A BIBLIOGRAPHY
ON MICROWAVE (ROTATIONAL) SPECTROSCOPY

by

James E. Wollrab

August 1965

U S Army Missile Command
Redstone Arsenal, Alabama
A BIBLIOGRAPHY
ON MICROWAVE (ROTATIONAL) SPECTROSCOPY

by

James E. Wollrab

Aerodynamics Branch
Advanced Systems Laboratory
Directorate of Research and Development
U.S. Army Missile Command
Redstone Arsenal, Alabama
ABSTRACT

The references listed in this bibliography include a majority of the important papers and books that are related to the development of microwave spectroscopy. General references relating to the basic concepts of rotational and, in a limited way, vibrational spectroscopy are also included. Titles of dissertations, reports which have not been published in the open literature, and abstracts of papers presented at spectroscopy symposia generally are not given. Rather than a pure chronological listing, the references have been placed under specific topic headings whenever possible. A chronological order under these headings is maintained. Since a unique classification of each article is impossible, references which do not fall directly under one of the specific topics are listed in Section XII.

Several other bibliographies are available. Townes and Schawlow compiled a complete listing up through 1954. In addition, Favero has compiled a bibliography covering 1954 through 1962, and Starck has completed one for 1945 through 1962. However, the latter two are not as generally available as might be desired. (See Section I.)

This bibliography includes a majority of the references concerning microwave spectroscopy through 1964, and a number of references from early 1965. Titles are listed to enable a better preliminary assessment of the articles. The listing is a print from IBM cards and a special notation is required in some instances. Atomic weights are given in parentheses following the atomic symbol, e.g., N(14) for N. All letters are in the upper case, e.g., L-TYPE DOUBLING is written for l-type doubling. Numerical subscripts are written on the same level as the atomic symbol, e.g., H2S is written for H2S.

Preceding some of the reference lists are very brief resumes. These are not intended to serve as reviews of each area but merely to point out some of the more important or recent progress in each area.
CONTENTS

Section I. GENERAL AND REVIEW ARTICLES 1
Section II. INSTRUMENTATION .. 5
Section III. LINE SHAPE AND LINE BROADENING 15
Section IV. THE RIGID ROTOR ... 19
Section V(a). GENERAL VIBRATION-ROTATION
 INTERACTION ... 25
Section V(b). CENTRIFUGAL DISTORTION 27
Section V(c). CORIOLIS COUPLING 29
Section V(d). L-TYPE DOUBLING 30
Section VI. MOLECULAR STRUCTURE 33
Section VII. QUADRUPOLE COUPLING 37
Section VIII. HINDERED INTERNAL ROTATION 45
Section IX. INVERSION .. 55
Section X. STARK EFFECT ... 61
Section XI. ELECTRONIC AND MAGNETIC EFFECTS
 (ZEEMAN EFFECT) ... 65
Section XII. GENERAL MICROWAVE PAPERS
 AND RELATED TOPICS 71
Section I. GENERAL AND REVIEW ARTICLES

36. L. Kellner. Scientia (Milan) 98, 51-56 (1963) Microwave Spectroscopy
40. E.B. Wilson, Jr., Pure Appl. Chem. 7, 23-31 (1963) Recent Results of Chemical Interest from Microwave Spectroscopy

Section II. INSTRUMENTATION

A majority of microwave studies have been carried out using the conventional square-wave Stark-modulated microwave spectrometer5, 11, 21, 24, 112 employing phase-sensitive detection and a reflex klystron source. Measurements have been extended from X-band up into the millimeter wave region through the use of harmonic generators and the development of high frequency tubes.45, 46, 62, 63, 89, 93, 128 Sensitivity and resolution have been improved by frequency stabilization1, 6-8 and to a greater degree by phase stabilization of the source.

The demonstration of maser principles led to their use in the study of rotational spectra. Very narrow line widths have been achieved with beam-maser spectrometers100, 113 allowing the observation of hyperfine splittings which are too small to be resolved on a conventional spectrometer. Maser action has also been used to identify weak transitions when they have levels in common with stronger lines whose quantum numbers are known.94, 106

Although Stark effect spectrometers predominate, Zeeman effect studies32, 33, 107 have been accomplished using a variety of cell designs. Other specialized microwave spectrometers include cells with "flow-through" systems for the study of short-lived free radicals, parallel plate absorption cells for precision dipole moment measurements,72 radio frequency and microwave molecular beam devices,75, 116, 119 and high-temperature cells.31, 48, 51 Relative and absolute absorption intensities, as well as line width measurements, also require specialized system design.85, 102, 111, 141 Millimeter wave transitions are being investigated as a possible source for a millimeter frequency standard.122-126, 132-135

14. R. Karplus, Phys. Rev. 73, 1027-1034 (1948) Frequency Modulation in Microwave Spectroscopy

15. R. Karplus and J. Schwinger, Phys. Rev. 73, 1020-1026 (1948) A Note on Saturation in Microwave Spectroscopy

OF MICROWAVE OSCILLATORS

25. T. TAKAHASHI, A. OKAYA, T. OGAWA, AND T. HASHI, COLLEGE SCIENCE, UNIV. KYOTO 26, 113-121 (1950) 1.5 CM WAVELENGTH MICROWAVE SPECTROSCOPE

26. E. S. DAYHOFF, REV. SCI. INSTR. 22, 1025-1026 (1951) A FREQUENCY CONTROLLER FOR REFLEX KLYSTRONS

27. R. FREYMAN, PHYSICA 17, 328-332 (1951) REMARK ON THE ROTATIONAL METHOD AND THE METHOD OF PERTURBATIONS IN THE ULTRA-HERTZIAN REGION. APPARATUS FOR MEASURING THE ABSORPTION OF VAPORS FOR FREQUENCIES NEAR 10000 MC

28. L. C. HEDRICK, REV. SCI. INSTR. 22, 537 (1951) SYNCHRONIZER FOR 100 KC SQUARE WAVE GENERATOR

30. E. ROUBINE, TECH. C. F. T. H. 16, 21-44 (1951) REALIZATION OF A SPECTROSCOPE FOR MILLIMETER WAVES

32. K. SHIMODA AND T. NISHIKAWA, J. PHYS. SOC. JAPAN 6, 516-520 (1951) A ZEEMAN MODULATION MICROWAVE SPECTROGRAPH OF HIGH SENSITIVITY

