PREDICTION OF
WINTER AND SUMMER ANTICYCLONES

Frederick P. Ostby
Keith W. Veigas

December 1965

433L SYSTEM PROGRAM OFFICE
ELECTRONICS SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Mass.
Qualified users may obtain copies of this report from the Defense Documentation Center.

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.
PREDICTION OF
WINTER AND SUMMER ANTICYCLONES

Frederick P. Ostby
Keith W. Veigas

December 1965

433L SYSTEM PROGRAM OFFICE
ELECTRONICS SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Mass.
FOREWORD

System 433L; project 1.0, task 1.7. This TR has been prepared for United Aircraft Corporation, East Hartford Conn. under Subcontract no. 15107 to Contract no. AF19(628)-3437, by The Travelers Research Center, Inc., 250 Constitution Plaza, Hartford, Conn. The Research Center's publication number is 7463-191. Robert L. Houghten, Lt. Colonel, USAF, is System Program Director. This report covers the period 1 October 1964—30 September 1965, and was submitted for approval on 18 November, 1965.
ABSTRACT

This report presents results and equations for the 12-, 24-, and 36-hr prediction of anticyclone displacement and change in central pressure for the Northern Hemisphere. Separate sets of equations were derived for each of six areas. These equations yielded results that were generally superior to climatology when tested on independent data.

The technique employed is similar to that used previously in deriving cyclone equations, i.e., it features a moving-coordinate grid system for predictor tabulation, and a screening-regression analysis for the derivation of the prediction equations.

Additional equations were derived for winter anticyclones to specify the forecast difference in pressure between the anticyclone and each of eight surrounding grid points. Analysis of these differences leads to the construction of forecast pressure patterns surrounding the anticyclone center; initial results from feasibility testing were encouraging.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Robert L. Houghten
Lt. Colonel, USAF
System Program Director
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>DATA PROCESSING</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1. Areas Studied</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2. Selection of Cases</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3. Predictands</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4. Predictors Considered</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5. The Moving-coordinate Grid</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6. Screening Regression Technique</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>SYNOPTIC CLIMATOLOGY</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7. Summer Anticyclones</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>8. Winter Anticyclones</td>
<td>8</td>
</tr>
<tr>
<td>IV</td>
<td>RESULTS</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>9. Summer Anticyclones</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>10. Winter Anticyclones</td>
<td>36</td>
</tr>
<tr>
<td>V</td>
<td>CONCLUSIONS</td>
<td>104</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>105</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition of anticyclone areas</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Moving coordinate grid overlay</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Mean tracks of summer anticyclones by area, 1955—1958 (dependent sample)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Mean tracks of winter anticyclones by area, 1955—56 through 1958—59 (dependent sample)</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Example of 36-hr pressure pattern forecast valid at 0000 GMT, 19 Feb. 1960</td>
<td>38</td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

Summer and winter anticyclones in the Northern Hemisphere (divided into six areas) are studied by statistical methods derived for cyclone prediction and reported in [5, 6, 7, 10]. The approach in the cyclone prediction studies was to relate the displacement of a cyclone and its change in central pressure to predictors selected by a screening regression technique within a moving-coordinate system (a coordinate system in which predictor information is measured at points fixed relative to the moving cyclone rather than relative to the earth).

The previous work on cyclones attempted only to specify the pressure at a single point (the central pressure), but the central pressure of an anticyclone by itself may not be particularly meaningful; some indication of the shape and extent of the anticyclone may be needed. Accordingly feasibility tests were conducted in which additional predictands were generated which specified the differences between the pressure maximum of the anticyclone and pressures at surrounding points—thereby permitting the reconstruction of the pressure field in the vicinity of the anticyclone. The results of initial experiments on winter anticyclones are included in this report.

Operational use of the prediction equations derived herein may either be manual, with the aid of a desk calculator, or automatic, as the USAF Global Weather Center (GWC) is using previously-derived equations, with the aid of an electronic computer.
SECTION II

DATA PROCESSING

1. Areas Studied

The areas selected for study are shown in Fig. 1. Both summer- and winter-anticyclone equations were derived for all six areas.

2. Selection of Cases

Anticyclones were processed separately according to the area in which they were located. Table I shows the number of anticyclones selected for each of the areas of Fig. 1. The anticyclones were selected by examining all the 0000 and 1200 GMT surface charts for the winters (November—March) of 1955—56 through 1959—60, and the summers (May—September) of 1955—1959. An anticyclone was accepted if it retained its identity for at least 36 hours.

<table>
<thead>
<tr>
<th>Area</th>
<th>No. of Summer anticyclones</th>
<th>No. of Winter anticyclones</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>704</td>
<td>124</td>
</tr>
<tr>
<td>Atlantic</td>
<td>312</td>
<td>65</td>
</tr>
<tr>
<td>Europe</td>
<td>378</td>
<td>119</td>
</tr>
<tr>
<td>Eurasia</td>
<td>346</td>
<td>128</td>
</tr>
<tr>
<td>Asia</td>
<td>412</td>
<td>122</td>
</tr>
<tr>
<td>Pacific</td>
<td>312</td>
<td>83</td>
</tr>
</tbody>
</table>

* See Fig. 1.

The samples of anticyclones selected for the first four winters and summers were designated as the dependent samples and were used to derive prediction equations. The samples of the fifth winter and summer seasons were designated as the independent sample and were used to test the equations.

3. Predictands

The predictands used in this study include the two components of anticyclone displacement (latitudinal and longitudinal) and change in central pressure,
Fig. 1. Definition of anticyclone areas.
for forecast intervals of 12-, 24-, and 36-hr (see Table II). In addition, the differences between the central pressure and pressures one and two grid intervals (one grid interval equals two JNWP grid intervals) outward from the anticyclone center toward the north, east, south, and west, at 12-, 24-, and, 36-hr after initial time were specified as predictands (surrounding pressure minus central pressure) for the winter anticyclones.

TABLE II

PREDICTANDS

<table>
<thead>
<tr>
<th>Class</th>
<th>Symbol</th>
<th>Unit of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northward displacement</td>
<td>(\hat{N})</td>
<td>deg. lat.</td>
</tr>
<tr>
<td>Eastward displacement</td>
<td>(\hat{E})</td>
<td>deg. lat.</td>
</tr>
<tr>
<td>Change in central pressure</td>
<td>(\delta)</td>
<td>mb</td>
</tr>
<tr>
<td>Pressure difference (one grid interval)</td>
<td>(\nabla P_1)</td>
<td>mb</td>
</tr>
<tr>
<td>Pressure difference (two grid interval)</td>
<td>(\nabla P_2)</td>
<td>mb</td>
</tr>
</tbody>
</table>

4. **Predictors Considered**

The basic source of predictor data was System 433L hemispheric-data tapes [8]. Special preprocessing programs automatically extracted grid-point arrays of the various pressure, height, and thickness data for each anticyclone in the developmental sample. Inclusion of so-called derived predictors, such as vorticity, thermal wind, thickness advection, etc., did not seem warranted, based on a recent evaluation [7]. Table III lists the possible predictors used in this study.
<table>
<thead>
<tr>
<th>Prediction</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea-level pressure</td>
<td>P</td>
<td>mb</td>
</tr>
<tr>
<td>12-hr pressure change</td>
<td>ΔP</td>
<td>mb</td>
</tr>
<tr>
<td>500-mb height</td>
<td>Z</td>
<td>decafeet</td>
</tr>
<tr>
<td>12-hr height change</td>
<td>ΔZ</td>
<td>decafeet</td>
</tr>
<tr>
<td>1000-to 500-mb thickness</td>
<td>H</td>
<td>decafeet</td>
</tr>
<tr>
<td>12-hr thickness change</td>
<td>ΔH</td>
<td>decafeet</td>
</tr>
<tr>
<td>Latitude of anticyclone</td>
<td>θ</td>
<td>°lat.</td>
</tr>
<tr>
<td>Longitude of anticyclone</td>
<td>λ</td>
<td>°long.</td>
</tr>
<tr>
<td>Anticyclone intensity (one grid interval)</td>
<td>I₁</td>
<td>mb</td>
</tr>
<tr>
<td>Anticyclone intensity (two grid intervals)</td>
<td>I₂</td>
<td>mb</td>
</tr>
</tbody>
</table>

The anticyclone intensity (I) refers to the difference in pressure between the anticyclone’s central pressure and the average pressure of four surrounding grid points (derived from one grid interval for I_1 and from two grid intervals for I_2) divided by a function of latitude (map factor), so that

$$I = \frac{\left(\frac{1}{4} \sum_{i=1}^{4} P_i \right) - P_0}{(1 + \sin \theta)^2} \quad (II-1)$$

5. The Moving-coordinate Grid

The grid for extracting predictor information accompanies the anticyclone as it moves, so variables are measured at constant positions relative to its center. The grid is shown in Fig. 2. The grid point defined by the (K,L)-location (5,3) is placed at the center of the anticyclone and the grid is oriented so that the line K=5 coincides with the meridian passing through the center of the anticyclone (i.e., north—south orientation). Other grid locations are defined by their departure, in grid intervals, from this point. For technique development purposes, grid placement and data tabulation are done by computer programs, and "analyzed maps" are on magnetic tape. On a polar stereographic projection with standard parallel at 60°N, the grid array forms a set of evenly—spaced points. The interval used here is **twice** that of the Joint Numerical Weather Prediction (JNWP) grid. At
Fig. 2. Moving coordinate grid overlay. The center of the anticyclone is positioned at K=5, L=3 with K=5 oriented north-south. One grid interval equals two JNWP grid intervals (762 km at 60° N).
60°N, where the scale is true, our interval equals 762 km.

6. Screening Regression Technique

The screening procedure suggested by Bryan [1] and developed for the IBM 704 electronic computer by Miller [3] was used to screen the possible predictors identified in previous sections (this program has also been written for the IBM 7094).

One who designs a statistical-prediction experiment invariably likes to consider all predictors deemed important on the basis of previous theoretical, synoptic, and empirical work, but as Lorenz [2] points out, a prediction equation should contain few predictors in comparison with the size of the developmental sample; if there are too many, a relationship that fits the sample used to establish it is likely to fail when applied to a new sample. The object of the screening procedure is to select from a set of possible predictors the subset that most significantly and independently contributes to reducing the variance of the predictand.

From an array of possible predictors, the screening procedure first selects the one that has the highest linear correlation with the predictand in question. The predictor is then held constant and partial-correlation coefficients between the predictand and each of the remaining predictors are examined; the predictor now associated with the highest coefficient is the second one selected. Additional predictors are chosen similarly. Selection is halted whenever a predictor fails to pass a significance test. After the significant predictors have been selected, the regression coefficients are obtained by the method of least squares.

The criterion of significance, as applied to the screening procedure, is not clear-cut because the usual F-test methods (e.g., [9]) are not applicable [4]. If a predictor is chosen at random from a group of predictors, an F-test is usually taken at the 95% level; this allows a 1-in-20 chance of considering the predictor significant when, in fact, it is not. Because the screening procedure does not select predictors randomly, a more severe test is needed to specify a 1-in-20 chance. For his screening procedure, Miller [4] suggested that the critical F-value be a function of the number of possible predictors. The F-test was used in this form in these experiments.
SECTION III
SYNOPTIC CLIMATOLOGY

7. Summer Anticyclones

Table IV contains the means and standard deviations of northward and eastward displacements, and the changes in central pressure for 12-, 24-, and 36-hr intervals for the summer anticyclones in the dependent data sample. Mean tracks were also constructed from this information and are shown in Fig. 3. A comparison of these six tracks shows a general west-to-east movement with similar speeds (roughly 15 knots). The mean track for the North American anticyclones had the greatest southward displacement of the six tracks. The only track that exhibited a northward component was the one for Europe. Generally speaking, the changes in central pressure were, in the mean, rather small. The greatest tendency toward building of the anticyclone was over Asia where the mean change in central pressure was +2.51 mb for 36 hr.

8. Winter Anticyclones

Means and standard deviations for winter anticyclones were also computed and are shown in Table V. The mean tracks are shown in Fig. 4. The prevailing direction is once again west to east with the North American mean track showing the greatest southward displacement. However, the speeds vary much more, ranging from 25 knots for Asian anticyclones to 8 knots for European anticyclones. The largest change in central pressure was for Eurasia, being +3.12 mb for 36 hr.
<table>
<thead>
<tr>
<th>Area</th>
<th>Forecast interval hr</th>
<th>Observed northward displacement deg. lat.</th>
<th>Observed eastward displacement deg. lat.</th>
<th>Observed change in central pressure mb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>North</td>
<td>12</td>
<td>-1.34</td>
<td>2.12</td>
<td>-2.96</td>
</tr>
<tr>
<td>America</td>
<td>24</td>
<td>-2.45</td>
<td>3.34</td>
<td>-5.99</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-3.33</td>
<td>4.33</td>
<td>-9.08</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-0.11</td>
<td>1.98</td>
<td>-3.25</td>
</tr>
<tr>
<td>Atlantic</td>
<td>24</td>
<td>-0.16</td>
<td>3.52</td>
<td>-6.22</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-0.17</td>
<td>4.83</td>
<td>-8.83</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.28</td>
<td>2.24</td>
<td>-2.76</td>
</tr>
<tr>
<td>Europe</td>
<td>24</td>
<td>0.40</td>
<td>3.73</td>
<td>-5.44</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0.39</td>
<td>4.93</td>
<td>-7.93</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-0.54</td>
<td>1.83</td>
<td>-3.12</td>
</tr>
<tr>
<td>Eurasia</td>
<td>24</td>
<td>-1.04</td>
<td>3.00</td>
<td>-5.86</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-1.39</td>
<td>3.98</td>
<td>-8.21</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-0.43</td>
<td>2.05</td>
<td>-3.16</td>
</tr>
<tr>
<td>Asia</td>
<td>24</td>
<td>-0.78</td>
<td>3.18</td>
<td>-6.43</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-1.04</td>
<td>3.97</td>
<td>-9.80</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-0.13</td>
<td>1.69</td>
<td>-3.38</td>
</tr>
<tr>
<td>Pacific</td>
<td>24</td>
<td>-0.19</td>
<td>2.86</td>
<td>-6.32</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-0.34</td>
<td>3.86</td>
<td>-8.72</td>
</tr>
</tbody>
</table>

*Negative values represent deepening.
Fig. 3. Mean tracks of summer anticyclones by area, 1955–1958 (dependent sample). Value adjacent to symbol refers to mean change in central pressure (mb).
<table>
<thead>
<tr>
<th>Area</th>
<th>Forecast interval hr</th>
<th>Observed northward displacement deg. lat.</th>
<th>Observed eastward displacement deg. lat.</th>
<th>Observed change in central pressure mb</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>12</td>
<td>-1.31</td>
<td>-3.48</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-2.29</td>
<td>-7.15</td>
<td>-0.22</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-3.07</td>
<td>-10.85</td>
<td>-0.74</td>
</tr>
<tr>
<td>Atlantic</td>
<td>12</td>
<td>-0.05</td>
<td>-3.80</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.03</td>
<td>-6.97</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0.08</td>
<td>-9.66</td>
<td>0.34</td>
</tr>
<tr>
<td>Europe</td>
<td>12</td>
<td>-0.61</td>
<td>-1.63</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.20</td>
<td>-3.34</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-1.71</td>
<td>-4.96</td>
<td>0.76</td>
</tr>
<tr>
<td>Eurasia</td>
<td>12</td>
<td>-0.11</td>
<td>-3.63</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.29</td>
<td>-7.08</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-0.49</td>
<td>-10.22</td>
<td>3.12</td>
</tr>
<tr>
<td>Asia</td>
<td>12</td>
<td>-0.49</td>
<td>-4.95</td>
<td>-0.22</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.90</td>
<td>-9.77</td>
<td>-0.59</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-1.18</td>
<td>-14.42</td>
<td>-0.84</td>
</tr>
<tr>
<td>Pacific</td>
<td>12</td>
<td>0.08</td>
<td>-3.77</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.06</td>
<td>-7.15</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>-0.16</td>
<td>-10.12</td>
<td>1.65</td>
</tr>
</tbody>
</table>

*Negative values represent deepening.
Fig. 4. Mean tracks of winter anticyclones by area, 1955–56 through 1958–59 (dependent sample). Value adjacent to symbol refers to mean change in central pressure (mb).
SECTION IV
RESULTS

For both summer and winter anticyclones, experiments were designed using the predictors listed in Table III to yield separate equations for the two components of displacement (northward, \(N\), and eastward, \(E\)) and one equation for change in central pressure (\(D\)). In addition, prediction equations were developed for winter anticyclones for the surrounding pressure gradients as listed in Table II.

The results of the screening regression analysis are summarized in Tables VI through XI for each summer area and in Tables XIII through XVIII for each winter area. The equation for each predictand (defined in Table II) is contained in the first three columns. For example, in Table VI, the 12-hr northward displacement \(N_{12}\) has eight terms: a constant \(+32.629\) and seven predictors. The predictor symbol (and its units) is defined in Table II and the accompanying numbers in parentheses refer to the \((K,L)\)-grid locations shown in Fig. 2. Thus, this type of representation is equivalent to the more familiar form,

\[
N_{12} = 32.629 + 0.01422Z(7,2) + 0.15685\Delta P(5,4)\ldots etc,
\]

The predictor \(Z(7,2)\) explains 23.5\% of the variance of the predictand as indicated under the column “Accumulative % red.,” and the predictor \(\Delta P(5,4)\) contributes an additional 3.5\% to the accumulated per cent reduction. The residual error is 1.66° lat.

The convention used for eastward displacement is that negative values of \(E\) refer to eastward displacement and positive values to westward displacement. To convert the eastward displacement from degrees of latitude to degrees of longitude, it is only necessary to multiply the computed value of \(E\) by the secant of the average latitude applicable to the forecast interval being considered.

9. Summer Anticyclones

Tables VI through XI give the dependent data results for the six summer-anticyclone areas. For northward displacement the first predictor selected is generally a 500-mb height or 1000—500-mb thickness value to the east (ranging from northeast to southeast) of the anticyclone. The regression
coefficients associated with these first predictors relate large 500-mb heights (or thicknesses) with northward displacement. Such a relationship seems to represent the directional nature of the mid-tropospheric flow, i.e., large heights to the east suggest a large amplitude ridge in that region with southerly flow over the anticyclone favoring its northward displacement. It is interesting to note that similar first predictors were selected for summer cyclone northward displacement [7].

For eastward displacement, sea-level pressures were dominant factors except over North America (Table VI) where $Z(6,5)$ was selected first for all three forecast intervals. This predictor, located to the north-northeast of the anticyclone (see Fig. 2), represents a measure of the strength of the zonal flow over the anticyclone and large heights imply a northward shift of the westerlies and, thus, a weak zonal flow over the anticyclone; the stronger the zonal flow, the larger the eastward displacement of the anticyclone. The current latitude of the anticyclone, θ, is an important predictor over Asia. It is of lesser importance, but still selected, over Europe (Table VIII), Eurasia (Table IX), and Pacific (Table XI). In all instances, the sign of the coefficients indicates a relationship of westward-moving anticyclones (or small eastward) with high latitudes and more rapid eastward movement at lower latitudes.

The first predictor selected for change in central pressure varied from area to area but was frequently a function of the initial central pressure: $P(5,3)$, I_1, I_2, etc. When this was the case, the sign of the regression coefficient indicates that anticyclones with initially high central pressure would not build as much as those which initially had lower central pressures.

