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FOREWORD

This report covers research conducted from ). July 1964 to
1 April 1965 by the Air Force Flight Dynamics Laboratory, Vehicle
Dynamics Division, Aerospace Dynamics Branch.

The work was performed to advance the state-of-the-art of
flutter prediction for flight vehicles as part of the Research and
Technology Division, Air Force Systems Command's exploratory
development program. This research was corducted under Project No.
1370 "Dynamic Problems in Flight Vehicles," and Task No. 137003,
"Prediction and Preventicn of Aerothermoelastic Instabilities."
Mr. Jares J. Olsen of the Vehicle Dynamics Division, Air Force Flight
Dynamics Laboratory, was the Project Engineer.

The manuscript for this report was released by the author in
April 1965.

This report has been reviewed and is approved.
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Asst. for Research & Technology
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ABSTRACT

This report presents the results of an analysis to determine how
certain aerodynamic flutter parameters (M, q, q/B) are changed from
their free stream values by the existence of supersonic and hypersonic
nose shock waves and expansions. The results indicate that nose
shock waves and expansions can create a new set of "free stream" con-
ditions for flutter analyses. These new free stream conditions can
be sufficiently different from the undisturbed "free stream" condition
to warrant their detsiled analyses in the supersonic and hypersonic
vehicle.
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INTRODUCTION

The advent of sustained supersonic flight was accompanied by a
whole host of new problems, among them aerclynamic heating and
increased drag. Another ne - problem, not so well publicized but
still important, was panel flutter.

Under certain conditions of Mach number and dynamic pressure,
it is possible for skin pan~ls of aircraft and missiles to experi-
ence self-sustained vibrations. The vibrations are known as panel
flutter and can cause immediate catastrophic failure or long term
fatigue damage, depending upon edge conditions, structural non-
linearities and the severity of the flight environment. The most
severe aerodynamic enviromment is generally considered to be one of
high dynamic pressure and/or Mach number near 1.0.

Our ability to predict the exact conditions under which panel
flutter will occur is currently rather poor because of many aero-
dynamic and structural uncertainties. The structural uncertainties
stem from the thinness and inherent nonlinearity of the skin panels
of interest. The thin panels usually are extremely sensitive to
small changes in temperature, edge conditions, differential pres-
surization, and midpicne stresses. As a result, the structural
properties are not always well defined and are disturbed by small
changes in the impoitant parameters. The aerodynamic uncertainties
arise from a lack of satisfactory methods to predict oscillatory
pressures on vibrating surfaces, particularly in transonic and low
supersonic viscous flow.

As satisfactory theoreticnl methods evolve and as data become
available from well controlled experiments, our ability to predict
panel flutter should improve. However, it will then be necessary
to devise means of interpreting data from analyses and experiments
in terms of the actual conditions on aircraft and missiles in tlight,
i.e., the "local" conéitions.

The purpose of this report is to take a first step in that direc-
tion and to show how "local" conditions can be at large variance from
the nominal "free stream" conditions. With this type of information,
the aircraft designer will be able to use the free stream parameters
such as Mach number, dynamic pressure and angle of attack to predict
the "local" Mach number and "local" dynamic pressure at the regions
of interest. These "local" conditions should then be the proper
parameters to use as a measure of the severity of the flight environ-
ment foi: flutter.

Section I develcops the "local" conditions on a two dimensional
sharp wedge in a supersonic flow of a perfect gas. Section II shows how
the effects of nose bluntness can drastically change these ''local"

1
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conditions. Section III combines Newtonian flow theory and Sakurai's
blast theory to obtain "local" conditions on aft positions of blunt
surfaces. Section IV summarizes the conclusions obtained.



