

cosG 

and 

IT]"1 =[T]1 

By invoking the constraint that the total magnetization must be conserved,   fa] and [b] may 

be reduced from 6 X 6 to 4 X 4 matrices. 

Putting 

2 2 2 2 2 
m.   = M    = (m.     + 6 m.   )    + (m.     + <5m,   )    + (m,     + öm.   ) 

1 lx lx ly !y lz lz 

m,     + m.     + m.    = M lx ly lz 

and neglecting the second order terms 

m.   6m.     + m.   öm.     + m.   öm.     = 0 lx       lx ly       ly lz       lz 

Since m,     = m .     = 0,   and m.     ^=  0,   it follows that öm.     = 0.    Similarly,   öm,    = 0.    Hence, lx ly lz ' lz J' 2z 
the rows and columns in [a] and [b] associated with öm.     and öm?    may be struck out. 

After considerable algebraic work, 

[a] 

(HDCz + HN + Hex) 

-(HDCz + HN + Hex) 

-H 

-H 

II 
ex 

^DCz^N^V 

n -(H^„   -H.T-H     ) 
DCz       N       ex 
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fb]  = 

Ml 

-b 12 

12 

-b 11 

~bll        "b12 

J12 1 1 

and 

11        Li   M 
•   2a I       2c      sin2e sin   0 Icos   0 — — 

'12    ~     LJL     M 

/       2Q      sin^0\ 
(cos   0 —  2—) 

/o    •    2^ Z^ 4^   ,   sin40\ 13 sin   0 cos   0 — cos   0 + —j—I 

Equation (12) is rewritten as 

[a + b - & } [dm] =0      or      [c] föm] = 0 

The determinant of [c] must be equal to zero for the set of linear equations to be simultane- 

ously true.    By multiplying out the determinant,   a biquadratic equation results in w/y: 

D(-^-)4 + E(-^-)2 + F = 0 
ynr yvf 

where D, E,   and F are functions of the elements of [a] and fb]. 

Hence, 

,   co   ,2 _ -E ±N/ E2 -4DF 
rro 

After the appropriate substitutions for D, E,   and F and considerable algebra,   the following 

expression for the normal mode resonant frequencies is obtained. 

<^»2 ■ HDCz + 2Hex(HN + b
12' 

+ fHN + b
12»2 " bU 

"O 

2HDCz J2Hex(HN + b12> + (HN + b12>2 + (^H (13) 
,bu5 

*DCz 

The equation yields only two independent frequencies.    It is interesting to note that co   is 

independent of HDC    and HDC  .    It is only a function of the component of HDC along the equi- 

librium position of M. 

B.    NORMAL MODE  FREQUENCIES FOR HDC PARALLEL TO A [111] AXIS 

For this important case,   b..  =0,   and b. ? = H  .    Equation (13) becomes a perfect square: 
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<^>2 = (Hnr^ ± [2H     (HM + H  ) + (HN + HJ2]1/2}2 

7K. DCz X 'N 

-S-  = HDCcos(e -*) ± J(HN + Ha) (2Hex + HN + H&) yn (14) 

Now,   if H„„ <   / 2HH  ,   one of the permitted equilibrium conditions is 9 = ii = 54.7°.    Then DC     v       ex   a' ^ M , 
Eq. (14) is equivalent to the well-known result of Keffer and Kittel.     However,   there is another 

pair of frequencies that corresponds to the magnetization which was initially directed along the 

second [111] axis (not parallel to H„p).    The resonant frequencies for both pairs of modes have 

been plotted as a function of H~p in Fig. 13.    The low frequency branch should approach zero 

frequency at the spin flop field.    The simple theory has neglected the nuclear magnetic reso- 

nance (NMR) modes which exist at much lower frequencies than the electronic modes.    At low 

frequencies,   the electronic and nuclear spin systems will couple in such a way that one branch 

of the coupled mode spectrum will go to zero frequency at the spin flopping field. 

3-44-8884 

THEORETICAL CURVE 
FOR FIELD DEPENDENT 
MODE OF FREISER, et al. 

G     EXPERIMENTAL DATA 

_L 
HDC (koe) 

Fig. 13.   AFMR in RbMnF3;   HDC parallel to Uli] axis. 