The regression equations described above were applied to a set of independent data composed of 1959 summer anticyclones cases. An evaluation of the results and a comparison with climatology are shown in Table XII. Of the 54 predictand classes the regression equations yielded smaller root-mean-square errors than climatology with only two exceptions: 24-hr change in central pressure for Atlantic and 24-hr northward displacement for Europe.
TABLE VI
NORTH AMERICAN SUMMER—ANTICYCLONE EQUATIONS WITH DEVELOPMENTAL DATA—SAMPLE STATISTICS (704 Cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{N}_{12}</td>
<td>+ 32.629</td>
<td>1</td>
<td>—</td>
<td>1.66°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.014122</td>
<td>Z(7,2)</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.15685</td>
<td>ΔP(5,4)</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18873</td>
<td>ΔP(5,2)</td>
<td>29.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.038024</td>
<td>ΔH(5,2)</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.025945</td>
<td>Z(4,3)</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022192</td>
<td>Z(6,3)</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.051903</td>
<td>P(1,1)</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{12}</td>
<td>+ 70.428</td>
<td>1</td>
<td>—</td>
<td>1.61°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.016228</td>
<td>Z(6,5)</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.040156</td>
<td>H(5,2)</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.028493</td>
<td>Z(4,3)</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.17234</td>
<td>ΔP(6,3)</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.12894</td>
<td>ΔP(4,3)</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.080100</td>
<td>P(7,2)</td>
<td>39.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.020571</td>
<td>ΔZ(4,5)</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.015017</td>
<td>ΔZ(9,7)</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\hat{D}_{12})</td>
<td>+113.48</td>
<td>1</td>
<td>-</td>
<td>1.77 mb</td>
</tr>
<tr>
<td></td>
<td>+0.064206</td>
<td>(\Delta H(4,3))</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1.0558</td>
<td>(I_2)</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.17490</td>
<td>(\Delta P(2,3))</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.060884</td>
<td>(\Delta Z(5,4))</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.056445</td>
<td>(\Delta H(5,2))</td>
<td>52.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.019078</td>
<td>(Z(4,3))</td>
<td>55.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.10884</td>
<td>(P(5,2))</td>
<td>58.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.019508</td>
<td>(\Delta H(9,7))</td>
<td>59.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.051049</td>
<td>(P(9,4))</td>
<td>60.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.025818</td>
<td>(\Delta H(2,5))</td>
<td>60.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.022729</td>
<td>(\Delta Z(1,7))</td>
<td>61.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0083589</td>
<td>(Z(1,4))</td>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>(\hat{N}_{24})</td>
<td>+6.9169</td>
<td>1</td>
<td>-</td>
<td>2.32° lat</td>
</tr>
<tr>
<td></td>
<td>+0.031273</td>
<td>(Z(7,2))</td>
<td>34.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.063732</td>
<td>(Z(4,3))</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.037878</td>
<td>(H(6,3))</td>
<td>42.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.10584</td>
<td>(\Theta)</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.085833</td>
<td>(\Delta P(6,5))</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.052644</td>
<td>(P(3,6))</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.047028</td>
<td>(\Delta Z(5,2))</td>
<td>48.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.31171</td>
<td>(P(5,4))</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.069854</td>
<td>(P(5,6))</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.20062</td>
<td>(P(5,3))</td>
<td>51.9</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\mathbf{E}_{24})</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2.78°lat</td>
</tr>
<tr>
<td></td>
<td>+131.49</td>
<td>1</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.035367</td>
<td>Z(6,5)</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.071366</td>
<td>H(5,2)</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.048049</td>
<td>Z(4,3)</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.28229</td>
<td>(\Delta P(6,3))</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.25304</td>
<td>(\Delta P(4,3))</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.15608</td>
<td>P(7,2)</td>
<td>45.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.048904</td>
<td>(\Delta Z(4,5))</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(\mathbf{D}_{24})</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2.22 mb</td>
</tr>
<tr>
<td></td>
<td>+316.41</td>
<td>1</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.25086</td>
<td>(\Delta P(5,4))</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.060222</td>
<td>P(2,3)</td>
<td>27.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.053640</td>
<td>P(5,4)</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.15170</td>
<td>(I_1)</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.017211</td>
<td>Z(3,6)</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.033426</td>
<td>Z(4,3)</td>
<td>44.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.015824</td>
<td>Z(9,4)</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.050021</td>
<td>(\Delta H(5,4))</td>
<td>47.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1.3415</td>
<td>(I_2)</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.12404</td>
<td>(\Delta P(9,4))</td>
<td>49.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.13012</td>
<td>P(4,3)</td>
<td>51.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.14916</td>
<td>(\Delta P(6,3))</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>N_{36}</td>
<td>-32.137</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.049061</td>
<td>Z(7,2)</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.085631</td>
<td>Z(4,3)</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.14133</td>
<td>Θ</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.033472</td>
<td>H(6,3)</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.023792</td>
<td>Z(8,5)</td>
<td>49.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.061318</td>
<td>ΔZ(4,3)</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.017240</td>
<td>Z(3,6)</td>
<td>51.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.023532</td>
<td>H(3,2)</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.10197</td>
<td>ΔP(5,6)</td>
<td>53.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.053714</td>
<td>P(7,6)</td>
<td>53.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.25040</td>
<td>P(5,4)</td>
<td>54.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.20942</td>
<td>P(5,2)</td>
<td>55.7</td>
<td></td>
</tr>
</tbody>
</table>

E_{36}	+106.52	1		
	+0.039546	Z(6,5)	22.7	
	-0.050301	Z(7,2)	30.0	
	+0.029091	Z(4,5)	33.0	
	+0.12608	ΔZ(4,3)	36.1	
	-0.084572	ΔZ(6,3)	38.0	
	-0.12464	P(1,1)	39.9	
	+0.21639	ΔP(4,5)	41.2	
	-0.052232	H(5,2)	42.4	
	+0.043637	H(5,4)	44.2	
TABLE VI (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{D}_{36}</td>
<td>+ 525.32</td>
<td>1</td>
<td>—</td>
<td>3.04 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.43455</td>
<td>P(4,3)</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.35403</td>
<td>I_1</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.025743</td>
<td>Z(4,5)</td>
<td>34.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.070711</td>
<td>$\Delta H(5,2)$</td>
<td>41.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.049833</td>
<td>$\Delta H(4,5)$</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26003</td>
<td>$\Delta P(2,3)$</td>
<td>48.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.020148</td>
<td>Z(9,4)</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.037254</td>
<td>H(4,3)</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.4774</td>
<td>I_2</td>
<td>53.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.060251</td>
<td>$\Delta Z(5,4)$</td>
<td>54.8</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\mathbf{\hat{N}}_{12}$</td>
<td>-45.717</td>
<td>1</td>
<td>$-$</td>
<td>1.36°lat</td>
</tr>
<tr>
<td></td>
<td>$+0.096746$</td>
<td>$\Delta P(5,4)$</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.041299$</td>
<td>$P(8,5)$</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.040771$</td>
<td>$Z(6,3)$</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.041367</td>
<td>$Z(4,3)$</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.043835</td>
<td>$P(3,6)$</td>
<td>49.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.048961$</td>
<td>$P(6,5)$</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td>$\mathbf{\hat{E}}_{12}$</td>
<td>-85.555</td>
<td>1</td>
<td>$-$</td>
<td>1.51°lat</td>
</tr>
<tr>
<td></td>
<td>$+0.036106$</td>
<td>$P(4,5)$</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.052134$</td>
<td>$P(6,5)$</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.020007</td>
<td>$H(1,4)$</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.016462$</td>
<td>$Z(4,5)$</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>$\mathbf{\hat{D}}_{12}$</td>
<td>$+112.28$</td>
<td>1</td>
<td>$-$</td>
<td>1.61 mb</td>
</tr>
<tr>
<td></td>
<td>$+0.33879$</td>
<td>$\Delta P(5,2)$</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.89947$</td>
<td>I_2</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.041306$</td>
<td>$\Delta Z(5,4)$</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.040917</td>
<td>$P(1,4)$</td>
<td>39.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.053566</td>
<td>$\Delta Z(1,1)$</td>
<td>42.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.045105$</td>
<td>$\Delta H(5,2)$</td>
<td>44.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.013796</td>
<td>$Z(2,5)$</td>
<td>45.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+0.056380$</td>
<td>$P(9,4)$</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.097805</td>
<td>$P(5,2)$</td>
<td>50.2</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>\hat{N}_{24}</td>
<td>-128.61</td>
<td>1</td>
<td>-</td>
<td>2.50° lat</td>
</tr>
<tr>
<td></td>
<td>+0.13035</td>
<td>P(8,5)</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.075083</td>
<td>Z(6,3)</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.076507</td>
<td>Z(4,3)</td>
<td>49.4</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{24}</td>
<td>-21.831</td>
<td>1</td>
<td>-</td>
<td>2.18° lat</td>
</tr>
<tr>
<td></td>
<td>+0.13720</td>
<td>P(5,4)</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.092055</td>
<td>P(7,2)</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.24608</td>
<td>$\Delta P(6,3)$</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.27495</td>
<td>$\Delta P(4,3)$</td>
<td>39.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.090937</td>
<td>P(8,3)</td>
<td>42.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.16543</td>
<td>$\Delta P(2,5)$</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.017645</td>
<td>H(1,7)</td>
<td>47.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.026587</td>
<td>Z(4,5)</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.023900</td>
<td>H(1,4)</td>
<td>52.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.089785</td>
<td>P(2,5)</td>
<td>55.2</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{24}</td>
<td>+325.99</td>
<td>1</td>
<td>-</td>
<td>2.70 mb</td>
</tr>
<tr>
<td></td>
<td>+0.12968</td>
<td>$\Delta Z(5,2)$</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.42882</td>
<td>P(5,3)</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.032991</td>
<td>Z(2,5)</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.17256</td>
<td>P(8,3)</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>\hat{N}_{36}</td>
<td>-182.48</td>
<td>1</td>
<td>-</td>
<td>3.54° lat</td>
</tr>
<tr>
<td></td>
<td>+0.18397</td>
<td>P(8,5)</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.096787</td>
<td>Z(6,3)</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.098322</td>
<td>Z(4,3)</td>
<td>46.2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE VII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{E}_{36})</td>
<td>(+ 102.96)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+ 0.14769)</td>
<td>(P(5,4))</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.16082)</td>
<td>(P(8,3))</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.30641)</td>
<td>(\Delta P(6,3))</td>
<td>34.6</td>
<td>3.27° lat</td>
</tr>
<tr>
<td></td>
<td>(+ 0.055314)</td>
<td>(Z(4,5))</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.029311)</td>
<td>(H(1,7))</td>
<td>44.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.029959)</td>
<td>(H(1,4))</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.046800)</td>
<td>(Z(9,1))</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td>(\hat{D}_{36})</td>
<td>(+ 470.74)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 1.0165)</td>
<td>(P(5,3))</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.038555)</td>
<td>(Z(2,5))</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+ 0.23030)</td>
<td>(P(9,4))</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+ 0.64198)</td>
<td>(\Delta P(5,2))</td>
<td>38.9</td>
<td>3.04 mb</td>
</tr>
<tr>
<td></td>
<td>(+ 0.40625)</td>
<td>(P(6,3))</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.11388)</td>
<td>(H(1,1))</td>
<td>47.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+ 0.047220)</td>
<td>(H(9,1))</td>
<td>50.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+ 0.11888)</td>
<td>(P(6,5))</td>
<td>52.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 0.50259)</td>
<td>(\Delta P(1,1))</td>
<td>55.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE VIII
EUROPEAN SUMMER—ANTICYCLONES EQUATIONS WITH DEVELOPMENTAL DATA—SAMPLE STATISTICS (378 Cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{N}_{12}</td>
<td>- 108.46</td>
<td>1</td>
<td>-</td>
<td>1.91°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.037813</td>
<td>H(6,3)</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.031523</td>
<td>H(4,3)</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.096175</td>
<td>P(1,1)</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>\tilde{E}_{12}</td>
<td>- 174.35</td>
<td>1</td>
<td>-</td>
<td>2.11°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.12471</td>
<td>P(5,4)</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.19795</td>
<td>$\Delta P(4,3)$</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.11703</td>
<td>Θ</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021798</td>
<td>H(4,5)</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>\tilde{D}_{12}</td>
<td>+ 1.8820</td>
<td>1</td>
<td>-</td>
<td>1.54 mb</td>
</tr>
<tr>
<td></td>
<td>+ 1.3012</td>
<td>I_1</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.17138</td>
<td>$\Delta P(5,4)$</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.035192</td>
<td>$\Delta Z(5,2)$</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td>\tilde{N}_{24}</td>
<td>- 329.14</td>
<td>1</td>
<td>-</td>
<td>2.74°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.058288</td>
<td>H(6,3)</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.065266</td>
<td>H(4,3)</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.17624</td>
<td>P(1,1)</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.034267</td>
<td>Z(9,4)</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.33031</td>
<td>$\Delta P(3,2)$</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.098553</td>
<td>P(6,5)</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\hat{E}_{24})</td>
<td>-378.22</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.19520</td>
<td>P(5,4)</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.20947</td>
<td>Θ</td>
<td>21.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.039085</td>
<td>H(4,5)</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.093089</td>
<td>P(7,6)</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.29218</td>
<td>ΔP(4,3)</td>
<td>35.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.12° lat</td>
</tr>
<tr>
<td>(\hat{D}_{24})</td>
<td>+37.502</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1.1036</td>
<td>I₂</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.31431</td>
<td>ΔP(5,4)</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.018012</td>
<td>Z(3,2)</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.25 mb</td>
</tr>
<tr>
<td>(\hat{E}_{36})</td>
<td>-352.87</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.033203</td>
<td>Z(8,3)</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.31128</td>
<td>P(1,1)</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.074109</td>
<td>Z(4,3)</td>
<td>32.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.061019</td>
<td>Z(6,3)</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.79° lat</td>
</tr>
<tr>
<td>(\hat{E}_{36})</td>
<td>-332.14</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.20123</td>
<td>P(6,5)</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.36026</td>
<td>Θ</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.060723</td>
<td>Z(4,5)</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.028298</td>
<td>Z(7,6)</td>
<td>34.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.032586</td>
<td>Z(3,6)</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.12° lat</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>δ_{36}</td>
<td>+ 65.259</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.43021</td>
<td>$\Delta P(5,4)$</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.2695</td>
<td>I_2</td>
<td>29.5</td>
<td>2.75 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.032678</td>
<td>$Z(3,2)$</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.065799</td>
<td>$\Delta Z(5,2)$</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>\hat{N}_{12}</td>
<td>-6.0542 + 0.010874 + 0.17631 - 0.043796 - 0.016099 + 0.014215 - 0.088762 + 0.062331 - 0.072375</td>
<td>1 $Z(7,2)$ $\Delta P(5,4)$ $\Delta P(6,3)$ $Z(3,2)$ $Z(6,3)$ $AP(2,3)$ $P(6,5)$ $P(5,2)$</td>
<td>14.5 21.8 25.2 27.5 29.4 31.3 33.1 36.2</td>
<td>1.46°lat</td>
</tr>
<tr>
<td>$\mathbf{\hat{E}}_{12}$</td>
<td>-43.284 + 0.016992 - 0.029432 + 0.014993 + 0.098683 + 0.016890</td>
<td>1 $Z(5,4)$ $H(5,2)$ $Z(6,5)$ Θ $H(2,3)$</td>
<td>7.9 19.1 24.9 27.7 31.7</td>
<td>1.59°lat</td>
</tr>
<tr>
<td>$\mathbf{\hat{D}}_{12}$</td>
<td>-1.4193 + 0.077528 + 0.76984 - 0.22835 + 0.077128</td>
<td>1 $\Delta H(4,3)$ I_2 $\Delta P(3,2)$ Θ</td>
<td>21.6 33.3 38.6 41.9</td>
<td>2.05 mb</td>
</tr>
</tbody>
</table>
TABLE IX (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{R}_{24}</td>
<td>+ 9.7027</td>
<td>1</td>
<td>—</td>
<td>2.25° lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.027780</td>
<td>$Z(7,2)$</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.29473</td>
<td>$\Delta P(5,4)$</td>
<td>27.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.081517</td>
<td>$\Delta P(6,3)$</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.017580</td>
<td>$Z(3,2)$</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10922</td>
<td>Θ</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021665</td>
<td>$Z(6,3)$</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19350</td>
<td>$\Delta P(2,3)$</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.025944</td>
<td>$H(2,3)$</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.098877</td>
<td>$P(7,2)$</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.083096</td>
<td>$P(6,5)$</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{24}</td>
<td>- 259.23</td>
<td>1</td>
<td>—</td>
<td>2.57° lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.079182</td>
<td>$P(6,5)$</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.038855</td>
<td>$H(6,5)$</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.054615</td>
<td>$Z(7,2)$</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.16382</td>
<td>$P(5,2)$</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022075</td>
<td>$H(2,3)$</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{24}</td>
<td>+ 63.410</td>
<td>1</td>
<td>—</td>
<td>2.58 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.032122</td>
<td>$Z(2,3)$</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25693</td>
<td>$\Delta P(5,4)$</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.79858</td>
<td>I_2</td>
<td>33.1</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{N}_{36}</td>
<td>-160.09</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.039614</td>
<td>$Z(7,2)$</td>
<td>21.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.33126</td>
<td>$\Delta P(5,4)$</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.13327</td>
<td>$P(6,5)$</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.047650</td>
<td>$Z(3,2)$</td>
<td>34.8</td>
<td>2.98°lat</td>
</tr>
<tr>
<td></td>
<td>-0.16049</td>
<td>Θ</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.025912</td>
<td>$H(6,3)$</td>
<td>39.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.020089</td>
<td>$Z(1,7)$</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.019632</td>
<td>$Z(3,6)$</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{36}</td>
<td>-241.91</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.17191</td>
<td>$P(6,5)$</td>
<td>10.7</td>
<td>3.47°lat</td>
</tr>
<tr>
<td></td>
<td>+0.053007</td>
<td>$H(6,5)$</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.066703</td>
<td>$H(7,2)$</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.043710</td>
<td>$H(2,3)$</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.17356</td>
<td>Θ</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{36}</td>
<td>+404.34</td>
<td>1</td>
<td>-</td>
<td>3.12 mb</td>
</tr>
<tr>
<td></td>
<td>-0.42147</td>
<td>$\Delta P(3,2)$</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.049676</td>
<td>$Z(2,3)$</td>
<td>23.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.49631</td>
<td>$P(5,3)$</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.093902</td>
<td>$\Delta H(2,3)$</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.40510</td>
<td>$\Delta P(5,4)$</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.21217</td>
<td>$P(3,2)$</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.042138</td>
<td>$H(6,3)$</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.031415</td>
<td>$Z(5,4)$</td>
<td>49.3</td>
<td></td>
</tr>
</tbody>
</table>
TABLE X

