CNU-1/P SUSTENANCE KIT MODIFICATION (T-33)

MSgt John R. Schumann
November 1965
CNU-1/P SUSTENANCE KIT MODIFICATION (T - 33)

MSgt John R. Schumann
FOREWORD

Research reported in this paper was done at the Arctic Aeromedical Laboratory, Environmental Protection Branch, under Project 8238, Task 823802, from November 1964 to October 1965.

Jump tests in Project 65-16 CNU-1/P Sustenance Kit Modification were conducted by assigned test parachutists SMSgt W. W. Millard, MSgt G. E. Roberts and MSgt J. R. Schumann.

Special acknowledgement is extended to the following Alaskan Air Command organizations who, through the efforts of their personnel, contributed immeasurably to the overall design and testing of the CNU-1/P Sustenance Kit Modification: the 317th Fighter Interceptor Squadron, Elmendorf AFB, Alaska; the 5010th Combat Support Group, Eielson AFB, Alaska; and the 5010th Search & Rescue Section (CH-21), Eielson AFB, Alaska.

This technical report has been reviewed and is approved.

HORACE F. DRURY
Research Director
ABSTRACT

At the request of the Alaskan Air Command, this Project was established to provide adequate cold-weather survival protection for T-33 pilots who utilize the seat-pack parachute. Pilots in this category had not previously been so equipped. After extensive evaluation and operational testing, the Alaskan Air Command approved modification of CNU-1/P for use with the seat-pack parachute in the T-33 jet aircraft. The kit is now in use during the period October through May. In addition to basic survival items, the kit contains a down-filled coat, SRU-6P; mittens, SRU-10P; and half bag or foot sack, SRU-12P. The problem of bulk reduction was solved by tufting, using manual pressure and upholstering methods. Packaging of the down-filled clothing into the CNU-1/P kit can be done by local Personal Equipment Technicians with a small expenditure of man-hours and materials.
INTRODUCTION

It has been found that operational pilots in the Alaskan Air Command flying the T-33 aircraft and using a seat-pack parachute do not have appropriate equipment enabling them to survive exposure to arctic cold following ejection from the airplane. The CNU-1/P kit, with its basic survival items, does not supply the survivor with a sleeping bag of any kind. The fact that a would-be survivor can exist for 3 - 5 days without food, provided he can keep warm, dictates the need for adequate protection against the arctic environment. The most desirable items affording such protection are the three basic items of the down-filled USAF SRU Survival Assembly: (1) Coat, SRU-6P; (2) Mittens, SRU-10P; and (3) the Half bag or foot sack, SRU-12P. These items, available to a downed pilot, can well mean the difference between survival or disaster.

The normal clothing worn by the jet pilot operating in the arctic takes care of his thermal protection in the event of ejection and for a limited period thereafter. However, the need for additional protection is evident within 2 - 3 hours after the initial physiological strain of the emergency passes. In case of injury, the need for adequate protection will be evident much sooner. The adequacy of the CNU-1/P kit as modified is dependent on the pilot wearing appropriate footgear, i.e., mukluks or Vapor Barrier Boots.

This report describes a method by which each of the pilots using the seat-pack parachute can be equipped with adequate cold-weather protective clothing through the use of the CNU-1/P kit (Modified.)

In addition, it is possible to include a Rescue Locator Beacon (RLB), such as SARAH or the URT-21, in the CNU-1/P Kit. Elimination of the outside vest containing the RLB improves comfort of the pilot. The RLB, as packaged in the CNU-1/P (Modified), is readily available for inspection, bench test, etc., without breakdown of the entire kit.

The CNU-1/P Kit (Modified) has been tested and evaluated by operational units within the Alaskan Air Command. All prototypes were test-flown on actual missions in order to get an accurate evaluation by the user. In addition, each type was jump-tested to determine if any hazards or discomfort could be noted during flight, parachute deployment, manipulation, and landing.

The constructive comments of the evaluators have been incorporated in the modification presented in this report. Through the implementation of this modification, T-33 pilots using the seat-pack parachute can be equipped
with adequate survival clothing and equipment to sustain the rigors of an arctic survival experience.

II

METHODS

Several means of reducing the prime obstacle of bulk have been tried and proven. In the early stages of development, vacuum packaging of down-filled garments was investigated. The method, although very effective in bulk reduction, does have shortcomings which caused this approach to be discarded.

For information only, the following are some disadvantages noted during the design and test phases as they apply to vacuum packaging. Special equipment is needed, such as polyethylene packaging material, either pre-cut bags or by the roll, in addition to a heat sealer which is required to close the bags. Special valves are needed to properly evacuate the residual air and to seal the package when the vacuum has been attained. In addition, the package must be restrained by other means so that residual air can be bled off when exposed to low pressure at high altitude. This involves the wrapping of the entire package with a strong tape. Tape, when the package is utilized under arctic survival conditions, makes it extremely difficult for the survivor to get the clothing out. After several methods of restraints had been tried, i.e., light metal containers, basswood restraints, etc., (Figures 1 and 2), it was decided that vacuum packaging offered only a method of reducing the overall size of the package. It was, therefore, discarded as impractical due to requirements of special equipment, manpower, and supplies. One other disadvantage in vacuum packaging was the rigidity of the finished package. This rigidity did not cause any discomfort on bailout, as was determined by the test jumpers, but it did cause some discomfort in the aircraft, in that the kit would not conform to the contoured backrest of the seat. It was evident that a "soft" or semi-rigid package was needed.