SECTICN I

THE SHARP WEDGE

The object of this section is to determine how the local aero-
dynamic conditions, particularly Mach number and dynamic pressure,
are changed as the free stream flow is altered by the presence of a
sharp, two dimensional wedge. (See sketch below) Consider the flow
of a perfect gas, defined by the free stream conditions M, and Q.
The flow is deflected tkrough an angle §, causing the attached,

straight shock wave at an angle 6. As a result of the shock wave, the
Mach number and dynamic pressure are changed from M, and q, to the
"local" conditions M; and q;. The most convenient method of calcula-
tion 1is an inverse one in that we assume values for M, and 6, then
calculate the corresponding values for §. Using the equations from
NACA TR 1135, reference (1), we have for y = 1l.k:

cot § = tan 1.24% -1) (1.1)

M& sin? 6 -1

Also, for the local Mach number and the ratio of the local pressure
to free stream pressure, we have:

1/2
- 36M: sin® 6 - 5 (Mi sin2 0~ l)(7M£ sin2 8+45) (1.2)
L= - ' .
(TMi sin® 8 -1)(M% sin’ @ +5)
?_I_,__ 'TME, Sinze— 1 (1.3)
Po [

For a perfect gas, the ratio of local dynamic pressure to free
stream dynamic pressure is:

SpN= oVl - PM (1.4)

2 2
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Inserting equations (1.2) and f1.3) into (1.L) we get:

qr 36M}  sin0 - 5(M2 sin?g - 1)(TM2 sin%e + 5)
Qe 6M2 (M2 sin20 + 5)

The results obtained are illustrated in Figures (1) to(3).

Figures (la) to (1c) show the effect of a two dimensional oblique
shock on the local Mach number. The value of M; starts at the value
of M, for § equal to zero. As § is increased, M; then proceeds to
decrease to the point where further increases in § would cause shock
detachment. Thus M; is less than or equal to M, for all §. Since
flutter problems tend to be most critical for M = 1, one would then
conclude that increases in § would tend to increase the potential for
flutter instabilities.

Figures (2a) and (2b) show the effect of a two dimensional oblique
shock on the local dynamic pressure. The ratio qL/q°° is plotted
against § for several values of M,. As § is increased from zero,
the ratio qL/q°° increases at first but then decreases to a value
approximetely equal to 1.0 as shock detachment is approached. Since
flutter problems tend to be most severe at high levels of q, one
could then conclude that increases in § would increase the potential
for flutter instabilities only at first and that further increases in
§ would tend to be stabilizing. Note for Me less than 1.5 that qL/q°°
is always less than or equal to 1.0.

It is apparent that the effects of § on flutter stability shculd
not be judged from the effects on M or q alone. In an attempt to
combine the possibly conflicting effects figures (3a) and (3b)
were prepared. Figures (3a) and (3b) illustrate the effect of §
on the ratio (q/B); from several values of M,. As can be seen,

(a/8)

o0
increases in § from 0° up to shock detachment cause the local value
of (q/B) to increase substantially over the corresponding free sticam
value: The parameter g/B loses its validity as M-1l, so the extremely

high values of the ratio (q/B)L / (a/B), as M;=1 in figures 3, 10,
and 14 should not be given too much physical significance.

Now, it can be shown that the stiffness required in a skin panel to
prevent flutter is roughly proportional in some manner to a/B. Thus,
one can conclude that oblique shock theory always predicts that increases
in 6 are destabilizing since increases in § alwaxé increase q/B.

L



In addition tec shock wave effects, the possibility of supersonic
expansion should also be considered. If the wedge is at a large sngle
of attack the upper surface will be in an expansion zone and can be
analyzed by means of the classical Frandtl-Meyer expansion equaticns
(see sketch below).

8§

The flow is turned through an angle §, resulting in local conditions

M_and q.,. As with the oblique shock case, the most corivenient method
o? calcukation is an inverse one. Values are initially assumed for M
and Mg and the corresponding ¢ is obtained from the equations of -

reference (1),

2. 2 !
s = V6 {tan”} Mo tan ! Ml ) tan~ ' \|M2-1 -
J—e'—“ V5 L

1 L}
= 2
tan Mw-l \)

(1.6)

Now to evaluate the local static pressure, p_, we use the usual
equations for the relationship between stati& pressure and stagnation
pressure:

PTL f Mi 7/2

—_— = 1+ — (1.7)
Py \ >

i3 2 . T/2

- (1 Mo (1.8)
P, 5



Since the expansion is an isentropic -process:

Po, = Pp (1.9)
277/2

Py 5 + M2

— = - (1.10)

P, >+ Mp

Equation (1.k) then gives:

qr Mf S + Mi 1/2
- 2 (1.11)
o, M Lls+M

The results obtained from the Prandtl-Meyer expansion are illus-
trated in figures (4) to (6).