ASIAN SUMMER — ANTICYCLONE EQUATIONS WITH DEVELOPMENTAL DATA—SAMPLE STATISTICS (412 Cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{N}_{12}</td>
<td>-40.456</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+0.021481</td>
<td>$Z(6,3)$</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.15322</td>
<td>$\Delta P(5,4)$</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.041580</td>
<td>$\Delta Z(5,2)$</td>
<td>26.3</td>
<td>1.76°lat</td>
</tr>
<tr>
<td>\hat{E}_{12}</td>
<td>-34.838</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+0.084719</td>
<td>Θ</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.10537</td>
<td>$\Delta P(6,3)$</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.012557</td>
<td>$Z(5,6)$</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.018085</td>
<td>$H(5,2)$</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.024580</td>
<td>$\Delta Z(6,5)$</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.088506</td>
<td>$\Delta P(1,4)$</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.022017</td>
<td>$H(6,3)$</td>
<td>24.3</td>
<td>1.86°lat</td>
</tr>
<tr>
<td></td>
<td>-0.021469</td>
<td>$Z(1,4)$</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.050442</td>
<td>$P(3,2)$</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.024241</td>
<td>$Z(1,1)$</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.012861</td>
<td>$Z(4,5)$</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.25920</td>
<td>$P(6,3)$</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.27054</td>
<td>$P(4,3)$</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{12}</td>
<td>+2.0079</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+0.87524</td>
<td>I_2</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.040090</td>
<td>$\Delta Z(4,3)$</td>
<td>23.3</td>
<td>1.79 mb</td>
</tr>
<tr>
<td></td>
<td>-0.0097634</td>
<td>$Z(6,5)$</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.010331</td>
<td>$H(7,2)$</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\tilde{N}_{24}</td>
<td>-22.819</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.031826</td>
<td>$Z(6,3)$</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.15183</td>
<td>Θ</td>
<td>32.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.23043</td>
<td>$\Delta P(5,4)$</td>
<td>35.5</td>
<td>2.24°lat</td>
</tr>
<tr>
<td></td>
<td>-0.047993</td>
<td>$\Delta Z(5,2)$</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.036349</td>
<td>$Z(3,2)$</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.011819</td>
<td>$H(1,7)$</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.012726</td>
<td>$H(9,4)$</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.025321</td>
<td>$\Delta H(5,4)$</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.32564</td>
<td>$P(5,4)$</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.24358</td>
<td>$P(5,2)$</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.088918</td>
<td>$P(5,6)$</td>
<td>50.3</td>
<td></td>
</tr>
<tr>
<td>\tilde{E}_{24}</td>
<td>+44.580</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.15109</td>
<td>Θ</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.035611</td>
<td>$Z(4,5)$</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.051319</td>
<td>$H(1,1)$</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.21565</td>
<td>$\Delta P(6,3)$</td>
<td>31.0</td>
<td>2.86°lat</td>
</tr>
<tr>
<td></td>
<td>+0.20204</td>
<td>$\Delta P(4,3)$</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.027319</td>
<td>$Z(1,4)$</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.014947</td>
<td>$Z(7,6)$</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td>\tilde{D}_{24}</td>
<td>+18.534</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1.0626</td>
<td>I_2</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.046259</td>
<td>$\Delta Z(5,4)$</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.024403</td>
<td>$Z(5,4)$</td>
<td>23.0</td>
<td>2.45 mb</td>
</tr>
<tr>
<td></td>
<td>+0.016894</td>
<td>$H(7,2)$</td>
<td>25.7</td>
<td></td>
</tr>
</tbody>
</table>
TABLE X (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{N}_{36}</td>
<td>- 7.2894</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.042052</td>
<td>$Z(7,2)$</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19376</td>
<td>Θ</td>
<td>34.8</td>
<td>2.98°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.016084</td>
<td>$Z(9,7)$</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.064480</td>
<td>$H(1,1)$</td>
<td>41.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.015144</td>
<td>$Z(8,5)$</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{36}</td>
<td>- 122.26</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25179</td>
<td>Θ</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.050928</td>
<td>$Z(4,5)$</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.066472</td>
<td>$H(1,1)$</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.028983</td>
<td>$Z(7,6)$</td>
<td>34.2</td>
<td>3.66°lat</td>
</tr>
<tr>
<td></td>
<td>- 0.039041</td>
<td>$Z(1,4)$</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.21900</td>
<td>$\Delta P(6,3)$</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.15474</td>
<td>$P(3,2)$</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{36}</td>
<td>+ 134.15</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.1864</td>
<td>I_2</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.094049</td>
<td>$P(4,5)$</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.049623</td>
<td>$\Delta Z(5,4)$</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.047846</td>
<td>$Z(4,3)$</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.030533</td>
<td>$H(7,2)$</td>
<td>27.8</td>
<td>3.01 mb</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{N}_{12}</td>
<td>- 14.672</td>
<td>1</td>
<td>1.42° lat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.024526</td>
<td>$Z(8,3)$</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.021154</td>
<td>$H(2,5)$</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.32780</td>
<td>I_2</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.01544</td>
<td>$Z(6,5)$</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.011683</td>
<td>$Z(6,6)$</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{12}</td>
<td>- 3.862</td>
<td>1</td>
<td>1.73° lat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.022133</td>
<td>$P(9,4)$</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.018982</td>
<td>$Z(5,6)$</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0095888</td>
<td>$Z(7,2)$</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18617</td>
<td>$P(4,3)$</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14814</td>
<td>$P(7,2)$</td>
<td>29.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.066626</td>
<td>θ</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{12}</td>
<td>+ 91.369</td>
<td>1</td>
<td>1.85 mb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.1247</td>
<td>I_2</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18855</td>
<td>$\Delta P(6,3)$</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.086436</td>
<td>$P(2,3)$</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>\hat{N}_{24}</td>
<td>- 129.31</td>
<td>1</td>
<td>2.19° lat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.030294</td>
<td>$Z(8,3)$</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.019950</td>
<td>$H(2,5)$</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.081757</td>
<td>$H(6,3)$</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.054857</td>
<td>$Z(5,2)$</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.22530</td>
<td>$\Delta P(5,4)$</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.098220</td>
<td>$P(6,5)$</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\hat{E}_{24})</td>
<td>- 60.081</td>
<td>1</td>
<td>-</td>
<td>2.88°lat</td>
</tr>
<tr>
<td></td>
<td>- 0.11191</td>
<td>P(9,4)</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.013287</td>
<td>Z(5,6)</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.032312</td>
<td>Z(3,4)</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.037573</td>
<td>H(7,6)</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.30043</td>
<td>P(5,4)</td>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.16601</td>
<td>P(7,2)</td>
<td>39.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.26053</td>
<td>(\Delta P(3,2))</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td>(\hat{B}_{24})</td>
<td>+ 207.34</td>
<td>1</td>
<td>-</td>
<td>2.24 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.22956</td>
<td>P(5,3)</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.33629</td>
<td>(\Delta P(6,3))</td>
<td>30.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.0390</td>
<td>I_2</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.039968</td>
<td>Z(3,2)</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.025419</td>
<td>Z(9,4)</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.078334</td>
<td>P(2,5)</td>
<td>51.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13636</td>
<td>P(7,2)</td>
<td>53.5</td>
<td></td>
</tr>
<tr>
<td>(\hat{N}_{36})</td>
<td>- 155.02</td>
<td>1</td>
<td>-</td>
<td>2.87°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.057261</td>
<td>Z(8,3)</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.031672</td>
<td>H(2,5)</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.077407</td>
<td>H(6,3)</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.075147</td>
<td>Z(5,2)</td>
<td>38.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.055162</td>
<td>(\Delta Z(9,7))</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.10404</td>
<td>P(1,4)</td>
<td>44.8</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{E}_{36}</td>
<td>$+ 219.97$</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.32204$</td>
<td>P(9,4)</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.036964$</td>
<td>Z(5,6)</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.12678$</td>
<td>P(2,5)</td>
<td>32.7</td>
<td>3.90°lat</td>
</tr>
<tr>
<td></td>
<td>$+ 0.13101$</td>
<td>P(8,5)</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.26104$</td>
<td>Θ</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.045461$</td>
<td>H(7,6)</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.035678$</td>
<td>H(1,7)</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{36}</td>
<td>$+ 546.26$</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.17240$</td>
<td>P(5,3)</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.37814$</td>
<td>$\Delta P(6,3)$</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 1.6065$</td>
<td>I_2</td>
<td>38.5</td>
<td>3.17 mb</td>
</tr>
<tr>
<td></td>
<td>$- 0.10413$</td>
<td>P(2,5)</td>
<td>41.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.25394$</td>
<td>P(3,2)</td>
<td>45.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.062498$</td>
<td>$\Delta Z(8,3)$</td>
<td>48.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XII
ROOT-MEAN-SQUARE ERRORS IN TESTS ON SUMMER ANTICYCLONES, 1959
(independent sample)

<table>
<thead>
<tr>
<th>Area</th>
<th>Forecast interval, hr</th>
<th>TRC</th>
<th>CLIMATOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>North</td>
<td>12</td>
<td>1.61</td>
<td>1.60</td>
</tr>
<tr>
<td>America (124 cases)</td>
<td>24</td>
<td>2.39</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>3.03</td>
<td>3.99</td>
</tr>
<tr>
<td>Atlantic (65 cases)</td>
<td>12</td>
<td>1.75</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.69</td>
<td>2.77</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>3.83</td>
<td>3.52</td>
</tr>
<tr>
<td>Europe (119 cases)</td>
<td>12</td>
<td>1.77</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.77</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>3.10</td>
<td>5.01</td>
</tr>
<tr>
<td>Eurasia (128 cases)</td>
<td>12</td>
<td>1.66</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.68</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>3.68</td>
<td>3.64</td>
</tr>
<tr>
<td>Asia (122 cases)</td>
<td>12</td>
<td>1.82</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.61</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>3.91</td>
<td>5.16</td>
</tr>
<tr>
<td>Pacific (83 cases)</td>
<td>12</td>
<td>1.62</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.50</td>
<td>2.84</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>3.98</td>
<td>3.90</td>
</tr>
</tbody>
</table>
10. Winter Anticyclones

Tables XIII through XVIII give the dependent data results for the six winter-anticyclone areas. The northward displacement predictors are similar to those selected for summer anticyclones in that the first predictors selected are generally upper-air heights (or thicknesses) to the east of the anticyclone. Here again, the equations show that large height values to the east are conducive to northward displacement.

For eastward displacement, a variety of predictors was selected. In North America (Table XIII), $\Delta P(6,3)$ was selected first at the 12-hr interval while $Z(6,1)$ was the most significant predictor for 24 and 36 hr. For the Atlantic, $Z(8,2)$ was selected first for 12 and 24 hr while the initial longitude of the anticyclone was selected first for 36 hr. For Europe, Eurasia, and Pacific, sea-level pressure predictors were important, as was the case for summer in those same areas. For Asia, $Z(7,2)$ and $Z(8,2)$ were the most significant predictors.

The change in central pressure equations have, for their first predictors, a function of sea-level pressure near the anticyclone center. This is similar to the situation with summer anticyclones. As was the case there, the coefficients indicate that the weakest anticyclones are likely to undergo the greatest increase in central pressure.

The experimental gradient predictands, of which there are eight for each forecast interval (24 in all), are also shown in Tables XIII through XVIII. The pressure differences one and two grid units to the north [$\nabla P_1(N)$, $\nabla P_2(N)$] have functions of the initial central pressure as the most frequent first predictor selected. Examination of the regression coefficients indicates that strong anticyclones with high central pressures are related to subsequent large spatial pressure differences (note that the gradient predictands are negative for anticyclones, thus higher central pressures are associated with more negative gradients). This seems reasonable since strong anticyclones imply initially sizeable pressure gradients.

Toward the east [$\nabla P_1(E)$, $\nabla P_2(E)$], the initial latitude was a major factor. The regression equations relate anticyclones at northerly latitudes to large pressure gradients and anticyclones at more southerly latitudes to weak pressure.
gradients. This is consistent with synoptic experience. Anticyclones in northerly latitudes are observed to have their major axes oriented north—south while at lower latitudes they are oriented more east—west.

The gradients to the south \([\nabla P_1(S), \nabla P_2(S)]\) show some similarity to the northerly directed pressure differences. \(P(5,3)\) is the first predictor selected for several of the areas.

To the west \([\nabla P_1(W), \nabla P_2(W)]\), \(Z(2,3)\) is often a first selected predictor. This predictor, a 500-mb height located to the west of the anticyclone, has a regression coefficient which relates low heights in that area to large pressure differences to the west. Low heights to the west imply the approach of low surface pressure from the west, and thus large pressure gradients toward that direction.

The reason for specifying these pressure gradient terms is to try to portray the pressure pattern about the anticyclone, rather than merely its location and central pressure. Having forecast these eight pressure differences it is possible to analyze the resulting pressure field as one would analyze a group of pressure observations. An example of this is shown in Fig. 5, which represents a 36-hr forecast of one of the independent cases on winter anticyclones for Pacific. The forecast pressure differences (in mb) are \(-6, -4, -4, \) and \(-5\) for one grid interval to the north, east, south, and west, and \(-16, -8, -11, -10\) for the same directions at a distance of two grid intervals. The observed differences were \(-6, -4, -6, \) and \(-6\) for one grid interval, and \(-16, -10, -10, \) and \(-13\) for two grid intervals. The usefulness of the forecast gradient is enhanced by the good forecast of displacement that was made. Obviously, a good gradient forecast loses its usefulness if the location of the anticyclone is forecast poorly.

The results of applying the winter equations on independent data from the 1959—60 winter season are presented in Table XIX. In comparing these root-mean-square errors with climatology we find that the TRC equations are superior to climatology for 193 of the 198 predictands. The five exceptions are all pressure gradient forecasts: \(\nabla P_1(S)_{36}\) and \(\nabla P_1(W)_{36}\) for Eurasia, \(\nabla P_1(S)_{36}\) for Eurasia; and \(\nabla P_1(N)_{12}\) and \(\nabla P_1(N)_{24}\) for Pacific.
Fig. 5. Example of 36-hr pressure pattern forecast valid at 0000 GMT, 19 Feb 1960. Pressure values are in mb with the thousands and hundreds digits removed. Open squares refer to observed values and filled-in squares refer to forecast values. Observed and forecast displacements for the forecast interval are also included.
TABLE XIII
NORTH AMERICAN WINTER-ANTICYCLONE EQUATIONS WITH
DEVELOPMENTAL DATA-SAMPLE STATISTICS (593 cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{N}_{12}</td>
<td>+ 33.187</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.023184</td>
<td>Z(7, 2)</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.019503</td>
<td>Z(2, 3)</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15136</td>
<td>$\Delta P(5, 2)$</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.12564</td>
<td>$\Delta P(5, 4)$</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.025646</td>
<td>H(4, 1)</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10411</td>
<td>Θ</td>
<td>40.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.0060209</td>
<td>Z(8, 5)</td>
<td>42.2</td>
<td>1.91 °lat</td>
</tr>
<tr>
<td>\tilde{E}_{12}</td>
<td>- 38.174</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10721</td>
<td>$\Delta P(6, 3)$</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.019118</td>
<td>Z(6, 1)</td>
<td>14.8</td>
<td>1.67 °lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.0049955</td>
<td>Z(3, 5)</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.089319</td>
<td>$\Delta P(3, 4)$</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.12015</td>
<td>P(4, 3)</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.010655</td>
<td>H(6, 5)</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.076842</td>
<td>P(7, 2)</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021069</td>
<td>$\Delta Z(4, 5)$</td>
<td>37.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.023365</td>
<td>$\Delta Z(3, 2)$</td>
<td>39.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{D}_{12}</td>
<td>+ 186.05</td>
<td>1</td>
<td>—</td>
<td>2.17 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.16535</td>
<td>$\Delta P(5, 4)$</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15450</td>
<td>$P(5, 3)$</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.050464</td>
<td>$\Delta Z(4, 3)$</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.092905</td>
<td>$\Delta P(4, 5)$</td>
<td>33.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.056916</td>
<td>$\Delta Z(5, 2)$</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0063036</td>
<td>$H(6, 5)$</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.21589</td>
<td>$\Delta P(2, 1)$</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.026902</td>
<td>$\Delta H(2, 3)$</td>
<td>41.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.71503</td>
<td>I_1</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.039027</td>
<td>λ</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.010490</td>
<td>$H(3, 2)$</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>\hat{N}_{24}</td>
<td>- 47.413</td>
<td>1</td>
<td>—</td>
<td>3.08 °lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.032760</td>
<td>$Z(7, 2)$</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.059595</td>
<td>$Z(3, 2)$</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021842</td>
<td>$H(8, 5)$</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021660</td>
<td>$\Delta H(5, 2)$</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24604</td>
<td>$\Delta P(5, 4)$</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.057598</td>
<td>$\Delta P(8, 5)$</td>
<td>44.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.20627</td>
<td>$\Delta P(4, 3)$</td>
<td>45.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15298</td>
<td>Θ</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.063214</td>
<td>$P(7, 4)$</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{E}_{24}</td>
<td>+ 14.611</td>
<td>1</td>
<td>-</td>
<td>3.04°lat</td>
</tr>
<tr>
<td></td>
<td>- 0.018654</td>
<td>Z(6, 1)</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.018129</td>
<td>Z(4, 5)</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18043</td>
<td>$\Delta P(3, 4)$</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.030372</td>
<td>H(5, 2)</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021394</td>
<td>Z(6, 5)</td>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.054320</td>
<td>$\Delta Z(4, 5)$</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.13700</td>
<td>$\Delta P(5, 4)$</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{24}</td>
<td>+ 431.26</td>
<td>1</td>
<td>-</td>
<td>3.16 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.050815</td>
<td>P(6, 3)</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.23555</td>
<td>$\Delta P(5, 4)$</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25419</td>
<td>$\Delta P(4, 3)$</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.25794</td>
<td>P(4, 3)</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.062631</td>
<td>$\Delta P(8, 5)$</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.16303</td>
<td>$\Delta P(4, 5)$</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.015478</td>
<td>H(6, 5)</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.078824</td>
<td>P(4, 5)</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.64363</td>
<td>I_2</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.055437</td>
<td>$\Delta Z(5, 2)$</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.018238</td>
<td>Z(8, 3)</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.022181</td>
<td>H(5, 2)</td>
<td>51.6</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>+ 71.344</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.018635</td>
<td>H(7, 2)</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.024699</td>
<td>Z(3, 2)</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.023786</td>
<td>H(8, 5)</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.14632</td>
<td>P(7, 2)</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td>\hat{N}_{36}</td>
<td>+ 0.056370</td>
<td>$\Delta P(8, 5)$</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.17346</td>
<td>$\Delta P(3, 4)$</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.31028</td>
<td>Θ</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.16943</td>
<td>$\Delta P(5, 4)$</td>
<td>45.3</td>
<td>3.83 °lat</td>
</tr>
<tr>
<td></td>
<td>- 0.077359</td>
<td>Z(4, 3)</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.13953</td>
<td>P(8, 1)</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.020322</td>
<td>H(6, 3)</td>
<td>48.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.054118</td>
<td>H(4, 1)</td>
<td>49.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.058485</td>
<td>Z(5, 2)</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{36}</td>
<td>+ 31.606</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.038921</td>
<td>Z(6, 1)</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.036352</td>
<td>Z(4, 5)</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.041117</td>
<td>$\Delta Z(3, 4)$</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.023700</td>
<td>Z(6, 5)</td>
<td>35.5</td>
<td>4.38 °lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.15801</td>
<td>$\Delta P(3, 5)$</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.040303</td>
<td>H(5, 2)</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.052517</td>
<td>$\Delta Z(4, 5)$</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.16187</td>
<td>$\Delta P(6, 3)$</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{D}_{36}</td>
<td>+ 663.26</td>
<td>1</td>
<td>-</td>
<td>4.34 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.49168</td>
<td>P(5,3)</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.21911</td>
<td>$\Delta P(5,4)$</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.028690</td>
<td>H(6,5)</td>
<td>40.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.14611</td>
<td>$\Delta P(4,5)$</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.091249</td>
<td>P(2,4)</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.0092120</td>
<td>Z(8,5)</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.037790</td>
<td>H(4,1)</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.020012</td>
<td>Z(8,3)</td>
<td>48.0</td>
<td></td>
</tr>
</tbody>
</table>

