ELECTRIC MONPOLE TRANSITIONS AND BETA BANDS IN EVEN NUCLEI

by

J. P. Davidson

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY
SAN FRANCISCO • CALIFORNIA • 94135
ADMINISTRATIVE INFORMATION

This report covers a portion of the work authorized by the Bureau of Ships, Subproject SF 011 05 11, Task 0501, and by the Defense Atomic Support Agency, NWER A-2b, Subtask 11.064.

*Visiting Scientist-in-Residence, on leave of absence from Rensselaer Polytechnic Institute, Troy, N. Y., academic year 1964-65.

ACKNOWLEDGMENTS

I should like to acknowledge many stimulating conversations with R. M. Diamond and F. S. Stephens as well as permission to use their data on 184Pt before publication. I should also like to thank Dr. B. Elbek for making available before publication not only the data appearing explicitly in table 1 but a great deal more information concerning beta bands and coulomb excitation which has been used in the fitting procedure. Finally, I should like to acknowledge the support given by the staff of this laboratory where this investigation was undertaken.

DDC AVAILABILITY NOTICE

Distribution of this document is unlimited.

Eugene P. Cooper
Scientific Director

D.C. Campbell, CAPT USN
Commanding Officer and Director
ABSTRACT

Reduced transition probabilities for electric monopole transitions ρ^2 have been calculated using a collective model with deformation vibrations but no asymmetry vibrations. Both ρ^2 and $X = \rho^2 \frac{R_0^4}{B(E2)}$ have been evaluated within the context of the model by exact numerical methods for transitions within positive as well as negative parity rotational bands of even nuclei. Comparison of experiment with theory shows quite good agreement in the actinide deformed region; however, for the rare earths theoretical predictions are generally an order of magnitude greater than the measured values.
SUMMARY

Recent exact numerical calculations of the influence of deformation vibrations on electric quadrupole transitions in deformed even nuclei have been extended to a study of electric monopole transitions in such nuclei. These monopole transitions can provide an insight into the nature of the excited 0+ states, in particular into the excited K=0 beta bands. Comparison with experiment shows that model predictions are adequate for the very heaviest nuclei but are far too great for nuclei in the rare earth region.
1. Introduction

Recent investigations of the low-lying rotational levels in even nuclei have shown that the ground state rotational band structure can be accurately reproduced by using a very simple collective model first introduced by Davydov and Chaban. It was also shown that if the stiffness parameter μ was determined from the energy level spacings in the ground state rotational band then the beta ($K=0$) band head could be predicted to within 20%, and often considerably less. The consistency of this model has been checked by calculating exactly the effect beta vibrations have on the electric quadrupole transitions in such nuclei. The results of this calculation showed by properly including these beta vibrations the $E2$ branching ratios compare well with experiment. In particular, in the coulomb excitation of the beta band $I=2$ level it was found that the theory is within experimental error of the measured values (recent unpublished data on 154Sm gives a value of about half that predicted by theory). Agreement between theory and experiment has also been found to be quite satisfactory for the coulomb excitation of the so-called gamma band $I=2$ level. It would seem that this simple collective model is capable of quite accurate predictions not only of energy levels but also of $B(E2)$
branching ratios. With increasingly more experimental data available on electric monopole transitions it appears useful to compare this type of data with the theory. Indeed, Davydov and co-workers have done just that7,8; however, their work includes the effects of gamma or asymmetry vibrations and is therefore necessarily approximate in nature. It is the purpose of this paper to treat the effect of deformation vibrations on E0 transitions exactly while at the same time not requiring axial symmetry. The results of refs.1,2,4and 4 show that asymmetry vibrations can be treated as a small perturbation. In general the gamma band mixing into the ground state and beta bands is small and a perturbation treatment of gamma vibrations is probably adequate except where rather strong monopole transitions occur between gamma and ground state bands. At present there seems only one nuclide where this occurs and that is in 232Th. Here the I=2 levels of the beta and gamma bands are only 11 keV apart and a relatively strong E0 transition from the gamma band I=2 level to the ground state band has been observed9.

In the remaining part of this section an outline of the vibrational problem will be given in order to fix the notation. In Section 2 the electric monopole transition probabilities will be derived. Finally, in Section 3 we compare experiment with theory.

