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RBSU’Mé OF THE THEORY OF PLANE SHOCK AND ADIABATIC WAVES WITH
APPLICATIONS TO THE THEORY OF THE SHOCK TUBE

ABSTRACT R

The theory of plane shook and adiabatic waves is presented in an
easily derived manner together with suffiocient background material to
eneble the novice in the field to grasp the fundamentals required for
further study. The application of the basic theory to the shouk tube
as a research instrument is given together with some experimental re-
sults to illustrate the caloulations. Certain conceptions of energy
and its relation to the impulse in a shock wave are presented ig;a/
manner not used in the literature. e
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TABLE OF SYMBOLS

E internal energy in a unit mass of gas
I impulse in a shock wave

M Mach number or ratio of particle velocity to local sound velocity
behind the shock fronk

P absolute pressure

P pressure in region into whioh shock wave advances (usually atmos-
pherio)

Pf excess pressure in reflected shock wave
:P excess pressure in shook fromt

'U velocity of shock front

& local veloclty of sound

8, Velocity of sound at pressure P

c velocity of sound behind shock front

K constant .

m mass of gas

t time
u particle velocity behind the shook front Te—
L velooity of propagation of & sestion of a shock wave |
_ P
VTR
_ P~ Po _ P, _
2= -5~ c=p "¥v-i
o o
¢ _~
¥ = 52 or ratio of specific heats (for air = 1.4) -
v :
P
W o= o
5

/° = density of the gas

subsoript o refers to conditioms of the medium into which the shock wave
advances

subscripts 1, 2, 3, etc. refer to conditions in vax_-ious gootions of the
shock wave
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subsoript o refers to oonditions in tho compression ohamber of tho |hook
" tubo

subsoript r refers to conditions in a reflected ahook wave

With Reference to Section VII T

bo nlooity of initial tip of rarefaction wave baok into oomprouion
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b, velocity of initial tip of rerefaction wave in region of hot gas
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L,/L, ratio of length of expaneion chamber to length of campresaion
®  chamber _

d  distance that hot gas boundary moves in time T
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INTRODUCTION

The theory of shock waves has beon covered in many excellent papers
by British and Amorican authors, notabiy G. I. Taylor and W, G. Psnney
of England, and J. von Neumann, J. Kirkwood, G, Kistiakowsky and
E. B. Wilson, §. Chandrasekhar, and others of this country., It is the
purpose of this puper to present some of their results in an easily
derived manner together with vertain background material which would
make it possible for the uninitiated quickly to gain a certain per~
speotive in the field with the objeot of &pplying this background to
applications of the shock tube as & research instrument. Certain con=-
ceptions of enerpgy and its relation to the impulse in a ghoock wave are
presented in a manner not used in the literuture, and experimental re-
sults are quoted to show the validity of certain assumptions nscessary
for such relationships to hold.

The use of & bursting diaphragm in a tube as & method of producing
shook waves is covered in a phenomenological report by W. Payman and
W. C. F. Shepherd in 1941. They attribute its earliest conception to
P. Vielle in 1899, A calculation of the shock wave presszures to be
expeoted thereby was oarried out by A, H, Taub in 1942. Certain experi-
mental work on the tube as & primary standard of blast wave pressures
was done by G. T. Reynolds, and extended in a series of quite acocurate
measurements by W. T. Read who found that the experimental pressures
varied about 6 percent from those calculated from tube theory.

L. G. Smith has used the tube as an eaid in studying experimentally the
reflection of shock waves at oblique incidencs, It has bsen used as

an instrument in the study of bursting diaphragms from inoident shook
waves and as an adjunct to the development of piezo~elsotric pressure
gauges, Certain proposals have besn mado for using the tube on a
fairly large scale for tests on land mines and other devices exposed to
explosive blast in an effort to reproduce field results in the labora-
tm‘y.

It is the earnest hope that this paper may provide sufficient back-
ground so that persons who have not previously used the tube may readily
understand in & quantitative way the phencmena that may be ctacrved,

I. THE PROPAGATION OF FINITE ADIABATIC WAVES IN A TUBE
The derivation of the properties of one~dimensional finite waves

can be carried out quite readily by considering a slice of gas in a tube
bounded by planes at x and at x + dx as shown below,.

“; « 8P

x x +dx

The gas in the thin slice is aasumed to have a density 2 and a
particle velocity u, both of whioch are functions of time. Then one oan



write for the foroces on the slice

f& x -ac%(u) == 8P where u = £(t) (1.1)

du .Bu _ gudx _3u F-1' R .
Tt T exRd| “ 58 T vgx M 5 =%

So from equation {I,1) we have the familiar equation of motion far
a gas in a tube,

au

g‘; P Sieo (1.2)

The equation of ocontinuity ia

D =]
Szlpv) = "ta{' (£.3)
%% +u aP +/’ but since © = £(u)
- d Su d
B-ER and B =
we have, after making indicated changes of variable,
U d da 4 -
ERERr TR
Cancelling Qf_ the equation of continuity may be written as
22U, du '
Setugx t” d,‘o ax‘:'ﬁT"' (w+p ,ﬂ) (I.38)
‘Since P = £(,2) and 2= £(u) we have that
) SP dP a
—res and d du
EA R %2

so0 that ___ %ﬁ
ox

Substituting this expression into the equation of motion (X.2), we see
that it may be written as

1dP d Su 3u
R R iR RS s P =0 (La)
‘These two equationa (I 2a and I.3a) may be made oonsistent if
2 ‘
du . 1 &
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%hem | ' E%Ei,% /%’% (Lodn)
\ o .
and therefore u =i/ﬂ rv -,‘-4! (3.5)

This is the expression for 'the partiole velocity in terms of the
pressure and density for waves which travel in one direction.

Returning to the equation (I.2a) of motion we see that

%é %: P / g-é from equation (I.4a)

80 'bhnt we have
ek (u + dP) -- 0 which equal
5t 'r' V) 5= quels

B+ (ux /37-).5_;-_-0 (1.6)

For an adiabatic compression or expansion —P? =k

dp 71 P
L s ek~

but ——= Lot a ' where a is the local velocity of sound in the medivm then

r /g_“

and the equation of motion reduces to
22+ (ua) -—g; =9 (1.6a)

If we wish to find the velocity of & section of the wave of con-~
stant particle velocity and consequently oonstant pressure we oan do 80
by letting u be a conatant 80 that du =0

but ainoeu—r(xt) ou ﬁd‘bd- ax =0
‘ ax _ _ 2% velocity of propagation of that
8o that at -~ 3w section of the wave
. 23
But from (X.6a) we see that
ou
35 _ _dx
~—au =zte) =5
ox
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so that the velooity of propagation of & section of the wave of constant
partiole velocity is equal to (a + u).

Vea+u | (Io'l’

The sign of u is positive if the particle vwelooity has the same

direction es the wave propagated in the mediwm and is negative if the

two are In opposite directions. The loocal velocity of sound & will be
a funotion of the pressure P as will' the particle velooity u.

If the wave is an adiabatic compression (not a shook wave) then we
may evaluate the particle velooity u énd the local velooity of sound as
follows: Assume that P = P (ﬁ-) for an adiabatic pressure obange

o 7-1
then EQ"-': rP, (p

| ...u=i?/’°riri %/ )if _7;2 »
[}

P , el = 7=l
= o -
R G
& y-l | .
7P
i 5T ] e

%

7— =38, the velocity of sound in the mediun into which the

wave advanoes.

2 .
So'that B =;|-_72-_T L B—é—) - -] (I.8a)
Py |
but L— = .
) F;) &3
comsequently u=+ }'i-'-f 8, (;—) -1 (1.80)
)

partiole velocity for a compressional wave.

