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ABSTRACT

The objective of this two-phase program was to develop large
dynamic range S-band tunnel diode amplifiers for phased array receivers,
Under phase I a prototype amplifier was developed and subsequently
delivered to Lincoln Laboratories. Phase II called for a reproducibility
study of these amplifiers, and for the investigation of amplifier char-
acteristics pertinent to phased array applications,

This report covers the experimental work performed under phase
IT and the results that were obtained in reproducing three amplifiers,
Also, for completeness of this report, parts of the theoretical work per-
formed during phase I are included,

Three two-stage tunnel diode amplifiers were delivered to Lincoln
Laboratories in fulfillment of the phase II requirements. These amplifiers
operate at a center frequency of 2.85 Ge/s :2%, have a 1,5 dB bandwidth
ranging from 400-450 Mc/s at a gain of 18,0 to 18,5 dB, and have a noise
figure between 5,6 and 5.9 dB, The amplifiers are unconditionally stable,
and their output power at the 1 dB compression point ranges from -10,5 dBm
to -12 dBm, The phases of any two amplifiers track within :30 over a band
of 110-190 Mc/s, and the amplitudes track within +1/2 dB over a band of

290-410 Me/s.
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1.0 Introduction

Conventional low noise tunnel diode amplifiers using either

gallium antimonide or germanium tunnel diodes have a power output at

the 1 dB gain compression point of about -27 dBm and -24 dBm, respectively,

The resulting dynamic range of these amplifiers is inadequate for most
7 ~

phased array receivers,

The aim of this program was to increase the

dynamic range of tunnel diode amplifiers so that they can be considered

for phased array applications,

The two-phase program called specifically for the development

of tunnel diode amplifiers with the following objective performance:

1.

2.

10.

ik

12,

13,

14,

155

Center Frequency
1.5 dB Bandwidth
Gain

Noise Figure

Power Output (at 1 dB gain Compression)

Input Match

Output Match
Stability

Size

Connectors
Amplitude Tracking
Phase Tracking

RF Overload
Temperature

Reliability

2,85 Ge/s

15% (425 Mc/s)

17 dB min,

6 dB max.

-10 dBm min,

2:1 max,

1.3:1 max.
unconditional

1.7 X max.
N-female

+1/2 dB over 10% band
+3° over 10% band
50 mW Ccw
109-30° ¢

104 hours



This report covers in Section 2 the theoretical problem of
obtaining large power outputs from tunnel diode amplifiers, General
tunnel diode amplifier characteristics are considered in Section 3.
Amplifier design and selection of its associated components are dis-
cussed in Section 4. Test methods and the results that were obtained
on three experimental amplifiers are shown in Section 5. Concluding

remarks and recommendations are given in Section 6,
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2.0 Large Dynamic Range Tunnel Diode Amplifiers

2.1 Outline of Analysis

In the usual small signal analysis of tunnel diode amplifiers
it is always assumed that the junction conductance of the diode is inde-
pendent of the rf..amplitude. Thus, the small signal gain of the amplifier
is constant,

In the present analysis the dependence of the junction con-
ductance is taken into account, The I-V characteristic of the tunnel
diode is approximated by a tenth order power series and the coefficients
of this series are used to define an effective large signal junction con-
ductance (Gd)e at the fundamental input frequency. Graphical methods
reduce the analysis of the amplifier from a non-linear to a linear problem,
For small gain depressions (up to 3 dB) a closed form expression for input

and output power under dynamic conditions is derived,
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2.2 Large Signal Analysis of Tunnel Diode Amplifiers

Fig, 1 shows a schematic of a circulator-coupled reflection type
tunnel diode amplifier., An equivalent circuit of this amplifier, assuming
an ideal circulator, is shown in Fig, 2, In this circuit the diode is

1)

represented by its equivalent circuit consisting of the junction con-
ductance (Gd)e’ shunted by the junction capacitance C, both in series
with the parasitic inductance L and resistance r, The amplifier circuit

is represented by the susceptance B, and the circuit losses G.

