
_RETE OPTxxtAo VAAemMLY 1

-~ Bennet~t Fox

January-1966

c fEA-R RN aH 0 s E
FOR FEDERAL SIJENTIFIC, MMT

TECHNICAL !NFOTRRATIO~i.'

!4)J1 IIJP \UYj 'U

Appov~j'~ree by the ClearinghosfrFer~ 8; $c e n.tifi c an 7Te ctnical infOt~ r attjn



DISCRETE OPTIMIZATION VIA MARGINAL ANALYSIS

Bennett Fox

The RAND Corporation, Santa Monica, California

Any views exprcssed in this paper are those of the author. They
s~hould not be interpreted as reflecting the views of The RAND Corporation
or the official opinion or policy of any of its .ernmental or private
research sponsors. Papers are reproduced by The R~AND Corporation as a
courtesy to members of its staff.

This paper was prepared for submission to Management Science.



- iio

ABSTRACT

,Discrete optimization subject to one contraint is attacked by

Lagrangia. analysis. Incremental allocation schemes are given that

generate undominated allocations. In an important special case, the

complete family of undominated allocations is generated.



1. Introduction

In allocation problems, a marginal analysis of incremental return

per additional dollar spent is intuitively appealing. We give condi-

tions under which it is justified and applications. In some circles,

some of our results are probably part of the folklore.

2. Problem

(*) max [O(x) : xES, C(x) • M]

where S is the set of n-tuples of nonnegative integers (xl, ... , xn)s
n

C(x) j l cj xj

M, c. > 0, j = 1, ... n .,

and

nOW) • (x)
j l :

3. Procedure

01. Start with the allocation x 0.

2. k l.
k = k-i

3. x k x + el, where e. is the ith unit vector and i is

any index for which



I

S+ 1) - k(x )]/C

is maximum.

k
4. If CCx )> M, terminate; otherwise k-.k+l and go to step 3.

4. Variant 1

A slight variant of the foregoing procedure is to terminate when

the objective function first exceeds a preassigned value instead of

when the cost exceeds a preassigred value.

5. Variant 2

A second variant is to branch at step 3 whenever ties occur for

the maximizing index. Let Ik be the set of maximizers. The procedure

is successively initiated with the allocations xk-i + e iEI, k

6. Lagrangian Analysis

Allocations x satisfying

O(y) > W(x) C(y) > C(x)

0(y) = W(x) > C(y) > c(x)

for all y are called undominated.



-3-

Lemma 1. If X a 0 and x ES maximizes the Lagrangian O(x) - Xg(x) over

all xE8, then x maximizes O(x) over all those xE8 such that g(x) 5

g(x ).

Proof. This is a special case of a result of Everett [3].11

As X varies over (0,oo) not all undominated allocations are necessarily

generated. For a geometrical explanation of this fact, see Everett [3].

Let mi*() be the smallest nonnegative integer m (assumed to exist)

satisfying Oi(m + I) - 0i(m) < Xci, Ei(X) be the set of nonnegative

integers m for which 0i(m + 1) - Wi(m) = Xci, Ti(X) = (mi(X)] UEi(K),
n

and T(X) = Xni= Ti (X). In what follows, a function defined only on

the integers is called concave if its first differences are decreasing.

Theorem 1. For any X > 0, if 0,(y) is concave, i = 1, ... ,

x(X)ET(X) = x(O) is undominated.

Proof. Apply Lemma 1.11

If Oi(y) is strictly concave, m exists for all X > 0. If Oi(y) is

differentiable, Ti(X) can be found by evaluating 0i(y) - Xyci at the

dnonnegative integers neighboring the roots -y 0i~y) = Xci; ofcurse,

if Oi(y) is strictly concave, there is a unique root.

Tneorem 2. If Oe(y) is concave and strictly increasing, i - 1, ... , n.

the allocations generated by the incremental allocation procedure are

undominated. j

Proof. Set I equal to the value of the maximum in step 3 of the proce-
k xk•(

dure. From the definition of x , it is easily checked that x ET(j).

Now apply Theorem 1.11
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From the proof of Theorem 2, we s6e that as X varies over (O,w) all the

allocations generated by the incremental allocation procedure are found;

with Variant 2, the converse is true as long as C(x(X)) f M. An al-

ternate proof of Theorem 2 can be found by adapting a proof of a theorem

on redundancy optimization found in Barlow and Proachan 12], pp. 167-168.