In the same manner we find that the partiolé vélooity for & rare-
fagtion wave is 7 -1

s id '
u =i-7-:I ao le- (?-o-) . (1.9)

Where & is again the velooity of sound in the medium into which the’

wave advances.
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The local welocity of sound & is related to the velooity of sound ., in
& medium of preasure P and density /9 a8 followss-

7 P - _____r-z
P ry
.=Z...= o B °=-°,()() =2 (X))
- o Por'fl “ F;F: 2 F;
so that . u-=a° (;-) e (1.10)
. O :

The velocity of a section of compressional wave of constant partiocle
wlooity advancing into an undisturbed medium i.a

y=l
P a7, z
vumonsganta e (F') -1 [(‘P") v 1]%
7

-1
ca |z (P)"" _ 2
o|>r-11'F . -1
If 7 = 1,4 then
. P 1/7
Yycoonstamt®o |SF) - (I,10a)
; o

This is the velocity also for a rarefaction wave advancing into a
medium of pressure Po and density o and particle velocity u, = Q.

From equation (I.10a) it can be seen that the higher pressure parts
of & wave will travel faster than the lower pressure parts so that &

finite compressional wave would assume the shapes shown below in time
sequenoce,

direction of

while a rarefaction wave would assume the following

shape propagetion
" 'b' ol d'

A compressionel wave tends to assume & steeper slope at the fromt
of the wave while ararefection wave tends to become less steop and to
change shape in the opposite direction, The case (d) of the compresa-

vional wwve can not huppen for the front has a double value of pressure
but €he .front does bacome vertical with the formation of & shock wave-
which dc2s not obey the same equations aa does the adiabatic waves.

1l



The rarefaction waves however obey the adisbatio equations at least to
the trough of the wave, It can be seen that there is u tendency to form
& secondary shock in the tail of the rarefaction wave. This phenamenon
will not be treated here. The shock wave when formed obeys a sat of
conditions embodied in the Rankine=-Hugoniot equation which will be de~
rived in & sucocseding seotion,

II. THE REFLECTION AND TRANSMISSION OF ADIABATIC WAVES A’I; A DISCONTINUITY

¥
LY

(») Compressional Waves,

The sequence of evenis where an adiabatio wave meets & discontinuity
can be shown by the following sketoh,

/- denser medium

Pa "1 1,c:"‘

The velooity of sound en the right of the boundary is & and on the
left of the boundary is 8;+ The pressure initially is the same on both

sides and is ?o'.’ An adiabetic wave moving to the right with a pressure
Pl’ partiocle velooity u,, and velocity of sound behind front of *5

approaches the boundary. Depending on the conditions a wave of greater
or leaser amplitude will be transmitted, while a compressional or rare-
faction wave will be reflected to the left, The pressure and the
particle velocity behind the transmitted wave are P, and Uy, respectively,

while the pressure and the particle velocity of the reflected wave are
Ps md usﬁ b

The two conditions which must be satisfied at the boundary are

P

5 = Ps prossures equal (II,1)

-

and  u, - ug =u, "7 particle velocities equal (II.2)

The values of the particle velocities are (ify = 1.4) _

Tp 1/7 .
u, = ba, [(?'1') - ] (11.3)
o

| o U/ : - L
u, =58 l:(,ﬁ) -] (11.4) .'

12



P 1/7 |
5 = 58, EF":-) - :I' ‘ (11.5)

u
- . 1/,
. 1
' 3 1
80 ug = 58y [(P:) - ‘F;) J : (11.6a)

Then from equation (I1.2) we hawo

p. V1 p. 1/7 ¥y | p. /7 |
1 3 Py 2 |
b, l:(p—) -l=- (r) + (p-) ] =63 I-(r) - 1] (11.6)
o o 0 L% |
and since P, = Py from equation (II,1) we have
P, VT 2. P, /1 a-a

2 1 1
) =y ) sy (1%.7)
o 1 o 1
or'in more useful form
‘ 28 w -8 i
/7 _ 1 1/7 1, 1/7
Py T e 4 a8, 1:'1 * T Fo (1L.8),
e
If the boundary is a rigid wall so that u, = 0 then we have
U =ug ‘ (11.9)
1/7 1/7 /7
1 Fs Py
' and &1 (T -1 = 8.1 (?—) - (P—) (II. 10)
‘ | ) - [ o
or P31/7 = zpll/ 7. P°1/7 (11.11)

(b) Rarefaction Waves.

We show & similar sketch for the sequence of events with a
slightly different notation to adapt it to the notation in the other
aectim_s,

' loss dense medium

— P | P
8 o o1 ° -
8, m densgr medium

13



Where P and ¢ are the pressure and sound velosity om the right
of the boundary ana F and a; are the pressures end sound velocities

on the left of the boundary. A rerefaction wave of pressure Pr 1°
particle wvelooity Yy, and sound velooity behind the front of s,,

approaches from the left. Depending on the values of & and o & rare~

faction or & small compression wave is refleoted, while & rarefmotion
of greater or lesser amplitude is transmitted. The prescure and
partiole velooity behind the transmitted wave is h' and u, while

thoge behind the reflected wave are Pr s and uy rupootinly.

The oonditions to be sstisfied are

P =Pr | (1I.1s)
2 3
and v -uyEuy '. | (I1.20)
where w, =5a; [1 - (T) ! | (11.12)
| ) SR Vi o
w, = 601l = (T) ] : ' (II.13)
Pr- 1/7
ug = ba, [1 - (}-r—s-) ] (11.14)
1
B V7
but 8, =8, ( )
T Pr 1/ Pr 1/7 ‘
80 ' uy = 5y ("P}') - (T) (II.;I.“)
Equating the particle velocities we have since Pr = Prs |
. } ‘
(pr, A "11 pr11/7 ;-T-;-I- P/ (11.15)

Shniiarly for reflection against & rigid wall where u, = 0 we

14



heve the oonditicns

prsl/" = 2P4r11/7 - o7 (I11.16)

These are saen to be identicul in form with those derived for com~
pressional waves,. . '

1. DERIVATION OF THE RANKINE-HUGONIOT EQUATIONS FOR A SHOCK WAVE

If a shock wave travels with a velocity U into undisturbed air
(air at velooity v, = 0 in which the pressure is Po and the density

is ,oo) and if the air behind the shook is at a pressure P, der_xsityﬂ,

and is moving with a veloeity u, then, by using the fact that for a
wit mass of air orossing the shock front we must have mass, momentum
and energy conservation, we obtain equations involving U, P, 2, v,
Po’ Lo and u, which are known as the Rankine~Hugoniot equations. We

derive them as followss

—T

P~ u | P, L, u,

Let us consider an observer that moves with the shock front. In
one second the amount of matter that crossed (from the righ‘t;) & unit
oross section of the wave front is /Oo U: This must equal the amount

that {;ets away from the left face of tue cross section in the same
interval of time, viz., 0 (U -~ u)s Hence we obtain the occnservation
of mass equation, '

Pl «u) = P, U=m conservation of mass (111.1)

The momentwn of the mass ,00 U is /oo U2 and the momentum of the

1188 O(U = u) is o (U - u)z., The change of momentum across the shock
tront must equal the force acting., This is the difference of pressure
.2 the two sides of the front times the cross section which we have

taken as unity. Hence we obtain the conservation of mamentum equation

P-Po-':/OoUz«-/a(Uuu)z

e vation of (IIX.2)
R e R M-~ e

To obtain the energy equation we need to know the internal energy
of the unit mass of gas (when it is at a pressure P_ and density /°o)'

This is the work done against external pressure when the gas is expanded
adiabatically to zero density., We call these internal energies E and Eo

16



o i s

PR, i O b B e, T+ om0 8

e The work done by pressure per unit area per seoond on a column of

gas of unit cross section (the colum extends through the shook fromt)
is A

PO‘U-P(U-u)

This mst equal the change ih' kinetic energy plus the change in
internal energy of the gas, The former is '

%n[(ﬂ-u)z-'ﬂz]

and the latter is
n(E - E))

where E and Bo are the internal energies of the gas on the left and

right sides of the shook front respectively eand m is the mass of air
orossing the unit oross section of the front per second and is given by

m= L0 U =/o(0-u)
Hence we have
ERRE RN RS RN EEY LR
dividing by m we havs

.PL. -%B%-[(U-u)z-oz] +E-B

7
or
P .
0 1 _P 1 2 oonservation of .
76-0— +zuz+E°'“p-+.z(U‘u) +E. energy (III‘S)
For an ideal gas the internal energy may be calculated as followss
| P= k/o where L = ) |
- 1 a-r 40 P, y o2
HonceE:[Pd(z)f-ic/ﬂ ;Eln-k[,om dﬂ
- £ o A T~
< _ P ' R
=% i
1 P
therefore E =;,—-:_T ;—