The power gain G of such an amplifier is:

2 2

(G0 + G + Bt
> (D

)

¢= | - 2
(Go - Gt) + By
where | is the voltage reflection coefficient, G, is the circulator ad-
mittance and Gt and Bt are the total negative conductance and total sus-
ceptance, respectively, across the circulator conductance,

In general, Eq. 1 is difficult to evaluate since both total G
and total Bt are functions of frequency and rf--amplitude. It should be
noted that the maximum gain does not necessarily occur where B, ({ ) = 0,
which can be verified by taking the frequency derivative of Eq. 1. The
simplest solution of Eq. 1 is obtained by assuming that the circuit is
lossless (GC = 0) and that the series parasitics of the diode can be

neglected (r = L = 0), Under these assumptions the power gain at resonance

is maximum and can be written as:
" 2
(% * GD]

- 2
LGO - (Gd)e]

(2)
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In order to calculate the gain as given by either Eq. 1 or Eq. 2
the dependence of (Gd)e on the amplitude of the rf-voltage appearing across
the diode junction has to be found. This dependence was calculated for a
typical Ge and GaAs tunnel diode by the use of the following tenth-degree

power series approximation of their I-V characteristics:

10

n
Iy = Z an (V) (3)

n = 0

Eq. 3 is plotted in Fig. 3 together with the measured I-V characteristics
of a typical Ge and GaAs tunnel diode normalized to the diode peak current
Ip'

If the rf-component of V4, the voltage across the diode junction,

is assumed to be purely sinusoidal and represented by V, cosu> t then:
Vg=Vy +V, coswt (4)
where Vy is the bias voltage and V, the peak rf voltage. Then

10

n
I = :E an (Vy + V4 cos w t) (5

n=2o

I, + I cos w t + (Harmonic terms).

The dynamic junction conductance (Gd)e at the fundamental fre-

quency is then defined as:

s I (6)



- 6 =

In the limit of vanishingly small rf signals the value of the junction con-
ductance is given by the slope of the I-V characteristics at the bias point,

thus:

Gy = — (7

where I, is the dc current through the diode., Depending upon the particular
amplifier application, the bias point is chosen near the point where the
negative junction conductance is maximum, For the typical tunnel diodes

with characteristics as shown in Fig., 3:

iL
F— A
(Cadpax 011 for Ge
(8)
o
(Gd)max = 553 for GaAs

where Ip is the diode peak current in amperes. Fig, 4 shows a normalized
v
plot of (Gd)O vs, the reduced bias voltage > uhere Vo is the bias voltage

v
P
corresponding to the peak current Ip' The calculated values of the effective

junction conductance ratio & , defined by:

(Gg)
= g, (9)
(Ga) o

as a function of Vo/v is plotted in Fig, 5 for three different bias
|%

voltages. The three curves shown are for a bias me where (Gg) = (Gd)max,

for a bias Vb, Where the noise voltage I5(Rj)y is minimum, and for a bias



= i =

¥y ¢ where (Gd)e vs. Vo/Vp is maximally flat. Also shown ip Fig. 5 is the
gain depression A G in dB as a function of & for various maximum gain
values, This maximum gain value at resonance can be found from Fig. 6,
where the maximum gain is plotted as a function of the load ratio N

defined as:

<>LI _ S (10)
" 6T,

where G, is the load conductance and (Gp), the absolute value of the small
signal load conductance., For the lossless case (n= 1L =) the load

ratio is:

oA = Co (10a)
(Ga) o

The power relation of a lossless reflection type amplifier is:

Pout = Pin * Py (11)

where P;  1is the input power to the amplifier and Py is the power generated

by the negative conductance of the diode junction. The power generated by

the diode is

By = m— (Gd) (12)
Also

Pout =€ Pin (13)
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so that
v 2
P = O (6 1 (14)
in > d’e D
Vo2 1
Pout = =— (Ggle =— (14a)
2 1-1
G

Eq. 14 can be solved graphically by means of Fig, 5, For small gain
compressions (or more specifically for 1 » 6 > .55) the 6 vs, VO/Vp

curve of Fig. 5 can be approximated by the following expression:.