The final solution to the problem of bulk reduction came in the form of tufting, using manual pressure and upholstering methods.

Technical Data

Utilizing a standard CNU-1/P Sustenance Kit, the foam rubber tray is removed and discarded. If the SARAH (Search-Rescue and Homing RLB) is to be used, a retaining pocket for the power pack is sewn into the upper right or left quadrant of the container. The restraint eliminates the possibility of the power pack shifting during handling and/or ejection (Figure 3).
When the container is being closed, the pressure will hold all items in place.

Tufting

Smooth the entire package to ensure that all items are evenly spaced. (corners should be well filled.) Tufting is done from the lower end of the container as illustrated in Figures 4 and 5, forcing the needle through the down-filled clothing. Needle is threaded with double nylon, button inserted on singular strand at loop. The recommended method is to start from the top side with one button, force needle through webbing, pack, clothing, and webbing on underside. Top side; button can now be pulled into webbing, anchoring it securely. Move over 3 – 4 inches along tape and reinsert needle through entire thickness, including top tape. Needle is now removed, a button is installed, and using a standard upholstering knot (bowline on a bite) tension is applied. Knot will automatically lock at maximal tension, which can best be obtained by a combination of hand pressure and pulling applied evenly.

When sufficient tension has been reached, knot is tied off by two reversed square knots, and loose ends cut off. Procedure is then repeated until bulk is reduced and desired tapering achieved. Webbing used to reinforce container, and placed as suggested in Figure 6, aids in the easy access to the kit when opened in a survival situation.

If the sewer works across base of container and then moves upwards in steps, the tapered effect is achieved, (Figure 6). Caution should be exercised when tufting in and around the survival items. Placing the tufting properly will secure items in place.

The RLB can be readily removed for inspection, etc., without disturbing any of the survival items.

Packaged in this fashion, the CNU-1/P Kit (Modified) ensures sufficient clearance for the pilot, in that the tapered kit does not noticeably effect the clearance required for safe ejection (Figure 7).

Equipment

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNU-1/P Container</td>
<td>1 each</td>
</tr>
<tr>
<td>Needle, double end, upholstering</td>
<td>1 each</td>
</tr>
<tr>
<td>Button, upholstering, metal</td>
<td>16 each</td>
</tr>
<tr>
<td>Cord, upholstering, nylon (80 lb TS)</td>
<td>as req</td>
</tr>
<tr>
<td>Webbing, cotton, OD, 1/4" wide</td>
<td>8 ft</td>
</tr>
</tbody>
</table>
The above equipment is needed for one kit; the restraint pocket can be made up at a Parachute or Fabrication Shop. The entire modification can be accomplished by Personal Equipment Technicians in approximately 30 minutes.
FIGURE 1

Light metal container damaged during parachute deployment and on landing
FIGURE 2

Basswood restraints with vacuum packaging. Left w/bleed off -- right w/o bleed off; damaged on test flight to 36,000 ft.
FIGURE 3

Restraint pocket for SARAH RLB power pack shown at right corner.
Survival items placed across top as indicated.
FIGURE 4

Single nylon cord is threaded through button, then doubled through needle. Needle is then forced through entire thickness of kit.
FIGURE 5

Using standard upholstering knot, the slack is taken up, as pressure is applied. Reduction of bulk is readily accomplished.
FIGURE 6

Strand of nylon cord is cut and webbing pulled off. Kit can then be opened readily. NOTE tapered effect of kit.
FIGURE 7

Static testing of kit worn in the front seat of T-33. Tapered kit allows for adequate knee clearance.
At the request of the Alaskan Air Command, this project was established to provide adequate cold-weather survival protection for T-33 pilots who utilize the seat-pack parachute. Pilots in this category had not previously been so equipped. After extensive evaluation and operational testing, the Alaskan Air Command approved modification of CNU-1/P for use with the seat-pack parachute in the T-33 jet aircraft. The kit is now in use during the period October through May. In addition to basic survival items, the kit contains a down-filled coat, SRU-6P; mittens, SRU-10P; and half bag or foot sack SRU-12P. The problem of bulk reduction was solved by tufting, using manual pressure and upholstering methods. Packaging of the down-filled clothing into the CNU-1/P kit can be done by local Personal Equipment Technicians with a small expenditure of man-hours and materials.
Sustenance kit
protective equipment
survival components
cold-weather survival
component packaging
survival items
jump testing
jump evaluation
deployment hazards or discomfort

UNCLASSIFIED
Security Classification

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used (for Group 3 and Group 4 as authorized).

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, state date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count shall follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. a. & b. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official reporting activity to which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICE: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U. &. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

(4) "U. &. S. military agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T2), (T3), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.