In what follows we shall use a generalized treatment of deformation vibrations10 equally applicable to quadrupole vibrations and octupole vibrations. While no E0 transitions have been definitely observed between negative parity levels they should in principle be no different
from such transitions observed between appropriate positive parity levels. This treatment is essentially the usual one for quadrupole surfaces\(^3\) (it should be noted that a diagonal term omitted in the vibrational Hamiltonian of ref. \(^3\) is included here and has a significant effect on the eigenvalues of the \(I=0\) and \(2\) levels\(^{15}\)). For octupole surfaces the condition which diagonalizes the momental ellipsoid is used\(^{10}\), so that no terms with \(K=1\) or \(3\) appear in the state functions. This is consistent with a recent microscopic calculation of Soloviev and co-workers\(^{11}\) in which they find that the \(\lambda=3, |\mu|=1\) and \(3\) degrees of freedom do not possess very collective properties.

As usual one begins by expanding the nuclear surface in the laboratory coordinate system

\[
R(\theta, \phi) = R_0 \left[\alpha_0 + \sum_{\mu} \alpha_{\lambda \mu} \chi_{\lambda \mu}(\theta, \phi) \right],
\]

(1)

here \(\lambda=2\) for positive parity and \(\lambda=3\) for negative parity states while \(\alpha_0\) is unity to first order and the second order differences are usually neglected. It is known, however, that these volume conserving second order terms are important in electric monopole calculations\(^{12}\) and they will be retained here. Small oscillation theory then yields the classical Hamiltonian

\[
H_\lambda = \frac{1}{2} B_\lambda \sum_{\mu} |\alpha_{\lambda \mu}|^2 + \frac{1}{2} c_\lambda \sum_{\mu} |\alpha_{\lambda \mu}|^2,
\]

(2)
\[H = \Sigma \lambda \: H_{\lambda} \]

For vibrational nuclei this can be quantized straight away and, using the number representation \(| N > \), one can easily show that EO transitions are allowed between any two states of the same spin for which \(\Delta N = 2 \). This selection rule then prohibits such transitions between the one and two phonon \(I=2 \) states. Making use of the transformation

\[\alpha_{\lambda \mu} = \Sigma \: D_{\mu \nu}^{\lambda \lambda^*} \: (\Theta) \: \alpha_{\lambda \nu} \]

where the \(D_{\mu \nu}^{\lambda \lambda^*} \) are the \((2I+1)\)-dimensional representation of the rotation group \(^{13} \) and the \(\Theta \) are the Euler angles relating laboratory and body-fixed axis systems. It is useful if the body expansion coefficients in (3) are parameterized as \(^{10} \)

\[a_{\lambda \mu} = \beta_{\lambda} \: \sigma_{\lambda \mu} \]

where \(\beta_{\lambda} \) are the \(\lambda \)th-order deformation parameters while the asymmetry parameters \(\sigma_{\lambda \mu} \) may be subjected to the additional condition

\[\Sigma \: \sigma_{\lambda \mu}^2 = 1. \]

The expansion of the nuclear radius in the body-fixed system becomes
\[R(\theta', \phi') = R_0 \left[1 - \frac{1}{12\pi} (3\beta_\lambda^2 + \beta_\lambda^3 T_\lambda) \right. \]
\[\left. + \beta_\lambda \sum_{\mu} A_{\lambda\mu} Y_{\lambda\mu}(\theta', \phi') \right]. \]

The quantity \(T_\lambda \), which arises from the condition of volume conservation, is

\[T_\lambda = \sqrt{\frac{2\lambda+1}{4\pi}} C(\lambda\lambda\lambda;000) \sum_{\mu} A_{\mu\lambda} A_{\lambda\mu} A_{\lambda\mu} A_{\mu\lambda} \]

\[\times C(\lambda\lambda\lambda;\mu-\mu, \mu, \mu) \]

which for deformed nuclei will give rise to EO transitions between gamma-like and ground bands. From the properties of the Clebsch-Gordan coefficients \(C(L_1, L_2, L_3; m_1, m_2, m_3) \) it is seen that \(T_\lambda \) vanishes for \(\lambda \) odd. Thus, in principle this model permits no monopole transitions between negative parity states except between zeta and ground bands. For positive parity states on the other hand transitions between gamma and ground state bands are possible. By expressing the asymmetry parameters in the familiar form

\[a_{20} = \cos \gamma, \quad a_{2\pm2} = \frac{1}{\sqrt{2}} \sin \gamma, \]

\[a_{30} = \cos \eta, \quad a_{3\pm2} = \frac{1}{\sqrt{2}} \sin \eta \]
\[T_\lambda = \frac{1}{7} \sqrt{\frac{5}{\pi}} \cos 3\gamma \quad \lambda = 2 \]
\[= 0 \quad \lambda = 3 \]