G = 1- vv,2 (15)
where
(.094 for Vpg
b =< .033 for Vp,

\.018 for Vb

Using the definitions of <&\ and G the gain is given by:

O 2
+
G ={_<.i__5_ (16)
~-6-
and the maximum gain Gg,, (for practical bias voltages Vp where
6 £ 1 for all rf-amplitudes) by:
, 2
A+ 1
Gmax = ——-] (16a)
L =1



Eq. 14 can be rewritten in closed form as:

(650
8b ol

°© (1-6)(c -6 an

in

The saturation characteristics of a Ge tunnel diode amplifier and a GaAs
tunnel diode amplifier, each biased at Vi, , and each with 9 dB maximum
gain, were calculated, It was assumed that both amplifiers employ a diode
with (Ggdpax = 36.4 mS (corresponding to a 4 mA Ge or a 8 mA GaAs diode)
and the same load conductance G,. The results of these calculations are
plotted in Fig, 7. Also shown in this figure is the saturation character-
istic of the cascade of these two amplifiers (Ge stage followed by GaAs
stage) resulting in a maximum gain of 18 dB. Such a cascade was selected
so as to result in a lower noise figure. For comparison, the saturation
characteristics of single stage amplifiers with 18 dB gain of both Ge and
GaAs tunnel diodes were calculated, using the same diodes as above with
the load impedance changed to give 18 dB gain. The results are plotted
in Fig. 8. From Figs. 7 and 8 it can be seen that the power output at the
1 dB gain compression point of the cascaded amplifier is 2,5 dB and 8,5 dB
larger than for a single stage GaAs or Ge tunnel diode amplifier, respectively.
It should be noted that the power output of a practical amplifier (r # .p,
L $£0), using the same peak current diode, is less than the values that
were calculated in this example,

The more general case, taking diode and circuit losses into ac-

count, is treated in Ref. 2,
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3.0 Tunnel Diode Amplifier Characteristics

3.1 Stability

The question of amplifier stability when using tunnel diodes is

of greatest importance. The tunnel diode exhibits a negative resistance

63
up to the cutoff frequency f, defined as:
6.3 1/2
= _4d’0 (_ l . =1 (18)
€ 2nC EGgDs

where (Gd)o, C,and r are defined as before., In order to avoid unwanted
oscillations the amplifier has to be stable for all frequencies up to f,.

If a diode has ©parameters = such that:

LGy < 1 (19)
I'C

then the terminal impedance of the diode is capacitive for all frequencies
up to the cutoff frequency. A diode obeying Eq. 19 is sometimes referred
to as short circuit stable, In order to resonate such a diode the circuit
reactance must be inductive, since the terminal impedance is capacitive
for all frequencies up to f,. Using the circuit model of Fig. 2 the ad-

mittance to the left of the diode terminals 2-2 is then of the form

1

60y = B = =oeT.

(assuming lumped c¢ircuit elements). A stability model
that will be used subsequently is shown in Fig, 9, The criteria for

stability is that the roots of the characteristic equation:

Yi(s) ® Y(s) =1 (20)



= e

are in the left half of the complex s-plane. The location of the roots
4
in the s-plane of Eq. 20 can be generally evaluated by the Routh criteria.( )

For the given circuit the following relationsof the physical constants

must be observed in order to assure stability:

L(Gd)2O
= < r(Gy)o
(21)
(Gy), ¢ (8 * &)

Lt + r(G + G )
L o <
c

where Lt = T, #* Lc‘

Eq. 21 expresses the relationship between the diode and circuit

(5)

parameters. It has been shown that the general necessary and sufficient

conditions for stability are that:

2
L
€

(22)
r(Gd)O < 1

where 3 » F () > 1; F (&) is a function of r(Gy)pgx. Thus, for a given

set of diode parameters fulfilling Eq. 22 there exists a passive load ad-

mittance Yy(s), no matter how complicated to realize, that will stabilize

1

—~——— and
Jq)LC

the tunnel diode. For the assumed load admittance (G, + Gp) -

diode parameters, Eq. 22 reduces to Eq. 21.
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A graphical method to test stability of a given circuit is to
plot the total passive admittance to the left of the fictitious diode
junction terminal 1-1 (see Fig. 2) as a function of frequency on an ad-
mittance chart (say Smith chart). If the origin 0 of the chart is shifted
by the amount (Gg)s /G, to the right, where G, is the same normalizing
constant used in the admittance plot, the criteria of stability is whether
the plot encircles the new origin ol or not.(6) If the plot of Y en-

circles this origin then the circuit is unstable, A plot of a stable

tunnel diode amplifier is shown in Fig. 10.

3.2 Gain

The gain of a reflection type tunnel diode amplifier is given
by the absolute value of the power reflection coefficient and is thus
given by Eq. 1.