$\hat{V}_{P_1(N)}_{12}$	+ 62.812	1	-	2.12 mb
	- 0.70501	I$_2$	18.6	
	+ 0.036057	P(4,5)	22.3	
	+ 0.17480	P(4,3)	29.4	
	+ 0.78099	P(5,4)	38.3	
	- 0.010553	P(5,3)	49.8	

$\hat{V}_{P_1(E)}_{12}$	- 20.027	1	-	1.98 mb
	- 0.12893	Ω	40.1	
	- 0.35273	I$_2$	46.7	
	+ 0.062869	P(7,2)	49.7	
	- 0.015801	$\Delta Z(5,4)$	51.9	
	- 0.0067521	P(4,5)	52.8	
	+ 0.032160	$\Delta P(7,4)$	53.8	
	- 0.0091369	$\Delta Z(5,2)$	54.8	
	+ 0.012433	P(2,5)	55.2	
	+ 0.099972	P(4,3)	55.8	
	+ 0.52612	P(6,3)	58.3	
	- 0.67219	P(5,3)	61.7	
TABLE XIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{V}P_1(S)_{12}$</td>
<td>+ 54.902</td>
<td>1</td>
<td>—</td>
<td>1.98 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.026220</td>
<td>H(4, 3)</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.054321</td>
<td>λ</td>
<td>27.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.018105</td>
<td>H(6, 1)</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.38636</td>
<td>I_2</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.065039</td>
<td>P(6, 3)</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}P_1(W)_{12}$</td>
<td>- 54.948</td>
<td>1</td>
<td>—</td>
<td>2.14 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.015733</td>
<td>H(6, 3)</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.0038482</td>
<td>P(2, 3)</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.033141</td>
<td>I_2</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.0076124</td>
<td>$\Delta H(2, 3)$</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0080066</td>
<td>Z(7, 4)</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.097734</td>
<td>$\Delta P(5, 4)$</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.068767</td>
<td>$\Delta P(4, 3)$</td>
<td>41.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10479</td>
<td>$\Delta P(5, 2)$</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.080932</td>
<td>P(3, 2)</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.014847</td>
<td>P(6, 5)</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.011531</td>
<td>Z(8, 1)</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.045714</td>
<td>P(6, 1)</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.37199</td>
<td>P(4, 3)</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.37968</td>
<td>P(5, 3)</td>
<td>51.3</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}P_2(N)_{12}$</td>
<td>+ 138.87</td>
<td>1</td>
<td>—</td>
<td>4.47 mb</td>
</tr>
<tr>
<td></td>
<td>- 1.4098</td>
<td>P(5, 3)</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.79388</td>
<td>P(5, 4)</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25551</td>
<td>P(6, 5)</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.22410</td>
<td>P(4, 5)</td>
<td>58.3</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\mathbb{V}P}(E){12}$</td>
<td>- 87.113</td>
<td>1</td>
<td>-</td>
<td>3.85 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.012682</td>
<td>H(6,3)</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.23540</td>
<td>P(8,3)</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.59126</td>
<td>P(5,3)</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.47593</td>
<td>P(7,2)</td>
<td>57.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26122</td>
<td>∆P(5,4)</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.042157</td>
<td>Z(2,1)</td>
<td>63.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13916</td>
<td>∆P(7,2)</td>
<td>65.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.048387</td>
<td>∆H(4,3)</td>
<td>66.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.10525</td>
<td>∆P(7,4)</td>
<td>67.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.13904</td>
<td>P(8,1)</td>
<td>68.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.040963</td>
<td>∆Z(2,3)</td>
<td>68.6</td>
<td></td>
</tr>
<tr>
<td>$\hat{\mathbb{V}P}(S){12}$</td>
<td>+ 87.131</td>
<td>1</td>
<td>-</td>
<td>3.14 mb</td>
</tr>
<tr>
<td></td>
<td>- 1.3496</td>
<td>P(5,3)</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.91476</td>
<td>P(5,2)</td>
<td>49.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.34599</td>
<td>P(6,1)</td>
<td>55.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1.5708</td>
<td>Iₜ</td>
<td>60.1</td>
<td></td>
</tr>
<tr>
<td>$\hat{\mathbb{V}P}(W){12}$</td>
<td>- 76.275</td>
<td>1</td>
<td>-</td>
<td>3.79 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.0049597</td>
<td>Z(2,3)</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.064456</td>
<td>P(5,4)</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.51024</td>
<td>P(3,2)</td>
<td>39.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.15967</td>
<td>P(3,4)</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1.0160</td>
<td>P(5,3)</td>
<td>54.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.079262</td>
<td>∆Z(2,3)</td>
<td>57.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.21608</td>
<td>∆P(5,4)</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.34618</td>
<td>P(4,3)</td>
<td>60.7</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Predictand coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>$\hat{\text{VP}}_1(N)_24$</td>
<td>+ 31.670</td>
<td>1</td>
<td>—</td>
<td>2.62 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.70416</td>
<td>I_2</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.013260</td>
<td>$Z(6,5)$</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>− 0.13271</td>
<td>$P(4,3)$</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.077189</td>
<td>$P(4,5)$</td>
<td>28.9</td>
<td></td>
</tr>
<tr>
<td>$\hat{\text{VP}}_1(E)_24$</td>
<td>− 53.680</td>
<td>1</td>
<td>—</td>
<td>2.45 mb</td>
</tr>
<tr>
<td></td>
<td>− 0.10802</td>
<td>Θ</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.015773</td>
<td>$Z(2,4)$</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>− 0.028263</td>
<td>$\Delta H(4,5)$</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.39053</td>
<td>I_2</td>
<td>42.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.013619</td>
<td>$Z(6,1)$</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>$\hat{\text{VP}}_1(S)_24$</td>
<td>+ 14.928</td>
<td>1</td>
<td>—</td>
<td>1.92 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.021521</td>
<td>$H(4,3)$</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>− 0.025809</td>
<td>λ</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>− 0.0090331</td>
<td>$Z(6,3)$</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>− 0.063836</td>
<td>$P(2,1)$</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.025937</td>
<td>$\Delta H(4,1)$</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13377</td>
<td>$P(6,1)$</td>
<td>31.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>− 0.10732</td>
<td>$P(5,3)$</td>
<td>36.2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{V}{P_1(W)}{24}$</td>
<td>-84.679 + 0.023678 + 0.015442 -0.013382 +0.12559 -0.12471 +0.074092 -0.086850 +0.066509 +0.053653 +0.062519</td>
<td>1 H(6,3) Z(2,4) Z(8,5) ΔP(7,4) ΔP(5,2) ΔP(3,2) P(7,4) P(3,2) P(8,5) ΔP(3,5)</td>
<td>22.8 28.0 30.7 32.4 34.0</td>
<td>2.37 mb</td>
</tr>
<tr>
<td>$\hat{V}{P_2(N)}{24}$</td>
<td>+72.874 -0.67145 +0.28496 +0.27100 +0.024440</td>
<td>1 P(5,3) P(6,5) P(4,5) P(7,2)</td>
<td>16.8 30.5 38.8 42.1</td>
<td>5.35 mb</td>
</tr>
<tr>
<td>$\hat{V}{P_2(E)}{24}$</td>
<td>-131.38 -0.13090 +0.043343 +0.017920 -0.032613 -0.15420 +0.26275 -0.24627 -0.21784</td>
<td>1 Θ Z(2,3) H(6,3) ΔH(4,5) ΔP(4,1) P(7,2) P(5,3) ΔP(5,4)</td>
<td>33.3 36.7 40.0 42.1 43.3 44.5 46.4 48.2</td>
<td>4.96 mb</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\hat{V}{P_2^2(S){24}}$</td>
<td>+ 86.858</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.53774</td>
<td>P(5, 3)</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.30257</td>
<td>P(6, 1)</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.053314</td>
<td>Z(4, 1)</td>
<td>37.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.026721</td>
<td>$\Delta Z(4, 5)$</td>
<td>39.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15928</td>
<td>$\Delta P(7, 2)$</td>
<td>42.1</td>
<td>3.51 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.029883</td>
<td>H(6, 1)</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.061787</td>
<td>λ</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.078024</td>
<td>I_1</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.10552</td>
<td>P(3, 4)</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.043711</td>
<td>$\Delta Z(3, 4)$</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}{P_2^2(W){24}}$</td>
<td>- 44.485</td>
<td>1</td>
<td>-</td>
<td>5.03 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.035322</td>
<td>H(5, 4)</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.10156</td>
<td>$\Delta Z(2, 3)$</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.35117</td>
<td>P(5, 2)</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.32706</td>
<td>P(3, 2)</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}{P_1^2(N){36}}$</td>
<td>- 11.939</td>
<td>1</td>
<td>-</td>
<td>2.74 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.021760</td>
<td>H(6, 5)</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.43273</td>
<td>I_2</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.024293</td>
<td>$\Delta Z(5, 4)$</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.080521</td>
<td>P(2, 1)</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.018622</td>
<td>H(2, 3)</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.015093</td>
<td>H(5, 4)</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.035840</td>
<td>$\Delta Z(3, 4)$</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.044967</td>
<td>P(3, 5)</td>
<td>25.8</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\nu}_{1,36})</td>
<td>- 66.006</td>
<td>1</td>
<td>-</td>
<td>2.64 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.080583</td>
<td>(\Theta)</td>
<td>31.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.020196</td>
<td>(Z(2,4))</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.058207</td>
<td>(\lambda)</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.028611</td>
<td>(\Delta H(4,5))</td>
<td>39.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.017840</td>
<td>(H(4,1))</td>
<td>40.8</td>
<td></td>
</tr>
<tr>
<td>(\hat{\nu}_{1,36})</td>
<td>+ 77.387</td>
<td>1</td>
<td>-</td>
<td>1.80 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.018717</td>
<td>(H(4,3))</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.066865</td>
<td>(P(2,1))</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.013370</td>
<td>(\lambda)</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.016118</td>
<td>(H(2,3))</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022596</td>
<td>(\Delta H(4,1))</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0058000</td>
<td>(Z(7,4))</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.092500</td>
<td>(\Theta)</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.084525</td>
<td>(P(6,3))</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.082229</td>
<td>(P(6,1))</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>(\hat{\nu}_{1,36})</td>
<td>+ 16.213</td>
<td>1</td>
<td>-</td>
<td>2.51 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.16880</td>
<td>(\Theta)</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.017903</td>
<td>(\Delta Z(2,3))</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.017130</td>
<td>(\Delta Z(8,5))</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022374</td>
<td>(H(5,4))</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.023671</td>
<td>(H(2,1))</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0063977</td>
<td>(Z(8,5))</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.013792</td>
<td>(H(4,5))</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.014086</td>
<td>(Z(2,3))</td>
<td>31.7</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{V}_{P_2(N)}^{36}$</td>
<td>+ 73.118</td>
<td>1</td>
<td>--</td>
<td>6.18 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.043332</td>
<td>$Z(6, 5)$</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.066429</td>
<td>$\Delta Z(5, 4)$</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.33258</td>
<td>$P(5, 3)$</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18006</td>
<td>$P(4, 5)$</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}_{P_2(E)}^{36}$</td>
<td>- 50.548</td>
<td>1</td>
<td>--</td>
<td>5.48 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.20081</td>
<td>Θ</td>
<td>30.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.048248</td>
<td>$Z(2, 3)$</td>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.049344</td>
<td>$\Delta H(4, 5)$</td>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.22423</td>
<td>$\Delta P(4, 1)$</td>
<td>38.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.035865</td>
<td>$Z(4, 1)$</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10698</td>
<td>$P(6, 5)$</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19467</td>
<td>$\Delta P(5, 4)$</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}_{P_2(S)}^{24}$</td>
<td>+ 5.8823</td>
<td>1</td>
<td>--</td>
<td>3.86 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.32857</td>
<td>$P(5, 3)$</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.28123</td>
<td>$P(6, 1)$</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022014</td>
<td>$Z(4, 1)$</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.051126</td>
<td>$\Delta Z(4, 5)$</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18417</td>
<td>$\Delta P(7, 2)$</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.051910</td>
<td>λ</td>
<td>31.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\hat{V}{P_2(W)}{36}$</td>
<td>+ 178.98</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.047394</td>
<td>H(5,4)</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.077457</td>
<td>$\Delta Z(2,3)$</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.042694</td>
<td>$\Delta Z(8, 5)$</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.25111</td>
<td>P(6,1)</td>
<td>22.8</td>
<td>5.40 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.047166</td>
<td>$\Delta H(6, 3)$</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.058776</td>
<td>P(2,4)</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.016854</td>
<td>Z(8, 5)</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.022577</td>
<td>H(4, 5)</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14400</td>
<td>Θ</td>
<td>28.8</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIV
ATLANTIC WINTER-ANTICYCLONE EQUATIONS WITH DEVELOPMENTAL DATA-SAMPLE STATISTICS (412 cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{N}_{12}</td>
<td>-14.148</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.014297</td>
<td>$P(8, 5)$</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.17718</td>
<td>$\Delta P(5, 4)$</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.17047</td>
<td>$P(5, 2)$</td>
<td>30.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.077984</td>
<td>$P(6, 5)$</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.031695</td>
<td>$\Delta Z(3, 2)$</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.11464</td>
<td>$P(7, 4)$</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.011664</td>
<td>$H(2, 3)$</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{12}</td>
<td>+1.9092</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.017650</td>
<td>$Z(8, 2)$</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.025370</td>
<td>$Z(4, 5)$</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.20944</td>
<td>$\Delta P(4, 3)$</td>
<td>39.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.19516</td>
<td>I_2</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.046300</td>
<td>$\Delta P(3, 5)$</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.088311</td>
<td>$\Delta P(7, 4)$</td>
<td>46.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.023159</td>
<td>$H(6, 3)$</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.021100</td>
<td>λ</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.020452</td>
<td>$\Delta H(7, 2)$</td>
<td>49.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.019041</td>
<td>$\Delta Z(5, 4)$</td>
<td>50.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.012334</td>
<td>$H(2, 3)$</td>
<td>51.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.082778</td>
<td>Θ</td>
<td>52.3</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{12}</td>
<td>+2.0969</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.22856</td>
<td>$\Delta P(5, 4)$</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1.2745</td>
<td>I_1</td>
<td>33.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.12 mb</td>
</tr>
</tbody>
</table>
TABLE XIV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{N}_{24}</td>
<td>-2.8836 + 0.013037 - 0.053930 + 0.044481 + 0.12197</td>
<td>1, Z(8,5), Z(3,2), Z(7,4), ΔP(6,5)</td>
<td>21.1, 34.5, 43.2, 46.3</td>
<td>2.82 °lat</td>
</tr>
<tr>
<td>\hat{E}_{24}</td>
<td>-21.532 - 0.041319 + 0.048600 + 0.097644 + 0.18636 + 0.22581</td>
<td>1, Z(8,2), Z(4,5), ΔP(3,5), Θ, ΔP(4,3)</td>
<td>15.1, 38.0, 41.9, 45.9, 48.0</td>
<td>3.11 °lat</td>
</tr>
<tr>
<td>\hat{D}_{24}</td>
<td>+187.19 + 0.35673 - 0.49721 + 0.31689</td>
<td>1, ΔP(5,4), P(5,3), P(6,3)</td>
<td>18.6, 30.4, 36.0</td>
<td>3.11 mb</td>
</tr>
<tr>
<td>\hat{N}_{36}</td>
<td>-19.444 + 0.020368 - 0.071879 + 0.042165 + 0.13945 + 0.022986 + 0.22997</td>
<td>1, Z(8,5), Z(3,2), Z(7,4), ΔP(6,5), Z(6,5), ΔP(6,3)</td>
<td>21.4, 34.7, 41.0, 43.6, 45.2, 47.2</td>
<td>3.61 °lat</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{E}_{36}</td>
<td>-63.912</td>
<td>1</td>
<td>-</td>
<td>4.24° lat</td>
</tr>
<tr>
<td></td>
<td>- 0.10608</td>
<td>λ</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.038456</td>
<td>Z(8,3)</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.034618</td>
<td>Z(4,5)</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.36546</td>
<td>Θ</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.030551</td>
<td>Z(3,4)</td>
<td>46.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.29683</td>
<td>$\Delta P(4,3)$</td>
<td>48.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 336.03</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{36}</td>
<td></td>
<td></td>
<td></td>
<td>3.71 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.54056</td>
<td>P(5,3)</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.11585</td>
<td>$\Delta P(5,4)$</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24666</td>
<td>P(7,4)</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.35935</td>
<td>$\Delta P(6,3)$</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.017742</td>
<td>Z(2,5)</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.35080</td>
<td>$\Delta P(2,1)$</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>$\hat{\nabla}P_1(N)_{12}$</td>
<td>+ 80.477</td>
<td>1</td>
<td>-</td>
<td>2.60 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.010445</td>
<td>Z(4,5)</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.58749</td>
<td>P(5,3)</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.48798</td>
<td>P(5,4)</td>
<td>40.8</td>
<td></td>
</tr>
<tr>
<td>$\hat{\nabla}P_1(E)_{12}$</td>
<td>- 1.5911</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.11181</td>
<td>Θ</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.053586</td>
<td>P(7,4)</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.48933</td>
<td>P(5,3)</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.43962</td>
<td>P(6,3)</td>
<td>55.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\hat{\nabla} P_1(S)_{12})</td>
<td>+ 9.1633</td>
<td>1</td>
<td>-</td>
<td>1.81 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.10034</td>
<td>(\theta)</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.17003</td>
<td>(P(4,3))</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.16073</td>
<td>(P(6,1))</td>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.015098</td>
<td>(Z(8,3))</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.31708</td>
<td>(I_2)</td>
<td>39.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.011654</td>
<td>(H(4,3))</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td>(\hat{\nabla} P_1(W)_{12})</td>
<td>+ 6.6587</td>
<td>1</td>
<td>-</td>
<td>2.51 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.014192</td>
<td>(Z(2,3))</td>
<td>34.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.16778</td>
<td>(P(4,1))</td>
<td>40.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.16488</td>
<td>(\Delta P(8,2))</td>
<td>42.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.078217</td>
<td>(P(2,3))</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.013859</td>
<td>(H(5,4))</td>
<td>47.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.30447</td>
<td>(I_2)</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.15978</td>
<td>(P(3,2))</td>
<td>49.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.12991</td>
<td>(P(5,4))</td>
<td>51.2</td>
<td></td>
</tr>
<tr>
<td>(\hat{\nabla} P_2(N)_{12})</td>
<td>+ 48.867</td>
<td>1</td>
<td>-</td>
<td>5.52 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.56289</td>
<td>(P(6,3))</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.46924</td>
<td>(P(4,5))</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.050694</td>
<td>(H(4,5))</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25101</td>
<td>(P(6,5))</td>
<td>53.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.30068</td>
<td>(P(7,4))</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>(\hat{\nabla} P_2(E)_{12})</td>
<td>- 19.877</td>
<td>1</td>
<td>-</td>
<td>4.00 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.33757</td>
<td>(\theta)</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.43581</td>
<td>(P(8,3))</td>
<td>58.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.40820</td>
<td>(P(5,3))</td>
<td>68.3</td>
<td></td>
</tr>
<tr>
<td>(\hat{\nabla} P_2(S)_{12})</td>
<td>+ 150.90</td>
<td>1</td>
<td>-</td>
<td>2.89 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.76335</td>
<td>(P(5,3))</td>
<td>26.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.61343</td>
<td>(P(6,1))</td>
<td>65.4</td>
<td></td>
</tr>
</tbody>
</table>