Figures (la) and (4b) illustrate how the local Mach number changes
as the expansion angle is increased for several values of the free
stream Mach number. As would be expected from previous well known
results, the effect of increasing § is to cause M; to be greater than

or equal to M_ in all instances. This effect should then be a stabi-
lizing one, insofar as the flutter of a skin panel is concerned.

Figures (5a) and (5b) are plots of the ratio qL/qm vs § for several
values of Mw. Except for M, less than 1.3, qr, is less than q, for all

values of 8. Thus, this effect of 6 is generally a stabilizing rne.

As with the oblique shock results, we now specify that the ratio
(g/8) is a legitimste one to assess the true severity of the flutter
problem. Figures (6a) and (bb) show the ratio

(a/8)y,

(q 8)

vs § for several values of Mm.

As can readily be seen, the combined effect of § on ML and qr,
is to be a stabilizing influence; that is, (q/B)L is always less than

or equel to (q/B),.
G



SECTION II

BLUNTNESS EFFECTS

The purpose of this section is to show how thLe results cf the
previous section (sharp wedge) can be drastically altered when the
nose is considered to be blunt rather than sharp.

In the sketch below we have a blunted surface which is subject
to some supersonic free stream Mach number

Mo

3o o
\%k

and free stream dynamic pressure. We want to find ML and g somewhere

on the surface. Consider a streamline passing through the strong,
curved shock in the sketch below. Let conditions just ahead of the
shock be denoted by the subscript « and the conditions just behind

Booy
e

Swock

the shock be denoted by the numeral 1. Let the conditions at some
point further aft be denoted by the subscript L.

Using two dimensional oblique shock theory for a perfect gas
with vy = 1.4, we have:

[ ]
P —\_'fM:-l

/
(2.1)

i- 51n2 9 (M + 5)-] 1/
lS wsm 8 +5) J
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&P

Now if we assume that the thermodynamic process from point 1 to
point L is isentropic, then

P, _P (2.2)
LT

PT is related to PL by the isentropic equation

L
T/2
P 5 ] o
= - _ 203)

P 2
TL 5+ M_L

or

2/7
2 _ [Py

) (2.4)

Thus the local Mach number, ML, is spe:ified by the ratio P, /PL
11, .

It would be conveniont to have M; in terms of PL/Pm.

We can do this
by further manipulations.
P P P
T T T P
L - 1 _ {._;L N (2.5)
Pr Py P, Pr

The ratio PTl is given by equation (2.1). Combining equations

P

[+ ]

(2.4), (2.5), and (2.1) results in:

. 21.575 Mf, (M +5) sin” 6

Mp =2 (2.6)
26 -1)*"(py/p,)

2 . 2 2
(M_ sin” 8 + 5)(TM_ sin
From the definition of dynamic pressure we have:

2
a _ hiMm (».7)
Qoo P, LM

[ 4]



Thus, if we know M_, 6, and the static pressure ratio PL/Pm we can
find M, and qj, from equations (2.6) and (2.7). The only restriction

we have made is that the streamline pass through a two dimensional
shock and proceed isentropically from there.

At this point it is helpful to observe that the streamline that
defines the shape of a blunt body passes through a nearly normel shock.
By setting 6 = 90° in equation (2.6) we have:

2
21.575 M,
ME = -5 (2.8)

(M2 - 1) 5/ 7(p /P )

At this point, the ratio PL/P°° is still not specified. Reference

(2) gives a modified form of Newtonian flow thecory which uses an
empirical correction to fit experimental data over a wide range of §.
The form used is:

1
Cp = {0.82 +
QSin (6+1°)

This compares with the simplest form of Newtonian theory.