33. J. R. ESMBACH AND M. W. STRANDBERG, REV. SCI. INSTR. 23, 623-628 (1952) APPARATUS FOR ZEEMAN EFFECT MEASUREMENTS ON MICROWAVE SPECTRA

34. S. GESCHWIND, ANN. N. Y. ACAD. SCI. 55, 751-773 (1952) HIGH-RESOLUTION MICROWAVE SPECTROSCOPY

35. W. GORDY, ANN. N. Y. ACAD. SCI. 55, 774-788 (1952) MICROWAVE SPECTROSCOPY ABOVE 60 KMC

36. R. H. HUGHES, ANN. N. Y. ACAD. SCI. 55, 872-890 (1952) CHEMICAL ANALYSIS WITH THE MICROWAVE SPECTROGRAPH
<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>H.R. Johnson, Phys. Rev. 85, 764 (1952) Resolution and Sensitivity of Microwave Spectrographs</td>
</tr>
<tr>
<td>46</td>
<td>W. C. King and W. Gordy, Phys. Rev. 93, 407-412 (1954) One-to-Two Millimeter Wave Spectroscopy: IV. Experimental Methods and Results for OCS, CH₃F, and H₂O</td>
</tr>
<tr>
<td>54</td>
<td>J. P. Gordon, Phys. Rev. 99, 1253-1263 (1955) Hyperfine Structure in the...</td>
</tr>
</tbody>
</table>
INVERSION SPECTRUM OF N(14)H3 BY A NEW HIGH-RESOLUTION MICROWAVE SPECTROMETER

56. A. OKAYA, REV. SCI. INSTR. 26, 1024-1028 (1955) SOME DEVICES FOR STARK MODULATION MILLIMETER-WAVE SPECTROGRAPH

59. K. SHIMODA AND T. C. WANG, REV. SCI. INSTR. 26, 1148-1149 (1955) NEW METHOD FOR THE OBSERVATION OF HYPERFINE STRUCTURE IN NH3 IN A --MASER-- OSCILLATOR

60. M.W.P. STRANDBERG AND M. PETER, PHYS. REV. 133, 963 (1955) PRECISION OF MICROWAVE SPECTROGRAPHS

61. J. BONANOMI AND J. HERRMANN, HELV. PHYS. ACTA 29, 224-226 (1956) AMMONIA FREQUENCY STANDARD

63. M. COWAN AND W. GORDY, PHYS. REV. 104, 551-552 (1956) FURTHER EXTENSION OF MICROWAVE SPECTROSCOPY IN THE SUB-MILLIMETER REGION

64. G. ERLANDSSON AND H. SELEN, ARKIV FYSIK 11, 391-393 (1956) FREQUENCY MEASUREMENTS IN MICROWAVE SPECTROSCOPY

65. J. HERRMANN AND J. BONANOMI, HELV. PHYS. ACTA 29, 448-451 (1956) SPECIAL ARRANGEMENT FOR MICROWAVE SPECTROSCOPY IN A CAVITY RESONATOR

70. E.F. DAVIS, EXTERNAL PUBLICATION NO. 380, UNIV. CALIFORNIA JET PROPULSION LAB., JUNE, 1957

71. A.K. GARRISON AND W. GORDY, PHYS. REV. 108, 899-900 (1957) HIGH TEMPERATURE MOLECULAR BEAM MICROWAVE SPECTROMETER

72. S.A. MARSHALL AND J. WEBER, REV. SCI. INSTR. 28, 134-137 (1957) PLANE PARALLEL PLATE TRANSMISSION LINE STARK MICROWAVE SPECTROGRAPH
73. M. PETER AND M. W. P. STRANDBERG. MIT RESEARCH LAB. ELECTRONICS TECHNICAL REPORT 336(1957) THEORETICAL AND EXPERIMENTAL STUDY OF MOLECULAR-BEAM MICROWAVE SPECTROSCOPY

74. M. C. THOMPSON AND J. V. CATEORA. REV. SCI. INSTR. 28, 656(1957) HIGH-ORDER HARMONICS FOR X-BAND OSCILLATOR STABILIZATION

76. R. D. MATTUCK AND M. W. P. STRANDBERG. REV. SCI. INSTR. 29, 717-721(1958) MICROMODULATOR. A DEVICE FOR MEASURING THE INTENSITIES OF MICROWAVE ABSORPTION LINES

78. M. C. THOMPSON, M. J. VETTER, AND D. M. WATERS. ELECTRONICS 31, 100-101(1958) SHF FREQUENCY STANDARD USES DOUBLE CONVERSION

79. P. H. VERDIER. REV. SCI. INSTR. 29, 646-647(1958) STARK EFFECT RESONANT CAVITY MICROWAVE SPECTROGRAPH

81. Y. BEERS. REV. SCI. INSTR. 30, 9-16(1959) THEORY OF THE CAVITY MICROWAVE SPECTROMETER AND MOLECULAR FREQUENCY STANDARD

82. F. BRUIN AND D. VAN LADESTEYN. PHYSICA 25, 1-8(1959) FREQUENCY STABILIZATION OF A REFLEX KLYSTRON OSCILLATOR

84. J. H. CORN. ELECTRONICS 32, 74(1959) MICROWAVE MEASUREMENT

85. A. DYMANUS. PHYSICA 25, 859-888(1959) INTENSITY MEASUREMENTS IN MICROWAVE SPECTROSCOPY. THE --ANTIMODULATION-- METHOD

86. A. DYMANUS. REV. SCI. INSTR. 30, 191-195(1959) HIGH-Q STARK CAVITY ABSORPTION CELL FOR MICROWAVE SPECTROMETERS

87. J. J. GALLAGHER AND J. B. NEWMAN. SPECTROCHIM. ACTA 15, 769(1959) A GAS MASER AT MILLIMETER WAVELENGTHS

89. W. GORDY. PROC. SYM. MILLIMETER WAVES, 1-23, INTERSCIENCE, NEW YORK,(1959) MILLIMETER AND SUBMILLIMETER WAVES IN PHYSICS

90. J. HERVE, J. PESCIA, AND M. SAUZADE. COMPT. REND. 249, 1486-1488(1959) FREQUENCY STABILIZATION OF A CARCINOTRON OF GREAT POWER