55
TABLE XIV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{V}P^{2(W)}{12}$</td>
<td>-130.29</td>
<td>1</td>
<td>--</td>
<td>4.26 mb</td>
</tr>
<tr>
<td></td>
<td>+0.045213</td>
<td>$Z(2,4)$</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.63233</td>
<td>$\Delta P(3,2)$</td>
<td>60.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.35575</td>
<td>$P(2,3)$</td>
<td>65.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.31424</td>
<td>$P(5,3)$</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}P^{1(N)}{24}$</td>
<td>+147.24</td>
<td>1</td>
<td>--</td>
<td>3.05 mb</td>
</tr>
<tr>
<td></td>
<td>-0.23202</td>
<td>$P(5,3)$</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.058191</td>
<td>$Z(4,5)$</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.040519</td>
<td>$H(4,5)$</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.13891</td>
<td>$P(2,2)$</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.087577</td>
<td>$P(7,4)$</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}P^{1(E)}{24}$</td>
<td>+3.7455</td>
<td>1</td>
<td>--</td>
<td>2.39 mb</td>
</tr>
<tr>
<td></td>
<td>-0.21533</td>
<td>θ</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.16191</td>
<td>$\Delta P(8,3)$</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}P^{1(S)}{24}$</td>
<td>+43.937</td>
<td>1</td>
<td>--</td>
<td>2.15 mb</td>
</tr>
<tr>
<td></td>
<td>-0.10491</td>
<td>θ</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.17290</td>
<td>$P(5,3)$</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.13061</td>
<td>$P(6,1)$</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}P^{1(W)}{24}$</td>
<td>-44.885</td>
<td>1</td>
<td>--</td>
<td>3.31 mb</td>
</tr>
<tr>
<td></td>
<td>+0.037058</td>
<td>$Z(2,3)$</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.016105</td>
<td>$Z(8,5)$</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.17510</td>
<td>$\Delta P(8,3)$</td>
<td>30.6</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{V}{p_2(N)}^2{24}$</td>
<td>+ 270.19</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.043522</td>
<td>$P(8,5)$</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.49956</td>
<td>$P(5,3)$</td>
<td>26.4</td>
<td>6.36 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.31348</td>
<td>$P(4,5)$</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24549</td>
<td>$P(6,5)$</td>
<td>42.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.34919</td>
<td>$P(7,4)$</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.034203</td>
<td>$Z(4,5)$</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}{p_2(E)}^2{24}$</td>
<td>+ 21.662</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.45028</td>
<td>θ</td>
<td>39.1</td>
<td>4.61 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.16290</td>
<td>$P(8,3)$</td>
<td>45.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18397</td>
<td>$P(5,4)$</td>
<td>50.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.19532</td>
<td>$P(7,4)$</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18682</td>
<td>$P(6,5)$</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.052420</td>
<td>$\Delta Z(5,4)$</td>
<td>56.4</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}{p_2(S)}^2{24}$</td>
<td>+ 209.79</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.71200</td>
<td>$P(5,3)$</td>
<td>24.8</td>
<td>3.69 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.50360</td>
<td>$P(6,1)$</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\nabla P_2(W)_{24}$</td>
<td>-287.91</td>
<td>1</td>
<td>-</td>
<td>5.30 mb</td>
</tr>
<tr>
<td></td>
<td>+0.060157</td>
<td>Z(2,4)</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.45062</td>
<td>$\Delta P(3,2)$</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.021876</td>
<td>Z(8,5)</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.30689</td>
<td>P(2,2)</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.052049</td>
<td>H(5,2)</td>
<td>55.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.13803</td>
<td>P(5,4)</td>
<td>56.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.14781</td>
<td>$\Delta P(2,4)$</td>
<td>57.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.048945</td>
<td>$\Delta H(4,1)$</td>
<td>58.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.13704</td>
<td>$\Delta P(6,5)$</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.031793</td>
<td>Z(7,4)</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.21759</td>
<td>$\Delta P(8,3)$</td>
<td>59.7</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_1(N)_{36}$</td>
<td>+34.083</td>
<td>1</td>
<td>-</td>
<td>3.72 mb</td>
</tr>
<tr>
<td></td>
<td>-0.086422</td>
<td>P(8,5)</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.041089</td>
<td>H(5,2)</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.21295</td>
<td>P(6,3)</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.097401</td>
<td>P(2,3)</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.089558</td>
<td>P(4,5)</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_1(E)_{36}$</td>
<td>+4.5108</td>
<td>1</td>
<td>-</td>
<td>2.38 mb</td>
</tr>
<tr>
<td></td>
<td>-0.22486</td>
<td>θ</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.071376</td>
<td>$\Delta P(6,5)$</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\hat{\nu}1 (S){36}$</td>
<td>+ 58.744</td>
<td>1</td>
<td>-</td>
<td>2.50 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.13407</td>
<td>Θ</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.057800</td>
<td>$\Delta Z(2,2)$</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14196</td>
<td>$P(4,3)$</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.085387</td>
<td>$P(7,2)$</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 31.304</td>
<td>1</td>
<td>-</td>
<td>3.46 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.018860</td>
<td>$Z(2,3)$</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.018670</td>
<td>$Z(8,5)$</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.17051</td>
<td>$\Delta P(2,3)$</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.010480</td>
<td>$\Delta P(8,5)$</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.016132</td>
<td>$H(5,2)$</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.052124</td>
<td>$\Delta Z(3,2)$</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10196</td>
<td>Θ</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>$\hat{\nu}1 (W){36}$</td>
<td>+ 281.25</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10755</td>
<td>$P(8,5)$</td>
<td>17.2</td>
<td>7.43 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.60256</td>
<td>$P(5,2)$</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.20562</td>
<td>$P(6,5)$</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.42505</td>
<td>$P(4,5)$</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24615</td>
<td>$\Delta P(2,5)$</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.037720</td>
<td>$H(4,5)$</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.27114</td>
<td>$P(7,4)$</td>
<td>40.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{V}{P_2(E)}{36}$</td>
<td>+ 19.245</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.61031</td>
<td>Θ</td>
<td>33.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14159</td>
<td>$P(6,5)$</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.19881</td>
<td>$P(7,4)$</td>
<td>41.5</td>
<td>4.57 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.055171</td>
<td>$\Delta Z(4,5)$</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.034308</td>
<td>$Z(54)$</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19805</td>
<td>$\Delta P(6,5)$</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>$\mathbf{V}{P_2(S)}{36}$</td>
<td>+ 181.26</td>
<td>1</td>
<td>-</td>
<td>4.22 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.50085</td>
<td>$P(5,3)$</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.040296</td>
<td>$Z(6,1)$</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24377</td>
<td>$P(8,1)$</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>$\mathbf{V}{P_2(W)}{36}$</td>
<td>- 173.53</td>
<td>1</td>
<td>-</td>
<td>5.91 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.077441</td>
<td>$Z(2,3)$</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.029265</td>
<td>$Z(8,5)$</td>
<td>41.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.46122</td>
<td>$\Delta P(2,2)$</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.22589</td>
<td>$\Delta P(6,5)$</td>
<td>46.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.057140</td>
<td>$H(6,1)$</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.16684</td>
<td>$\Delta P(2,4)$</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.071984</td>
<td>$\Delta Z(3,2)$</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.019457</td>
<td>$Z(2,5)$</td>
<td>49.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25877</td>
<td>$\Delta P(5,4)$</td>
<td>50.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.34735</td>
<td>$\Delta P(6,3)$</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.036426</td>
<td>$Z(7,4)$</td>
<td>52.1</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XV
EUROPEAN WINTER—ANTICYCLONE EQUATIONS WITH DEVELOPMENTAL DATA—SAMPLE STATISTICS (447 Cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{N}_{12})</td>
<td>-20.718</td>
<td>1</td>
<td>-</td>
<td>1.81°lat</td>
</tr>
<tr>
<td></td>
<td>+0.011460</td>
<td>(Z(4,5))</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.17048</td>
<td>(\Delta P(5,4))</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.16943</td>
<td>(\Delta P(5,2))</td>
<td>28.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-56.974</td>
<td>1</td>
<td>-</td>
<td>1.91°lat</td>
</tr>
<tr>
<td></td>
<td>+0.065542</td>
<td>(P(4,3))</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.022076</td>
<td>(Z(6,1))</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.016603</td>
<td>(H(5,4))</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.23284</td>
<td>(\Delta P(4,3))</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.12583</td>
<td>(\Delta P(6,3))</td>
<td>40.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+85.197</td>
<td>1</td>
<td>-</td>
<td>1.99 mb</td>
</tr>
<tr>
<td></td>
<td>+1.2811</td>
<td>(l_1)</td>
<td>47.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.018511</td>
<td>(Z(5,4))</td>
<td>60.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.20740</td>
<td>(\Delta P(5,4))</td>
<td>65.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.15585</td>
<td>(\Delta P(5,2))</td>
<td>67.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.048337</td>
<td>(P(2,4))</td>
<td>69.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.087448</td>
<td>(\Delta P(3,4))</td>
<td>70.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.025829</td>
<td>(\Delta Z(7,4))</td>
<td>72.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.041430</td>
<td>(\Delta Z(4,3))</td>
<td>73.1</td>
<td></td>
</tr>
<tr>
<td>(\hat{N}_{24})</td>
<td>-40.408</td>
<td>1</td>
<td>-</td>
<td>2.73°lat</td>
</tr>
<tr>
<td></td>
<td>+0.022256</td>
<td>(Z(7,4))</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.26983</td>
<td>(\Delta P(5,4))</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.21332</td>
<td>(\Delta P(5,2))</td>
<td>33.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{E}_{24}</td>
<td>-94.574</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.10134</td>
<td>P(6,3)</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.31076</td>
<td>$\Delta P(4,3)$</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.037523</td>
<td>Z(6,1)</td>
<td>34.5</td>
<td>3.18°lat</td>
</tr>
<tr>
<td></td>
<td>+0.051256</td>
<td>H(5,4)</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.042597</td>
<td>$\Delta Z(3,4)$</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.019499</td>
<td>H(8,5)</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.13547</td>
<td>$\Delta P(7,4)$</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td>\dot{D}_{24}</td>
<td>+200.95</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1.3169</td>
<td>I_1</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.026430</td>
<td>Z(5,4)</td>
<td>50.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.35427</td>
<td>$\Delta P(5,4)$</td>
<td>61.2</td>
<td>2.88 mb</td>
</tr>
<tr>
<td></td>
<td>+0.33927</td>
<td>$\Delta P(4,3)$</td>
<td>63.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.12413</td>
<td>P(4,3)</td>
<td>65.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.012528</td>
<td>Z(3,5)</td>
<td>66.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.12026</td>
<td>$\Delta P(7,4)$</td>
<td>67.9</td>
<td></td>
</tr>
<tr>
<td>\dot{N}_{36}</td>
<td>-157.17</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.027898</td>
<td>Z(7,4)</td>
<td>22.5</td>
<td>3.50°lat</td>
</tr>
<tr>
<td></td>
<td>+0.27661</td>
<td>$\Delta P(5,4)$</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.10399</td>
<td>P(8,3)</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>E_{36}</td>
<td>- 251.80</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25035</td>
<td>P(6,3)</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.56065</td>
<td>$\Delta P(4,3)$</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.066199</td>
<td>Z(6,1)</td>
<td>35.9</td>
<td>4.76°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.063628</td>
<td>H(5,4)</td>
<td>46.2</td>
<td></td>
</tr>
<tr>
<td>δ_{36}</td>
<td>+ 446.51</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.35687</td>
<td>P(5,3)</td>
<td>30.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.058247</td>
<td>H(3,2)</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.44682</td>
<td>$\Delta P(5,4)$</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.92579</td>
<td>I_{1}</td>
<td>59.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.11176</td>
<td>$\Delta Z(4,3)$</td>
<td>63.2</td>
<td>3.58 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.22470</td>
<td>$\Delta P(7,4)$</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.091627</td>
<td>P(2,4)</td>
<td>65.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.065236</td>
<td>P(2,5)</td>
<td>66.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.055279</td>
<td>P(8,5)</td>
<td>67.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.045463</td>
<td>$\Delta Z(8,1)$</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\sqrt{P_1(N)_{12}}$</td>
<td>$+ 1.9544$</td>
<td>1</td>
<td>—</td>
<td>2.73 mb</td>
</tr>
<tr>
<td></td>
<td>$+ 0.015054$</td>
<td>$Z(4,5)$</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.25874$</td>
<td>$P(4,3)$</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.051931$</td>
<td>$P(6,5)$</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.043432$</td>
<td>$\Delta H(5,4)$</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.036123$</td>
<td>$\Delta Z(4,5)$</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.083083$</td>
<td>$P(3,4)$</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.036314$</td>
<td>$\Delta H(2,3)$</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.25159$</td>
<td>$P(5,4)$</td>
<td>38.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.084681$</td>
<td>Θ</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.15683$</td>
<td>$P(6,3)$</td>
<td>41.8</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_1(E)_{12}}$</td>
<td>$- 12.750$</td>
<td>1</td>
<td>—</td>
<td>2.30 mb</td>
</tr>
<tr>
<td></td>
<td>$+ 0.0086198$</td>
<td>$Z(7,2)$</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.028379$</td>
<td>$\Delta Z(5,4)$</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.042614$</td>
<td>$P(2,4)$</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.67068$</td>
<td>$P(5,3)$</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.62297$</td>
<td>$P(6,3)$</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.84773$</td>
<td>I_1</td>
<td>50.1</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_1(S)_{12}}$</td>
<td>$- 50.789$</td>
<td>1</td>
<td>—</td>
<td>2.25 mb</td>
</tr>
<tr>
<td></td>
<td>$+ 0.0095022$</td>
<td>$H(5,2)$</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.098001$</td>
<td>$P(6,1)$</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.60638$</td>
<td>$P(5,3)$</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.046417$</td>
<td>$P(4,1)$</td>
<td>37.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.042479$</td>
<td>$\Delta H(4,3)$</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- 0.72799$</td>
<td>I_1</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.47244$</td>
<td>$P(5,2)$</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ 0.011262$</td>
<td>$Z(3,4)$</td>
<td>50.4</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{V}P_1^W_{12}$</td>
<td>- 44714</td>
<td>1</td>
<td>-</td>
<td>2.51 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.020678</td>
<td>Z(2,3)</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.020444</td>
<td>$\Delta Z(2,2)$</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.065725</td>
<td>P(5,4)</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.53486</td>
<td>P(4,3)</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.97251</td>
<td>P(5,3)</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1.3069</td>
<td>I_1</td>
<td>55.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14567</td>
<td>$\Delta P(5,4)$</td>
<td>56.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.19277</td>
<td>P(6,3)</td>
<td>57.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18336</td>
<td>P(5,2)</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{V}P_2^N_{12}$</td>
<td>- 84.896</td>
<td>1</td>
<td>-</td>
<td>5.53 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.47411</td>
<td>P(4,5)</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.65517</td>
<td>P(4,3)</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26491</td>
<td>Θ</td>
<td>51.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.26800</td>
<td>P(6,5)</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.067365</td>
<td>$\Delta Z(4,5)$</td>
<td>59.2</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\hat{P}2(E){12}$</td>
<td>+ 93.496</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021275</td>
<td>$Z(7,2)$</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.076003</td>
<td>$\Delta P(6,5)$</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.17849</td>
<td>$\Delta P(8,3)$</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.16920</td>
<td>$P(5,2)$</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.20893</td>
<td>$P(7,4)$</td>
<td>53.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.39141</td>
<td>$P(7,2)$</td>
<td>59.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.046616</td>
<td>$\Delta Z(5,4)$</td>
<td>62.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.16786</td>
<td>$P(8,1)$</td>
<td>65.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.96263</td>
<td>$P(5,3)$</td>
<td>66.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1.2236</td>
<td>I_1</td>
<td>67.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.56591</td>
<td>$P(6,3)$</td>
<td>69.4</td>
<td></td>
</tr>
<tr>
<td>$\hat{P}2(S){12}$</td>
<td>- 2.0863</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.84648</td>
<td>$P(5,3)$</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.50177</td>
<td>$P(6,1)$</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.41803</td>
<td>$P(4,1)$</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.96523</td>
<td>I_1</td>
<td>67.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.031417</td>
<td>$Z(3,4)$</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.13018</td>
<td>$P(3,2)$</td>
<td>71.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.063370</td>
<td>$\Delta Z(4,3)$</td>
<td>72.7</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\bar{\mathbf{P}}{2(W)}{12})</td>
<td>+ 240.94</td>
<td>1</td>
<td>-</td>
<td>4.11 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.14007</td>
<td>Z(2,3)</td>
<td>52.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.72953</td>
<td>P(5,3)</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14000</td>
<td>H(2,3)</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.42248</td>
<td>P(3,2)</td>
<td>72.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.85543</td>
<td>I_1</td>
<td>74.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.050683</td>
<td>Z(3,4)</td>
<td>76.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.017477</td>
<td>Z(7,4)</td>
<td>77.8</td>
<td></td>
</tr>
<tr>
<td>(\bar{\mathbf{P}}{1(N)}{24})</td>
<td>- 9.2393</td>
<td>1</td>
<td>-</td>
<td>3.10 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.16034</td>
<td>(\Theta)</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.090205</td>
<td>P(4,5)</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.079606</td>
<td>P(6,3)</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>(\bar{\mathbf{P}}{1(E)}{24})</td>
<td>+ 15.049</td>
<td>1</td>
<td>-</td>
<td>2.67 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.14542</td>
<td>(\Theta)</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.050653</td>
<td>(\Delta Z(5,4))</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.041479</td>
<td>P(2,5)</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.053943</td>
<td>P(4,5)</td>
<td>26.9</td>
<td></td>
</tr>
</tbody>
</table>