2 2
G
(Go * t) ¥ Bt (1D

2
(GO - Gt) + Bt2

G =

Both Gy and B, are generally functions of frequency and rf-drive and it

is, therefore, not valid to assume that the maximum gain occurs at a
frequency f where B, (f) = 0. For a stable amplifier it can be shown

that the maximum gain occurs at a higher frequency than the one for which
B; = 0. The frequency shift depends on the gain; if the gain increases

the frequency shift decreases. The circulator admittance G5 is in

practice also a function of frequency,but its effect on the frequency shift

in the pass band of the circulator is small.
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3.3 Bandwidth
The maximum voltage gain bandwidth product obtainable from a
single tuned reflection type tunnel diode amplifier under the most ideal

circuit conditions (r = L = G. = 0) and for a total circuit Q » 2 is

given by:
(Gd)max oA W)
G,BW = ————e—— £===+=< (23)
i 2n C 1. 2
\ 735
where G, is the voltage gain, : BW is the 3 dB bandwidth, and the other

parameters as defined in section 2. In practical circuits this gain band-
width product is being reduced by the parasitic elements of the diode

and by the frequency sensitivity of both circuit and circulator.

3.4 Noise Figure

The sources of noise in a tunnel diode amplifier are the shot
noise of the tunnel diode and the thermal noise of the circuit and diode.

The shot noise content , n, of tunnel diodes depends on the diode material

(7

and varies as:
(M) gasp: (Mge: (MIgpg = 1:1.75:2,35 (24)

The noise figure of a tunnel diode amplifier for high gain and negligible

(8

circuit losses can be written as

1 + 20 I,/(G
P = . o/ (6do (25)

e 3 2
Ll - r(Gg)} (1 - £2 ]
= fC
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where IO is the dc-current through the diode at the bias point and (Gd)o
the negative conductance at this point, The noise figures of typical
S-band amplifiers, excluding circulator losses, are about 3,3 dB for

GaSb, 4.3 dB for Ge and 5.3 dB for GaAs amplifiers,

3.5 Dynamic Range

The dynamic range is determined by the minimum detectable power,

Poin,» and usually by the power input at which gain compression is 3 dB,

(Pin)3 4B* Thus,
(Pin)
D= ___3dB (26)
Phin
P iy = KTBF (27)

where K is Boltzmann's constant and T is the temperature in °K. The gain
compression is due to non-linearities of the I-V characteristic of the

diode and has been discussed in section 2 of this report,
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4,0 Tunnel Diode Amplifier Design

4.1 Tunnel Diode Selection

The choice of tunnel diode parameters depends on the required
amplifier performance, Usually the gain, bandwidth, noise figure and dy-
namic range are specified. This information is sufficient for proper
diode selection. For stability reasons it is desirable to select a
diode with minimum series inductance L., The diode material is chosen
either from noise figure or dynamic range considerations or a combination
of both, The dynamic range requirements determine a peak current for
the diode (Fig. 4 and Eqs. 14 and 16). The resulting diode conductance
(G3)max must fulfill the selected diode stability criteria (Eq. 19),
the noise figure requirement (Eq. 25),and also result in a reasonably
high cutoff frequency (Eq. 18). For low noise amplifiers the cutoff
frequency is usually selected to be at least twice the operating frequency.
From this additional requirement and the above equations the remaining
diode parameters can be approximately determined, For large dynamic range
amplifiers, which require high peak current diodes, it is increasingly
important to use diodes with the smallest series inductance possible,

4,2 Circulator Selection

The circulator provides isolated input and output terminals for
the amplifier and protects the tunnel diode amplifier module from mis-
matches at these terminals., The circulator is selected to have a minimum
of insertion loss, a reasonable amount of isolation,and a low amplifier

port VSWR over the amplifier bandwidth, If amplifiers have to be reproduced,
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the impedance shape at the amplifier port has to be similar from unit

to unit, Most present day four port circulators have a 10-20% band-
width, an insertion loss of less than 0,3 dB,and isolations in excess

of 25 dB, Temperature compensated circulators operating over the temper-
ature range from -55°C to +70°C are also available,