91. D. ILIAS. J. PHYS. RAD. 20, 653-655(1959) A RECORDING MICROWAVE SPECTROMETER FOR GAS STUDY

98. G. Eerlandsson and A. Rachman, Ciencia e Invest. 16, 166-176 (1960) Microwave Spectrophotometer with Stark Modulation

127. R. L. POYNTER AND G. R. STEFFENSEN. REV. SCI. INSTR. 34, 77-82 (1963) TUNABLE, HIGH STABILITY, MICROWAVE OSCILLATOR

128. THE MICROWAVE ENGINEERS HANDBOOK AND BUYERS GUIDE-1964, HORIZON HOUSE, MICROWAVE INC., DEDHAM, MASS., DECEMBER (1963)

129. R. W. ZIMMERER, M. V. ANDERSON, G. L. STRINE, AND Y. BEERS. IEEE TRANS. MICROWAVE THEORY AND TECHNIQUES 11, 142-149 (1963) MILLIMETER WAVELENGTH RESONANT STRUCTURES

130. A. BENJAMINSON. MICROWAVE JOURNAL 7, NO. 12, 65-69 (1964) PHASE-LOCKED MICROWAVE OSCILLATOR SYSTEMS WITH 0.1 CPS STABILITY

131. P. L. CLOUSER AND W. GORDY. PHYS. REV. 134, 863-870 (1964) MILLIMETER-WAVE MOLECULAR BEAM SPECTROSCOPY-ALKALI CHLORIDES

132. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. SIXTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

133. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. SEVENTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

134. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. EIGHTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

135. J. J. GALLAGHER, R. G. STRAUCH, AND R. E. CUPP. NINTH QUARTERLY PROGRESS REPORT, MARTIN COMPANY (1964) EXCITATION AND DETECTION TECHNIQUES FOR MILLIMETER WAVE TRANSITIONS

136. Y. HANYU. NIPPON KAGAKU ZASSHI 85, 5-8 (1964) CONSTRUCTION OF A STARK-MODULATED MICROWAVE SPECTROMETER AND THE SPECTRUM OF A HYDROGEN-BONDED SYSTEM OF ACETIC ACID AND TRIFLUOROACETIC ACID

137. H. W. HARRINGTON AND R. H. BAUHAUS. MOLECULAR SPECTROSCOPY SYMPOSIUM, OHIO STATE UNIV. (1964) ABSOLUTE INTENSITY COEFFICIENT MEASUREMENTS IN MICROWAVE SPECTROSCOPY

138. D. R. LIDE, JR. REV. SCI. INSTR. 35, 1226 (1964) VERSATILE STARK WAVEGUIDE FOR MICROWAVE SPECTROSCOPY

139. R. G. STRAUCH, R. E. CUPP, M. LICHTENSTEIN, AND J. J. GALLAGHER. SYMPOSIUM ON QUASI-OPTICS, POLYTECHNIC INST. OF BROOKLYN (1964) QUASI-OPTICAL TECHNIQUES IN MILLIMETER SPECTROSCOPY

140. F. L. WENTWORTH, J. W. DOZIER, AND J. D. RODGERS. MICROWAVE JOURNAL 7, 69-75 (1964) MILLIMETER WAVE HARMONIC GENERATORS, MIXERS AND DETECTORS

141. E. A. RINEHART, R. L. LEGAN, AND C. C. LIN. REV. SCI. INSTR. 36, 511-517 (1965) MICROWAVE SPECTROGRAPH FOR LINELength MEASUREMENTS
Section III. LINE SHAPE AND LINE BROADENING

1. H.A. LORENTZ, PROC. AMST. AKAD. SCI. 8, 591-611 (1906) ABSORPTION AND EMISSION LINES OF GASES

2. V.F. WEISSKOPF, PHYS. ZEITS. 34, 1-24 (1933) WIDTH OF SPECTRAL LINES IN GASES

3. H. KUHN, PHIL. MAG. 18, 987-1003 (1934) PRESSURE SHIFT AND BROADENING OF SPECTRAL LINES

4. H. KUHN AND F. LONDON, PHIL. MAG. 18, 983-987 (1934) LIMITATION OF THE POTENTIAL THEORY OF BROADENING OF SPECTRAL LINES

5. H. MARGENAU AND D.T. WARREN, PHYS. REV. 51, 748-753 (1937) LONG RANGE INTERACTIONS BETWEEN DIPOLE MOLECULES

6. L. SPITZER, JR., PHYS. REV. 58, 348-357 (1940) IMPACT BROADENING OF SPECTRAL LINES

7. A. JABLONSKI, PHYS. REV. 68, 78-93 (1945) GENERAL THEORY OF PRESSURE BROADENING OF SPECTRAL LINES. ERRATA-PHYS. REV. 69, 31 (1946)

8. J.H. VAN VLECK AND V.F. WEISSKOPF, REV. MOD. PHYS. 17, 227-236 (1945) ON THE SHAPE OF COLLISION-BROADENED LINES

9. H.M. FOLEY, PHYS. REV. 69, 616-628 (1946) THE PRESSURE BROADENING OF SPECTRAL LINES

10. H. FROHLICH, NATURE 157, 478 (1946) SHAPE OF COLLISION-BROADENED SPECTRAL LINES

11. A. JABLONSKI, PHYSICA 7, 541-551 (1946) PRESSURE BROADENING OF SPECTRAL LINES

12. E. LINDHOLM, ARK. MAT. ASTRON PHYSIK 32A, PAPER 17 (1946) PRESSURE BROADENING OF SPECTRAL LINES

15. T.A. POND AND W.F. CANNON, PHYS. REV. 72, 1121-1122 (1947) SATURATION EFFECT IN MICROWAVE SPECTRUM OF AMMONIA

17. B. BLEANEY AND R.P. PENROSE, PROC. SOC. LONDON 60, 540-549 (1948) COLLISION BROADENING OF THE INVERSION SPECTRUM OF AMMONIA. III. THE COLLISION CROSS SECTIONS FOR SELF-BROADENING AND FOR MIXTURES WITH NON-POLAR GASES

18. H.M. FOLEY, PHYS. REV. 73, 259 (1948) THE THEORY OF THE PRESSURE BROADENING OF SPECTRAL LINES-A REPLY.
19. A. Jablonski, Phys. Rev. 73, 258–259 (1948) · ON THE PHASE SHIFT APPROXIMATION IN THE THEORY OF PRESSURE BROADENING OF SPECTRAL LINES