67
TABLE XV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nabla P_1 (S)_{24})</td>
<td>-9.3203</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.0073359</td>
<td>H(5,2)</td>
<td>20.1</td>
<td>2.44 mb</td>
</tr>
<tr>
<td></td>
<td>+0.012771</td>
<td>H(2,5)</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.013932</td>
<td>H(8,1)</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.23720</td>
<td>P(5,3)</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.12826</td>
<td>P(4,1)</td>
<td>31.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.075617</td>
<td>P(2,1)</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.13731</td>
<td>P(6,1)</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.024705</td>
<td>H(5,4)</td>
<td>37.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.28711</td>
<td>I_1</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>(\nabla P_1 (W)_{24})</td>
<td>-77.792</td>
<td>1</td>
<td>-</td>
<td>2.72 mb</td>
</tr>
<tr>
<td></td>
<td>+0.033666</td>
<td>Z(2,3)</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.14592</td>
<td>(\Delta P(2,1))</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.10793</td>
<td>P(5,3)</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.11929</td>
<td>P(3,2)</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td>(\nabla P_2 (N)_{24})</td>
<td>-38.894</td>
<td>1</td>
<td>-</td>
<td>6.45 mb</td>
</tr>
<tr>
<td></td>
<td>+0.027888</td>
<td>H(2,5)</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.44392</td>
<td>P(4,3)</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.24007</td>
<td>P(4,5)</td>
<td>30.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.20816</td>
<td>(\Theta)</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.19195</td>
<td>P(6,5)</td>
<td>37.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.066198</td>
<td>(\Delta Z(2,5))</td>
<td>39.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.24301</td>
<td>(\Delta P(4,5))</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\sqrt{P_2(E)}_{24})</td>
<td></td>
<td></td>
<td></td>
<td>4.55 mb</td>
</tr>
<tr>
<td>+ 85.162</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 0.19527</td>
<td>(\Theta)</td>
<td></td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>- 0.10841</td>
<td>(\Delta Z(5,4))</td>
<td></td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>- 0.31006</td>
<td>(P(5,2))</td>
<td></td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>+ 0.27210</td>
<td>(P(8,3))</td>
<td></td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>+ 0.15680</td>
<td>(\Delta P(7,4))</td>
<td></td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td>- 0.29376</td>
<td>(\Delta P(5,2))</td>
<td></td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>+ 0.20406</td>
<td>(\Delta P(7,2))</td>
<td></td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>+ 0.033272</td>
<td>(\Delta H(6,5))</td>
<td></td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>+ 0.045330</td>
<td>(P(2,5))</td>
<td></td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>- 0.12137</td>
<td>(P(4,5))</td>
<td></td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>+ 0.018714</td>
<td>(Z(3,5))</td>
<td></td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{P_2(S)}_{24})</td>
<td></td>
<td></td>
<td></td>
<td>4.13 mb</td>
</tr>
<tr>
<td>+ 19.039</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.015426</td>
<td>(H(5,2))</td>
<td></td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td>- 0.69492</td>
<td>(P(5,3))</td>
<td></td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>+ 0.37890</td>
<td>(P(6,1))</td>
<td></td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td>+ 0.33109</td>
<td>(P(4,1))</td>
<td></td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>- 0.85756</td>
<td>(I_1)</td>
<td></td>
<td>51.3</td>
<td></td>
</tr>
<tr>
<td>+ 0.032453</td>
<td>(Z(3,4))</td>
<td></td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td>- 0.075859</td>
<td>(\Delta Z(4,3))</td>
<td></td>
<td>56.7</td>
<td></td>
</tr>
<tr>
<td>- 0.12366</td>
<td>(P(2,1))</td>
<td></td>
<td>58.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 75.290</td>
<td>1</td>
<td>-</td>
<td>4.99 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.10478</td>
<td>Z(2,3)</td>
<td>44.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.089734</td>
<td>P(6,3)</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.056697</td>
<td>H(2,3)</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.39060</td>
<td>P(3,2)</td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>(\nabla \mathbf{P}2(W){24})</td>
<td>- 0.073159</td>
<td>(\Delta Z(3,2))</td>
<td>59.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.028824</td>
<td>Z(3,5)</td>
<td>60.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24707</td>
<td>(\Delta P(2,3))</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.31334</td>
<td>(\Delta P(4,3))</td>
<td>63.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.018065</td>
<td>Z(8,5)</td>
<td>63.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.48975</td>
<td>P(5,3)</td>
<td>64.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.69689</td>
<td>(I_1)</td>
<td>65.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 6.6926</td>
<td>1</td>
<td>-</td>
<td>3.23 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.13934</td>
<td>(\theta)</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>(\nabla \mathbf{P}1(N){36})</td>
<td>- 0.037991</td>
<td>(\Delta Z(4,3))</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10427</td>
<td>P(6,3)</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.11099</td>
<td>P(6,1)</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\vec{P}{1}^{(E)}{36}$</td>
<td>1</td>
<td>Θ</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta Z(4,3)$</td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P(2,4)$</td>
<td>21.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P(5,4)$</td>
<td>24.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta P(5,2)$</td>
<td>25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta Z(4,5)$</td>
<td>26.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta Z(8,5)$</td>
<td>27.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta H(8,3)$</td>
<td>28.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$H(8,1)$</td>
<td>29.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Z(5,4)$</td>
<td>29.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$H(6,5)$</td>
<td>31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\vec{P}{1}^{(S)}{36}$</td>
<td>-81.378</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.053225</td>
<td>$H(5,2)$</td>
<td>18.6</td>
<td>2.82 mb</td>
</tr>
<tr>
<td></td>
<td>$\Delta Z(4,3)$</td>
<td>21.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.015772</td>
<td>$H(2,5)$</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$H(6,1)$</td>
<td>25.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\vec{P}{1}^{(W)}{36}$</td>
<td>-81.176</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.041073</td>
<td>$Z(2,3)$</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta H(2,3)$</td>
<td>35.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta P(4,3)$</td>
<td>37.1</td>
<td>2.82 mb</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>$\sqrt{\Phi P_2(N)}_{36}$</td>
<td>+ 321.67</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.050340</td>
<td>H(2,5)</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.28007</td>
<td>P(5,3)</td>
<td>17.3</td>
<td>7.62 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.34662</td>
<td>Θ</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.065599</td>
<td>Z(8,1)</td>
<td>23.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 75.116</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26304</td>
<td>Θ</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.061884</td>
<td>$\Delta Z(5,4)$</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.056951</td>
<td>$\Delta Z(4,5)$</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19908</td>
<td>P(5,2)</td>
<td>25.1</td>
<td>5.14 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.10145</td>
<td>$\Delta Z(4,3)$</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.12966</td>
<td>P(8,3)</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 44.030</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.17482</td>
<td>Θ</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.11857</td>
<td>P(8,5)</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.036958</td>
<td>$\Delta H(8,3)$</td>
<td>32.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.41032</td>
<td>P(5,3)</td>
<td>34.2</td>
<td>4.66 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.26140</td>
<td>P(6,1)</td>
<td>39.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021188</td>
<td>Z(2,4)</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18349</td>
<td>$\Delta P(7,4)$</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.48002</td>
<td>l_1</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18704</td>
<td>P(4,1)</td>
<td>46.1</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XV (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{p_2(W)}_{36}$</td>
<td>-44.243</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.031910</td>
<td>Z(2,3)</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.61117</td>
<td>$\Delta P(4,3)$</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.48116</td>
<td>P(6,3)</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.35010</td>
<td>$\Delta P(2,3)$</td>
<td>44.3</td>
<td>5.77 mb</td>
</tr>
<tr>
<td></td>
<td>+0.36217</td>
<td>P(3,2)</td>
<td>47.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.053600</td>
<td>Z(3,4)</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.45196</td>
<td>$\Delta P(4,1)$</td>
<td>51.6</td>
<td></td>
</tr>
</tbody>
</table>

73
TABLE XVI
EURASIAN WINTER—ANTICYCLONE EQUATIONS WITH DEVELOPMENTAL DATA—SAMPLE STATISTICS (510 Cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{N}_{12}</td>
<td>-7.1602</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.011452</td>
<td>H(6,1)</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13065</td>
<td>$\Delta P(5,4)$</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.057054</td>
<td>$P(7,4)$</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.051407</td>
<td>$P(2,3)$</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.086413</td>
<td>Θ</td>
<td>37.3</td>
<td>1.58° lat</td>
</tr>
<tr>
<td></td>
<td>- 0.0085307</td>
<td>Z(4,3)</td>
<td>39.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.019108</td>
<td>$\Delta Z(5,2)$</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td>\bar{F}_{12}</td>
<td>-10.102</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.028298</td>
<td>$P(6,5)$</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.011213</td>
<td>Z(7,2)</td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.0065198</td>
<td>Z(6,5)</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.029978</td>
<td>$\Delta Z(5,4)$</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.033037</td>
<td>$\Delta P(7,4)$</td>
<td>26.0</td>
<td>2.11° lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.014226</td>
<td>Z(4,5)</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0064455</td>
<td>Z(2,5)</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.014113</td>
<td>λ</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.13625</td>
<td>$P(6,3)$</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.10928</td>
<td>$P(5,3)$</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>\bar{D}_{12}</td>
<td>+ 33.867</td>
<td>1</td>
<td>-</td>
<td>3.26 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.83534</td>
<td>I_2</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.060778</td>
<td>$\Delta Z(5,4)$</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.015516</td>
<td>Z(2,2)</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>N_{24}</td>
<td>- 3.1042</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021413</td>
<td>H(6,1)</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18997</td>
<td>$\Delta P(5,4)$</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.023736</td>
<td>Z(7,4)</td>
<td>42.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.029216</td>
<td>Z(5,2)</td>
<td>46.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15846</td>
<td>Θ</td>
<td>48.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10870</td>
<td>$\Delta P(5,2)$</td>
<td>50.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.018815</td>
<td>Z(3,4)</td>
<td>51.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.019814</td>
<td>$\Delta H(8,3)$</td>
<td>52.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.018526</td>
<td>$\Delta H(6,5)$</td>
<td>52.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.010157</td>
<td>Z(4,5)</td>
<td>53.6</td>
<td></td>
</tr>
<tr>
<td>E_{24}</td>
<td>- 126.30</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13506</td>
<td>P(6,5)</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.026831</td>
<td>Z(8,2)</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022205</td>
<td>H(6,5)</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15241</td>
<td>$\Delta P(6,3)$</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.11159</td>
<td>P(7,4)</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.10472</td>
<td>P(5,3)</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>δ_{24}</td>
<td>+ 172.63</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.2818</td>
<td>I_2</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.061283</td>
<td>$P(3,5)$</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.35285</td>
<td>$\Delta P(4,3)$</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.014714</td>
<td>$Z(2,3)$</td>
<td>37.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.038884</td>
<td>$\Delta Z(5,4)$</td>
<td>38.8</td>
<td>4.15 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.034058</td>
<td>λ</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.024506</td>
<td>$H(6,5)$</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.038256</td>
<td>$\Delta Z(8,5)$</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.077140</td>
<td>θ</td>
<td>43.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.089068</td>
<td>$P(8,3)$</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.11513</td>
<td>$P(4,3)$</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>$\tilde{\chi}_{36}$</td>
<td>+ 162.34</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.0090245</td>
<td>$Z(8,3)$</td>
<td>34.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18974</td>
<td>$\Delta P(5,4)$</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26906</td>
<td>θ</td>
<td>46.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0086636</td>
<td>$Z(3,4)$</td>
<td>48.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.026806</td>
<td>$Z(74)$</td>
<td>51.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18222</td>
<td>$P(5,2)$</td>
<td>52.9</td>
<td>2.97°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.090563</td>
<td>$P(5,4)$</td>
<td>54.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.098496</td>
<td>$\Delta P(8,3)$</td>
<td>55.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.032537</td>
<td>$\Delta Z(8,2)$</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.020897</td>
<td>$H(4,3)$</td>
<td>56.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.065357</td>
<td>$P(2,3)$</td>
<td>57.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\hat{E}_{36})</td>
<td>(-41.850)</td>
<td>1</td>
<td>-</td>
<td>4.53°lat</td>
</tr>
<tr>
<td></td>
<td>(-0.038740)</td>
<td>H(7,2)</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.028194)</td>
<td>Z(6,5)</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.094231)</td>
<td>(\lambda)</td>
<td>33.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.026265)</td>
<td>H(4,5)</td>
<td>35.4</td>
<td></td>
</tr>
<tr>
<td>(\hat{D}_{36})</td>
<td>(+195.96)</td>
<td>1</td>
<td>-</td>
<td>5.71 mb</td>
</tr>
<tr>
<td></td>
<td>(+1.7379)</td>
<td>(I_2)</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.11179)</td>
<td>P(3,5)</td>
<td>34.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.095108)</td>
<td>(\lambda)</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.035073)</td>
<td>Z(2,3)</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.062271)</td>
<td>(\Delta Z(5,4))</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{P_{1(N)}^{(N)_{12}}})</td>
<td>(+25.405)</td>
<td>1</td>
<td>-</td>
<td>3.45 mb</td>
</tr>
<tr>
<td></td>
<td>(-0.17359)</td>
<td>(I_2)</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.056069)</td>
<td>P(4,5)</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.072269)</td>
<td>P(6,3)</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.58213)</td>
<td>P(5,4)</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.59489)</td>
<td>P(5,3)</td>
<td>37.2</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{P_{1(E)}^{(E)_{12}}})</td>
<td>(-158.01)</td>
<td>1</td>
<td>-</td>
<td>3.48 mb</td>
</tr>
<tr>
<td></td>
<td>(+0.69941)</td>
<td>(I_2)</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.014804)</td>
<td>H(5,4)</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.096237)</td>
<td>P(8,3)</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(+0.017010)</td>
<td>H(8,1)</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\sqrt{P}{1(S)}{12}$</td>
<td>- 49.821</td>
<td>1</td>
<td>-</td>
<td>3.43 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.88315</td>
<td>I_2</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.20373</td>
<td>$P(6,3)$</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.20870</td>
<td>$P(6,1)$</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022650</td>
<td>$Z(2,1)$</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P}{1(W)}{12}$</td>
<td>- 52.369</td>
<td>1</td>
<td>-</td>
<td>3.10 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.93156</td>
<td>I_2</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.017530</td>
<td>$H(8,1)$</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.10055</td>
<td>$P(3,2)$</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.16251</td>
<td>$P(5,4)$</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.26783</td>
<td>$P(4,3)$</td>
<td>41.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18815</td>
<td>$P(5,2)$</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P}{2(N)}{12}$</td>
<td>+ 31.468</td>
<td>1</td>
<td>-</td>
<td>5.68 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.57450</td>
<td>$P(4,5)$</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.034038</td>
<td>$P(6,3)$</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.44350</td>
<td>$P(6,5)$</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.22571</td>
<td>$P(3,5)$</td>
<td>45.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.58632</td>
<td>$P(5,3)$</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.21025</td>
<td>$P(7,4)$</td>
<td>52.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.069594</td>
<td>$\Delta H(5,4)$</td>
<td>53.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.29371</td>
<td>$\Delta P(4,3)$</td>
<td>55.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVI (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{V}2^E{12}$</td>
<td>- 86.481</td>
<td>λ</td>
<td>57.0</td>
<td>4.99 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.40908</td>
<td>P(8, 3)</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.64721</td>
<td>P(5, 3)</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.31939</td>
<td>P(6, 3)</td>
<td>48.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.039941</td>
<td>H(6, 5)</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.046427</td>
<td>$\Delta Z(5, 4)$</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.27417</td>
<td>θ</td>
<td>54.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.030709</td>
<td>H(7, 4)</td>
<td>55.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.054820</td>
<td>λ</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 63.092</td>
<td>λ</td>
<td>57.0</td>
<td>4.90 mb</td>
</tr>
<tr>
<td>$\hat{V}2^S{12}$</td>
<td>- 0.79831</td>
<td>P(5, 3)</td>
<td>37.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.48235</td>
<td>P(6, 1)</td>
<td>55.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25066</td>
<td>P(4, 1)</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>$\hat{V}2^W{12}$</td>
<td>- 243.60</td>
<td>λ</td>
<td>57.0</td>
<td>4.44 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.016304</td>
<td>H(7, 2)</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18807</td>
<td>P(2, 3)</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.85354</td>
<td>P(5, 3)</td>
<td>51.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.42607</td>
<td>P(3, 2)</td>
<td>59.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.14242</td>
<td>P(3, 4)</td>
<td>63.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.30407</td>
<td>P(4, 3)</td>
<td>64.4</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>$\sqrt{P_{(N)}_{124}}$</td>
<td>+ 50.727</td>
<td>1</td>
<td>--</td>
<td>3.84 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.067962</td>
<td>P(8,3)</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.026903</td>
<td>Z(6,5)</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.017466</td>
<td>Z(3,4)</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.11286</td>
<td>P(4,5)</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.11708</td>
<td>P(6,3)</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_{(E)}_{124}}$</td>
<td>- 16.965</td>
<td>1</td>
<td>--</td>
<td>3.53 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.059511</td>
<td>λ</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.031370</td>
<td>H(5,4)</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.022501</td>
<td>H(3,4)</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_{(S)}_{124}}$</td>
<td>- 24.008</td>
<td>1</td>
<td>--</td>
<td>3.92 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.24129</td>
<td>P(5,3)</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.22063</td>
<td>P(6,1)</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.021705</td>
<td>Z(2,2)</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_{(W)}_{124}}$</td>
<td>- 46.268</td>
<td>1</td>
<td>--</td>
<td>3.59 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.023273</td>
<td>H(8,1)</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.65624</td>
<td>I$_2$</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_{(N)}_{224}}$</td>
<td>- 254.59</td>
<td>1</td>
<td>--</td>
<td>7.21 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.36565</td>
<td>P(4,5)</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.38416</td>
<td>P(6,3)</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24160</td>
<td>P(6,5)</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.041971</td>
<td>Z(2,5)</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.049100</td>
<td>H(5,2)</td>
<td>28.5</td>
<td></td>
</tr>
</tbody>
</table>