16 | e g



P

1
end EO =-FT ?;-

Substituting these values for E and B into equation (I11.3) we obtain

P i i, '
) 1 ) 1 P 1 P 1 2
P S N *'2"2",3‘ tyr 2 otz V-]

or
P
0 1 P 1 2
Now we may use thege fundemental relations to derive the relation
between the velooity of the shook wave and its pressure together with
certain wvaluable information concerning the gases behind the shook.
From equations (III.1) and (I1I,2) it follows that

P=P, =m[U- (U-u)]

hence

-te-r)[vr@w-w] = 3§ [wew -0v?]
and fram the third equation (III.3) we have

PU-PU-u) -F[0-w?-v®] cn(®-5)
subgtituting from above we have |

PU=PU-u) 43 (F-F)[U+ (U-w]=n(E-E)
which when clea;ed becomes |

%-(P+p°)-‘l;n$}’£-il=n-no butm =0 U =,0(0- )
which then is
%(P"'Po)[}ﬁ;-%’—] =E-E°=71—_-I(g-p—-;;§) (111.4)

This equation may be interpreted as saying thet the increase of
internal energy asross the shook front is due to the work done by the
mean pressure in performing the compression.

From equation (I111.4) we may solve for 7,’% which we do by

multiplying the expression by 4 and dividing by Po then

17



/2 .&
-l]l)=
'5(1 + r‘) (';3-0 ) 7Y (ro )
' P
lat P—o- =y
and —/g;- | I 4 o

Then it may be written

FHy +1)(x-1) =zt (v - 2)

the solution of whioch is

=1 + (741 Vod
x =;‘—'_1—ﬁ-r—_rg§ = 73; ratio of densities (III.5)

From equation (III.1) we haw

U~ -?— U
Henoe equation (ITI.2) may be writted as

p+f/-gl- uz=p°+/oooz or /0002(1-;2)=r-r°

‘ 7P, :
Let -—/3— =a, 2 where a_ is the velooity of sound in the undisturbed
)

medium,

-71'_- (L:—]f) and substituting from above we have

1’—

]

S S

= y=1 L r-1+ (radyl
ez Rl e J

Therefore the first of the important derived relations is the velooity
pressure relationship for the shock wave

vl

- ‘“2'1? [ r=1 + (r+1)y] velooity of shook wave (III.6)
8o .

18




From equation (III.1) we have

Ve
u=(1-—75-)U
henoe .%:1--;‘3?1-;:1177::1)’

01‘% s 1 7 rdtio of purticle velooity to shook (III,7)

velocity.
If o =/-77’é£ whers o is the velooity of sound behind the shook front

oz = £ . )oo = P o_/i).

:E ) Ve r ¥ -po_ ~
02 = 4l 4+ (7 =1)y 7| ratio of velooities of sound behind and in
X; Y1 7=T 5 (771)y | front of shook wave. (111.8)

From equation (III.6) and III.7) we can derive the ratio of the partiole
velocity behind the shock front to the speed of sound in front of shook

2 . 2
S 2(y = 1)
o FL7 L+ (FAy] | (111, 9)

These equations although derived for a shock wave moving into still
air, u, = 0, will hold for a shock wave moving into air traveling with

a uniform velooity L if we understand U to mean the velocity of the
front relative to the moving air.
If the medium into whioch the shock waves travel is air which has

& 7 equal to l.4 these equations may be simplified and rewritten using
P .

8
::-—:y-l
Fo
l+6 7+ 6 % .
//co 6 + yy Tz (III.SE)
°
P.Z. =lt6y +76 =1+,—67- z (1I1.62)
8o
5(y -~ 1 %
R .~ T (I11.78)
2
o 6 + - 7T+2
2" YErE =+ 1) Gres) (ITL.8a)

19



u? 26(y = 1)° 25 £°

-:-g- L+ By =W) (111.9a)

Three of these quantities are plotted in the following pages
(Graphs 1, 2, and 3) as functions of the excess pressure behind the
shook in pounds per square inch. The excess presgure is (P - Po)

where Po is assumed to be 14,7 pounds for oomputational purposes.

v
A
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Iv, REFLECTION OF SHOCK WAVES
When & shock wave strikes perpendicularly on a flat surface, a
. shook wave is reflected, The pressure at the surface jumps instantane-
ously from the atmospheric pressure P_ to the pressure P_ behind the
refleoted shock wave. At a point close in front of the ;ot‘looting
plans the pressurs first changes to P the pressure behind the incident
shock wave and then to P_ as the reflected wave reaches it., The
relationship between y E Pr/'P‘and y =P/P, can be derived from the
shock wave equations, M

air velooity wu-<{ o >T
. Diagranm
Bgfore refleotion sound volooity °ole& showing
pressure P Po positions
at which
air velooity u-+ o synbols
‘ | apply.
After reflection sound velooity o o,
pressure PlP
7, r

If u is the velooity of the air behind the inocident shock wave,
U the velooity of propagation in still air, a_the velocity of sound
in the undistrubed eir, U_ the velooity of propagetion of the re-
flected wave and ¢ the ve'f.ooity of sound in air behind the inocident
wave, the shook wave equations for the incident wave ares

2 -1 | | | '
R - ()

—:iz- = -2-1';—’- [r-l + (7+1)y] : (Noa)
] |
2

o _ r4l + (r -1 ] ’

8l Y [7" + 7ral)y ‘ (v.s)
2 2 |

_ 2(y-1

'E"f =FF-r ()

o -

The reflected shook wave advences with a velocity u + U_ relative
to air in which the velosity of sound is s. The velocity of the air
behind the refleoted wave relative to that in front is u @s in the

I g



inoident wave; thus the equations for the reflected wave are;

2(y. ~ 1) :

= - - (Iv.5) :

u + Ur =14 (f-l-l’yr !

then .
i

2(y. - 1) |

u r :

T~ 74+ (7L, (1v.5a) ;

r 1

2 ' _ ;

o, 741 + (7 -l)y, | _ ;

—o-z - Yr r_l + (r +1)yr (IV.G) .

and in reflected wave ' 1
2 :

2 (y. = 1) .

L= - : (1v.7) )

2 TR, ;

r ' :

Here o_ is the welocity of round in the air behind the reflected
wave. The relationship betseen y and y_ is found by eliminating u,

y .
a , and c between equations (IV.3), (IVe4), ard.(IV.7)e Fram (TV,3), L
and (IV,4) we have '

2 2 "?
u’ _ 2 (v =1 ] ;

& 7 YT TeLy] (1v.72)

Equating this to (IV.7) we have

2
2 - ,
(y - 1) — = (v = 1)  (1v.8) :
YL74l 4+ (F=1)y ] r=I+ (r+ly, * ;
If one assumes )" for air equal to 1,4 then equation (IV,8) tecomes )
2 . '
-1 2 (yr - 1) . :
i - Ty, (17, 8a) i
This can be expanded into ‘

2.2 2
yyr -Syry +6yyrz+8y = Gyr-l-l.

and factored
8yQl-yy)-6y.Qryy)=1- yzv,.z
\yhich equals |
8y=6y. = l+yy, (1V.8Y)
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' P 4P
, ‘8" o
Ift P=P +P, then y=-p;—
Pp + P
P =Pp Py Y ='F:T'F;

After substituting into (IV,8b) amd manipulating one arrives at the
relationship

Pf 7P° + 4PB
¥ = 2(—?F;ﬁ:—§;) (1v.9)

This is the rolationship between the reflected excess pressure
over atmospheric and the incident excess pressure over atmospherioc.
This is the sawo as the relationship between gauge pressures measured
face on and side on to the blast wave.