27. T. Holstein, Phys. Rev. 79, 744 (1950) · PRESSURE BROADENING OF SPECTRAL LINES

32. B. V. Gokhale and M. W. P. Strandberg, Phys. Rev. 84, 844 (1951) · LINE BREADTHS IN THE 5-MM MICROWAVE ABSORPTION OF OXYGEN

33. R. M. Hill and W. V. Smith, Phys. Rev. 82, 451 (1951) · MICROWAVE COLLISION DIAMETERS AND ASSOCIATED QUADRUPOLE MOMENTS

34. D. C. M. Leslie, Phil. Mag. 42, 37–55 (1951) · COLLISION BROADENING OF MICROWAVE FREQUENCIES

35. H. Margenau, Phys. Rev. 82, 156–158 (1951) · STATISTICAL THEORY OF PRESSURE BROADENING

36. M. Mizushima, Phys. Rev. 83, 94–103 (1951) · THE THEORY OF PRESSURE BROADENING AND ITS APPLICATION TO MICROWAVE SPECTRA

LINE-BREADTHS OF THE MICROWAVE SPECTRUM OF OXYGEN

PRESSURE BROADENING

VARIATION OF LINE WIDTH WITH ROTATIONAL STATE AND TEMPERATURE IN THE MICROWAVE SPECTRUM OF OCS

SHAPE OF COLLISION-BROADENED SPECTRAL LINES

LINE BROADENING AND DIELECTRIC RELAXATION IN COMPRESSED GASES

LINE BREADTHS IN THE MICROWAVE MAGNETIC RESONANCE SPECTRUM OF OXYGEN

THE HALF-WIDTHS OF THE ABSORPTION MICROWAVE LINES OF AMMONIA

EVALUATION OF MOLECULAR QUADRUPOLE MOMENTS FROM MICROWAVE SPECTRAL LINE WIDTHS. I. THEORETICAL

NATURAL LINE WIDTHS OF MICROWAVES

EVALUATION OF MOLECULAR QUADRUPOLE MOMENTS FROM MICROWAVE LINE BREADTHS. II. EXPERIMENTAL

TEMPERATURE VARIATION OF MICROWAVE ABSORPTION COEFFICIENT IN ETHYL CHLORIDE

FREQUENCY SHIFT IN AMMONIA Absorption DUE TO SELF-BROADENING

FREQUENCY SHIFT IN THE ABSORPTION LINE OF AMMONIA IN THE MICROWAVE REGION

SHIFT OF CENTER FREQUENCY OF AN AMMONIA INVERSION SPECTRUM

PRESSURE SHIFT OF THE INVERSION FREQUENCY OF AMMONIA

CRITICAL ANALYSIS AND APPLICATIONS OF A QUASI-RESONANT THEORY OF PRESSURE BROADENING OF LINEAR MOLECULES

SOME PHENOMENA RELATED TO THE SATURATION OF ROTATIONAL RESONANCES IN THE MICROWAVE SPECTRUM OF COS

Section IV. THE RIGID ROTOR

Calculation and characterization of the energy levels and wave functions of the rigid rotor immediately followed the introduction of the new quantum theory.1-5 Application of group theory to the problem6,9 considerably simplifies the computational difficulties presented by the asymmetric rotor whose energy levels cannot be expressed in a closed form except for low J values. Since the formulation of the reduced energy $E(\kappa)$,8,9 the original tabulations of this parameter9,17,22 have been extended to high J values for smaller intervals of κ through the use of high-speed digital computers.19,47,49-53 Approximate methods were also developed,11,12 particularly for near symmetric top molecules.25-27,41,42 Considerable attention has also been given to the calculation of theoretical line intensities.10,18,32

14. E. E. Witmer, Phys. Rev. 74, 1247 (1948) An Explicit Solution of the Problem of the Asymmetric Rotator According to Quantum Mechanics

15. E. E. Witmer, Phys. Rev. 74, 1250 (1948) An Explicit Formula for the Energy Levels of the Asymmetric Rotator According to Quantum Mechanics

20. D. KIVELSON, J. CHEM. PHYS. 21, 536-538 (1953). A (K+2)ND ORDER FORMULA FOR ASYMMETRY DOUBLETS IN ROTATIONAL SPECTRA

27. R. H. SCHWENDEMAN, A TABLE OF COEFFICIENTS FOR THE ENERGY LEVELS OF A NEAR SYMMETRIC TOP, DEPARTMENT OF CHEMISTRY, HARVARD UNIVERSITY (1957)

32. R. H. SCHWENDEMAN AND V. W. LAURIE, TABLES OF LINE STRENGTHS, PEGAMON PRESS, NEW YORK (1958)

33. L. C. ROWE AND P. M. PARKER, TABLES OF ASYMMETRY PARAMETER FUNCTION, DEPARTMENTAL PUBLICATION, OHIO STATE UNIVERSITY (1959)

34. C. T. FRIEKE, J. CHEM. PHYS. 31, 568-569 (1959). ENERGY LEVELS OF AN ASYMMETRIC ROTOR

52. M. SIDRAN, F. NOLAN, AND J. W. BLAKER, GRUMMAN RESEARCH DEPT. REPORT RE-189, OCTOBER (1964) ROTATIONAL ENERGY LEVELS OF ASYMMETRIC TOP MOLECULES, TABLE OF REDUCED ENERGIES (PART VI—FOR J=17 TO 18)

53. M. SIDRAN, F. NOLAN, AND J. W. BLAKER, GRUMMAN RESEARCH DEPT. REPORT RE-196, DECEMBER (1964) ROTATIONAL ENERGY LEVELS OF ASYMMETRIC TOP MOLECULES, TABLE OF REDUCED ENERGIES (PART VII—FOR J=19 TO 20)

54. J. D. LOUCK, J. MOL. SPECTRY 15, 83-99 (1965) EIGENVECTORS OF A SLIGHTLY ASYMMETRIC ROTATOR
Section V(a). GENERAL VIBRATION-ROTATION INTERACTION

1. J.L. DUNHAM, PHYS. REV. 41, 721-731 (1932) THE ENERGY LEVELS OF A ROTATING VIBRATOR

4. E.B. WILSON, JR., J. CHEM. PHYS. 4, 313-316 (1936) THE VIBRATION-ROTATION ENERGY LEVELS OF POLYATOMIC MOLECULES. II. PERTURBATIONS DUE TO NEARBY VIBRATIONAL STATES