The Hamiltonian of the system is obtained from eq. (2) by using relation (3) and recalling that since the deformation vibrations are to be treated exactly and the asymmetry vibrations only in perturbation theory the space with respect to which the quantization is carried out contains but four dimensions: \(\beta_\lambda \) and the three Euler angles \(\theta_i \). The \(\sigma_{\lambda \mu} \) are taken as fixed. The Schrödinger equation separates into rotational and vibrational parts.

\[
\left[\frac{1}{2} \sum_k \left(I_k^2 I_{-k} \right) - \epsilon_{\lambda} \right] \psi_{\text{IN}}(\theta_i) = 0
\]

\[
\left[-\frac{\hbar^2}{2\beta_\lambda} \frac{1}{\beta_\lambda} \frac{d}{d\beta_\lambda} \left(\beta_\lambda^2 \frac{d}{d\beta_\lambda} \right) + \frac{\hbar^2}{4\beta_\lambda} \epsilon_{\lambda} \right. \\
\left. + \frac{1}{2} C_\lambda (\beta_\lambda - \beta_\lambda')^2 - E_{\text{IN}} \right] \phi_{\text{IN}}(\beta_\lambda) = 0.
\]

The \(I_k \) are the body-fixed angular momentum operators while the reduced moments of inertia of eq. (8) are defined by

\[
\hat{I}_k(\beta_\lambda, \sigma_{\lambda \mu}) \equiv h\beta_\lambda I_k(\beta_\lambda) \sigma_{\lambda \mu}
\]
and the functional forms are known for the cases $\lambda = 2^{14}$ and $\lambda = 3^{15}$.

The solutions to eq. (8) have also been given for these two cases 16,10.

The particular vibrational potential used in eq. (9) has been justified from binding energy data 17) and need not be discussed further here. By expanding the sum of this term and the previous one about the new equilibrium position $\beta_{\lambda}^{(I,N)}$, keeping only the quadratic term for the new equivalent potential and defining new independent and dependent variables by

$$y = Z_1 \left[\beta_\lambda - \beta_{\lambda}^{(I,N)} \right] / \beta_{\lambda}^{(I,N)},$$

$$N_0 D_0 (\sqrt{2} y) = \beta_\lambda^{3/2} \phi_{n}^{IN} (\beta_\lambda),$$

N_0 a normalization constant, eq. (9) can be placed in the form

$$\left[\frac{d^2}{dy^2} + (2\phi + 1 - y^2) \right] D_0 (\sqrt{2} y) = 0$$

which is Weber's equation for parabolic cylinder functions $^{18})$. The quantity ϕ is determined by the boundary conditions

$$\phi_{n}^{IN} (\beta_\lambda = 0) \neq 0$$

$$\lim_{\beta_\lambda \to \infty} \phi_{n}^{IN} (\beta_\lambda) = 0$$

$$\beta_\lambda = \infty$$

7
while the Z_n are known functions of u^{10}.

Calling I_0 the integral

$$I_0 = \int_{-Z_1}^{\infty} P_0^2 (\sqrt{2x}) \, dx$$

the normalization constant, N_0, can be expressed in the form

$$N_0^2 = \frac{Z_1}{\mu \lambda_0} ZI_0$$

where μ is the stiffness parameter and Z is the positive real root of

$$Z^4 - \frac{1}{\mu} Z^3 - \frac{1}{2} (\epsilon_{\text{IN}}^\lambda + \frac{3}{2}) = 0$$

and is related to Z_1 by

$$Z_1^4 = Z^4 + \frac{3}{2} (\epsilon_{\text{IN}}^\lambda + \frac{3}{2})$$

2. Electric Monopole Transitions

The absolute transition probability for electric monopole conversion has been defined by Church and Weneser19 as

$$T(EO) = \Omega \rho^2$$
where the electronic factor, Ω, is available in graphic form\(^{19}\) while the nuclear strength parameter is