S @ (2.9)

Cp = 2sin” & (2.10)

A comparison of equations (2.9) and (2.10) is shown in figure (7)
along with pressure data taken from reference (2). The empirically
modified form of Newtonian theory fits the experimental data well over
a wide range of §. The remainder of this section will use equation
(2.9) to predict the local pressure from:

. P P-fe (2.11)
Cp = >
Qoo +TPw Mg
FL . 2
5 TCPMy + 1 (2.12)
oo
Combining equations (2.9) and (2.12) results in:
P
L 2 .2 1
7 = 1+0.TM sin” ¢ 0.82 + . (2.13)
- \sin (8 + 1°)



Equation (2.8) becomes:

2 21.575 Mo
ML =

(2.14)

(TM2 - 1)5/7{ 1+ .7M% sin? §(.82 +

\{sin(é + l°§

The results of equations (2.7) through (2.14) are shown in
figures (8) through (10). We repeat that the basic requirements are
that the flow is two dimensional, the governing shock wave is a nearly
normal one, the flow is isentropic beinind the shock, and the local
pressure is given by the empirically modified form of Newtonian theory.

Figure (8) is a plot of the local Mach number vs local angle of
attack for several values of free stream Mach number. Note the
extremely rapid decrease in M; as 6 is *nnreased above zero. This
figure should be compared w1tﬁ figure (1) which was for oblique shock
theory. The strong efftects of the detached shock cause the Mach
number behind the blunt nose * be lower tnan the corresponding value
behind the sharp nose. From figure {8), one wouid conclude that the
local Mach number behind a blunt nose is much more likely to be near
transonic than the Mach number behind a sharp nos2 at the same nominel
free-stream conditions. Based on this result, panel flutter tendencies
might be thought to be more pronounced.

Figures (9a) and (9b) are plots of qL/q°° vs § for several values

of M. As can be seen, the strong shock decreases the local dynamic
pressure to such an extent that it never attains its original free-
stream value. The loss in velocity through the shock is never com-
pensated for by the corresponding increase in density. This effect
would tend to be an alleviating one for flutter and conflicts with

the destabilizing erfect on Mach number. It is therefore again neces-
sary to look at the behavior of the parameter q/B.

(a/g)y

(a/B),
It appears that (q/B); is always greater than (q/B), for all values of
8 greater than 10° or so. Thus the effect of the strong shock in
decreasing the Mach number toward transonic more than offsets its
effect in alleviating the dynamic pressure. Figure (10) should be
compared with figure (3) which was for cblique shock theory. In
general, the (g/B) for a blunt nose is substantially less than the
(q/B) predicted by oblique chock theory.

Figure (10) is a plot of vs § for several values of M,.

10



SECTION III

INTERMEDIATE REGIONS

The purpecse of the section is to obtain predictions of local Mach
number and dynamic pressure in regions between the nose and aft end of
a surface where the results of Sections I and II do not apply.

The results of Section I apply only to the faces of a sharp two
dimensional wedge. They also have some application to the aft regions
of blunt surfaces since the oblique shock results can tend to act as
an "upper" boundary condition on those flows. (See sketch)

Oblique Shock Regions

The results cf $ection IT apply only where the modified form of
Newtoniar theory is valid, i. e., in the vicinity of considerable
bluntness. (See sketch)

Newtonian Region

It is possible, within a certain approximation, to use blast theory to
get some indication of the local conditions in the intermediate region
bet.een the nose and the aft end of a blunt surface. For instance,
one of many forms of blast theory is the following (See references 3
and 4)

2/3

2 c
£, (y)M, “Dy -

~ 1 +

Py .
Per (s0) 23

11



function of Y

Vhere: f,(Y)

CDN = nose drag coefficient
SL = distance from nose
D = nose diameter

If we want to compare PL with Pm at some other point m on the same
surface we have:

- /3
P_L_E.,FLT (3.2)
Py - B, ISg

/3
ET:_ =[§r [P_m -1} +1 (3.3)
P S P

[« o] L @

or

Thus, if we know the pressure ratio, Pm/P°° at some reference point m,
we can find the local pressure ratio at the other point in question by
applying equation (3.3). If we choose the point m on the nose, we then
can apply the modified form of Newtonian theory at m, match the blast
wave solution at that point, and use equation (3.3) to gzt Pr/P,.