6. H.H. NIELSEN, PHYS. REV. 60, 794-810 (1941) THE VIBRATION-ROTATION ENERGIES OF POLYATOMIC MOLECULES

8. S. SILVER, J. CHEM. PHYS. 10, 565-574 (1942) VIBRATION-ROTATION ENERGIES OF PLANAR ZXY MOLECULES. PART II. THE QUANTUM-MECHANICAL HAMILTONIAN AND THE ENERGY VALUES

9. S. SILVER AND E. S. EBERS, J. CHEM. PHYS. 10, 559-564 (1942) VIBRATION-ROTATION ENERGIES OF PLANAR ZXY MOLECULES. PART I. THE VIBRATIONAL MODES AND FREQUENCIES

12. H.H. NIELSEN, J. OPT. SOC. AMER. 34, 521-528 (1944) THE ENERGIES OF POLYATOMIC MOLECULES

17. H.H. NIELSEN, PHYS. REV. 75, 1961 (1949) ANOMALIES IN THE MICROWAVE
SPECTRUM OF METHYL CYANIDE AND METHYL ISOCYANIDE

20. H.H. NIELSEN, PHYSICA 17, 432-439 (1951) ANOMALIES IN THE MICROWAVE SPECTRA OF SYMMETRIC MOLECULES

22. S.M. FERIGLE AND A. WEBER, AM. J. PHYS. 21, 102-107 (1953) THE ECKART CONDITIONS FOR A POLYATOMIC MOLECULE

23. W.L. LOW, PHYS. REV. 97, 1664-1667 (1955) FERMI RESONANCE IN THE MICROWAVE SPECTRUM OF LINEAR XY₇ MOLECULES

25. G. AMAT AND H.H. NIELSEN, COMPT. REND. 244, 2302-2304 (1957) INFLUENCE OF ROTATIONAL DISTORTIONS ON THE VIBRATION-ROTATION SPECTRUM OF LINEAR MOLECULES

27. P.R. SWAN JR. AND M.W.P. STRANDBERG, J. MOL. SPECTRY 1, 333-378 (1957) VIBRATION-INTERNAL ROTATION INTERACTIONS IN MOLECULES CONTAINING A SYMMETRIC TOP GROUP

32. D.R. HERSCHBACH AND V.W. LAURIE, J. CHEM. PHYS. 37, 1668-1686 (1962) INFLUENCE OF VIBRATIONS ON MOLECULAR STRUCTURE DETERMINATIONS. I. GENERAL FORMULATION OF VIBRATION-ROTATION INTERACTIONS.

33. S. MAES, J. MOL. SPECTRY 9, 204-215 (1962) SOME THIRD ORDER CORRECTIONS TO THE ROTATION-VIBRATION ENERGIES OF POLYATOMIC MOLECULES

34. K.T. CHUNG AND P.M. PARKER, J. CHEM. PHYS. 38, 8-17 (1963) ASYMMETRIC-TOP VIBRATION-ROTATION HAMILTONIANS ERRATA-J. CHEM. PHYS. 39, 240 (1963)

37. J. W. C. JOHN, J. MOL. SPECTR. 15, 473-482 (1965) K-TYPE DOUBLING OF LINEAR MOLECULES IN $^1\Pi$ ELECTRONIC STATES

Section V(b). CENTRIFUGAL DISTORTION

39. E. B. WILSON, JR., J. CHEM. PHYS. 4, 526-528 (1936) THE EFFECT OF ROTATIONAL DISTORTION ON THE THERMODYNAMIC PROPERTIES OF WATER AND OTHER POLYATOMIC MOLECULES

40. E. B. WILSON, JR., J. CHEM. PHYS. 5, 617-620 (1937) THE VIBRATION-ROTATION ENERGY LEVELS OF POLYATOMIC MOLECULES. III. EFFECT OF CENTRIFUGAL DISTORTION

41. Z. I. SLAWSKY AND D. M. DENNISON, J. CHEM. PHYS. 7, 509-521 (1939) THE CENTRIFUGAL DISTORTION OF AXIAL MOLECULES

42. S. GOLDEN, J. CHEM. PHYS. 16, 250-253 (1948) AN ASYMPTOTIC EXPRESSION FOR THE ENERGY LEVELS OF THE ASYMMETRIC ROTOR. II. CENTRIFUGAL DISTORTION CORRECTION ERRATA-J. CHEM. PHYS. 17, 586 (1948)

43. W. S. BENEDICT, PHYS. REV. 75, 1317 (1949) CENTRIFUGAL STRETCHING IN H2O AND D2O

44. H. H. NIELSEN, PHYS. REV. 78, 415-416 (1950) A NOTE ON THE CENTRIFUGAL STRETCHING IN AXIALLY SYMMETRIC MOLECULES

45. J. W. SIMMONS AND W. E. ANDERSON, PHYS. REV. 80, 338-342 (1950) MICROWAVE DETERMINATION OF THE CENTRIFUGAL DISTORTION CONSTANTS OF CH3CL, CH3BR, CH3I, CH2CN, AND ICN.

46. R. E. HILLGER AND M. W. P. STRANDBERG, PHYS. REV. 83, 575-581 (1951) CENTRIFUGAL DISTORTION IN ASYMMETRIC MOLECULES. II. HDS

47. R. B. LAWRENCE AND M. W. P. STRANDBERG, PHYS. REV. 83, 363-369 (1951) CENTRIFUGAL DISTORTION IN ASYMMETRIC TOP MOLECULES. I. ORDINARY FORMALDEHYDE H2C=O

49. M. W. P. STRANDBERG, ANN. N. Y. ACADEMY SCI. 55, 808-813 (1952) CENTRIFUGAL DISTORTION
50. F.D.REDARD, J.J.S. GALLAGHER, AND C.W. JOHNSON, PHYS. REV. 92, 1440 (1953)
MICROWAVE MEASUREMENT OF DO FOR CO