$$\rho = \sum_p \int N_p^* \left[\left(\frac{r_p}{R} - \xi \left(\frac{r_p}{R} \right)^4 + \ldots \right) \right] \phi \, d\tau \tag{10}$$

the ϕ being the nuclear wave functions, r_p the radius vector of the p^{th} proton, R the nuclear radius, and ξ is a numerical coefficient of the order of 0.1. In collective model calculations it is customary to neglect all but the first term of eq. (10). Using the assumption of a uniform charge distribution one can define an electric monopole operator $\mathcal{E}^{(BO)}$ such that

$$\rho = \langle \phi^{IN'}_n (\beta_\lambda) | \mathcal{E}^{(BO)} | \phi^{IN'}_n (\beta_\lambda) \rangle \tag{11}$$

Then

$$\mathcal{E}^{(BO)} = \frac{32}{4\pi} \left(\frac{4\pi}{5} + \beta_\lambda^2 + \frac{5}{3} \beta_\lambda^3 T_\lambda \right) \tag{12}$$

Z the atomic number. The first term in eq. (12) makes no contribution to ρ, the second term induces transitions between "beta" bands and ground state bands while the third term induces transitions between the gamma and ground state bands for $\lambda=2$. For $\lambda=3$ this term is identically zero so that no BO transitions can occur between the octupole analog of the gamma band (sometimes called the "g" - band\(^{20}\))
and the octupole ground state band, e.g., in the notation of ref. 15, the model permits no EO transitions between the 311- and 321- levels, even if asymmetry vibrations are included.

Since we are going to consider monopole transitions between "beta" and ground state bands only the term proportional to β_λ^2 in eq. (12) will be retained. Thus eq. (11) can be written

$$\rho^2 = \left(\frac{32}{\sqrt{\pi}}\right)^2 \frac{\mu Z \lambda \Delta}{\nu_1^2} I_{v_f v_1}^{(o)} \frac{I_{v_f v_1}^{(o)}}{I_{v_1 v_f}^{(o)}}.$$ (13)

where the overlap integral $I_{v_f v_1}^{(o)}$ is defined by

$$I_{v_f v_1}^{(o)} = \int_0^\infty D_{v_f} \left(\sqrt{2} \left[x - z_1 \right] \right) D_{v_1} \left(\sqrt{2} \left[x - z_1 \right] \right) x^2 dx$$ (14)

which is identical in form with the overlap integrals arising from the vibrational contributions to the electric quadrupole reduced matrix elements between states of positive parity).

In fig. 1 ρ^2 is plotted for transitions between the positive parity beta band and the positive parity ground state band for $I = 0, 2, 4, 6$ and 8 as a function of the stiffness parameter μ. The asymmetry parameter has been taken as $\gamma = 0^\circ$, i.e., axial symmetry; however, the curves for other values of γ are only slight different from those given here. In fig. 2 we have plotted ρ^2 as a function of
Fig. 1 The monopole nuclear strength parameter $\rho^2/Z^2\beta_0^4$ of eq. (13) plotted as a function of the stiffness parameter μ for an axially symmetric system ($\gamma = 0^\circ$). The curves are labeled with the spin of initial and final state and are transitions from the beta band to the ground state band for quadrupole deformations. Here Z is the atomic number and β_0 the equilibrium deformation.
Fig. 2 The monopole nuclear strength parameter $\rho^2/Z^2\xi_0^4$ plotted as a function of the stiffness parameter μ for an almost axially symmetric octupole system ($\eta = 5^\circ$). The curves are labeled with the initial and final state spin and are for transitions from the "b-band" to the octupole ground state. Here Z is the atomic number and ξ_0 the octupole equilibrium deformation.

"$\eta = 5^\circ, \pi^-$"
\(\mu \) for monopole transitions between the \(\xi \) band and the ground state octupole band for \(I = 1,2 \) and 3. The octupole asymmetry parameter has been taken as \(\eta = 5^0 \) since for \(\eta = 0^0 \) the 2-level lies at infinitely high energy. These curves do show more variation with asymmetry parameter than do those for transitions between positive parity states.