It is epparent that for weak shooks where P——> 0
r, : T
7 — 2
8

and for very strong shoocks where Pi""“) oo

Py

P —>8
8

Pressures for intermediate strength shocks are plotted on the next
page. (Graph 4)

V. THERY OF SHOCK WAVE FORMATION IN A TUBE FROM A BURSTING DIAPHRAGM

Consider a tube of constant cross section closed at one end, with
a gas-tight diaphragm fixed at some point in the tube in such a way
thet a section of the tube bounded by the closed end and the diaphrepgm
may be pumped up to & pressure P,, while the remainder of the tube re=-
mains at a pressure P,, Then if tho diaphragm is suddenly broken by
air pressure or other means & shock wave will be formed in the low
pressure .section of the tube advancing along the tube away from the
diaphragm, At the same time a rarefaction wave will be formed in the
high pressure section of the tube which will progress back into the
" high pressure gas until it is reflected at the closed end of the com-
pression chamber. Meanwhile the shock wave will progress down the
tube until it is reflected with either positive or negative phase &t
' the other end of the tube, The sequence of events may be shown in the
following ways ,

26




Graph 4

Pressures in Incident and Reflected Shock Waves
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Po 7 Po : before btreaking
— )
Po . L{..\ Po at breaking
P
°

i
Py f 4 : after breaking
A ?ﬁ- region in which pressure is P, ve-
[. Wave locity of gas is u, velocity of sound
rarofaction is o and velooity of shock wave is U,
wave
From the Rankine«lugonoit oquations we have the relationship be~ ‘

tweon the particle velooity behind the shook front and ‘the pressure
ratio P/P  at the shook front., This isy

=..?.__§L'.(l).z_n; (V1)
W . r_ 7ol {7y *

o P
where y =§— ) 8 =/)’,b£ , 8nd u = partiole velooity behind shock front.
o "o

The region behind the diaphragm is propagating & rarefaction wave
because of the relief of pressure by the bursting of the diaphragm. The
velocity of the particles in the rarefaction wave where the pressure is
P is given by

ls:
™
o

¢
=4 . [dP dpr which has been evaluated in
u=z Ly equation (I.9), and found to be
-1
Yad b4
, “=i-;2-:r°1[1'(§"’ g (v.2)
, : o :

where P_ is the pressure of the region into which the wave advances and
a, is the velooity of sound in this region.

P .
Now P = P = P Yy
o Fj ° x -l
80 equation (V.2) becomes 27
P
- - °
usdooy 8 1= (y 'F;) (Ve2a)

These two particle velocities must be equal (at the diaphragm after
breaking); otherwise a local rogion of vacuum or high pressure will de=
velop in time. So, equating the two particle velocities we have

Y-l_2
2 2 2
2& (y - 1) 4“1 Po
0 - - — 'y
yLr-1 + (7 +1)y] ~ (> _1)5 1-(y P (v.3)
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Assume a_ = a; which means that sufficiont time must elapse after
pumping up £he oompression chaxber for the gas to be reducod to ambient
tomperature. BExtruoting tho square root on both sides we have then

%7 |
VE (y = 1) _ . 2 lh(y?o)
\[Y-[Y- 1+ (v +1)y) 7=l 7, J

Assume ¥ = 144, then

1/7

v -1

I'D
\/7(1+6y) 1-(y,,-°-)

P
of wo = one Y
¥, [- Y-

¢  Implioit solutiom for y __ (V.4)

Roamempenest 1 _
Y701 +6 y)
This equation then gives the pressure in the compression chamver
bofore breaking the diaphrapm necessary to establish a shock wave of
pressure P travelling down the tube. This relationship is plotted mm
the following pags. (Graph 5). On the second page following is
plotted also the values of exocess ohamber pressure over atmospheric

and the excess shock wave pressure over atmospheric in pounds per
square inch, (Graph 6).

The oompression chamber pressure may also be evaluated in terms
of a given Mach number M behind the shock front.

Since % O TSP R =—‘/=5(£éL from equation (III.%9) (V.5)
Y7(7 + 6 2) 7(1 + 6 y)

Bquation (V.4) may be rewritten as

c z + 1
'Fo' = ——Ll'l—r,' = ——-—-}-;—7“" (Ve6)
a-%  a-Y

Solving (V.5) for z in terms of M,

£ = 0,86 0 + 1,4 M y1 4 0,36 M

and '
P 140.8¢ M 4+ 1.4 My 14 0,38 ¥
¥ 7 (Ve7)
0 M
(1 "'5-)
2 PR, PR,
1.4 52 4,25
1e2 29.3 3.3
1 1605 2.5
29
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In oase gases of different density and » are used in compression
cvhamber and expansion chamber the relationship bstwesn compresaion ‘
ohamber pressure snd shock atrength will be different.I the gas in the ocom-
préssion visver hes « ghume ;’1 and sounru velocity % and ths ga&s in
the expansion chamber has a gamma 2, and sound velopity &, then it oan
be shown that *

{v.8)

For example, if helijum is used in the compression chamber and air in the
expansion chamber,

7, = 166
7, = 140
-:-:- = 1,83
At y =3,
P 3

s |
= L 1%
f; 1 - o518 x 2 x 0.66 |7
Y2.80 (6.40 + 2.40 x 3 N ‘

P
For comparison, air in both chambors give -pf- = 11,7 for y = 3,
o
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VI. ADIABATIC THEORY OF THE SHOCK TUBE

An explicit expression for P can be obtained fram an adiabatio
solution of the burstine diaphragm problem which is approximately
correct and is convenient for calculational purposes. The errors in
the approximation are indicated in tabular form at the end of this
section.

The line of reasoning is the same in this case as in the previous
more exact asolution but the expression for the partiale veloocity be-
hind an adiabatic compression' wave is substituted for that behind a
shock wave,

We have from equation (I.8b) that the particle velooity behind a
~ compressional wave of pressure P las

r-l
2o | &y ?” (v1.1)
U = e -1 particle velocity be- (VI.1l
r-i 'F; hind. compreesion wave

and from equation (I.9) the particle velocity behind a rarefaction wave
advancing into a region of pressure P_ and velocity of sound & iss

7 -1
'2&1 P Er o
u= sy 1~ (T) . (VI.2)
c

~ Assume &, =a as before and equ:te the particle velocities giving

7 -1 =1
p .27 P27
1~ () = () -1 : (v1.3)
o Yo
but _13_ < F . f_o_ =y Po
R A A Fe
7=l -
: po 2y 12_]:' -
80 1~ (y T’—) =y -1 (VI.3a)
. o . i
or P .
. c y .
fr‘»‘; = Y=l 27 : - (VL.4)
- (2 - y 27) r"l

and likewise the exp;.icit solution for y is
r
-
2) 7 Tp/fp,

Yy = p- (V1,.5)
r-1 27 |
P 7-1
(=%) + 1]
PO
33
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If 7 =1.,4 (air) and we let P /P = @ , then

7
2
et R UM I Y s
w
128 w
y = (VI.5b)
(w (N 1)7

" also in terms of the same variabf;

o= -(a——lv,-’—)?— (VI o4&).

=Y
The results of equation (V.4) give

- 1/7 _ A
« t_ =y *7‘““'-‘/‘.1_ G =1
VIl +6 y) V7 +6 y)

Substituting this value of ¢ into equation (VI.Ga) and extraoting the

root, we have

1/7 = 2}']'/7
AL V. S 2 ) B
VAR
80 that
Ya 28 Ratio of amplitudes oal-

1
—_ = oulated for the compress-
’ [-1 + ylﬁ- (y = 1) 77 ional wave under conditious (V1.6)

vV 7(1 4+ 6y) of adiabatic and shoock wave

formation.
These are tabulated as functions of y
Y, (Yg = )
— x 100
v ¥
1 1,00 0
2 1.01 1
3 1.02 ' 2
4 1,033 33
5 1,05 540
6 1,07 7.0
7 1.09 9.0
8 1,115 11,5
10 - 1.17 17,0

This table gives an idea of the range of shook pressures over which
the adiabatic expression for y may be used without too great an error in
results.




VII. THE PRODUCTION OF ARTIFICIAL BLAST WAVES

(The calculation of the relative dimensions of the tube to pro-
duce shock waves with & peaked top.)