51. I.S. CHANG AND D.M. DENNISON, J. CHEM. PHYS. 21, 1293 (1953)
CENTRIFUGAL DISTORTION EFFECTS IN METHYL CHLORIDE

THEORY OF CENTRIFUGAL DISTORTION CONSTANTS OF POLYATOMIC ROTOR MOLECULES

CENTRIFUGAL DISTORTION IN THE METHYL HALIDES

54. D. KIVELSON, J. CHEM. PHYS. 22, 904-908 (1954)
THE DETERMINATION OF THE POTENTIAL CONSTANTS OF SO2 FROM CENTRIFUGAL DISTORTION EFFECTS

CENTRIFUGAL DISTORTION IN ASYMMETRIC TOP MOLECULES, III. H2O, D2O, AND HD2

MILLIMETER WAVE SPECTRA AND CENTRIFUGAL STRETCHING CONSTANTS OF THE METHYLHALIDES

INFLUENCE OF FERMI RESONANCE ON THE CENTRIFUGAL STRETCHING CONSTANT OF A LINEAR MOLECULE

58. L. PIERCE, J. CHEM. PHYS. 24, 139-142 (1956)
DETERMINATION OF THE POTENTIAL CONSTANTS OF OZONE FROM CENTRIFUGAL DISTORTION EFFECTS

CALCULATION OF ROTATIONAL DISTORTION CONSTANTS FOR SOME AXIALLY SYMMETRIC ZX3Y MOLECULES

60. H. H. NIELSEN, G. AMAT, AND M. GOLDSMITH, J. CHEM. PHYS. 26, 1060-1066 (1957)
ANOMALOUS CENTRIFUGAL DISTORTION COEFFICIENTS IN LINEAR POLYATOMIC MOLECULES

CENTRIFUGAL DISTORTION IN SYMMETRIC ROTOR MOLECULES

A NOTE ON THE CALCULATION OF ROTATIONAL DISTORTION CONSTANTS FOR AXIALLY SYMMETRIC ZX3Y MOLECULES

63. G. ERLANDSSON, ARKIV FYSIK 16, 181-184 (1959)
COMPUTER PROGRAM FOR CENTRIFUGAL DISTORTION IN ASYMMETRIC TOP ROTATIONAL SPECTRA

64. P. M. PARKER AND L. C. BROWN, J. CHEM. PHYS. 31, 1227-1230 (1959)
COMPUTATION OF ASYMMETRIC ROTATOR CONSTANTS FROM ENERGY MOMENTS, III. FIRST-ORDER CENTRIFUGAL STRETCHING EFFECTS

65. P. FAVERO, A. M. MIRRI, AND S. G. BAKER, NUOVO CIMENTO 17, 740-748 (1960)
CENTRIFUGAL EFFECTS IN MILLIMETER WAVE SPECTRA-FORMYL FLUORIDE

CENTRIFUGAL DISTORTION IN SYMMETRIC TOP MOLECULES

Section V(c). Coriolis Coupling

Section V(d). L-TYPE DOUBLING

87. G. HERZBERG, REV. MOD. PHYS. 14, 219-223 (1942) L-TYPE DOUBLING IN LINEAR POLYATOMIC MOLECULES

89. H.H. NIELSEN, PHYS. REV. 77, 130-135 (1950) L-TYPE DOUBLING IN POLYATOMIC MOLECULES AND ITS APPLICATION TO THE MICROWAVE SPECTRUM OF METHYL CYANIDE AND M ethyl ISOCYANIDE

90. H.H. NIELSEN, PHYS. REV. 78, 296 (1950) L-TYPE DOUBLING IN OCS AND HCN

92. J.DE HEER, PHYS. REV. 83, 741-745 (1951) A NOTE CONCERNING L-TYPE DOUBLING IN AXIALLY SYMMETRIC MOLECULES, IN PARTICULAR WITH REFERENCE TO MOLECULES BELONGING TO THE SYMMETRY GROUPS C4V AND VD

93. J.DE HEER AND H.H. NIELSEN, J. CHEM. PHYS. 20, 101-104 (1952) L-TYPE DOUBLING IN ENERGY LEVELS OF CARBON DIOXIDE COUPLED BY FERMI RESONANCE

94. T.L. WEATHERLY AND D.WILLIAMS, PHYS. REV. 87, 517-518 (1952) L-TYPE DOUBLING TRANSITIONS IN HCN AND DCN

95. R.J. COLLIER, PHYS. REV. 95, 1200-1202 (1954) DIRECT L-DOUBLLET TRANSITION OF HCN IN THE 10-CENTIMETER WAVELENGTH REGION

96. J.F. WESTERKAMP, PHYS. REV. 93, 716 (1954) VARIATION OF THE L-TYPE DOUBLING CONSTANT IN HCN

L-TYPE DOUBLING SPECTRA OF HCN AND DCN IN THE SUPERHIGH FREQUENCY REGION

99. L. YARMUS, PHYS. REV. 105, 928-979 (1957) DIRECT L-TYPE DOUBLING TRANSITIONS IN CLCN

100. G. AMAT AND H. H. NIELSEN, J. MOL. SPECTRY 2, 152-162 (1958) VIBRATIONAL L-TYPE DOUBLING AND L-TYPE RESONANCE IN LINEAR POLYATOMIC MOLECULES

101. G. AMAT AND H. H. NIELSEN, J. MOL. SPECTRY 2, 163-172 (1958) ROTATIONAL DISTORTION IN LINEAR MOLECULES ARISING FROM L-TYPE RESONANCE

102. T. S. JASEJA, PROC. INDIAN ACAD. SCI. 504, 108-128 (1959) THE MICROWAVE SPECTRUM OF METHYL CYANIDE AND L-TYPE DOUBLING IN CH3CN, CH3NC, CH3CCH, AND CF3CCH

Section VI. MOLECULAR STRUCTURE

Most microwave structure determinations have been carried out using the general isotopic substitution formulas in terms of the equilibrium moments of inertia developed by Kraitchman. The \(r_s \) and \(r_0 \) structures have been compared and discussed regarding the equilibrium structure, and a double substitution technique has been devised to treat small coordinate \(^2\). The effects of molecular vibrations on the molecular structure and, in particular, on the inertia defect determined from microwave data have received considerable attention.