C.     RESONANCE  EXPERIMENTS 

Resonance experiments were performed at X-band and at 4.2°K with the experimental ar- 

rangement illustrated in the block diagram of Fig. 14.    The single crystal RbMnF, specimen 

was a 4-mm cube which was cut so that four of its faces were (110) planes and two were (100) 

planes.    The crystal was mounted in a TE.Q    cavity at a point of maximum RF magnetic field 
and could be rotated about a [110] axis.    Three different cavities were used so that experiments 

could be performed at five frequencies distributed over the X-band spectrum.    The cavity and 
connecting waveguide were immersed in liquid helium.    A glass double dewar system enabled 
the sample to be maintained at 4.2°K for many hours at a time.    The dewar system was sus- 
pended between the pole pieces of a 12-inch Varian electromagnet.    The waveguide and cavity 

were positioned so that the RF magnetic field at the crystal and H~r were orthogonal.    Rotation 
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20-db CROSSED-GUIDE 
COUPLER 

Fig. 14.    Block diagram of X-band AFMR experimental arrangement. 

of the crystal,   which permitted the orientation of Hnr, with respect to the cubic lattice to be 
varied during the experiment,   was obtained through a gear train mounted on the end of the cavity. 

A shaft rotation was translated to the sample mount inside the cavity by a thin dielectric rod.    It 

was necessary to evacuate the waveguide and dewar vessel,   and refill it with gaseous helium be- 

fore transferring liquid helium,   in order to prevent the gear train from sticking. 

Each of the cavities was of the reflection type and,   by appropriate choice of iris,   was ar- 

ranged to be overcoupled at 4.2°K.    Resonance was detected by the decrease in reflected power 

from the cavity.    The power incident on the sample was about lOmw.    The resonance linewidth 
did not change when the incident power was reduced to 1 mw,   indicating that saturation effects 

were absent.    Reflected power vs H_„ was plotted for the field range 0 to lOkoe for a large 
number of crystal orientations,   but with H^^, restricted to the (110) plane.    It was found that 

some of the observed resonances were very sensitive functions of angle;   in order to keep track 
of their behavior,   the angle increment had to be about five degrees. 

D.    EXPERIMENTAL RESULTS 

The DC magnetic field required to excite resonance has been plotted as a function of field 

direction for the five X-band frequencies.    The results are shown in Fig. 15(a-e).    It is evident 

that in all cases,   more than one resonance was observed.    For the two lowest frequencies,   there 

are many resonances.    Most of the resonances can be tracked over a wide range of angle.    By 

comparing the shapes of the curves,   it is possible to correlate some of the resonances as a 

function of frequency.    In this manner,   it has been possible to construct plots of resonant fre- 
quency vs H       for two of the symmetry axes of the crystal — the [111] and [100] axes.    The data 

for the [111] axis have been superimposed on the theoretical curves of Fig. 13 for comparison. 

It is interesting to note that there are no experimental points corresponding to the case of  M 

parallel to H.    Secondly,   the experimental points are in reasonable agreement with the resonance 

theory,   but correspond to the spins lying near to the other [111] axis in the (110) plane.    The 

theoretical curve for the field dependent mode reported by Freiser,   et al.,    has also been ap- 

pended.    It does not appear possible to excite this mode below about 12Gcps for the [111] axis. 

The graph of resonant frequency vs H„~ for H„p parallel to the [100] axis is shown in Fig. 16. 

Many more resonances were observed   for this case than for the [111] case.    Again,   five of the 

Z7 



F = 8.882 Gcps 
T = 4.2°K 

J I L J I L 
[MO] [<«] 

to 

ANGLE (deg) 

(a) 

80 100 
[100] 

3-44-8879 

F = 8.279 Gcps 
T- 4.2'K 

[HO] 
ANGLE (deg) 

(b) 

Fig. 15(a-e).    DC magnetic field required for resonance vs angle. 
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resonances seem to agree fairly well with the resonance theory.    In this case,   the theory pre- 

dicts only one pair of mode branches.    By studying the curves in Fig. 15(a-e),   it has been possi- 

ble to group most of the remaining points into two families which seem to belong to different 

modes of resonance.    One group falls very close to the theoretical plot of Freiser's field depend- 
ent mode.    The second group seems to fall on a line parallel to the first group. 