4.3 Amplifier Circuit Design

The characteristic impedance of most commercial circulators is
50 ohms. The load impedance, for a specified gain, is determined by the
load ratio o! and the dynamic range. For large dynamic range amplifiers
the required load impedance is less than 50 ohms (about 10 ohms for the
experimental amplifiers built)., It is, therefore, necessary to transform
the circulator impedance to the required impedance level. The amplifier
port admittance of a practical circulator is not constant and real as
previously assumed in the amplifier analysis, Figures 11A and 11B show.
the normalized admittance plots of two four port S-band circulators at
the amplifier port, where the input and output ports were terminated in
50 ohms. Since the amplifier port VSWR at some frequencies can be very
high, it is usually necessary to include a stabilizing network in the
circuit so as to assure stability for all frequencies up to the cutoff
frequency f, of the diode. The circuit must also provide some means
of tuning to the required center frequency. The diode must be stably dc
biased into the negative resistance region,which requires a bias network.

Fig. 12 is an equivalent circuit of a practical tunnel diode amplifier.
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In this circuit YC is the circulator admittance, the transmission line
transformer is depicted by 21, Ys is the admittance of the stabilizing

circuit, Y, is the tuning susceptance, Cg and Rg are the elements of the

t
bias network, and the tunnel diode is represented by its equivalent circuit,
The amplifier design can be checked by means of a stability
plot similar to Fig, 10 (see also section 3.1). The admittance at the
terminal 2-2 can be measured as a function of frequency, the known parasitic
elements of the diode can be added, and the admittance Y;; across the
fictitious terminals 1-1 can be plotted., The stability can then be deter-
mined from a plot similar to Fig. 10 (see also section 3.1), If some in-
stabilities occur (encircling of point 0') then the circuit has to be
modified to avoid these instabilities. The stability plot using G, = (Gd)0
is also useful in determining the gain and the bandwidth of the amplifier
at the terminals 1-1 by taking the square of the inverse reflection co-
efficient r*-| as obtained from the stability plot. If the circuit is

lossless, then the gain G at terminals 3-3 is identical with the gain (G)11

at the terminals 1-1, In the general case G is smaller than (G)ll namely:
2
G = (611 | sl (28)

where Vs\ <€ 1 is the determinant of the scattering matrix of the passive

network between the terminal pair 1 and 3,
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5.0 Experimental Tunnel Diode Amplifiers

5.1 Design Considerations

The design and construction of the phase I amplifier was based
upon the theoretical considerations presented in Section 2, Section 3, and
Section 4, These considerations made it apparent that a two stage ampli-
fier is the best solution to obtain the required dynamic range. 1In the
first stage a Ge tunnel diode was used and in the second stage a GaAs
diode provided the large output power. Each stage used a four port cir-
culator. These circulators were required to have similar amplifier port
impedance characteristics (see Figs, 11A and 11B), A sketch of the coaxial
amplifier structure that was developed is shown in Fig. 13, The phase I

amplifier delivered to Lincoln Laboratories had the following performance:

Center Frequency 2.86 Ge/s

Gain 17.3 dB

1.5 dB Bandwidth 120 Me/s

Noise Figure 5.6 dB

Power Output (at 1 dB gain compression -13.7 dBm
point)

Stability unconditional

Spurious Output of IM products -41 dBm max,

(Up to 1 dB gain compression point)

Dynamic Range per Mc/s Receiver 83,6 dB
Bandwidth (to 3 dB compression)
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More details of this amplifier are given in the phase I final
report. A photograph of one amplifier stage is shown in Fig. 14,

The objectives of the phase II program were:

a. To improve the amplifier developed under the
phase I effort.

b. To reproduce and evaluate three of these im-
proved amplifiers.

¢, To investigate the tracking characteristics
of any two of these amplifiers.

d. To deliver these amplifiers to Lincoln
Laboratories upon completion of their evaluation,