In the incremental allocaticn procedure, we may replace the
0

starting allocation x = 0 by any other undominated allocation obtained

from Lagrangian analysis. By suitable iterations on trial values of

X, a better starting allocation can be generated. Conversely, having

generated an allocation, we can immediately find a corresponding X =

max r + 1) - O)xi)]/ci, which can bc interpreted as the approximate

shadow price of the resource being allocated; it may be useful for

sensitivity analysis.

Theorem 3. If Oi(y) is concave and strictly increasing, i = 1, ... , n,

1are the allocations generated by the procedure, and x isx , ... , xaetealctosgnrtdb h rcdr•adzi

optimal for (*),

0(Xm) > O(z) 2 0(xm- )

and

C(xm) > C(z) 2 C(xm- )

0 < C( m) -c(x m-1)t, a

ir

Proof. Use the definition of the procedure and apply Theorem 2.11
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Let Z denote the s t of optimal allocations fv (*). Although
mn-I

it is not necessarily true that x EZ, the inequalities in the

theorem can be u. I to check if the procedure has generated an allocation

sufficiently near optimal for practical purposes. If not, the exact

solution can be found by dynamic programming, which requires much more

computational effort.

In the important case of equal cj's we can strengthen the preceding

theorem.

Corollary 1. If, in addition to the conditions stated in Theorem 3,

c ... , Cn, then the procedure generates an optimal allocation;
rn-i

i.e., x EZ.

M-1
Proof. C(xm) = C(xl) + cI. There is no allocation y such that

C(xm) > C(y) > C(xm From Theorem 3, it follows that xml EZ.-1

Gross [4] proves this result directly.

Corollary 2. If, in addition to the conditions stated in Theorem 3,

= -- =c, the solution to (*), say a(M), is concave and strictly

increasing in M, when M is restricted to integral multiples of CI.

Proof. Let u and v be optimal allocations corresponding to o(M - 1)

and o(M), respectively. Assuming that incremental allocation was used,

we have

a(M + 1) - a(M) = Oi(vi + 1).- 0i(vi)

a(M) - a(M - 1) = 1j(uj + 1) - Oj(ui) 2

say. By definition of the procedure, 0j(uj + 1) - Oj(uj) O i(vi + i)

- 0i(vi); hence a(M) - a(M - 1) a o(M + 1) - a(M).II
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The concavity condition is essentiale Exaerits can be easily

constructed where the conclusion of Theorem 3 fails vo hold when the
concavity condition is dropped. i ¢(•) is linear, say E aj Xj, a

direct proof of Theorem 3 is immediate, although the set of bounded

allocations maximizing the Lagrangian in this case is either empty or

I consists only of the null vector, except when X = max aI/c . With a

linear objective function, we have a version of the knapsack problem,

for which special methods are available to find the exact solution;
I

I see Gilmore and Gomory ([6], [7]) and the review paper of Balinski [I].
I

7. Nonconcave Objective Funciions
4

We now drop the restriction that el(y) be con.cave. Call 0i(y) the

least concave majorant of -i(YIN), the restriction of Oi(y) to the set
SN of nonnegative integers, and let Yi tyEN ,= 0iy)]. It is

easily seen that the line Xyci + max [oi(x) - Xxc. xENl never lies

below 0i(ylN); this motivates

Lemma 2. Yi EN maximizes L.(y) = 0y- ("Xci over N = yi FEYi"

Proof. Suppose to the contrary that yi is a maximizer but Yi Y..

Let x [z] be the largest [smallest] element of Y. less [greater] than

SYi" It follows that

0i(z) - t(yi) L.(z) - Li(Yi)
Ac. 0

z -y z- Y

S 3

and

Oi(Y -* i(x) L.(yi) - Li(x)1 . --Xci - , k 0
Y- x Yi x

Ii

L
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From these relations, it follows that

0i*(z) *i(y*) 0i(Yi) " i W

1 3.z - YiYi" •
iL

But since yi • Y,, we have

Oi(Z- i -0i(x)

z-. y. -
z - Yi Yi -x

a contradiction.11

On the other hand, if y'E Yi - W0), by setting X = 0i(y),yci we see

that there exists a X such that y' maximizes 0i(y) - Xci.