6. D. Kivelson and E. B. Wilson, J. Chem. Phys. 21, 1236 (1953) An aid in the determination of internal parameters from rotational constants for polyatomic molecules

9. W. D. Gwinn, Dis. Faraday Soc. 19, 43-51 (1955) Information pertaining to molecular structure as obtained from the microwave spectra of molecules of the asymmetric rotor type

13. W. Zeil and J. F. Perommer, Z. Elektrochem. 61, 938-946 (1957) Microwave spectroscopic measurements concerning the knowledge of the C-C distance in the C-CN group of nitriles

17. C.C.COSTAIN AND B.P.STOICHEFF, J. CHEM. PHYS. 30, 777-782 (1959)
MICROWAVE SPECTRUM AND A SUMMARY OF CARBON-CARBON, CARBON-HYDROGEN BOND LENGTHS IN SIMPLE MOLECULES

18. V.W.LAURIE, J. CHEM. PHYS. 30, 1101-1102 (1959) COMMENTS ON THE STRUCTURE OF 1,1,1-TRIFLUORO-2-BUTYNE

23. J.K.BROWN AND A.P.COX, SPECTROCHIM. ACTA 17, 1230-1239 (1961) NEAR-EQUILIBRIUM BOND DISTANCES IN SIMPLE MOLECULES

27. T.OKA AND Y.MORINO, J. MOL. SPECTRY, 6, 472-482 (1961) CALCULATION OF INERTIA DEFECT PART I GENERAL FORMULATION

31. M.JEN AND D.R.LIDE, JR., J. CHEM. PHYS. 36, 2525-2526 (1962) MOLECULAR STRUCTURE OF CHLOROFORM

32. V.W.LAURIE AND D.R.HERSCHBACH, J. CHEM. PHYS. 37, 1687-1692 (1962) INFLUENCE OF VIBRATIONS ON MOLECULAR STRUCTURE DETERMINATIONS II AVERAGE STRUCTURES DERIVED FROM SPECTROSCOPIC DATA
33. Y. MORINO, K. KUCHITSU, AND T. OKA, J. CHEM. PHYS. 36, 1108-1109 (1962) INTERNUCLEAR DISTANCE PARAMETERS

34. T. OKA AND Y. MORINO, J. MOL. SPECTR. 8, 9-21 (1962) CALCULATION OF INERTIA DEFECT PART II. NONLINEAR SYMMETRIC XY2 MOLECULES

35. L. S. BARTELL, J. CHEM. PHYS. 38, 1827-1833 (1963) CALCULATION OF MEAN ATOMIC POSITIONS IN VIBRATING POLYATOMIC MOLECULES

37. D. R. HERSCHBACH AND V. W. LAURIE, UCRL-11208 (1963) INFLUENCE OF VIBRATIONS ON MOLECULAR STRUCTURE DETERMINATIONS III. INERTIAL DEFECTS

38. D. R. LIDE, JR. AND M. JEN, J. CHEM. PHYS. 38, 1504-1507 (1963) MICROWAVE SPECTRUM OF TERTIARY BUTYL CHLORIDE. A COMPARISON OF TERTIARY BUTYL STRUCTURES

40. A. CHUTJIAN, J. MOL. SPECTR. 14, 361-370 (1964) DETERMINATION OF STRUCTURE BY ISOTOPIC SUBSTITUTION IN MOLECULES WITH SYMMETRICALLY EQUIVALENT ATOMS

42. K. KUCHITSU, T. OKA, AND Y. MORINO, J. MOL. SPECTR. 15, 51-67 (1965) CALCULATION OF INERTIA DEFECT. PART IV. ETHYLENE-TYPE MOLECULES
Section VII. QUADRUPOLE COUPLING

Nuclear quadrupole interactions can perturb the rotational spectrum of a molecule which contains one or more nuclei with nonspherical nuclear charge distributions. These effects have been studied in linear, symmetric, and asymmetric top molecules19, 21 to provide information concerning the electric field gradient at the quadrupole nucleus. Second-order effects can become prominent when the quadrupole interaction is sizable or when an appropriate near degeneracy is present.100, 102, 103 In the case of an asymmetric rotor, the second-order interaction may lead to an evaluation of an off-diagonal coupling constant X_{ij}. Intensities of the hyperfine components have been adopted directly from atomic spectra.21, 5 Bersohn37 and Misushima and Ito48 have treated the case of three quadrupole nuclei in a symmetric rotor. Work has also been done on asymmetric rotors with two quadrupole nuclei.104–106, 109, 112 As experimental sensitivity is improved, coupling in excited vibrational states may be studied.86, 88 Interactions with an external electric field are referenced in Section X.

Excellent reviews on the subject have been written by Das and Hahn97 and O’Konski.107

58. J. D. Rogers and D. Williams, Phys. Rev. 86, 654 (1952) Nuclear Quadrupole Interactions in the Microwave Spectrum of Hydrogen A1DF

61. H. G. Dehmelt, Phys. Rev. 91, 313-314 (1953) Nuclear Quadrupole Resonance in Rhombic Sulfur and the Quadrupole Moments of S(33) and S(35)

64. A. Javan, G. Silvey, C. H. Townes, and A. V. Grosse, Phys. Rev. 91, 222-223 (1953) On the Quadrupole Moments of Mn(35), Re(185), and Re(187)