The shape of the shook waves produced by the buruting of a dia=
phragm in a tube will change as the wave progresses down the tube as
shown in the following series of sketches,

tan ¢‘= 5(}"1) + V7y(6+}') -1

+ 6y

toa f = 2EW) - é_g{y;/i-x)/vy(ﬁm |

Exampless y =2

g =11.3°

ﬁ' = - 14.30
angle of P = Po

in the trough.
\

M -

L

It is obvious that at some point dowvn the tube the rarefaction
tip will catch up with the shock front and a peaked wave will be pro-
duced, It is the position of this point which will be sought in the
analysiss The sequence of events in the tube after the diephragm has
broken consists of the production of a shock wave traveling down the .
expansion tube with a velocity U, followed by a temperature dis-
continuity traveling at a velocity u, and a rarefaction wave traveling
back into the compression chamber. The initial part or tip of the
rarefaction weve travels back with the velocity of sound b_ in the
compression chamber which is assumed to be equal to.a.. This tip is then
reflected from the closed end of the compression ciamber and travels
for a short distance through a variable density region until it reaches
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the gas of constant pressure P. It then travels down the oompression
chamber and expansion tube with a constant velocity b, until it
reaches the boundary between the cool gas that was orlginally in the
compression chamber and the gas passed over by the shock wave wirlch
has been compressed and heated. This boundary travels with the
particle velooity u behind the shock front. When the rarefaction tip
reachns this boundary it proceeds with a slightly greater weloclity bz
until it eventually catches up with the shock front.

The various velooities with which the different sections of the
shock wave travel in the tube are derived below:

P = a . (V1I.1)

where b is the velocity of the tip into the compression chamber,
After reflection from the olosed end of the ocompression ohamber and
after reaching the constant pressure region P the velocity of the
rarefaction tip is

by = u+ o ‘ (Vii.2)
sa, (y - 1)
where u-=s Equation (III,9a)
' Vi1 + 6 y) '
1/7
and 0, = 8, (.1;-) =a, Qv - -—-—-L-—-lL)Equution (Y.4)
o VI(1+ 6 y)
so that

by = 8y (14 74=_1‘="=“=)§g},g°;:g.°f tip in  (VII,28)
7(L+67y) : _
The velocity of the tip after passing the gas boundary is

b2 = u+4o (ViI.3)

where u is the same as above and

= [y(s+ ) ' -
o= a %I‘T'é% Equation (III.8a) —_

b, = 8, [5( - 1) +/7y(6 + )‘]Yelocity of tip (VII.3a)

7(1 + 6 y) in hot gas.

After breaking the diaphragm the velooity of the trough of the
rarefaction wave back into the compression chamber will be Vo which is /

80 that

-the local velocity of sound minus the particle velooity. So

v, = 0, -u (VII.4)




8o that

6(y = 1) volocity of trough toward
: ‘ ‘ Vo = 8, 1l Y the closed end of the oom- (VII.4A)
: g o - /T ¥ 6 y) | pression chamber.

; y It may be noted that v_ = O when y = 2,88 which means that the
| trough is stationary at this shock pressure, It moves toward the
) , olosed end if the pressure is less than 2,88 P_ and moves toward the shook

P ' front if the shock pressure exceeds this value.
\t
After reflection and after the tip of the rarefaction wave has
moved out of the variable density region, the trough of the rare-
faotion wave has a veloocity v, whioh is the local velocity of sound in
& gas cooled by adiabatic exp&nsion from a pressure Po to a pressure

P « 8o
vl = oz (VII.5)
where p W7
o, = 8, _(p%)
1/1 1/7 o 1/7
P .{ O
but () = 2(y=) =-1=2(z) (¢) =1 from equation
- R A A (11,26 '
P P
and S =w and =y
¥ L
1/7
so g = & €3 ~I7 - 1)
>
but. w1/7 = y(y SV E from equation (V.4)
VT + 6 ) |
8o that )
2(y - 1) veloocity of the ( )
v, = &8 |1~ trough in cool VII.5a
1 ° V7L + 6 y) | gas. .

After crossing the gas boundary the wvelocity of the trough is
equal to the velocity of sound in a gas cooled from a pressure P and
sound valocity o to & pressure Pr and a sound velocity &, plus the .
residual particle velooity which is no laonger zero after grossing thle
gas boundary. - R

——

———
S ——

From section II we have the equations which give the value of P 2
after passing through the gas boundary as

P 1/7 2a Pr 1/7 0 -8y
( ) = ——:—a-{ (‘p—) + -"—"'*_"I (VII-G)

..-"f
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. now’ 8 = &, §-)

-

. 1
and from adiabatic theory of the tube we have (';-) =2 - ylﬁ
, . N o ' .

80 ='a (2- 1/7-)
. 1/2
and [](.6_:6 y] from equation (IIX.8a)
From the theory of reflection of adiabatic waves (section II) we have
' 1/7 1/7 1/7 :
P P 1/7 P .
rl ) 3 -2 o 1
&) =2-() = o - }}7_7 since (x~) = P
Substituting these values we have then
o omy 1y, ST % -
( ) = o+ 51 (3 -2 b ) + 3—:._-—‘-1- (VII..’)
So the velocity of the trough will then be
vz.=u-u1+a3.- R
whers  u = &p(y. - 1) _5o(y ~=1)  the particle velooity behind
ﬁ(l_'* 6 y) A/,, (6 +.y) | the shoock wave
p, V7 ‘
u. =6 - ( rz) the partiocle velooity caused
1 =°° B by the rarefaction wave
Prz 1/7
ana 35 =0 (T)

Substituting values for these quantities we then havée that the
velooity ¥, of the trough in the hot gas is

. -1 6{2a(3-2y1/7)+o-a1 (' )'
., =5¢¢- -1+ ¢ . VIii.8
Y Rt R )

The position of the shock wave in the tube at any time may be
graphically portrayed in a chart which shows the locus of the wvarious
points as a funotion of time and distance down the tube., If distanoce
along the tube from the diaphragm divided by the length of the com-
pression ohamber is plotted as x along the abscissa and if the
quantity e t/h is plotted along the ordinate, then straight lines may _

be drawn (repraaenting the loocus of the points as a function of tims)




with the position of the diaphragm as the origin and at angles 91, 02,
oeto, with the abscissa. The tangents of the angles 8., 6,, etoc,, are
the inverse functions of the velooities of the points, Wg then have
defined for the various components representing shook Vvelosity, trough
velooity, rarefaction tip velocity, etc., the tangents eof the angles
of their loci as follows: '

a
tan 0, = g shock front (VII.9)
a &
tan 92 = GP h gas boundary (VI1,.10)
tan 8, = %2 : rarefaction tip in (Vi1.11)
0 compression chamber -
ten Q4 = -gi ' rarefaction tip in cool (VII.12)
1 gas
tan 95 = %9- rarefaction tip in hot gas (VII,13)
2
a .
tan 6, = & trough into compression (vir.1a)
o " chamber
e
tan 0, = ;9 trough in cool gas (Vii,15)
1l
a
ten 8 = -;,-9 trough in hot gas (Vi1.16)
2

A time distance chart for a shock wave having a pressure ratio
¥y =2 is shown on a following page. (Graph 7.) ¥rom it a great deal
of information may be gleaned. For example, the length of the ex-
pansion tube necessary to insure that the shock wave have a pointed
top like a blast wave can be found at the intersection of the locus of
the shock front (line U) and the locus of the rarefaction tip (line b )e
In this case it appears that the length of the expansion chamber shoufd be
16 times the length of the oompression chamber to obtain this condition,
The duration of the shock wave from front to trough can be found in
terms of aot/Lc at any distance x along the tube by measuring the

vertical distance from line U to the line v_.., In similar fashion the
duration of the flat top of the shock wave Et any point x is found by
a measurement of the vertiocal distance from line U to line bz.