Thus, we may easily modify the incremental allocation procedure

to generate undominated allocations when each term of the objective

f.unctior is strictly increasIng but not necessarily concave. It is
o It- 1

obvious that x = 0 is undominated. Inductively, suppose that x =k

(x1 , ... :.n) is undominated and xiEYi, i 1, ... , n. Let y, be the

smallest element of Y. that is larger than x., i = 1, ... , n.

Theorem 4. If i is an index for which

0j(yj) - I(xV)

cj(yj - xj)

is maximum, the allocation x = (x, 'Xi-l1 Yis Xi+lx ) is

undominated.

Proof. By Lemma 2 we may repla:e the set 8 in Le 1a 1 by Xi= Y..

The re: t of thi proof is analogous to that of Theorem 2.11
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A technique of Barlow and Proschan [2], pp. 167-168, can easily be

extended, as in Feeney and Sherbrooke [41, to produce an alternate

proof. However, our proof shows more clearly the relation to standard

Lagrangian analysis; see the remarks following Theorem 2.

The suitability of incremental allocation for practical applica-

tion depends on the spacings of the allocations generated. Feeney

and Sherbrooke [4] describe an application where the successive un-

dominated allocations generated are close together.

8. Nonlinear Constraint

Let O(xj) be concave and strictly increasing, j = 1, ... , n.

If C(x) = E cj(Xj) with cj(xj) convex and strictly increasing, j = i,

... , n, and we replace the criterion of step 3 of the procedure by

k-l + 1) - (1)
O (xj +

k-1 c~k-l
c.(x + 1) - (x
iiJ i J

all the allocations generated are undominated. The proof is analogous

to that of Theorem 2.

A nonconvex constraint can be treated by an analog of the method

of the preceding section.

9. Application I

In the well-known flyaway-kit problem (see Karr and Geisler '9]

and Geisler and Karr [5]), the expected stockout cost for item j when

x units of item j are included in the kit is
!j

yj(x ) b. £ (k- x )p(k)
Sk=xj

1i
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where b > 0 and pj(k) is the probability that k units of item j

are demanded. Setting 0j(xj) - - Yj(xj) [and replacing min E yj(xj)

by max E 0j(x we have

0.(xj + 1) - 0j(xj) = b, Pj(xj)

where

P i(k) = p j(i).
i=k

Since Pj(x 3 ) is decreasing in x., "j(xJ) is concave; thus, the

marginal analysis application in [5] and [9] is justified.

10. Application 2

Consider the problems

(A) n Xjmin y, Pj

j=1

n
s.t. E xi =X

j=l

xi nonnegricive integer, j 1, ... , n

k Y.
(B) max II (1- q. )

i=l

k
s.t. E Y. Y

i=l

yi nonnegative integer, i 1 ... , k
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The pi's and q 's are constants between 0 and 1. It is easily shown

that the objective function in (A) is the sum of convex functions;
n x.

hence, the procedure can be (legitimately) applied with - E p. as
j=1

objective function. In (B), it is equivalent to maximize

k yi
E log(l - qi ), each term of which is easily shown to be concave.

i=l

Landi [10] gives a war gaming problem, studied earlier but less

generally by Piccarielo [11], in which the solutions of (A) and (B)

are composed to obtain an optimal allocation of attacking missiles

to an opposing missile launch complex. Denoting by F(X) and G(Y)

the solutions of (A) and (B), respectively, let

H(T) = mrin F(X)[I - G(Y)] : X, YES, X + Y = T3

In the missile allocation context, H(T) turns out to be the minimum

expected number of missiles launched in retaliation after an attack

by T missiles, if we interpret

p 4-o probability of survival of launch pad j;

qi4-* probability of survival of control center i;

X *-o the number of missiles allocated to attack
launch pads;

Y 4-& the number of missiles allocated to attack
control centers;

x.4-o the number of missiles allocated to attack
J launch pad j; and

yi.-w the number of missiles allocated to attack
control center J,

with the understanding that if at least one control center survlves

an enemy attack, all surviving missiles can be launched, and if all

control centers are destroyed, none of the surviving missiles can be
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launched. It is assumed that of the N + C separate targets (N issiles,

C redundant control centers) at most one can be destroyed by a single

enemy missile.

From Corollary 2 it follows that F(X) and I - G(Y) are both convex

and strictly decreasing. Unfortunately, this does not imply that - log

F(X) and - log [1 - G(Y)] are concave. However, since we have effectively

only two variables at this stage, the combinatorial problem can be solved

by brute force without difficulty.

•LL
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