The intercept of the curve of AFMR frequency vs Hnr on the frequency axis is nearly equal 
1/2 to y[x  [2H    (H^ + H  )]  /   .    Hence,   extrapolation of the experimental data provides an estimate 

of this quantity.    Unfortunately,   there are only five data points,   but an extrapolation indicates 

that the intercept is at 9.3Gcps.    This is to be compared with a frequency of 9.65 Gcps which was 
2 

calculated by using the data of Freiser,   et al.    The discrepancy can be accounted for by a 7- 

percent difference in the value of H      ( or a difference in H ).    Note that this is consistent with 
GX 3. 

a similar discrepancy noted in the susceptibility data. 
The shape of the plots of resonance field vs direction of applied field gave an excellent check 

on the accuracy of the orientation of the crystal,   since the curves should have mirror symmetry 
about the zero and 90° points.    The curves in Fig. 15(a-e) have been replotted with the angular 

corrections,   which did not exceed 3° in any of the experiments. 
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CHAPTER V 
EXCITATION OF SPIN WAVES BY PARALLEL PUMPING 

A.    MEASUREMENT OF SPIN WAVE  LINEWIDTH BY PARALLEL PUMPING 

Spin wave instability and premature saturation of the AFMR have been analyzed by Heeger 

and Pincus.     According to their theory,  the instability threshold is given by 

crit " ^r"11o\ h     .. = 4AH  (—2 ^J 

where AH    is the uniform mode linewidth,  AH,   is the spin wave linewidth,   and co    is the AFMR o k o 
frequency. 

9 
Saturation of AFMR in KMnF. has been observed by Heeger    who found that the onset of 

saturation occurred at a very low threshold — on the order of 1 mw.    He inferred that the spin 
wave linewidth was on the order of 5 X 10      oe,   compared with 40 oe for the uniform mode. 
Naiman and Lawrence      have observed a very long relaxation time for spin flopping in the anti- 

ferromagnet CuCl2* H20 and have compared their results to Heeger's.    The question arises 

whether similar saturation effects occur for RbMnF-.    Thus,   it was proposed that the spin wave 
linewidth for RbMnF_ be estimated by measuring the threshold RF magnetic field for longitudi- 

nally pumped spin waves. 
4 7 18 

Morgenthaler      and Schlömann      first proposed that spin waves at half the pumping frequency 
could be parametrically excited by the application of an RF driving field parallel to the DC mag- 

19 netizing field.    Morgenthaler      has extended his analysis to include two-sublattice systems and, 
in particular,   has derived an expression for the instability threshold.    ' 

First order nonlinear coupling processes are assumed to exist so that 

co     =  |co,|  +  I a? 2 I       anc*      k.  = — ky 

The terms co . and co2 are the two magnon frequencies,   k, and k2 are the respective wave vectors, 
and co    and k    are the corresponding pump parameters.    (Higher order processes can exist,   but 
these generally have higher thresholds than first order processes.)   Thus,   the net magnetization 
of each lattice may be represented by a steady state component plus a small component due to a 
standing spin wave.    The equation of motion has additional terms compared to the uniform pre- 

cession case (k. = 0) which arise because of the nonzero divergence of M.    Also included is a 

term due to the RF driving field,   and a damping term of the Landau-Lifshitz form.    The analysis, 

based on a perturbation technique,   shows that the pump acts to overcome the loss in the system. 
To a first approximation,   it does not shift the normal mode frequencies,  which are found by 

setting the pump amplitude and loss equal to zero in the equation of motion. 

Determination of the critical field for the onset of instability involves finding a solution to 

the equation of motion for which the pump provides just sufficient power to overcome the loss 
terms.    The two possible frequency relationships,   corresponding to degenerate and nondegener- 

ate magnon instabilities,   are 

and 

Since the nondegenerate case can be expected to have a higher threshold,   we shall consider only 

degenerate magnon instabilities.    For the antiferromagnet,   it is found that 
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h ^"k^k      k + Zu)ex + Ull + X1Z) k^M + ^Msln^ (15) 

Crit      ^M
sin2M coa + Ull-X12) k2wM 

and the normal mode frequencies are 

2 2 2       1/2 
"k = ^|wa + (XH ~X12' k W

M' 
(ua + 2uex + <X11 + X12> k UM + wMsin   *'' * UH        (16> 

a ^ext-a + ^ll-^lz'^Ml*^ (17) 

where 2AH.   is the spin wave linewidth, k ^ 

Wk=   2  P 

"ex^oW12M 

WH=-^oHDCz 

w     = — vu.  H a 'ro   a 

i/i   is the angle between the propagation vector k  and the z-axis,   and X. .,   X.^ are the coefficients 

of the next higher order terms in the molecular field expansion.    The analysis assumes that the 

steady state component of the magnetization is parallel to the easy axis and that the parallel 

susceptibility is zero.    Since w,   appears in the numerator of Eq. (15),   it is evident that the mode 

with the lower frequency has the lower threshold.    For the lower frequency,   the threshold may 

be expressed as the difference of two quantities: 