Another method of showing the change in shape of the shock wave
while passing through a homogeneous medium is to show the loci of the
points relative to the shock front as in the first page of this sections
In this case the abscissa is the length or duration of the shock wave
while the corresponding ordinate is the distance along the tube or
time. In this case the angle of the locus with the ordinate is Q where

tan @ = g -1 (VI1.17)

where v is the velocity of the component under consideration and U is
the shoock wave velocity,
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The oritical length of the expansion tube which first allows the
rarefaction wave to reach the shock wave may be solved by caloulation

~ rather than graphically if we proceed as follows:

After the diaphragm is broken the boundary between cool and hot
gas moves down the expsnsion chamber with & welooity u, where

5a_(y - 1)
ue —2 (vi1,18)

V71 1.6 y)

The distance that it has moved at the instant that rarefaotim
break reaches the end of the oompression chamber is

‘ Lo
d=ulT butT=;—
o
u Lo
80. d =~ . (ViI.19)
_ R _

The length of the cool gas column at this instant is

w Lo
n=k 4+ o =L (1+—)=L (1+—-JY-——-L) (VII,20)
o v’? (L+6y)

The time of travel necessary for the rarefaction break to reach the oool

- g&s boundary is

14+ 5(y = 1)

L \/—-—
T= R =§I =2 - 78;"_‘ %Y) (VI1.21)
.0 -

V71 + 6 y)

The distance x from the diaphragm at which the boundary is reached is

uLo Lo -
X= ul+ o= = u(T+ ) (vii.22)
o o]

Substituting from equation (VII.21) we have

5 Ly(y = 1) 2/7(1 4+ 6 y) + 4(y - 1))

J:=77(1+6y) V(1 +6y) - (y -1)

The length of the hot gas column at the time the cool gas boundary has
progressed & distance x down the tube is

(Vi1.23)

8: T(U - u) where T =

=in
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80 5=x(g- -1)

=x [—6-(3—:—%){] | (VII.24)

The additional distance that the rarefaction break must traverse to
pass through the hot gaas &nd reach the shock front is

Ly

X < b2 Tf where ™= TzSTU
.'l
| 1-5 % T D TyErn :

(v11.25)

80  x =x{é+y_£5$y-1)+v7y(6+y)_]_
1 s(y - 1) [V/7 y(6 +._3r_5 - (6 +y)]

Tre total distance from the diaphragm at which the rarefaction dbreak
overtakes the shock wave is the sum of these two distances x and x

1
80 L‘ = :+zl= x[‘l-r.s%;t:%y.g 7}'(64'1)-&”54:-1)
| V7y(6+75) = (6+y)
X
We then sev =
. el
-
and ee1a 2NLTyE+ N +5G -]
8y = D[ VT y(6 +y) = (6 +y)]
€ .
~sothat y— = {f for the oritioal length of tube,
o .
The values are tabulated below.
L
¥ P/, P, 1b g & <
| L
1.25 1.558 842 0.3666 75,85 27,0
1,50 2.29 18,97 0.712 26,81 18.4
1,75 3.20 32,36 1.064 15.0 15.96
2,00 4,36 49.4 1.418 10.64 15,1
2460 7.28 92,3 2,12 7,03 14,9
3,00 11,40 153,0 2,82 5450 15,5
4.00 24,16 340.0 4,256 4,142 17,60

These oritiocal lengths in terms of y and Po

are plotted on the next
pages. (Graphs 8 and 9.)
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Graph 8

Critical Ratio of Lengths of Expansion Chamber to Length of Compression

Chamber as a Function of Shook Stremgth (y)
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VIII
THE IMPULSE IN THE SHOCK WAVE AT THE POINT OF CATCH-UP OF THE
RAREFACTION WAVE

A solution of this problem may be attempted by assuming that the
energy released from the compression chamber by the expansion of the
guses from & pressure P_ to a pressure P, the pressure in the trough
of the reflected rarefadtion, is essenti 1lly conserved and is the
epargy available to do work in the gas behind the shock wave. The
energy in the shocl wave is conceived to be the internal energy of the
compressed gases in the shock wave if these gases are expanded adia=-
batically to the pressure Pr of the rarefaction wave following the
shock wave plus the kinetic energy of the gas particles in the shock
wave, The assumption of oonservation of energy will be examined later
to determine the error introduced by it.

If the concept of the energy in the shock wave outlined above is
adopted it will then be permissible to assume & relationship between
tho emergy in the ghock wave and the impulse asaociated with it of the
following fornm

1 = 5 (VIII,1)

where E = energy of the shock wave
I = impulse of the shock wave as measured by a gauge side
U = velocity of the shock wave -
and k = a dimensionless factor to be determined later. It is
a function of the shock strength and the shape of the pressure-time
ourve of tha shock wave.

BEquation (VIII.1) will be used to oalculate the impulse of the .
shock wave when we have evaluated k and E, the energy in the shock.

The work done by a unit mass of gas in adiabatioally expanding from
& pressure Pc to a pressure P is

P, P P ) S - )
= 1 N R = _1_.- - - —— o .
6, = °. ; ¥y [’oc /or] y=1 p, [ 'p';‘ 7;'](VIII 2)
1/y .
e ¢
but = (=)
AR 1-7
80 e =g ==—-—I1 o 1 -(fﬁ) g energy ver unit (VIII.2a)
c T 7rs P; Fr mass of gas.

The available energy per unit volume of gas at a density /°c in a tube
of length Lo and unit area is

e = /°c L, (ac -er)
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1- 2"
PL P 7
[+ ] [+]
80 °=’7:T 1-(5:) and if 7 = 1.4
-2/7
o= 2PL |1- (=2) (VIII.3)
T “a™e P *

This is the energy available for adiabatio expansion in a cylinder of
gas of unit oross section, of length L at a pressure P and expanded
to a pressure P .

If P is the peek pressure in the shook wave and P_ is the initial
pressure in the compression and expansion chamber we tﬁen define the
ratxo :

T e

A

PP, =y emd PR =w

" If we consider the initial formation of the wave to be adiabatioc
we oan get an explicit expression for y in terms of « which is:

1/7
1/7 200
M- ST cauesion (VI.sa)  (VIII.4)

This assumption which is made for computational convenience results
in en error which may be determined for any range of »..00k pressures
from the table at the end of section VI, For the range of pressures
oonsidered here it may be responsible. for a maximum error of about 2
percent at the highest shock pressure.

From the theory of reflection of adiabatioc waves we find .the ratio

1/7

(.I.,.’.'.) =2y /7 . / equation (II.8b) (VIII,5)
L] :

oonsequently in terms of ¢

1/7 . . |
R ..___/r_.lwm(3 - w " :
Po, 177 4 (VIII.8)

w
11 AT p WM :
e ) = @) @) ’
- (;‘1).2/7 i od : ) o mma
thm ~ E = 5P L, ﬂl“%{?'—él | (VII1.8)
(w’/" +1)
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. 1/1
which is 8lso equel to E =20 P L_ ):;"(“’ ')1)] (VIII.8a)
w 4 1 ,

This equation (VIII.Ba) then gives the value in terms of ¢ of the
-available energy in & tube of unit cross seotion and length L° when
expanded to a pressure P whioh is determined by the reflection of the
rarefaction wave produoeﬁ by & bursting diaphragm.
AR .

If a shock wave of pressure P is traveling into undisturbded air
of pressure P_ the velocity of the shock wave is U, where U is given by
the equation

U _-_-' a .1.._..__1* 6 (V'III.Q)

Again using the explicit expression for y in terms of w given
above for the adiabatic case we have

7 + 1)7 wave in terms of

/7 P

¢ o

Uy =28 [} 4768w q /2 velocity of shook
(w

We now have expressions for two of the factors involved in equatiom
(VIII.1) and it remains to ewaluate the factor k in order to arrive at
- an angwer. One might infer from an analogy with the mechanical case
where k = 2 that the factor might lie in the neighborhood of this value.
The concept of stored energy in the shock wave coupled with some reason-
able assumptions as to the shape of the pressure~time curve of the shock
wave enables us to make & reasonably accurate determination of this
faotor which does turn out to be of the order of magnitude of 2. . .

We proceed to evaluate k in the following manner.