Let the local angle of attack at the nose "matching point" be & .
Then, from modified Newtonian theory:

P
B = sinzdm [0.82 + 1 . (3.4)
Py | sin (am +19) 4

then

L_, +(§m 2/3¢ 2 sin? am{-o.az + 1 ] (3.5) .
S sin(8_ + 1°) -
L m

Now maintaining our earlier assumption that the flow is isentropic
behind the initial shock wave we have

Mi = 5{(5?15/7 -1 (3.6)
NG

1e



and PTL = PTl = constant everywhere behind the initial nose shock wave.

Then
P .
™N/7 P2/ 7, p\2/7
M% = 5 (_% -1 =5 (F_l; (P_ -1 (3.7)
PL 0 L
Again, PTl/Pm is given by equation (2.1),
L[ "t el sin? 0 (2 + 5) )/
> y (3.8)
Py Mo = 1 5(M_ sin” 8 + 5)

Noting again the fact that the nose shock wave angle at the streamline
that defines the body shape is nearly 90°:

PTl [ ¢ ]5/2 éM> ]7/2
N K (3.9)
Po TMi = p)

Combining equations (3.9) and (3.7) results in:

2
21.575 M2
M2 = -5 (3.10)

By

The equation for the ratio qL/qOD is:

2
5. h()
u, P, M,

q (3.11)
Inserting equation (3.10) into (3.11) results in
] ; 5/7 2/7
a, . PL Pe
L = 5(2L)|: ( \ el (3.12)
—_— -1 :
R e

Here we repeat equation (3.5) for future reference:

p S 2/3
- (—’“) {.m:, A 6| 0.82 + 1 :\‘J +1 (3.5)
Pa e \sin (85 + 1°)

13



Thus, if we know the distance ratio Sm/SL’ the local angle of attack

at the "match point", and the free-stream Mach number, we csn calculate
PL/Pm from equation (3.5). With that result we can use equation (3.10)

to get M; and equation (3.12) to get q;/q,.

For the purpose of simplifying the equations in this section we use
the following abbreviation. We let

Sm a T sin® 0.82 +
=1 = . n o p

1 (3.13)
10)‘JS? 3.13

sin (6 +
m
Equatioa (3.5) then becomes:

PL 2
= LMo (3.1k4)

o

Equation (3.10) becomes:

2 21.575 M2

My, = 577 577 " 2 (3.15)
(1 + Mie ) ! (TMZ 1) /

Thus, the values of PL/Pm, M;, and qL/qw are functions oniy of M
and the parameter €. Note that € is a function of Gm (the slope at
the nose "matching point") and the ratio SL/Sm (the ratio of the down-

stream distance of point L to that of m). If one assumes that he
starts at some initial value of S./S and then proceeds downstream,
€ is seen to decrease from some initial value toward zero.

It is easy to see from equation (3.14) that € is simply related
to the local pressure coefficient:

(5=-9)

~

s = = .Tcp, (3.16)

Thus, if we refer to equation (3.13) and assume several locations
for the matching point m we get several corresponding values for ¢.
(See sketch)

1k
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The results of this calculation are shown in figure (11). From
equation (3.13) we find that

2/3 2/3
€ (SL/Sm) = -7CPL(SL/Sm)

is a simple function of the location of the matching point and that
the local pressure is completely dominated by the location of the
matching point. Thus, given some location of the matching point we
can specify the quantity 2/3

PL(SL/Sm) and then calculate CPL for
given values of (SL/Sm). The results of these calculations are shown

in figures (12) to(14). Because of the important role of the location
of the matching point, ¢ is left unspecified, and the curves are
plotted vs €.