4AH, 2 2    1/2 
hcrit =  7T,   fwa + 2wex + Ull + X12> k  WM + wMsin   ^ coMsin   iji 

^y      ex 

CO 
H 

Wa + Ull ~X12)k2a,M- 

(18) 

The first quantity increases with k.    The second quantity decreases with k,   since its denomi- 

nator is a more sensitive function of k  than the numerator.    Hence,   it follows that the magnons 

for which k =   0 have the lowest threshold.     Further,   Eq. (18) predicts that for k =   0 magnons, 

h     ., is zero when H~ „ =   /2H  H     ,   which is the condition for spin flopping derived in Ch. III. crit DC     v      a   ex' ^ ^^    & 
However,   by using the more exact expression for co,   given by Eq. (16),   it is found that h     . K     cm 
approaches a finite limit equal to 2AH,   as H~~ approaches (but is less than) J2HH 

In summary,   the threshold field is lowest for k =  0 magnons propagating in the x-y plane 

{ip = 90°).    It can be reduced to a small value by adjusting the DC magnetic field to be almost 

equal to,   but less than,   the flopping field.    Because of the dependence of co,   on H„„,   this implies 

that the frequency of the pump is constrained to be correspondingly low.    Measurement of the 

threshold field provides a direct method of determining AH, ,   which enters into the threshold 

equation,   provided that the other parameters are known. 

In order to predict the required RF power and frequency for such an experiment with RbMnF-, 

the values H    and H      were taken from Ref. 2.    The exchange constants W., and W. ^ were a ex 6 11 12 
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calculated from the data to be —95 and —233,   respectively.    The exchange constants X. . and A,? 

were obtained,   starting from the expression for the exchange energy: 

K      = -2J..S. •   S. ex IJ  l       3 

where J.. is the exchange integral.    By expanding S. and S. into Taylor series and assuming that 
only nearest-neighbor interactions are important,   it may be shown that 

W11L W12L 

11 v12 

where   L is the lattice constant. 
The spin wave manifold has been plotted in Fig. 17 for a fixed value of H„r.    The shape is 

similar to the spin wave manifold for a ferrimagnetic material,   although the curves are nearly 

degenerate for small values of k.    Also,   an increase in H„p shifts the curves parallel to the co, 

axis toward the origin rather than away from the origin as in the ferrimagnetic case.    This is 
illustrated in Fig. 18,   where a family of dispersion curves for different values of H„p has been 
plotted.    Only the curves for sinip = 1 are shown;  AH,   was assumed to be 1 oe. 

The propagation factor was computed for various values of w, ,   for a given applied DC field, 
by using Eq. (17).    Corresponding values of h     .   were then calculated by using Eq. (15) and are 

plotted in Fig. 19.    It is seen that h     ., increases very rapidly with frequency and the applied 
power,   which is proportional to (h     . )2,   becomes prohibitively large.    Two curves are shown 

corresponding to two values of AH,   (1 and 0.01 oe).    Only the curves for sinj/) = 1 have been 
plotted since these have the lowest threshold.    The value of HD~ was chosen to be within 5 oe of 
spin flop in order to limit h     .    to reasonably attainable values  in the  VHF region of the 
spectrum.    This choice could be unreasonable on two counts:    (1) the requirement of extreme 
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stability in the applied DC field,   (2) dislocations in the crystal could cause H    and H      to be 

nonuniform,   resulting in an ill-defined value of flopping field. 

The choice of the operating temperature at which to perform parallel pumping experiments 

is quite important because the spin wave linewidth exchange and anisotropy fields all vary with 

temperature and affect h     ., correspondingly.    The most important variable is the anisotropy 

which,   according to Ref. 2,   is one-hundredth of its 0°K value at 77°K.    Hence,   considering only 

the variation of H ,   h     ..at liquid nitrogen temperature will be ten times its value at liquid 

helium temperature. 