80
<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{P_2(E)}_{24}$</td>
<td>-160.59</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.054169</td>
<td>H(6,5)</td>
<td>19.2</td>
<td>6.30 mb</td>
</tr>
<tr>
<td></td>
<td>+0.34733</td>
<td>P(8,3)</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.28804</td>
<td>P(5,3)</td>
<td>35.3</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_2(S)}_{24}$</td>
<td>+157.95</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.68122</td>
<td>P(5,3)</td>
<td>23.6</td>
<td>5.89 mb</td>
</tr>
<tr>
<td></td>
<td>+0.45754</td>
<td>P(6,1)</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.090087</td>
<td>λ</td>
<td>37.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.031324</td>
<td>Z(2,2)</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_2(W)}_{24}$</td>
<td>-173.99</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.30773</td>
<td>Θ</td>
<td>17.2</td>
<td>5.42 mb</td>
</tr>
<tr>
<td></td>
<td>+0.019993</td>
<td>I_2</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.34804</td>
<td>P(2,2)</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.29538</td>
<td>P(5,4)</td>
<td>37.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.12522</td>
<td>P(3,4)</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{P_1(N)}_{36}$</td>
<td>-207.17</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.10491</td>
<td>P(4,5)</td>
<td>2.1</td>
<td>4.17 mb</td>
</tr>
<tr>
<td></td>
<td>+0.048334</td>
<td>H(7,2)</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.013661</td>
<td>Z(2,5)</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.024602</td>
<td>Z(8,3)</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.021348</td>
<td>Z(6,5)</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.018574</td>
<td>H(2,3)</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.20440</td>
<td>P(8,1)</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.13572</td>
<td>P(8,2)</td>
<td>14.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVI (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression Coefficient</th>
<th>Predictor</th>
<th>Accumulative % Red.</th>
<th>Residual Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{P}1(E){36}$</td>
<td>(-38.388) + 0.051065 + 0.020465</td>
<td>1, λ, $H(5,4)$</td>
<td>10.6, 14.5</td>
<td>3.77 mb</td>
</tr>
<tr>
<td>$\sqrt{P}1(S){36}$</td>
<td>+ 55.242 - 0.23164 - 0.045729 + 0.022510 + 0.13257 - 0.10769 + 0.10515</td>
<td>1, $P(5,4)$, λ, $Z(6,5)$, $P(2,1)$, $P(8,3)$, $P(7,2)$</td>
<td>6.6, 9.9, 12.8, 15.2, 16.1, 17.3</td>
<td>4.08 mb</td>
</tr>
<tr>
<td>$\sqrt{P}1(W){36}$</td>
<td>(-50.540) + 0.024884 - 0.055537 + 0.39617</td>
<td>1, $H(8,1)$, $\Delta H(3,2)$, I_2</td>
<td>9.7, 12.8, 15.7</td>
<td>3.76 mb</td>
</tr>
<tr>
<td>$\sqrt{P}2(N){36}$</td>
<td>(-389.93) + 0.38146 + 0.063209 - 0.039886 - 0.083120 - 0.27889 + 0.21601 + 0.19491</td>
<td>1, $P(4,5)$, $H(5,2)$, $Z(3,5)$, λ, $P(7,2)$, $P(8,1)$, $\Delta P(8,5)$</td>
<td>6.4, 10.2, 16.5, 18.3, 19.5, 20.8, 21.9</td>
<td>8.10 mb</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\bar{v}_{P_2^E}^{(36)}$</td>
<td>-71.318</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.02135</td>
<td>$H(6,5)$</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.078339</td>
<td>λ</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.22807</td>
<td>$P(8,3)$</td>
<td>26.6</td>
<td>6.83 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.22441</td>
<td>$P(5,4)$</td>
<td>29.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.17617</td>
<td>$\Delta P(5,4)$</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18898</td>
<td>Θ</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24832</td>
<td>$\Delta P(2,3)$</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>$\bar{v}_{P_2^W}^{(36)}$</td>
<td>+ 40.341</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.22361</td>
<td>$P(5,4)$</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15992</td>
<td>λ</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.076547</td>
<td>$H(5,2)$</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.31626</td>
<td>$P(6,1)$</td>
<td>29.8</td>
<td>6.32 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.23834</td>
<td>$P(5,3)$</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.060550</td>
<td>$\Delta Z(6,1)$</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.16773</td>
<td>$\Delta P(2,4)$</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.066806</td>
<td>$Z(4,1)$</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.042387</td>
<td>$Z(2,1)$</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td>$\bar{v}_{P_2^W}^{(36)}$</td>
<td>-119.89</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.35249</td>
<td>Θ</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.33367</td>
<td>$P(2,2)$</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.21190</td>
<td>$P(5,4)$</td>
<td>25.7</td>
<td>6.14 mb</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>\tilde{N}_{12}</td>
<td>$- 28.273$</td>
<td>1</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.027210$</td>
<td>$Z(7,4)$</td>
<td>21.1</td>
<td>2.09° lat</td>
</tr>
<tr>
<td></td>
<td>$- 0.026507$</td>
<td>$H(4,3)$</td>
<td>26.3</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.014673$</td>
<td>$H(7,2)$</td>
<td>28.7</td>
<td>$-$</td>
</tr>
<tr>
<td>\tilde{E}_{12}</td>
<td>$- 11.960$</td>
<td>1</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$- 0.18143$</td>
<td>$Z(7,2)$</td>
<td>8.5</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.020328$</td>
<td>$Z(4,5)$</td>
<td>17.3</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.028721$</td>
<td>$\Delta Z(4,5)$</td>
<td>21.1</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.10490$</td>
<td>$\Delta P(3,4)$</td>
<td>23.7</td>
<td>2.28° lat</td>
</tr>
<tr>
<td></td>
<td>$- 0.056242$</td>
<td>$\Delta P(8,3)$</td>
<td>25.8</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.029455$</td>
<td>$\Delta Z(4,3)$</td>
<td>28.0</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.15591$</td>
<td>$P(5,4)$</td>
<td>29.4</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$- 0.34015$</td>
<td>$P(6,3)$</td>
<td>33.7</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.18546$</td>
<td>$P(5,3)$</td>
<td>35.8</td>
<td>$-$</td>
</tr>
<tr>
<td>\tilde{D}_{12}</td>
<td>$+ 161.41$</td>
<td>1</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$- 0.15244$</td>
<td>$P(3,4)$</td>
<td>12.7</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.83175$</td>
<td>l_2</td>
<td>22.0</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$- 0.014294$</td>
<td>$Z(2,2)$</td>
<td>29.8</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.030942$</td>
<td>$\Delta Z(4,3)$</td>
<td>32.5</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.045573$</td>
<td>$P(8,5)$</td>
<td>34.4</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.059924$</td>
<td>$\Delta P(6,5)$</td>
<td>35.7</td>
<td>2.29 mb</td>
</tr>
<tr>
<td></td>
<td>$+ 0.13498$</td>
<td>$\Delta P(3,4)$</td>
<td>36.4</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$- 0.086990$</td>
<td>$\Delta P(2,4)$</td>
<td>37.2</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$- 0.12664$</td>
<td>$H(3,4)$</td>
<td>37.9</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$- 0.025229$</td>
<td>$\Delta Z(8,2)$</td>
<td>38.5</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.017218$</td>
<td>$AH(4,5)$</td>
<td>39.3</td>
<td>$-$</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>\hat{N}_{24}</td>
<td>-157.21</td>
<td>1</td>
<td>-</td>
<td>3.17° lat</td>
</tr>
<tr>
<td></td>
<td>+0.035323</td>
<td>Z(8,5)</td>
<td>26.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.072443</td>
<td>Z(7,2)</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.069003</td>
<td>Z(5,2)</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.086886</td>
<td>P(6,5)</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{24}</td>
<td>+45.289</td>
<td>1</td>
<td>-</td>
<td>3.52° lat</td>
</tr>
<tr>
<td></td>
<td>+0.0059135</td>
<td>Z(8,2)</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.034024</td>
<td>Z(4,5)</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.24460</td>
<td>$\Delta P(5,4)$</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.16226</td>
<td>$\Delta P(7,4)$</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.30758</td>
<td>P(4,3)</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.20947</td>
<td>P(8,3)</td>
<td>34.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.057679</td>
<td>Z(8,1)</td>
<td>37.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.11514</td>
<td>P(2,5)</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.15529</td>
<td>$\Delta P(3,5)$</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td>\hat{P}_{24}</td>
<td>+340.89</td>
<td>1</td>
<td>-</td>
<td>3.10 mb</td>
</tr>
<tr>
<td></td>
<td>-0.48432</td>
<td>P(5,3)</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.25672</td>
<td>$\Delta P(5,4)$</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.029781</td>
<td>H(5,2)</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.20658</td>
<td>P(7,4)</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.31832</td>
<td>$\Delta P(6,3)$</td>
<td>46.4</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{N}_{36}</td>
<td>-85.976</td>
<td>1</td>
<td>-</td>
<td>4.32°lat</td>
</tr>
<tr>
<td></td>
<td>+0.046579</td>
<td>$Z(8,5)$</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.092848</td>
<td>$Z(7,2)$</td>
<td>31.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.091029</td>
<td>$Z(5,2)$</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_{36}</td>
<td>+100.36</td>
<td>1</td>
<td>-</td>
<td>4.65°lat</td>
</tr>
<tr>
<td></td>
<td>-0.079079</td>
<td>$Z(8,1)$</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.038483</td>
<td>$Z(4,5)$</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.29085</td>
<td>$\Delta P(5,4)$</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.41345</td>
<td>$P(4,3)$</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.20761</td>
<td>$P(8,3)$</td>
<td>34.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.23799</td>
<td>$P(2,4)$</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.26110</td>
<td>$\Delta P(3,4)$</td>
<td>41.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.19322</td>
<td>$\Delta P(7,4)$</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>\hat{D}_{36}</td>
<td>+372.57</td>
<td>1</td>
<td>-</td>
<td>3.98 mb</td>
</tr>
<tr>
<td></td>
<td>-0.58342</td>
<td>$P(5,3)$</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.029024</td>
<td>$Z(2,5)$</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.27309</td>
<td>$P(7,4)$</td>
<td>41.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.39544</td>
<td>$\Delta P(6,3)$</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_{1}(N)_{12}$</td>
<td>+49.193</td>
<td>1</td>
<td>-</td>
<td>2.70 mb</td>
</tr>
<tr>
<td></td>
<td>+0.68131</td>
<td>I_{2}</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.017601</td>
<td>$Z(4,5)$</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.082054</td>
<td>$P(8,3)$</td>
<td>23.6</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{P_{12}^E})</td>
<td>-185.00</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.0020309</td>
<td>H(6,1)</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.59082</td>
<td>(I_2)</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.11016</td>
<td>P(8,3)</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.065659</td>
<td>P(8,5)</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.020808</td>
<td>H(6,3)</td>
<td>44.0</td>
<td>2.46 mb</td>
</tr>
<tr>
<td></td>
<td>-0.17260</td>
<td>(\Delta P(6,1))</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.21481</td>
<td>P(2,1)</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.13703</td>
<td>P(3,2)</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.0098468</td>
<td>Z(2,5)</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{P_{12}^S})</td>
<td>+8.9780</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.66184</td>
<td>(I_2)</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.029313</td>
<td>Z(2,1)</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.20128</td>
<td>P(6,3)</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.13609</td>
<td>P(6,1)</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.11407</td>
<td>(\Delta P(4,3))</td>
<td>43.7</td>
<td>1.99 mb</td>
</tr>
<tr>
<td>(\sqrt{P_{12}^W})</td>
<td>+165.30</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.028826</td>
<td>Z(2,4)</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.62539</td>
<td>(I_2)</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0087928</td>
<td>Z(6,5)</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.015581</td>
<td>H(6,1)</td>
<td>41.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.085559</td>
<td>H(4,3)</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.021500</td>
<td>P(54)</td>
<td>44.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.077986</td>
<td>Z(4,3)</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\hat{P}2(N){12}$</td>
<td>+ 190.00</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>+ 0.031639</td>
<td>Z(4, 5)</td>
<td>7.3</td>
<td>4.30 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.032428</td>
<td>P(8, 3)</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25452</td>
<td>P(4, 5)</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.63283</td>
<td>P(5, 3)</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.44675</td>
<td>P(6, 5)</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.30366</td>
<td>P(7, 4)</td>
<td>46.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.024998</td>
<td>H(7, 4)</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 136.62</td>
<td>1</td>
<td>—</td>
<td>3.72 mb</td>
</tr>
<tr>
<td>$\hat{P}2(E){12}$</td>
<td>+ 0.097659</td>
<td>Z(7, 2)</td>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.56069</td>
<td>P(5, 3)</td>
<td>44.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.33672</td>
<td>P(8, 3)</td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.24817</td>
<td>θ</td>
<td>58.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.096252</td>
<td>H(7, 2)</td>
<td>60.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.088641</td>
<td>P(3, 4)</td>
<td>61.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 20.883</td>
<td>1</td>
<td>—</td>
<td>2.68 mb</td>
</tr>
<tr>
<td>$\hat{P}2(S){12}$</td>
<td>- 0.58915</td>
<td>P(5, 3)</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.73981</td>
<td>P(6, 1)</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.22656</td>
<td>P(7, 2)</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.027809</td>
<td>Z(2, 1)</td>
<td>57.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 143.46</td>
<td>1</td>
<td>—</td>
<td>3.74 mb</td>
</tr>
<tr>
<td>$\hat{P}2(W){12}$</td>
<td>+ 0.049884</td>
<td>Z(2, 4)</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.19827</td>
<td>P(2, 3)</td>
<td>44.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.57680</td>
<td>P(5, 3)</td>
<td>58.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.32185</td>
<td>P(3, 2)</td>
<td>62.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.015789</td>
<td>Z(8, 5)</td>
<td>63.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.32075</td>
<td>P(5, 4)</td>
<td>64.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.35189</td>
<td>P(4, 3)</td>
<td>65.5</td>
<td></td>
</tr>
</tbody>
</table>