The quantity \(\rho^2 \) is not the most useful one to compare with experiment. Frequently one compares the relative rates of EO and the competing E2 transitions defined by \(^{21}\)

\[
\mu_k(I_1 \rightarrow I_r) = \frac{T(\text{EO}: I \rightarrow I)}{T(\text{E2}: I_1 \rightarrow I_r)} .
\]

A somewhat more useful quantity is the dimensionless ratio defined by Rasmussen\(^{12}\) for transitions between the beta band \(I = 0 \) level and the ground state band as

\[
X(I_{\beta}^+ \rightarrow I_{\text{gnd}}^+) = \frac{2 \cdot 2 \cdot 4}{\rho \cdot R_0} \frac{4}{B(\text{E2}: I_{\beta} \rightarrow I_{\text{gnd}})}
\]

where \(R_0 = 1.2 A^{1/3} \times 10^{-13} \text{ cm} \) is the nuclear radius. For transitions other than from the beta band head we may generalize this quantity to

\[
X(I_{\beta}^+ \rightarrow I_{\text{gnd}}^+) = \frac{2 \cdot 2 \cdot 4}{\rho \cdot R_0} \frac{4}{B(\text{E2}: I_{\beta} \rightarrow I_{\text{gnd}})}
\]

of course \(I_{\beta} = I_{\text{gnd}} \neq 0 \). The relation between \(X \) and \(\mu_k \) is just
\[X = 2.53 \frac{\mu_k A^{4/3} E_y^5}{n} \times 10^9 \]

(17)

where the gamma transition energy \(E_y \) is in MeV.

By making use of the expression for the reduced \(E2 \) transition probabilities developed elsewhere \(^1\) these expressions for the dimensionless ratio \(X \) can be expressed in terms of overlap integrals (14) and the other parameters of the theory. For transitions from the beta band head eq. (16a) becomes

\[X(\beta^+ \rightarrow 0_{\text{gnd}}^+) = (\mu \beta_{20})^2 (Z_i/Z_{11})^{5/2} (Z_{1f}/Z_f)^3 \mathcal{I}_{0f} \]

(18a)

\[x \frac{\mathcal{I}_{0f}(0)^2}{\mathcal{I}_{0f}^{(0)}} \frac{\mathcal{I}_{1f}(2)^2}{\mathcal{I}_{1f}^{(2)}} b(E2: 0^+ \rightarrow 2^+) \]

while for transitions from other beta band levels eq. (16b) may be written

\[X(\beta^+ \rightarrow I_{\text{gnd}}^+) = (\mu \beta_{20} Z_i/Z_{11})^2 \]

(18b)

\[x \frac{\mathcal{I}_{0f}(0)^2}{\mathcal{I}_{0f}^{(0)}} \frac{\mathcal{I}_{1f}(2)^2}{\mathcal{I}_{1f}^{(2)}} b(E2: I_{\beta} N_{\beta}^+ \rightarrow I_g N_{g}^+) \]

In eqs. (18a,b) the subscripts \(i \) and \(f \) refer as usual to initial and final states while the notation \((0)\) and \((2)\) on the overlap integrals
refer to the integral of eq. (14) for monopole transitions or a similar one for E2 transitions\(^\text{iv}\). (For the latter the functional dependence is different since \(Z\) and \(Z_1\) are different in initial and final states.)

The quantity \(b(E2: \text{IN} \rightarrow \text{I}'\text{N}')\) is defined from the adiabatic reduced transition probability of ref.\(^\text{iv}\) by

\[
B_a(E2: \text{IN} \rightarrow \text{I}'\text{N}') = \left(\frac{3Z e R_0^2}{\hbar \pi} \right)^2 b(E2: \text{IN} \rightarrow \text{I}'\text{N}')
\]

\(Z\) being the nuclear charge.

In fig. 3 the ratio \(X(0^-_B \rightarrow 0^-_{\text{gnd}})/\beta_{20}^2\) is plotted as a function of the asymmetry parameter, \(\gamma\), for various values of \(\mu\). In figs. 4 and 5 the ratio \(X(I^-_B \rightarrow I^-_{\text{gnd}})/\beta_{20}^2\) are plotted as a function of \(\gamma\) again for various values of \(\mu\). Fig. 4 is for the \(2^- \rightarrow 2^-\) transition while fig. 5 is for the \(4^+ \rightarrow 4^+\) transition. Examples of both have been measured.