B.    MEASUREMENT TECHNIQUE 

From the foregoing analysis, it was concluded that by setting the DC field to within a few 

oersteds of the flopping field, the instability threshold would be attained at VHF frequencies 

with modest power levels if AH, were on the order of 0.1 oe. Accordingly, a parallel pumping 

experiment was designed to operate at a frequency of 30Mcps. This experiment was a lumped 
circuit version of the usual microwave parallel pumping experiment, its principle of operation 

being the detection of a sudden increase in x" when the instability threshold is exceeded. The 

sample was placed on the axis of a solenoid which was part of an RF bridge circuit.    An increase 

in the loss of the sample would then cause an unbalance of the bridge.    This type of measurement 
22-24 is similar to the measurement of NMR. Two NMR bridge circuits were considered.    The 

first,  used by Bloembergen,   et al.,      utilizes a circuit in which the responses of two identical 

shunt-tuned coils,   one containing the sample,   are balanced against each other.    The phases and 

amplitudes of each half of the bridge are adjusted for a null at the summing point.    The three 

disadvantages of the scheme are:   (1) to avoid excessive drift,   the reference channel should have 

the same environment as the sample channel,   (2) one of the channels must contain a \/Z cable 

to invert the phase,   or a transformer must be used,   (3) since the amplitude and phase adjust- 

ments are not independent,  the adjustment procedure is very tedious. 
In the experiment,   the detection scheme used the bridged-T circuit      illustrated in Fig. 20. 

The sample coil  L is situated in one arm of the bridge which is nonresonant.    The bridge is 

balanced by two independent adjustments:   The phase balance is obtained by varying the capacitor 

C;  the amplitude balance is determined by the variable capacitor C.    The conditions for balance 
are independent of the source and load impedances. 

Fig. 20.    Bridged-T circuit. 
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Although the bridged-T circuit is inherently a narrow band device,   this was not important, 

apart from stability considerations,   since the experiment was performed at a single frequency. 

The practical limit of sensitivity achievable,   which is a function of the depth of the null,   is 

limited to about — 60 db because of the difficulty of maintaining the balance. 

The conditions for balance are 

i = u
2

Clc2 [i + §;] R. (1,) 

and 

C1       C     /        C   v 

=i + c1 + £ v+ 4) (20) 
w   LC 

where  R  is the equivalent shunt loss of the coil,   and  C  is the shunt-tuning capacitor.    The  Q 

of the inductor is given by 

«=^L = "cic2('
+ i[]R' 

A block diagram of the parallel pumping experiment is shown in Fig. 21.    The sample coil 
was immersed in liquid helium and located between the pole pieces of a 6-inch Varian electro- 

magnet.    Several different coil designs were used in an effort to improve the filling factor,   but 
each had an inductance of about 1 (ah and required about 20 to 25 pf of shunt capacitance for bal- 
ancing purposes. 

The bridged-T circuit was located immediately above the dewar vessel in order to minimize 

the length of the connection to the coil.    A special low capacitance coaxial transmission line was 

used for the connection.    The center conductor was a fine wire supported by polystyrene foam; 

the outer conductor was stainless steel,   copper plated on the inside to a thickness of a skin 

depth.    When cooled,  the Q of the coaxial line plus coil was 320.    The signal,   which could be 

square wave or pulse modulated,   was obtained from a stable generator at the milliwatt level and 

was amplified to a level of about 12 watts by a class  C tuned power amplifier.    The out-of- 

balance signal from the bridge circuit was amplified by two IF strips each having 30 db of gain. 
The output was displayed directly on an oscilloscope. 

Because of the sensitivity of the equipment,   an increase in loss of the sample,   equivalent 
to a sample Q of about 1500,   could be detected.    The sensitivity to reactive changes was about 
one part in 2500 (0.01 pf change in C).    This corresponded to a |JL" of 0.01 or a (JL

1
 of 5 x 10~    for 

0.25 gram of RbMnF» with the coil wound on the sample. 

The orientation of the sample was chosen so that a [111] axis was parallel to the axis of the 

solenoid which was also parallel to H^^,. 

C.     EXPERIMENTAL RESULTS 

With the coil and sample cooled to 4.2°K and the signal power set for maximum output,   the 
DC magnetic field was increased exceedingly slowly over the range 0 to lOkoe.    A slight reactive 

unbalance was observed which was attributed partly to the increase of x' with H_„ and partly to 

a spurious effect which was observed even in the absence of the sample.    There was no unbalance 
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which could be attributed to an increase in x".    The DC field range 2 to 3 koe,   which embraces 

the spin flop value,   was examined very carefully,   but there was no apparent instability effect. 

It was estimated that the maximum intensity of the RF magnetic field in the coil was 0.75 oe, 

which should have been sufficient to exceed the instability threshold provided that AH,   was not 

greater than 0.375 oe. 