From equation (VIII.1) we see that

k =

2

for any blast wave, (VIII.1l)

The energy in & shock wave consists partly of potential and partly
of kinetic energy, the proportions of which change with the amplitude
of the shock, The potential energy is considered to be the available
pressure energy of the gas in the shock.wave, while the kinetic energy
is the energy of motion of the particles in the shock wave,

The available pressure energy of a slice of gas somewhere behind
the shock fromt is

P P od
1 P _ 1 o (P 0
ARy = 55 '7:"-;) = 5 B e -1 (ML) |
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o
80
A 1 Po (I ) Energy per unit mass of gas
E, = o~ = 1) 1if the gas were expanded
1 7=l 7: x adiabatically to & pressure (VII1.12s)

P, and density /° .

The energy. per unit volume is 2 A El and is

AE, = 5}-_1 P (y - x) | (VII1,13)
and if > = 1l (air)
then. . AE = 3 P, (y-x) (VIIZ.138)

From equation (III.5) seotion ITI, we find that the ratio of
densities x in a ghock wave is ‘

x = X8
6+y
so 2 Potential energy in a slice of
5 y - 1} gas of unit cross section and
AEp =32 Po( 6+y unit length at pressure P and (VI11,13b)
density A2 .

The total potential energy in the blast wave is then

X
z .
-1
P, / Is"ri dx | (VII1.14)
o .

=3
f
fon

The kinetio energy per slice of length dx and unit area is

1 2
AB, = u” dx where u is the particle velocity
T2 T 2 £ and ,° is the density (VIII.15)

I | Py .2 .
=%, (‘Z;) u dx : (VIII.168)
2 _ 26a%(y = 1)2 4 P _ 146y
but u —TTIT)—? + 6y an ' 7—0 = Ty
B 26 a° (y - 1)% ax
80 ABy = 3 /5 Ty (VII1.15b)
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and the total kinetic energy in the wave is then

2 x ‘ | |
26 a° 0 2
= ) (y = 1)° ax
B = —3 / Ty (VII1.16)
S (.
2 7 0
btoatm 5 & o |
. | y ,
' 6 - 1)° dx
80 Ek = ¥ po/ iL-G_*ly_— (VIII.16a)
A |

The total available energy in the shock wave is then the sum of the
kinetic and potential energies which is

X
t 20 ' 6+ y
. %
X
=5 P }'_(lg:_*iL‘Z‘. total energy in the  (VIII,17)
. A y shock wave

Now if the shock wave changes in duration slowly enough while
passing over its own length we may put

dx = U dt (VIII.18)

so that these squations may be written as

t
2
= 5 y =1 .
Ep- 5 POI/ 5Ty dt (VIII,19)
(]
2
_ 5 (y = 1)
E,= % PU T dt (VIII.20)
0
th:z__.l
= -1
B, = 5 Potf Ty o (VIII,21)
]

We may substitute ¢ =y -~ 1 as a variaeble and make an assumption
as to the rate of change of z with time. Oscillogrems of the pressure=-
time variation show that the wave shape approaches triangular form at
the lower pressures while at the higher pressures it approaches an
exponential form.
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Assume that the wave shape is exponential and that

--u
z = ze6 t then at = éd’

when 2 =0, t 00, z =2, t =0 '

80 that equation (VIII.21) may be written after substituting for y and -

ds 5PU
Et = ‘O / Sz + 12 de (VIII.ZZ)

‘ z
B =“"'FoU zdz + dz
+ & 7+ )

[+] [+
5PV v T
0
742 ~71og (7 + z) +'log (7+z)]
< L 14 )

5P U . -
= QLO Ez' - 6 log (1 4 %):l (viIr,23)

The impulse measured side on in a blast wave is definrd as

I /tht-Pf(yal)dt=Pf' d£ (v111;24)

(o) (+]
but dt = - 4 42
@ = T - .
l:'o Po '
80 I =z dz = —— (viII.26)
[}
POUE
Then 10 = -
and k= -Iﬁq-

therefore the value of the faoctor k may be written as
2

k = - [_ T e *ﬂzﬂ- (VI11.26)

The term log (1 + —) may be expanded in a geries to give the
. approximate formula

Kk = . . (VIII.268)

5(1""372‘ E +T oooo)

which has the value 7/6 when z——%0, This is of the order of magnitude
of the mechanical factor 2 as mentioned before,
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128 W
If the explioit relationship y = is used the faotor
(le)" .

k may be written

1/7,. 7
X = v 129,7“ = {w/+ % T (VI1I.26b)
o pf128 w (w4 1) {1 + 6 log, (5 + ——gpitt 7)}]
| ' Co 7(w +1)'Y
Peoapitulating the formulas wé have
1 ,;I.Ul; (VIII.11)
7
128 6o ~ (e 4 1) - (VIIT.26b)

k5 —

17T Y 5 128 o
5 [128(0 “(w '+ 1) {1 + 6 log_ (3 + —r 1)7)}]

E=20PL [-‘9-%7-—-'—%)- | (VIII.8a)
(™" +1)° | -_

a q 1/2 o
o [1+ e (VIII.10)
(™" 4+ 1) ]

Combining these factors we then have the expression for the impulse
"in the shock wave in terms of the dimensionless quantity Iao/?oLo.

This equation will hold at the point of catch up of the rarefaction wave
with the shoock front if the energy lost by the shock wave in passing
down the oritical length of tube is ignored. This will result in an
error of less than 4 percent in the calculated value of the impulse,

We have then

T% 10,58 [ (@7 - 1)] | .

PoLc [@01/7 4 1]4ZF
[128 @ (w1/7 +1)7]
/737 128 768 7E
[12.30_(,» 1) {1+ 10, (7 YT }] [ @)y 7+:))7] '

This relation is plotted in terms of ( @ - 1), Graph 10,

U=

(ViIi,27)

1X, THE CHANGE OF ENERGY AS THE SHOCK WAVE PROGRESSES ALONG
THE EXPANSION CHAMBER

When & shock wave passes over & mass of gas it changes the entropy
of tha gas and leaves it in a different energy state in general than it was
originally. This change in energy can be found by differentinting with
respect to time the equations which represent the energy of the shock

wave,
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Graph 10

Impulse in Shock Wave as & Function of Exocess Pressure in Compression
Chamber

oo T T T 1T TTITI T T T T 1

8.0 I = Impulse in 1b/sec/sq in.
7.0 & = Volooity of sound ft/sec: v

640 PO = Pressure in expansion chamber pounds (mtmospherio normally) 2

5.0 LA = Length of expansion chamber feet /
w=P /p
4.0 ¢ "o
* P° = Pressure in compression chamber lb/aq in. (total)
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If one considers a shock wave in which the pressures, densities, and
particle velocities have wvaluea indicated by the subsoripts on the dia=
gram as follows,

the coordinates at any instant of time of the boundaries between th;se
regions have the values Xor Xy and Xge The total energy in the shock

wive then is given by the integral of the sum of the kinetic energies of
the partiocles and the increase of internal energy of the gaa. This is
given below as

X
/01 + g - B )dx +x ,0(% uz-r.E - Eo)dx (1x.1)
2 N

The change of energy with respect to time is the derivative of this
expression with respect to time and is

/01('5“1 “"L)——— /02( w2+ B, E)——E

xl
1 2
t) L PGu 4 E-E )i (1X.2)
X2
CAN
low 53 = U the velocity of the shock wave
and
Ix, where a, is the velocity of sound in
3T T % + U, the trough and u, is the particle (1x,3)
velocity in the %rough‘

So the rate of energy change is

_,o U( +E E)-,oz(a a)( +E-E)

=% /0( w4+ E-E) ax . (IX.4)
"’z
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The last term in the integral sign is equal to

u_.l 2 5 3P 5 %% 5
Pudirzv 85 3 SRt o HP @ (1X,40)

Nt

2L . .pR2i.u22
53 = /Oax u 55 (1x,5)
91 .. ,8u 1 9F
at’ = Wy X F-———x- ) | (II.G)
Substituting these valves the integral becomes

X
_7 2P 3 5 2P Du - ]
535t P ") "3z & A)
3
P |
= (58 o « Tw2E.8 28 ,2u
*terlg B AV -z F2-7 55 PR (X 7)
e 3 9P = 5 7 P_ -
but -,-?--—3—;5 P 7 *E° Y + o =P (1x.8)