88
<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nabla P_1(N)_{24}$</td>
<td>-30.444 +0.43916 +0.014987</td>
<td>1 I_2 $Z(4,5)$</td>
<td>- 9.5 14.4</td>
<td>2.64 mb</td>
</tr>
<tr>
<td>$\nabla P_1(E)_{24}$</td>
<td>+58.394 -0.11936 +0.37458 +0.015550 -0.083553</td>
<td>1 Θ I_2 $Z(2,5)$ $P(6,5)$</td>
<td>- 26.4 31.0 33.7</td>
<td>2.42 mb</td>
</tr>
<tr>
<td>$\nabla P_1(S)_{24}$</td>
<td>+70.009 -0.41176 +0.32596 +0.0086517</td>
<td>1 $P(5,3)$ $P(5,2)$ $Z(2,5)$</td>
<td>- 21.3 29.6 32.9</td>
<td>2.01 mb</td>
</tr>
<tr>
<td>$\nabla P_1(W)_{24}$</td>
<td>-5.8088 +0.033186 -0.057916 +0.32127</td>
<td>1 $Z(2,4)$ $P(8,5)$ I_2</td>
<td>- 28.3 32.4 34.2</td>
<td>2.75 mb</td>
</tr>
</tbody>
</table>
TABLE XVII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{(N)_{24}}$</td>
<td>+ 116.54</td>
<td>1</td>
<td>-</td>
<td>4.80 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.28013</td>
<td>$\Delta P(6,3)$</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.028763</td>
<td>$P(8,3)$</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.0083184</td>
<td>$Z(3,5)$</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.038831</td>
<td>$Z(2,4)$</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.52460</td>
<td>I_2</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.066656</td>
<td>λ</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.057127</td>
<td>$H(2,1)$</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.25780</td>
<td>$\Delta P(4,5)$</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.041670</td>
<td>$Z(7,4)$</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.051373</td>
<td>$Z(4,5)$</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.36922</td>
<td>$P(6,3)$</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.22119</td>
<td>$P(6,5)$</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>$\beta_{(E)_{24}}$</td>
<td>- 27.374</td>
<td>1</td>
<td>-</td>
<td>4.30 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.33361</td>
<td>Θ</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.20913</td>
<td>$P(6,5)$</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.025925</td>
<td>$Z(2,5)$</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.19305</td>
<td>$P(8,2)$</td>
<td>42.9</td>
<td></td>
</tr>
<tr>
<td>$\beta_{(S)_{24}}$</td>
<td>+ 135.17</td>
<td>1</td>
<td>-</td>
<td>3.28 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.50314</td>
<td>$P(5,3)$</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.45649</td>
<td>$P(6,1)$</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.019145</td>
<td>$Z(2,5)$</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.12380</td>
<td>$P(8,3)$</td>
<td>39.7</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ΨP₂(W)₂₄</td>
<td>-356.33</td>
<td>Z(2,4)</td>
<td>29.1</td>
<td>5.39 mb</td>
</tr>
<tr>
<td></td>
<td>+0.074178</td>
<td>P(2,2)</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.35150</td>
<td>P(8,5)</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.14592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΨP₁(N)₃₆</td>
<td>+160.52</td>
<td>Z(4,5)</td>
<td>6.1</td>
<td>2.59 mb</td>
</tr>
<tr>
<td></td>
<td>+0.032559</td>
<td>Z(8,5)</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0094745</td>
<td>P(5,3)</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.16257</td>
<td>H(5,4)</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.022692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΨP₁(E)₃₆</td>
<td>+12.656</td>
<td>Z(4,1)</td>
<td>19.3</td>
<td>2.44 mb</td>
</tr>
<tr>
<td></td>
<td>+0.028554</td>
<td>Z(2,5)</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.017989</td>
<td>P(6,5)</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.086186</td>
<td>Z(8,5)</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0091596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΨP₁(S)₃₆</td>
<td>+93.035</td>
<td>Z(4,1)</td>
<td>11.7</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>+0.029118</td>
<td>P(6,3)</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.13077</td>
<td>Z(8,5)</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.010866</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΨP₁(N)₃₆</td>
<td>-189.93</td>
<td>Z(2,4)</td>
<td>26.2</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>+0.039261</td>
<td>P(2,2)</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.068290</td>
<td>P(8,5)</td>
<td>30.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.36105</td>
<td>P(2,1)</td>
<td>33.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.18155</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nabla P_2(N)_{36}$</td>
<td>+ 155.14</td>
<td>1</td>
<td>-</td>
<td>5.50 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.42214</td>
<td>$\Delta P(5,3)$</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.094991</td>
<td>λ</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.28441</td>
<td>$P(5,3)$</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13716</td>
<td>$P(4,5)$</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_2(E)_{36}$</td>
<td>- 100.01</td>
<td>1</td>
<td>-</td>
<td>4.32 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.012948</td>
<td>$Z(2,4)$</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14746</td>
<td>$P(6,5)$</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.15494</td>
<td>$\Delta P(8,2)$</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.069828</td>
<td>$Z(2,1)$</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.021598</td>
<td>$Z(4,3)$</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.038279</td>
<td>$Z(2,5)$</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.38597</td>
<td>$P(6,1)$</td>
<td>39.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.33038</td>
<td>$P(5,4)$</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_2(S)_{36}$</td>
<td>+ 185.08</td>
<td>1</td>
<td>-</td>
<td>3.77 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.21794</td>
<td>$P(5,3)$</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.025589</td>
<td>$Z(2,5)$</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.015321</td>
<td>$Z(8,5)$</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.28159</td>
<td>$P(6,1)$</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26892</td>
<td>$P(6,3)$</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_2(W)_{36}$</td>
<td>- 469.00</td>
<td>1</td>
<td>-</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>+ 0.085056</td>
<td>$Z(2,4)$</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.031972</td>
<td>$Z(8,5)$</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.35398</td>
<td>$P(2,1)$</td>
<td>35.8</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVIII
PACIFIC WINTER—ANTICYCLONE EQUATIONS WITH DEVELOPMENTAL DATA—SAMPLE STATISTICS (598 Cases)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{N}_{12})</td>
<td>- 59.204</td>
<td>1</td>
<td>-</td>
<td>1.66°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.19560</td>
<td>(\Delta P(5,4))</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.013935</td>
<td>(Z(7,4))</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.025866</td>
<td>(Z(5,2))</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.10235</td>
<td>(\Delta P(5,2))</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.051828</td>
<td>(P(6,5))</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.016869</td>
<td>(H(6,3))</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td>(\hat{E}_{12})</td>
<td>- 131.53</td>
<td>1</td>
<td>-</td>
<td>2.00°lat</td>
</tr>
<tr>
<td></td>
<td>+ 0.49614</td>
<td>(P(5,3))</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.15409</td>
<td>(\Delta P(6,3))</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.37688</td>
<td>(P(6,3))</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.53328</td>
<td>(I_2)</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.014210</td>
<td>(Z(6,5))</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.010376</td>
<td>(Z(5,2))</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td>(\hat{D}_{12})</td>
<td>- 0.16916</td>
<td>1</td>
<td>-</td>
<td>2.15 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.17297</td>
<td>(\Delta P(5,4))</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.15191</td>
<td>(\Delta P(5,2))</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.88764</td>
<td>(I_2)</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.0095676</td>
<td>(Z(5,2))</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.076007</td>
<td>(P(8,3))</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.033619</td>
<td>(\Delta Z(5,2))</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.058857</td>
<td>(P(4,5))</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.091235</td>
<td>1(\Theta)</td>
<td>45.7</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{N}_{24}</td>
<td>- 27.527 + 0.051419 - 0.035116 + 0.18673</td>
<td>1 $Z(7,4)$ $Z(4,3)$ $\Delta P(6,5)$</td>
<td>- 27.8 40.5 46.6</td>
<td>2.91°lat</td>
</tr>
<tr>
<td>\bar{E}_{24}</td>
<td>- 241.15 + 0.50169 - 0.23955 + 0.098191 - 0.39973 + 0.015930</td>
<td>1 $P(5,3)$ $\Delta P(6,3)$ $P(6,5)$ $P(6,3)$ $Z(4,5)$</td>
<td>- 12.1 18.4 22.2 25.2 28.4</td>
<td>3.58°lat</td>
</tr>
<tr>
<td>\bar{D}_{24}</td>
<td>+ 206.56 + 0.22686 - 0.029351 - 0.25835 + 0.23088 + 0.066190 + 0.11460</td>
<td>1 $\Delta P(5,4)$ $Z(5,2)$ $P(5,3)$ $\Delta P(4,3)$ $\Delta Z(5,2)$ $P(8,3)$</td>
<td>- 14.8 23.6 33.0 37.0 40.0 43.1</td>
<td>3.39 mb</td>
</tr>
<tr>
<td>\bar{N}_{36}</td>
<td>- 47.550 + 0.067378 - 0.039952 + 0.24613</td>
<td>1 $Z(7,4)$ $Z(4,3)$ $\Delta P(6,5)$</td>
<td>- 30.3 38.9 44.7</td>
<td>4.00°lat</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>E_{36}</td>
<td>-106.14 +0.24532 +0.086224 -0.28401 +0.0041543 -0.13542 +0.19611 -0.10100 +0.031453 -0.031991</td>
<td>1 P(5,3) P(6,5) ΔP(6,3) λ P(2,4) ΔP(3,4) P(8,3) Z(4,5) H(6,1)</td>
<td>13.9 18.8 23.0</td>
<td>4.77° lat</td>
</tr>
<tr>
<td>D_{36}</td>
<td>+344.65 -0.44688 +0.43803 -0.016847 +0.18349 +0.80603 -0.021059 +0.23918</td>
<td>1 P(4,3) ΔP(4,3) H(4,5) P(8,3) I_2 Z(2,2) ΔP(6,3)</td>
<td>20.0 30.2 37.8</td>
<td>4.23 mb</td>
</tr>
<tr>
<td>$\hat{P}1(N){12}$</td>
<td>+35.954 +1.1041 -0.19867 +0.020064 -0.36156 +0.28961</td>
<td>1 I_2 ΔP(4,3) Z(6,5) P(6,3) P(5,4)</td>
<td>27.1 30.4 33.8</td>
<td>3.86 mb</td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\hat{\nabla}P_{1(E)}_{12}$</td>
<td>+ 100.19</td>
<td>1</td>
<td>-</td>
<td>3.39 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.16707</td>
<td>Θ</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19533</td>
<td>$P(5,2)$</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.078936</td>
<td>$P(7,4)$</td>
<td>38.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.011971</td>
<td>$Z(2,5)$</td>
<td>39.</td>
<td></td>
</tr>
<tr>
<td>$\hat{\nabla}P_{1(S)}_{12}$</td>
<td>+ 71.096</td>
<td>1</td>
<td>-</td>
<td>3.61 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.014001</td>
<td>$H(6,3)$</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.38355</td>
<td>$P(4,3)$</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.22852</td>
<td>$P(6,1)$</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18441</td>
<td>Θ</td>
<td>53.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.11818</td>
<td>$P(8,1)$</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18141</td>
<td>$P(5,2)$</td>
<td>56.8</td>
<td></td>
</tr>
<tr>
<td>$\hat{\nabla}P_{1(W)}_{12}$</td>
<td>- 65.726</td>
<td>1</td>
<td>-</td>
<td>3.46 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.033836</td>
<td>$Z(2,3)$</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.68384</td>
<td>I_2</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td>$\hat{\nabla}P_{2(N)}_{12}$</td>
<td>- 36.114</td>
<td>1</td>
<td>-</td>
<td>5.12 mb</td>
</tr>
<tr>
<td></td>
<td>+ 1.1355</td>
<td>I_2</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.49376</td>
<td>$P(4,5)$</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.67613</td>
<td>$P(6,3)$</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.35551</td>
<td>$P(6,5)$</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.18904</td>
<td>$P(3,5)$</td>
<td>53.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.026454</td>
<td>$H(5,2)$</td>
<td>56.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.33847</td>
<td>$\Delta P(4,3)$</td>
<td>57.8</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>VP(E)</td>
<td>+ 177.61 + 0.00081677</td>
<td>1</td>
<td>37.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.62811 + 0.30170</td>
<td>Z(8,3)</td>
<td>51.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18125 - 0.21827</td>
<td>P(5,3)</td>
<td>59.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26245 - 0.058763</td>
<td>P(5,2)</td>
<td>71.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.077132 - 0.15157</td>
<td>H(2,5)</td>
<td>73.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.015294 - 0.060903</td>
<td>P(8,5)</td>
<td>75.2</td>
<td>3.82 mb</td>
</tr>
<tr>
<td>VP(S)</td>
<td>+ 231.53 - 0.66066</td>
<td>1</td>
<td>40.8</td>
<td>4.19 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.59233 + 0.039581</td>
<td>P(6,1)</td>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.23579</td>
<td>P(7,2)</td>
<td>68.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP(W)</td>
<td>- 171.38 + 0.016767</td>
<td>1</td>
<td>57.3</td>
<td>4.45 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.39869 + 0.55748</td>
<td>Z(2,3)</td>
<td>64.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.93200 + 0.55748</td>
<td>P(2,3)</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.55748 - 0.27565</td>
<td>P(5,3)</td>
<td>73.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.37259 - 0.26063</td>
<td>P(5,4)</td>
<td>76.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.37259 - 0.26141</td>
<td>P(6,3)</td>
<td>77.5</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\nabla P_1(N)_{24}$</td>
<td>+ 76.290</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.0302</td>
<td>I_2</td>
<td>18.7</td>
<td>4.65 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.025552</td>
<td>$Z(6,5)$</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.12227</td>
<td>$P(8,3)$</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_1(E)_{24}$</td>
<td>+ 95.474</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.010285</td>
<td>Θ</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.024506</td>
<td>$Z(2,5)$</td>
<td>31.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.40036</td>
<td>$P(5,3)$</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.043209</td>
<td>$P(3,2)$</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.021015</td>
<td>$\Delta H(2,5)$</td>
<td>37.7</td>
<td>3.68 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.22831</td>
<td>$P(6,3)$</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.073833</td>
<td>$P(8,1)$</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.064416</td>
<td>$P(4,1)$</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_1(S)_{24}$</td>
<td>+ 11.141</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26527</td>
<td>Θ</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19536</td>
<td>$P(4,3)$</td>
<td>38.1</td>
<td>4.32 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.19006</td>
<td>$P(6,1)$</td>
<td>41.5</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- 2.1506</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.037507</td>
<td>Z(2,3)</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.56964</td>
<td>I_2</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13488</td>
<td>P(4,1)</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.71057</td>
<td>P(5,3)</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.042880</td>
<td>H(3,2)</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_1(W)_{24}$</td>
<td>+ 0.086767</td>
<td>$\Delta P(2,3)$</td>
<td>45.5</td>
<td>3.81 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.043522</td>
<td>P(2,5)</td>
<td>46.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.12872</td>
<td>$\Delta P(2,1)$</td>
<td>46.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.022993</td>
<td>Z(4,3)</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.064773</td>
<td>$\Delta P(4,5)$</td>
<td>47.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.31139</td>
<td>P(6,3)</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.18734</td>
<td>P(5,2)</td>
<td>48.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 64.244</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nabla P_2(N)_{24}$</td>
<td>+ 0.60646</td>
<td>I_2</td>
<td>12.2</td>
<td>6.36 md</td>
</tr>
<tr>
<td></td>
<td>+ 0.32158</td>
<td>P(6,5)</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.67871</td>
<td>P(6,3)</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.33018</td>
<td>P(4,5)</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.046018</td>
<td>Z(6,1)</td>
<td>37.2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVIII (continued)

<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{p}2(E){24}$</td>
<td>+ 325.56</td>
<td>1</td>
<td>—</td>
<td>4.94 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.26709</td>
<td>Θ</td>
<td>37.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.081931</td>
<td>P(5,2)</td>
<td>46.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.023166</td>
<td>Z(2,5)</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.45468</td>
<td>P(5,3)</td>
<td>52.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.048304</td>
<td>P(7,4)</td>
<td>53.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.20867</td>
<td>$\Delta P(5,4)$</td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.19836</td>
<td>P(8,3)</td>
<td>56.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.034257</td>
<td>Z(8,1)</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.17679</td>
<td>$\Delta P(7,4)$</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>$\hat{p}2(S){24}$</td>
<td>+ 145.99</td>
<td>1</td>
<td>—</td>
<td>5.04 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.26983</td>
<td>Θ</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.49967</td>
<td>P(4,3)</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.32725</td>
<td>P(6,1)</td>
<td>51.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.018276</td>
<td>Z(2,5)</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>$\hat{p}2(W){24}$</td>
<td>- 46.677</td>
<td>1</td>
<td>—</td>
<td>6.49 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.060007</td>
<td>Z(2,3)</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.33367</td>
<td>$\Delta P(2,3)$</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.39047</td>
<td>P(5,3)</td>
<td>53.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.31970</td>
<td>P(3,2)</td>
<td>56.1</td>
<td></td>
</tr>
<tr>
<td>$\hat{p}1(N){36}$</td>
<td>+ 76.049</td>
<td>1</td>
<td>—</td>
<td>5.22 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.038190</td>
<td>H(6,3)</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14888</td>
<td>P(8,3)</td>
<td>19.3</td>
<td></td>
</tr>
</tbody>
</table>

100
<table>
<thead>
<tr>
<th>Predictand</th>
<th>Regression coefficient</th>
<th>Predictor</th>
<th>Accumulative % red.</th>
<th>Residual error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nabla P_1^E_{36}$</td>
<td>+ 137.49</td>
<td>1</td>
<td>-</td>
<td>4.08 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.030748</td>
<td>Z(2,4)</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19301</td>
<td>P(5,3)</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_1^S_{36}$</td>
<td>+ 4.6998</td>
<td>1</td>
<td>-</td>
<td>4.44 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.26981</td>
<td>θ</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_1^W_{36}$</td>
<td>- 115.94</td>
<td>1</td>
<td>-</td>
<td>4.27 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.035463</td>
<td>Z(2,3)</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.20740</td>
<td>I_2</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.087805</td>
<td>ΔP(2,4)</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.13122</td>
<td>P(4,1)</td>
<td>37.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.058064</td>
<td>P(2,5)</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.14256</td>
<td>P(5,3)</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_2^N_{36}$</td>
<td>+ 191.37</td>
<td>1</td>
<td>-</td>
<td>7.62 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.047818</td>
<td>Z(6,5)</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.21617</td>
<td>P(8,3)</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.26850</td>
<td>P(4,5)</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.33234</td>
<td>P(5,3)</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>$\nabla P_2^E_{36}$</td>
<td>+ 457.91</td>
<td>1</td>
<td>-</td>
<td>5.42 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.12864</td>
<td>θ</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.41085</td>
<td>P(5,3)</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.038605</td>
<td>Z(2,5)</td>
<td>46.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.046042</td>
<td>ΔH(3,4)</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.032752</td>
<td>Z(2,2)</td>
<td>49.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.043811</td>
<td>Z(8,1)</td>
<td>51.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.085536</td>
<td>P(8,5)</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td>Predictand</td>
<td>Regression coefficient</td>
<td>Predictor</td>
<td>Accumulative % red.</td>
<td>Residual error</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>$\hat{V}{P_2(S)}^{(S)}{36}$</td>
<td>+ 32.968</td>
<td>Θ</td>
<td>35.8</td>
<td>5.45 mb</td>
</tr>
<tr>
<td></td>
<td>- 0.28848</td>
<td>$P(5,3)$</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.26972</td>
<td>$P(8,1)$</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.24079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{V}{P_2(W)}^{(W)}{36}$</td>
<td>- 220.22</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.067160</td>
<td>$Z(3,2)$</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.19233</td>
<td>$\Delta P(4,5)$</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 2.5151</td>
<td>I_2</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.043120</td>
<td>$Z(8,5)$</td>
<td>42.1</td>
<td>7.24 mb</td>
</tr>
<tr>
<td></td>
<td>+ 0.038566</td>
<td>$H(6,5)$</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.31479</td>
<td>$\Delta P(8,3)$</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.096153</td>
<td>$P(2,3)$</td>
<td>46.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0.022474</td>
<td>I_1</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.22311</td>
<td>$\Delta P(2,2)$</td>
<td>47.8</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XIX
ROOT-MEAN-SQUARE ERROR IN TESTS ON WINTER ANTICYCLONES, 1959/1960
(independent sample)

(a) TRC Equations

<table>
<thead>
<tr>
<th>Area</th>
<th>Forecast interval hr</th>
<th>(\hat{N})</th>
<th>(\hat{E})</th>
<th>(\hat{D})</th>
<th>(\bar{V}_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>12</td>
<td>2.01</td>
<td>2.01</td>
<td>2.09</td>
<td>2.27</td>
<td>2.24</td>
<td>2.25</td>
<td>2.66</td>
<td>5.39</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.63</td>
<td>3.91</td>
<td>3.01</td>
<td>3.83</td>
<td>3.10</td>
<td>2.14</td>
<td>2.08</td>
<td>6.97</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>4.67</td>
<td>5.36</td>
<td>4.85</td>
<td>3.25</td>
<td>3.84</td>
<td>2.17</td>
<td>3.79</td>
<td>6.60</td>
</tr>
</tbody>
</table>

Atlantic	12	1.89	1.83	2.07	2.26	1.76	1.87	2.14	5.76
(94 cases)	24	2.81	3.06	3.39	2.68	1.87	2.03	2.40	7.16
	36	3.97	4.29	4.52	2.95	2.10	2.20	2.36	7.89

Europe	12	1.56	1.81	2.15	3.57	2.89	2.19	2.70	6.11
(55 cases)	24	2.43	3.11	2.99	3.86	4.01	2.61	3.25	7.02
	36	3.48	4.01	4.73	4.12	4.16	2.87	3.33	9.77

Eurasia	12	1.30	2.29	2.96	3.49	3.96	4.16	2.92	5.06
(78 cases)	24	1.89	3.74	4.37	4.31	4.17	4.57	3.57	6.96
	36	3.05	4.55	5.67	4.64	4.64	5.29	5.69	6.31

Asia	12	1.85	2.35	2.40	2.03	2.04	1.67	2.19	4.35
(130 cases)	24	2.52	3.77	3.42	2.19	1.76	1.65	1.99	4.61
	36	3.49	5.27	5.99	2.38	1.86	1.93	2.59	5.40

Pacific	12	1.65	1.92	2.14	2.96	2.09	1.91	2.55	4.77
(153 cases)	24	2.42	3.57	3.02	3.27	2.60	2.36	2.92	6.10
	35	3.21	4.56	4.02	3.30	2.54	3.16	3.40	7.11

(b) Climatology

<table>
<thead>
<tr>
<th>Area</th>
<th>Forecast interval hr</th>
<th>(\hat{N})</th>
<th>(\hat{E})</th>
<th>(\hat{D})</th>
<th>(\bar{V}_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>12</td>
<td>2.65</td>
<td>2.54</td>
<td>2.65</td>
<td>3.37</td>
<td>3.66</td>
<td>2.71</td>
<td>3.92</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.50</td>
<td>4.70</td>
<td>4.15</td>
<td>3.34</td>
<td>3.88</td>
<td>2.70</td>
<td>4.07</td>
<td>9.09</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>5.96</td>
<td>6.61</td>
<td>5.85</td>
<td>3.33</td>
<td>4.49</td>
<td>2.56</td>
<td>4.64</td>
<td>9.56</td>
</tr>
<tr>
<td>Atlantic</td>
<td>12</td>
<td>2.30</td>
<td>2.71</td>
<td>2.43</td>
<td>2.96</td>
<td>2.36</td>
<td>2.46</td>
<td>2.97</td>
<td>7.48</td>
</tr>
<tr>
<td>(94 cases)</td>
<td>24</td>
<td>3.56</td>
<td>4.46</td>
<td>3.96</td>
<td>2.97</td>
<td>2.39</td>
<td>2.41</td>
<td>2.72</td>
<td>6.04</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>4.99</td>
<td>5.94</td>
<td>5.23</td>
<td>3.06</td>
<td>2.51</td>
<td>2.23</td>
<td>2.45</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Europe	12	1.90	2.16	3.10	4.67	4.81	3.22	4.21	10.37
(55 cases)	24	3.01	3.74	4.57	4.65	5.00	3.34	3.71	10.62
	36	3.82	4.99	6.29	4.92	5.29	3.46	3.63	11.22
Eurasia	12	1.65	2.31	3.56	4.64	4.54	5.53	3.59	8.32
(78 cases)	24	2.83	3.81	5.14	4.54	4.34	5.46	3.75	8.54
	36	3.76	4.79	6.68	4.98	4.18	5.09	3.58	9.21

Asia	12	2.18	2.69	2.60	2.17	2.91	1.62	2.95	4.93
(130 cases)	24	3.15	4.36	4.12	2.24	2.56	1.79	2.83	6.63
	36	4.17	6.07	5.35	2.48	2.44	1.92	3.07	6.28

Pacific	12	1.98	2.55	2.63	2.95	2.81	2.75	3.69	6.47
(153 cases)	24	3.30	4.54	3.59	3.13	3.04	3.16	4.21	6.64
	35	4.37	6.32	4.66	3.47	3.14	3.72	4.49	7.28
SECTION V
CONCLUSIONS

Equations for the prediction of 12-, 24-, and 36-hr anticyclone displacements and changes in central pressure have been derived for six areas. When applied to an independent data sample, the equations remained stable and yielded results that were generally superior to climatology.

Equations which were derived for pressure gradient forecasts surrounding anticyclone centers for the winter season appear to have potential applicability for describing the pressure pattern in the vicinity of the anticyclone center.
REFERENCES

1. Bryan, J. G., 1944: Special Techniques in Multiple Regression, Unpubl. manuscript.

This report presents results and equations for the 12-, 24-, and 36-hr prediction of anticyclone displacement and change in central pressure for the Northern Hemisphere. Separate sets of equations were derived for each of six areas. These equations yielded results that were generally superior to climatology when tested on independent data.

The technique employed is similar to that used previously in deriving cyclone equations, i.e., it features a moving-coordinate grid system for predictor tabulation, and a screening-regression analysis for the derivation of the prediction equations.

Additional equations were derived for winter anticyclones to specify the forecast difference in pressure between the anticyclone and each of eight surrounding grid points. Analysis of these differences leads to the construction of forecast pressure patterns surrounding the anticyclone center; initial results from feasibility testing were encouraging.
14. KEY WORDS

Anticyclone prediction
Pressure
Regression analysis