Recognizing the probable difficulty of lining up the magnetization with the applied DC field, 

as concluded from the DC susceptibility measurements,  the negative experimental result was 

not taken to imply that the spin wave linewidth was much larger than expected,   but that the basic 

requirements for parallel pumping were not satisfied. 

The direction of H„p with respect to the coil axis was changed,   with the hope that this would 

cause  M to line up parallel to the RF field,   and the experiment was repeated.    However,   no 
combination of magnitude or angle of applied field,   or magnitude of RF field,   resulted in the 

observation of spin wave instabilities. 

40 



CHAPTER VI 

CONCLUSIONS 

Magnetic susceptibility measurements on RbMnF, samples yielded a value for the exchange 
field H      in good agreement with,   but about 7 percent less than,   previously published data.    The 

6X 
measured value for the Neel temperature,   94°K,   was significantly higher.    The susceptibility, 

as a function of applied DC field,   showed no abrupt discontinuity,   although an analysis of the 

static equilibrium position of the magnetization indicates that this is possible under certain 

conditions. 

Antiferromagnetic resonance theory,   together with the static equilibrium analysis for the 

restricted case of H„p lying in a (110) plane,   has permitted prediction of the AFMR spectrum. 

The theory is in fair agreement with the experimental data for the [111] and [100] directions. 

Observed resonances for the case of H~p parallel to the [111] axis are consistent with the in- 
terpretation that there were few,   if any,   spins parallel to Hn_,.    The negative result of an ex- 
periment designed to excite spin wave instabilities by the parallel pumping technique is consistent 
with this interpretation. 

The value of the quantity J2H    (H    + H^),   obtained by extrapolating the experimental AFMR 
data to zero DC field,   is about 3.5 percent lower than the value calculated from published data. 

This discrepancy is consistent with that found in the susceptibility measurements. 
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APPENDIX 

DERIVATION OF THE  TRANSFORMATION MATRIX [T] 

Let (O, X, Y, Z) be the coordinate system referred to the cube edges,   and let the (X, Y, Z) 

axes be rotated through an angle  0  about a line passing through the origin and perpendicular to 

the (110) plane of interest,   i.e.,   about a [110] axis (see Fig.A-1).    Also,   let (o, x, y, z) be the 

new coordinate system,   and let X, Y, Z and x, y, z be unit vectors along the respective axes. 
A A 

Further,   let  V be a unit vector along the [110] direction in the (O, X, Y, Z) system with m the 
A 

corresponding unit vector in the (o, x, y, z) system, and let  U be a unit vector perpendicular to 
A 

the (110) plane at the origin in the (O, X, Y, Z) system with  £   the corresponding unit vector in 

the (o, x, y, z) system. 

Then 

where 

It follows that 

A 

V = 
A            A 
Y + X 

V2 

A 
m = 

A            A 
y + x 

u = 
A A 

Y -X 

4z 

£   = - y-x 

sTE 

A A 

U - £ 

V = z sin 0 + m cos 0 
A A ^ 

Z = z cos 0 — m sin 0 

Y-X-9-Z 
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Y±X = Asine+ (x±_y) cose 

NT2 4Z 

Z = z cos© - (y+ ^}   sin© 
N/2 

Fig.A-1.    Illustration of coordinate rotation. 
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By rearranging the last three equations and writing them in matrix form, 

.cos 0 + 1 . 
{ 9 ) 

. cos e — i. 
( 9 ) 

— sine 

, cos 0 — 1 

. cos 0 + 1 . 
\ 9 ' 

— sin 9 

*/I N/T 

sin G 

4z 
A 
X 

sin 0 

^/2 

A 
y 

COS 0 
A 
z 

or 

Hence, 

[XI = [T] [x] 

A -1      A 

[x] = [Tl       [X] 

where 

IT] 
-1 

. cos 0 4 1 .        . cos 0 — 1 .       — sin 0 

, cos 6-1,        . cos 0 + 1 .       -sin© 
(-      9        )      \       9        ; 

sin0 

42 
sin0 

^n 

cos 0 
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Xri i n shows no abrupt discontinuity analogous to the spin flopping exhibited by uniaxial antiferromagnets. 

A simple model, in which H^r; and M are restricted to the (100) plane, has enabled solutions of the static 
equilibrium problem to be obtained.    X-band resonance experiments are reported, and a resonance theory is 
presented which incorporates the equilibrium solutions.    The predicted antiferromagnetic resonance spectrum 
shows reasonable agreement with the experimental data.    The possibility of parallel pumping spin waves in 
RbMnFg is considered, and an attempt to measure the spin wave linewidth is described. 
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