Finally, for monopole transitions between negative parity levels the ratio \(X(I^-_B \rightarrow I^-_{\text{gnd}})\) is especially simple since the E0 and E2 overlap integrals are identical and thus cancel. Thus, eq. (16b) can be written for such transitions as

\[
X(I^-_B \rightarrow I^-_{\text{gnd}}) = 3\pi(\mu_0 \frac{2}{Z_1})^2/4b(E2: I^-_B \rightarrow I^-_{\text{gnd}} N^-_{\text{gnd}}). \tag{19}
\]

The quantity \(X(I^-_B \rightarrow I^-_{\text{gnd}})/\xi_0^2\), where \(\xi_0 = \beta_{30}'\), is plotted in fig. 6 as a function of the octupole asymmetry parameter, \(\eta\), for several
Fig. 3 The dimensionless ratio \(\frac{(0_B - 0_{\text{grd}})}{\beta_0^2} \) plotted as a function of the quadrupole deformation parameter, \(\gamma \), for several values of the stiffness parameter \(\mu \).
Fig. 4 The dimensionless ratio $X(2\beta - 2\gamma_{\text{gnd}})/\beta_0^2$ plotted as a function of the quadrupole deformation parameter, γ, for several values of the stiffness parameter μ.
Fig. 5 The dimensionless ratio $X(\frac{h_B}{\gamma} + \frac{h_{q,q}}{\gamma})/\beta^2$ plotted as a function of the quadrupole deformation parameter, γ, for several values of the stiffness parameter μ.
Fig. 6 The dimensionless ratio $X(3_{3} \rightarrow 3_{\text{gnd}})/t_{0}^{2}$ plotted as a function of the octupole deformation parameter, η, for several values of the stiffness parameter μ. This ratio is for transitions between the lowest 3- state in the octupole "b" band to the lowest 3- state in the octupole ground state band.
value of \(\mu \) for the case \(I = 3^- \).

3. Comparison with Experiment

In table 1 we compare this calculation with the available experimental results for \(B0 \) transitions from various levels of the beta band to the ground state band both for rare earth deformed nuclei and the actinides. In columns 2 and 3 are given the values of \(\gamma \) and \(\mu \) which reduce the r.m.s. deviation between theory and experiment of the energy level structure to a minimum. In particular it has been found that the values of \(\mu \) are high where a deformed region opens and decrease rapidly to about 0.2. This value is maintained into the transitional region where \(\mu \) begins a slow increase. The best fit values of \(\mu \) seem to be correlated with the number of neutrons beyond the nearest closed shell and are independent of the deformed region in which the nuclide in question is found. The fourth column gives the equilibrium deformations \(\beta_0 = \beta_{20} \) which have been fit to the reduced transition probability for coulomb excitation to the first excited \((I\pi = 2+) \) state

\[
B(E2: 01 \rightarrow 21) = \left(\frac{32e^2 \mu R^4}{4\pi} \right)^2 b(E2: 01 \rightarrow 21)
\]

\[
x \left(\frac{Z_1}{Z_{1f}} \frac{I_{1f}}{I_{1f}} \right) \left(\frac{Z_2}{Z_{2f}} \right)^3 I_{1f} v_f^2 \left(\frac{2}{I_{1f}} \right)^2.
\]