The improvement program was started with a mechanical redesign
of the amplifier structure. The stubs of the tuner and stabilizing cir-
cuit were rigidly supported in a solid aluminum structure., The same
structure also removed some of the electrical discontinuities at the
interface between the circulator and the amplifier module, In order to
improve the bandwidth of the amplifier, . ultra low height (.010") ceramic
micro stud diode packages with a case capacitance of less than 0.4 pF
(compared to 2 pF for the strip line package used in the phase I amplifier)
were selected, Tunnel diodes in this package exhibit a self inductance
of about 150 pH (compared to 75 pH for the strip line diode) but their
greater mechanical strength and the possible increase of amplifier band-

width favored their use, The excess series inductance of the diode within
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the amplifier structure can also be reduced due to the favorable geometry
of the package that allows minimization of diode mounting discontinuities.
The bias section of the amplifier was redesigned. to accommodate the micro
stud package, and also improved so as to reduce the possibility of rf-
leakage. It was decided to use for the phase II two stage amplifier, a
single six-port circulator in place of two four port circulators, which
reduces the length of the amplifier by one inch. The amplifier port ad-
mittance shape in the pass band was specified to be similar from unit to
unit with a maximum VSWR of 1,15,
The remaining amplifier circuit components were essentially the
same as in the phase I amplifier, consisting of:
a. A transformer section designed to result in a
gain of about 9 dB.
b. A variable short circuit tuner that also provides
the dc return path for the diode,
c. A stabilizing circuit designed to have negligible
loading in the pass band of the amplifier and to
have sufficient loading elsewhere, in order to
assure stability.
d. A dc bias network that bypasses the rf signal and
permits establishment of a stable dc operating
point in the negative resistance region of the

diode.
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The diodes, both Ge and GaAs, and the circulators used were made
to the following specifications:

Tunnel Diodes:

(R)pjpn = 27 ohms +3%
Cj = 2.3 pF +10%

(Rg)_ .

9 \)/ min >/ 4.5

r

I

=B > 10

I,

Six-port Circulator:

Frequency 2,6-3.2 Ge/s
VSWR (all ports) = i (T
Insertion Loss £ 0.3 dB per pass
Isolation

(input) > 25 dB

(output) » 40 dB

Amplifier port admittance shape in the pass band to be
similar from unit to unit,
Fig. 15 shows a sketch of a single phase II amplifier structure

and Fig, 16 is a photograph of a completed two stage amplifier,
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5.2 Amplifier Performance

The performance of each amplifier (designated S128-21, S128-22
and S128-23) was evaluated. The following characteristics were measured:
Gain versus frequency
Gain versus power input
1 dB gain compression output power versus frequency
Noise figure versus frequency
Gain versus insertion phase
Third and fifth order intermodulation ' cross products
power output versus power input.
Tracking performance of all three possible amplifier pairs was
evaluated and the following characteristics were measured:
Amplitude tracking versus frequency
Phase tracking versus frequency
Phase tracking versus power input
The amplifiers were adjusted while using a swept frequency test
set-up as shown in Fig, 17, The bias of the first stage was set near the
lowest noise voltage point of the diode and the bias of the second stage
near the point of maximally flat power output. The frequency response
and the saturation characteristic were then measured by a point by point
method using a calibrated signal source and a high sensitivity power

meter,
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The gain versus relative insertion phase test was performed in
a set-up as sketched in Fig. 18; the signal is fed over a directional coupler
which Is terminated in a movable short circuit, a similar arrangement was
at the amplifier output., The gain was recorded as the phase of the short
circuit was continually shifted.

The noise figure of each amplifier was determined in a set-up
as shown in Fig, 19 that permits automatic noise figure readings as well
as by the Y-factor method.

The intermodulation cross products power output measurement was
carried out by feeding two signals of equal amplitude but different fre-
quency (f; and f,) over a directional coupler to the amplifier. The fre-
quencies f; and f, are spaced so that both signals and the third and fifth
order cross products are within the pass-band of the amplifier. The ampli-
tudes of the third order (2 fi-f, and 2 f2-f)) and fifth order (3 f1-2 f,
and 3 f5-2 fl) cross product power were detected by a spectrum analyzer
(see Fig, 20 for test arrangement).

Phase tracking was evaluated in a phase bridge as shown in Fig,
21, This phase bridge was initially balanced by applying a swept frequency
signal at terminal 1 of the magic tee and by adjusting the level and phase
of this signal in both arms of the bridge until a broad band null ‘was ob-
served at terminal 2 of the output magic tee. The phase difference of two
amplifiers, one inserted in each arm, was recorded point by point as a
function of frequency and as a function of power input for discrete fre-

quencies.
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The results of the above measurements on all three amplifiers

delivered to Lincoln Laboratories are plotted in Fig, 22 through Fig, 47,

The following is a listing of these plots:

Photograph of swept frequency response

(S128-21, S128-22, and S128-23)