Figure (12) is a plot of local Mach number vs e for several values
of the free stream Mach number. Remember that ¢ is specified by the
location of the matching point ¢nd the value of S_/S_. Thus, as one
starts from the matching point (S./S_) and procee&s glong the body
down-stream (decreasing £) the local Mach number increases. However
ML never quite reaches M, as ¢ approaches zero.

Figure (13) is a plot of q; /4, vs € for several values of M_.

Again, a8 one proceeds downstream the local dynamic pressure increases
toward its free stream value but falls off before reaching it.

(a/8)y,

Figure (14) is a plot of Tl Vs ¢ for several values of M_.
o

Here, the combined effects of M_ and q; cause (q/B)L to be greater

L
than (q/B)°° all along the surface except for very small e (very far aft).
o+ Figure (1k)
should be compared with figures (3) and (10) to illustrate the dif-

ferences between the results of oblique shock theory, Newtonian theory,
and blast wave theory.

For ¢ % 0, (q/B)T decreases to a value less than (q/B)

15



SECTION IV
CONCLUSIONS

This report has attempted an approximate analysis of the degree
to which various types of shock wave and expansion systems change
aerodynamic flutter parameters from free stream to local conditions.
The methods used are not the most sophisticated and do have definite
limits on their ranges of applicability, so the reader must be wary
of drawing conclusions which are too broad compared to the validity
of the analyses. However, the following summarizes some of the trends
obtained which appear to be reasonable.

Local Mach Number - As is already well known,tihe local Mach number
predicted by oblique shock theory can be considerably less than the
original free stream value. The opposite effect for a supersonic
expansion is also well known and will not be belabored here. 1In
regions where the modified form cf Newtonian thecry would apply (i.e.,
blunt noses or large angles of attack) the local Mach number (again,
as well known) turns out to be much less than one would predict with
oblique shock theory. In regions where the blast wave theory would
apply (i.e., surface regions behind a blunted nose), the local Mach
number starts to recover from its large losses sustained in the regicn
of the blunt nose but never quite reaches its free stream value as the
flow moves over the aft regions of the body.

Local Dynamic Pressure ~ Generally sreaking, as angle of attack
increases, the effect of an attendant oblique shock wave is to increase
the local dynamic pressure to a value approaching as much as six times
its free stream value for y = 1.4. However, as angle of attack is
increased beyond a certain point the local dynamic pressure then starts
to decrease back toward its free stream value. In expansion regions,
the local dynamic pressure is almost always less than the free stream
dynemic pressure. In regions where the modified form of Newtonian
theory applies, the trend is the same as for an c¢hlique shock. However,
due to the large losses in momentum in passing through the nose shock,
the local dynamic pressure starts out at a low level and never quite
reaches its free stream value. Farther aft, where the blast wave theory
applies, one can again see how the local dynamic pressure never attains
its free stream value, regardless of where the blast wave solution is
matched to the nose conditions.

The Flutter Parameter, q/B - The analysis for the otlique shock wave
revealed that q/B always is greater locally than in the free stream.
Thus one would conclude that certain flutter problems may be quite
serious even though the free stream conditions would indicate freedom
from flutter. In expansion regions q/B is always less locally than in
the free stream, therefore indicating a stabilizing effect on flutter.
In the regions where the modified form of Newtonian flow theory could
be applied, q/B locally is always greater than its free stream value.
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Figure (10) does show a small region where the opposite is true, but
that effect is at such small values of § that the theory would not be
valid. In regions where blast theory applies, q/8 is generally much
larger locally than in the free stream, however, q/B does fall to values
less than in the free stream as the flow moves very far aft.

Finally, while we recognize the limitations in this analysis, it
is still apparent that local aerodynamic conditions can be significantly
different from those in the free stream. This study indicates then that
these changes in important aerodynamic conditions should be carefully
considered in the design analysis of supersonic and hypersonic aircraft
and missiles. The results of this program should give some preliminary
information to the designer until more sophisticated analyses are
employed or until experimental data becomes available.
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