So then performing the integretiou and substituting in the limits we find
that it is equal to '

P P
1l 3.5 "o 7 1 3 5 "o .
-5 /yuy + Py =z Piu, 45 2 " - Vel Ry
z,._11 ‘5;6-0 11721172 2 Y2 zzs-o 272

+ L P (1X.9)

Z ‘22
Then adding all terms we have

5E _ 12 12, 1 2
S5 5 PG e Bm B - Lpmg(Fug Ty Bym By) = 2uy G uyt By- B)

= Pjuy +_P2“2 (1x,10)
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and since 1(U - “1) =p U by the squation for conaervation of mase,
then

SE 1.2 o 1l 2 o
ST =P UG U+ By B)) = Pjuy ~ 0,8,(5 u,"+ By= B ) + Pouy (1X.11)

However as a consequence of the conservation of energy as defined
in the Rankine~Hugoniot equations the first two terms cancel so we are
left with the expressiom for energy change as followss

o8 _ 1l 2 - , where u, must be given
ST PGt By B) + Py the pro%or veotor sign. (1x.12)

This equation expresses the idea that the energy change as a
function of time is the difference between the total energies of the
gas ag it enters and leaves the shock wave plus the work done on or by
the gas after it leaves the shook weve depending on whether u, has a
positive or negative sign.

let us consider the shook wave after the rarefaction trough has
passed the gas boundary. The reason for doing so is that until this
stage is reached the gas in the vompression chamber is still giving up
energy to the shock wave but after this stage the shock wave gtarts. to
dissipate and to feed back a small amount of its energy into the som=
pression chamber in the form of a compression wave,

After this point u, = u-u, )
1/7
. -1 P2
where U = §¢ m—m—————e  &nd u, =5c.|1 - (T) (1x.13)
V7y(6+y)

p, 17
8o u, = 50 . -1+ (-?g’ (1X,24)

V7 y(6 + y)

- / (6 + y) =P :
o =ea, Il_réxf whgre y = Po (1X.15)

Now from the theory of reflection and transmission of rarefactiom waves

as given in section II, we have ,

. /7
Pz 1/ 7 Zal Prl C = By
(-*15-) = —__-o' T Ay (—-P ) + reyw T . (1x,16)

where o = speed of sound in the shock wave

8 = speed of sound in gas that has been cooled by exparsion from
presgurs Po to Pr .
1
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From seotion II we have
, P 1/7 p I
S_P—l') = 2 - ‘(.j,‘l) ' | (IX.17)

1?° VA 1 7 . S o
but (-p-) = - — : (1x.18)

J11 + 6 y)

p 7
1y e Y71 46y)=-2(y=1 .
e A TR P (x.9)
‘ A
and & = 8, (—'P:) =a (—P_) ‘(T’:) =
. 2 =)
lO_ [1 ’7__.(1 = _é,___y) (11.20)

The ratio of densities /2 _/ /P, can be found by considering the gas
to be oompressed according to the Rankine-Hugoniot equation of state and
to expand acoording to the adiabatic equation of state so that

5/7
o 1+6y Pz Py
-7: = 6_++-ix end 7— = T)
_ p. 8/7 5/7
o 0
-5/ - -5/7 -
A A P2 5/7 64y 2
then 732 = ¥/, - . (-f.:) =y./ R . (-1-,-;) .(Ix.zz_)
: P2 o/ P o/ 1+6 |
then /% = &) [;s%ﬁ;%x;] Po= P bF) ¢ TgEy (X3
The change of internal energy E, = B is equal to
' P P P P P
-E =83(C2._9) =8 232, 22 IX0 2
Ez Eo -2-(72 o) 5 P; (15-; : ,gz ) ( )
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Substituting for /2 o/ /P 5 We have
5 Fo 5/7(6 4 P LA

_ p 1/7 P 1/7
and o (P =, [YETH By 1z

Example y = 2

= 0.790 &
N .
(T) = 0,902 .

(p-a- ) = 0,9965

U =0,01% a.o

P
2 o
0, 000263 7—
]

ol
_Nﬁ
i

Po'
EZ ‘f" B = 0.002575;

. 1000 ao.

1)
n

=3 =P, [0.978 x 1.00 (0.0063+ 0,0025) - (0,977 x 0.0194) ] =
Poao (0,0165)
. _9oE ., _
Thg total dissipation Ed —3,&-1: = 0,0165 Poa.ot
From the diagram of section VII we find that the trensit time of the

rarefaction trough from the gas boundary to the point of catch up is

L ;

c —
11 3'; so that aot =11 Lo'

Therefore the total dissipation Ey.1s 0,181 Pol'o‘
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The energy originally in the wave is

17
B = 10 POLO [ﬁl‘:—yvﬂ%] = 4,03 POLO (11.27)

so that the ratio of the energy diasipated to the total original energy
is ) e
B oae1

e e . g
= 2,03 = 0,045 5%

This gives a measure of the accuracy of the caloulations of impulse
which are based among other things upon the assumption of oomservation of
energy of the shock wave, Presumably then at the pressure level y = 2
the error in the oaloulations should be of the order of § percent.

X AN EXPERIMENTAL DETERMINATION OF THE POINT OF CATCH UP OF
THE RAREFACTION WAVE AND THE IMPULSE OF THE SHOCK WAVE IN A TUBE

ABSTRACT
Experiments are reported here which show thati

(A) The impulse in the shock wave in a tube at the oritical
distance is very nearly proportional to the excess chamber pressure and
can be caloulated by considerations of the energy in the shock wave,

(B) The length of expansion tube necessary to allow the rare-
faotion wave to oatoh the shock front and to produce a peaked shock wave
can be found from a knowledge of the vearious wave velocities and is of
the order of magnitude of fifteen times the compression ohamber length
at the higher shook pressures.

Notes The ocomplete paper on this subjeot will be found in AES
7 February 1945b.
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APPENDIX A

A SIMPLE DERIVATION OF THE EQUATION FOR THE TOTAL ENERGY IN A SHOCK WAVE

Asgume a tube of unit oross section open to the atmospheric pressure
P_at one end and closed at thoe othor end by & weightless piston. The
afr behind the piston is evacuated to avoid any aomplications due to the
formation of rarefaction waves so that the statioc preassure on the pistom
is P_.. Now let the piston be.actod upon by & suddenly applied uniform
forcé P which causes it to move with a uniform velocity u until the
piston has moved a distance X,o The total work done by the piston is
then Pxo.

The motion of the piston will produce a region or oompressed gas
ahead of the plston whose pressure is P and whose boundary will be a
shook front of velocity U. The velocity of the piston will be u, the
velocity of the gas particles behind a shock front of velocity U and
pressure P, The shock front will then move a dilstance Ut while the
platon moves a distance uts The length of the shock wave at the time ¢

. b .
will be (U = u)t. Let ¢t = 'Tg then x, the length of the shook wave
at the time the piston has moved a distance x, will be

x
x, = U-u b 4 and ;l =

3 = o -1 (A.1)

o
ela

The energy in the shock wave will then be equal to the energy per
unit volume times the volume of the shock wave.

Sinoce the tube is of unit cross seotion then this is

6%23 o X =B, the total energy in the shook wave (A.2)

Thieg in turn must be equal to the work done on the piston whioch is
Px .
o

»®

- dE _ o _ _ P
o = r;c-l- =Py where y = F (A,3)

o

But from the shock wave equations derived from the condition of the
Rankine-Hugoniot equations we have

.&’ = %6_‘_5_-11) (7 =1.4) | (A.4)

v 6+
and S -1 = 'sTf'y-_T)' (A.5)
x
o 5(y - 1
EI = 6+y (A.G)
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Consequently for a flat top shook wave

E =ep, Hrol W

and the totel energy of a shock wave of arbitrary shapo is given approxi-
mately within an error of 2 peroent, providing y is no larger than 3, by
the following equation

X . :
, (y -1
B, = 5%, xgtri_l ax (A8)

(]
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