Gain vs. frequency
Saturation characteristic

1 dB gain compression vs, fre-
quency

Gain vs, insertion phase
Third and fifth order IMC product

power output vs., input power
of each signal

Typical noise figure vs, frequency

Amplitude tracking vs, frequency
Phase tracking vs. frequency

Phase tracking vs,., input power

Fig, 22
Amplifier
S128-21 S128-22 S128-23
Fig. 23 Fig, 28 Fig. 33
Fig. 24 Fig. 29 Fig, 34
Fig. 25 Fig. 30 Eig. 85
Fig. 26 Fig. 31 Fig, 36
Fig, 27 Fig., 32 Fig, 37
Fig., 38
Amplifier Pairs
S128-21 S128-21 S128-22
S128-22 S128-23 S128-23
Fig. 39 Fig, 42 Fig. 45
Fig, 40 Fig, 43 Fig. 46
Fig. 41 Fig. 44 Fig. 47
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The performance of these amplifiers can be summarized as

follows:
Amglifier S128-21 S128-22 §128-23
Center frequency (Ge/s) 2.80 2,84 2,83
Gain (dB) 18.5 18,4 18,4
1,5 dB-Bandwidth (Mc/s) 450 400 430
Noise Figure (dB) 5.9 5.7 5.6
Power Output at 1 dB gain compression (dBm) -11,4 -11,3 -~10,6
3rd IMC-Signal output power ratio (dB)
at 1 dB gain compression 23,5 26,5 23.0
at -45 dBm input 40 41 32
Amplifier S128-21 S128-21 S128-22
Pair S128-22 S128-23 S128-23
:30 Phase tracking range (Mc/s) 190 180 110
40.5 dB Amplitude tracking range (Mc/s) 290 310 410
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6,0 Conclusion and Recommendations

It has been demonstrated that the dynamic range of tunnel diode
amplifiers can be increased by about 14 dB., This increase was accomplished
by using high peak current tunnel diodes and by cascading two amplifiers
of moderate gain, The first stage of the amplifier incorporated a Ge
tunnel diode biased in the low noise region of its dec-characteristic,
and in the second stage of the amplifier a GaAs tunnel diode was used
dec-biased to give a large power output. It also has been shown that
these amplifiers can be reproduced with reasonable tolerances imposed
upon diode parameters and circulator performance. Three amplifiers were
built and delivered to Lincoln Laboratories, The performance of these
amplifiers can be summarized as follows:

Objectives

Center Frequency 2.85 Ge/s +2% 2.85 Ge/s
Gain 17 dB min. 17 dB min.
1.5 dB-Bandwidth 400 Mc/s min, 450 Mc/s
Noise Figure 6 dB max. 6 dB max,
Power output at 1 dB -11 dBm +0.5 dB -10 dBm min,
gain compression
:30 Phase tracking range 180 Me/s +10% 285 Mce/s
+0.5 dB Amplitude tracking 300 Mc/s +10% 285 Mc/s
range
Size 81/2x 41/2 x11/16 1.7 > max.

(1.2 \ max. transverse) (transverse)

Weight 2 1bs. 9 oz. max,
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While the amplifiers constructed under this program
operated at S-band frequencies, the techniques that were developed could be
used to fabricate similar amplifiers up to at least X-band frequencies.

We also believe that significant improvements in both performance
and size of these amplifiers are possible. First, the presently used six-
port circulator uses permanent magnets and is therefore heavy and bulky,

This circulator could be replaced by a magnetless, square loop lithium
ferrite circulator. The weight and size of this circulator would be only

a fraction of the presently used circulator, and since magnetless circulators
can be readily switched, adjustment of multistage amplifiers would be greatly
simplified., Second, the amplifier module could be fabricated by thin film
integrated circuit techniques on the circulator circuit board. These
techniques would reduce the parasitic series inductance of the diode, thus
allowing the use of higher peak current diodes.

The above improvements would permit the construction of highly
reproducible S-band tunnel diode amplifiers with excellent tracking charac-
teristic. These amplifiers are expected to have a 257 bandwidth at a gain
of 18 dB, a noise figure of 5 dB, and a power output of -6 dBm at the 1 dB

gain compression.
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FIG. 22 SWEPT FREQUENCY RESPONSE OF THREE
S128 AMPLIFIERS
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