Where the coulomb excitation data is either not available or of
Table 1

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>γ</th>
<th>μ</th>
<th>β_0</th>
<th>E_t(keV)</th>
<th>I</th>
<th>Thy</th>
<th>Exp.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{152}_{\text{Sm}}$</td>
<td>10.73</td>
<td>0.3996</td>
<td>0.314</td>
<td>685</td>
<td>0</td>
<td>3.40</td>
<td>0.88 ± 0.07</td>
<td>22)</td>
</tr>
<tr>
<td>$^{154}_{\text{Gd}}$</td>
<td>11.62</td>
<td>0.4006</td>
<td>0.303</td>
<td>681</td>
<td>0</td>
<td>3.42</td>
<td>0.84</td>
<td>24)</td>
</tr>
<tr>
<td>$^{156}_{\text{Gd}}$</td>
<td>10.04</td>
<td>0.2735</td>
<td>0.342</td>
<td>1010</td>
<td>0</td>
<td>3.30</td>
<td>6.8</td>
<td>25)</td>
</tr>
<tr>
<td>$^{158}_{\text{Dy}}$</td>
<td>11.81</td>
<td>0.2916</td>
<td>0.335</td>
<td>986</td>
<td>2</td>
<td>15.8</td>
<td>4.61</td>
<td>26)</td>
</tr>
<tr>
<td>$^{161}_{\text{Er}}$</td>
<td>12.39</td>
<td>0.2509</td>
<td>0.329</td>
<td>1217</td>
<td>2</td>
<td>15.6</td>
<td>1.35</td>
<td>26)</td>
</tr>
<tr>
<td>$^{168}_{\text{Yb}}$</td>
<td>10.35</td>
<td>0.2561</td>
<td>0.325</td>
<td>1104</td>
<td>4</td>
<td>18.0</td>
<td>0.731</td>
<td>26)</td>
</tr>
<tr>
<td>$^{170}_{\text{Hf}}$</td>
<td>9.750</td>
<td>0.2614</td>
<td>0.281</td>
<td>1197</td>
<td>0</td>
<td>3.33</td>
<td>2.3 ± 0.5</td>
<td>27)</td>
</tr>
<tr>
<td>$^{184}_{\text{Pt}}$</td>
<td>12.43</td>
<td>0.5192</td>
<td>0.198</td>
<td>677</td>
<td>2</td>
<td>20.45</td>
<td>3.36</td>
<td>9)</td>
</tr>
<tr>
<td>$^{230}_{\text{Th}}$</td>
<td>9.375</td>
<td>0.2714</td>
<td>0.267</td>
<td>634</td>
<td>0</td>
<td>3.25</td>
<td>3.1 ± 1.4</td>
<td>28)</td>
</tr>
<tr>
<td>$^{232}_{\text{Th}}$</td>
<td>9.049</td>
<td>0.2464</td>
<td>0.272</td>
<td>730</td>
<td>0</td>
<td>3.40</td>
<td>4.6 ± 1.1</td>
<td>28)</td>
</tr>
<tr>
<td>$^{232}_{\text{U}}$</td>
<td>8.365</td>
<td>0.2482</td>
<td>0.279</td>
<td>693</td>
<td>0</td>
<td>3.39</td>
<td>2.2 ± 0.5</td>
<td>28)</td>
</tr>
<tr>
<td>$^{234}_{\text{U}}$</td>
<td>8.619</td>
<td>0.2201</td>
<td>0.285</td>
<td>811</td>
<td>0</td>
<td>3.48</td>
<td>6.2 ± 1.0</td>
<td>28)</td>
</tr>
<tr>
<td>$^{236}_{\text{U}}$</td>
<td>7.914</td>
<td>0.2030</td>
<td>0.297</td>
<td>993</td>
<td>0</td>
<td>3.54</td>
<td>2.4 ± 0.6</td>
<td>28)</td>
</tr>
<tr>
<td>$^{238}_{\text{U}}$</td>
<td>7.898</td>
<td>0.2068</td>
<td>0.281</td>
<td>941</td>
<td>0</td>
<td>3.53</td>
<td>8.0 ± 2.5</td>
<td>28)</td>
</tr>
<tr>
<td>$^{240}_{\text{Pu}}$</td>
<td>8.345</td>
<td>0.2131</td>
<td>0.283</td>
<td>870</td>
<td>0</td>
<td>3.49</td>
<td>0.62 ± 0.12</td>
<td>28)</td>
</tr>
</tbody>
</table>

Comparison of experimental values of electric monopole transition probabilities with theory for transitions from the beta to the ground state band. In column 1 are the nucleus and A value, columns 2, 3, and 4 give the best fit values to the quadrupole asymmetry parameter, stiffness parameter and equilibrium deformation parameter. Column 6 is the energy of the monopole transition, column 7 the spin of the levels involved while columns 8 and 9 give the theoretical value and experimental value, with errors where quoted, of the dimensionless ratio X/β_0^2. The quantity X is defined in eq. (16a) for $0 \rightarrow 0$ transitions and in eq. (16b) for all other EO transitions.
insufficient accuracy use was made of Grodzins' analysis of the E2
transition probabilities from which one can obtain the empirical
relation

\[\beta_0 = 1108/A^{7/6} E_{\gamma}^{1/2} \]

(E\text{_\gamma} the energy of the first excited state in keV. This relation is
quite accurate in the deformed regions and the values of \(\beta_0 \) given by
eqs. (20) and (21) are very close.

Table 1 shows that except for \(^{178}\text{Hf}, ^{156}\text{Gd}\) and the \(2_\beta \to 2_{\text{gnd}}\)
transition in \(^{152}\text{Sm}\) the monopole transitions in the rare earth deformed
nuclei are from five to ten times smaller than predicted by theory.
(The experimental value for the \(0_\beta \to 0_{\text{gnd}}\) transition in \(^{152}\text{Sm}\) is that
reported in ref. 22). Rasmussen12 making use of some unpublished
data of the Chalk River group takes half of this value which clearly
leads to a no more favorable comparison.) On the other hand for the
actinide nuclei agreement between experiment and theory is quite
satisfactory except for the nucleus \(^{240}\text{Pu}\). However, Bjørnholm28 has
pointed out that in this case the very low value may be associated with
the fact that the beta band head lies very close to the neutron energy
gap. One might expect that this would offer an explanation for the
failure of the theory in the rare earth region, and certainly in the
middle of the region the beta band heads are rather close to the gap.
However, this can hardly account for the lack of agreement for the $0^- \rightarrow 0^+_{\text{gnd}}$ transition in ^{152}Sm where the band head at 685 keV is well below the gap. Furthermore, for the $2^- \rightarrow 2^+_{\text{gnd}}$ transition the comparison is adequate especially in view of the fact that the $B(E2)$ from the beta band is somewhat smaller than predicted by theory \(^{1}\)). It would seem quite worthwhile for both of these monopole transitions in ^{152}Sm to be measured by the same group to see if this discrepancy persists.

Several of the rare earth nuclides listed in the table are known to have more than one 0^+ excited state and for ^{178}Hf the X ratios for two such levels have been measured. In this nucleus we have taken the lower 0^+ level at 1197 keV as the beta band head for which the μ value is consistent with the general trend in the region. The X/β_0^2 ratio for the 1400 level has been calculated assuming that it too is a 012 level. It very probably is not the 013 level which the model would predict for these parameters in the neighborhood of 2 MeV. This level must then have a different character from that of a 0^+ beta vibrational level -- perhaps it is a two quasi particle state. No attempt has been made to calculate the interaction of these two states and it seems hardly worthwhile to construct a theory of higher excited 0^+ states until more are known and their characteristics determined. A true beta band should not only have enhanced reduced $E2$ matrix elements to the ground state band but should as well have large $B0$ transition probabilities. Thus investigation of the excited 0^+ levels must involve not only the
determination of E2 strengths but EO strengths as well.

It has been suggested that the failure of the theory in the rare earth region might be due to the influence of a non-uniform charge distribution, which was assumed in order to derive the operator \(\mathcal{O}(EO) \) of eq. (12) or of the lack of irrotational nuclear flow\(^{21} \). It is doubtful if any but the most drastic innovation would induce the needed order of magnitude change in \(X \) and this in turn would influence greatly, no doubt unfavorably, the agreement already obtained for the E2 transitions\(^{4,6} \). Also it is difficult to believe that such a change in the theory would not destroy the agreement for the EO transitions so evident in the actinide region. In any event, we should like to see many more measurements of the monopole transition probability in the rare earth region especially for transitions other than \(0^+ \rightarrow 0^+_{\text{gnd}} \). A particularly good candidate is \(^{150}\text{Nd}\) whose level structure seems quite analogous with \(^{152}\text{Sm}\).
REFERENCES

5. B. Elbek, private communication.

22. I. Marklund, O. Nathan, and O. B. Nielsen, "Ground States in Sm152 and Gd152, " Nuclear Physics 15, 199 (1960).

Reduced transition probabilities for electric monopole transitions ρ^2 have been calculated using a collective model with deformation vibrations but no asymmetry vibrations. Both ρ^2 and $X = \rho^2 R_0^2 / B(E2)$ have been evaluated within the context of the model by exact numerical methods for transitions within positive as well as negative parity rotational bands of even nuclei. Comparison of experiment with theory shows quite good agreement in the actinide deformed region; however, for the rare earths theoretical predictions are generally an order of magnitude greater than the measured values.
UNCLASSIFIED

Security Classification

14. KEY WORDS

<table>
<thead>
<tr>
<th>Theory</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective model</td>
<td>Gamma-ray</td>
</tr>
<tr>
<td>Monopole</td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. The assignment of links, roles, and weights is optional.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **& 8d. PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...
 4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...
 5. "All distribution of this report is controlled. Qualified DDC users shall request through...

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.