65. P. Kusch, Phys. Rev. 92, 268-270 (1953) Sign of the Quadrupole Interaction of Li(6) in LiCl

68. N. F. Ramsey, Phys. Rev. 89, 527 (1953) Pseudo-Quadrupole Effect for Nuclei in Molecules

70. R. L. White, Phys. Rev. 91, 1014 (1953) Quadrupole Coupling of the Deuteron in DCCL and DCN

71. R. L. White and C. H. Townes, Phys. Rev. 92, 1256-1257 (1953) The Spin of Si(29) and Mass Ratios of the Stable Si Isotopes
<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.</td>
<td>H.M. FOLEY, R.J. M. STERNHEIMER, AND D. TYCKO, PHYS. REV. 93, 734-742 (1954) NUCLEAR QUADRUPOLE COUPLING IN POLAR MOLECULES</td>
</tr>
<tr>
<td>75.</td>
<td>W. GOODY, J. CHEM. PHYS. 22, 1470-1471 (1954) RELATION OF NUCLEAR QUADRUPOLE COUPLINGS TO THE CHEMICAL BOND</td>
</tr>
<tr>
<td>76.</td>
<td>J.A. KRAITCHMAN AND B.P. DAILEY, J. CHEM. PHYS. 22, 1477-1481 (1954) VARIATION IN THE QUADRUPOLE COUPLING CONSTANT WITH VIBRATIONAL STATE IN THE METHYL HALIDES</td>
</tr>
<tr>
<td>78.</td>
<td>N.F. RAMSEY, NUCLEAR MOMENTS, JOHN WILEY AND SONS INC. NEW YORK (1954)</td>
</tr>
<tr>
<td>79.</td>
<td>P.N. SCHATZ, J. CHEM. PHYS. 22, 755 (1954) DEDUCTIONS ABOUT HYBRIDIZATION FROM NUCLEAR QUADRUPOLE COUPLING CONSTANTS</td>
</tr>
<tr>
<td>80.</td>
<td>R.M. STERNHEIMER, PHYS. REV. 95, 736-750 (1954) EFFECT OF THE ATOMIC CORE ON THE NUCLEAR QUADRUPOLE COUPLING</td>
</tr>
<tr>
<td>81.</td>
<td>F. STERZER AND Y. BEERS, PHYS. REV. 94, 1410 (1954) PURE QUADRUPOLE SPECTRUM OF METHYL IODIDE VAPOR</td>
</tr>
<tr>
<td>83.</td>
<td>B.P. DAILEY, DIS. FARADAY SOC. 19, 255-259 (1955) THE INTERPRETATION OF QUADRUPOLE SPECTRA</td>
</tr>
<tr>
<td>85.</td>
<td>W. GORDY, DIS. FARADAY SOC. 19, 14-29 (1955) QUADRUPOLE COUPLINGS, DIPOLE MOMENTS, AND THE CHEMICAL BOND</td>
</tr>
<tr>
<td>86.</td>
<td>A. JAVAN, PHYS. REV. 99, 1302-1306 (1955) EFFECTS OF THE BENDING MODE OF VIBRATION ON THE HYPERFINE STRUCTURE OF ICN</td>
</tr>
<tr>
<td>87.</td>
<td>F. STERZER AND Y. BEERS, PHYS. REV. 100, 1174-1180 (1955) PURE QUADRUPOLE SPECTRA OF CH3I AND CF3I VAPORS</td>
</tr>
<tr>
<td>88.</td>
<td>R.L. WHITE, J. CHEM. PHYS. 23, 249-252 (1955) NUCLEAR QUADRUPOLE INTERACTION IN HCN AND DCN IN THE BENDING VIBRATIONAL MODE</td>
</tr>
<tr>
<td>89.</td>
<td>R.L. WHITE, J. CHEM. PHYS. 23, 253-255 (1955) QUADRUPOLE COUPLING OF THE DEUTRON IN DCCl AND DCN</td>
</tr>
<tr>
<td>91.</td>
<td>D.R. LIDE, JR., BULL. AM. PHYS. SOC. (2) 1, 13 (1956) NUCLEAR QUADRUPOLE</td>
</tr>
</tbody>
</table>
INTERACTIONS IN THE MICROWAVE SPECTRA OF INTERNALLY ROTATING MOLECULES

107. C.T. OKONSKI, DETERMINATION OF ORGANIC STRUCTURES BY PHYSICAL METHODS, VOL. II, CHAPTER 11, NUCLEAR QUADRUPOLE RESONANCE SPECTROSCOPY, ACADEMIC PRESS INC., NEW YORK (1962)

Section VIII. HINDERED INTERNAL ROTATION

Studies of internal rotation by microwave spectroscopy have been favored by the relative barrier heights hindering internal rotation in methyl groups and the relatively low vibrational frequencies associated with these torsional motions. Most of the barriers for CH$_3$-X type molecules, where X represents the frame of the molecule, fall in the region from 1-4 kilocalories which allows splitting of rotational transitions by rotation-internal rotation interactions to be observed either in the ground vibrational state or in excited torsional states. The latter is usually the vibrational modes of lowest frequency and is relatively well populated.

The theoretical methods to be applied to single top molecules have been reviewed by Lin and Swalen. In most cases the problem consists of a symmetric top attached to an asymmetric frame. Extensions have been made to treat two-top molecules, asymmetric top and frame, cis-gauche-trans configurations of C-C bonds, and symmetric top molecules through excited states and Coriolis effects.

Herschbach has listed the barrier values determined through 1962 in a complete review of experimental results.

3. E. Gorin, J. Walter, and H. Eyring, J. Am. Chem. Soc. 61, 186 (1939) Internal Rotation and Resonance in Hydrocarbons

5. J.S. Koehler and D.M. Dennison, Phys. Rev. 57, 1006-1021 (1940) Hindered Rotation in Methyl Alcohol

OF MOLECULES WITH INTERNAL ROTATION

18. T.MINDEN AND R.P.DAILEY, PHYS. REV. 82, 338 (1951) HINDERED ROTATION IN CH3CF3 AND CH3SIF3

19. L.J.OOSTERHOFF, DIS. FARADAY SOC. 10, 79-87 (1951) RESTRICTED ROTATION IN ETHANF

20. K.S.PITZER, DIS. FARADAY SOC. 10, 66-73 (1951) POTENTIAL ENERGIES FOR ROTATION ABOUT SINGLE BONDS

21. TABLES RELATING TO MATHIEU FUNCTIONS, COLUMBIA UNIVERSITY PRESS, NEW YORK (1951)

22. R.P.DAILEY, ANN. N. Y. ACAD. SCI. 55, 915-927 (1952) HINDERED ROTATION AND MICROWAVE SPECTROSCOPY

24. S.MIZUSHIMA, Y.MORINO, AND T.SHIMANOUCHI, PHYS. CHEM. 56, 324-326 (1952) SOME PROBLEMS OF INTERNAL ROTATION

26. B.BAK, L.HANSEN, AND J.RASTRUP-ANDERSEN, J. CHEM. PHYS. 21, 1612-1613 (1953), EXPERIMENTAL EVIDENCE OF RESTRICTED ROTATION IN CH3CCCF3

27. D.G.BURKHARD, J. CHEM. PHYS. 21, 1541-1549 (1953) HINDERED ROTATION INVOLVING TWO ASYMMETRIC GROUPS

28. N.W.LUFT, J. CHEM. PHYS. 21, 179 (1953) ASYMMETRIC INTERNAL ROTATIONAL BARRIERS ABOUT SINGLE BONDS

29. N.W.LUFT, TRANS. FARADAY SOC. 49, 118-121 (1953) INTERNAL POTENTIAL BARRIERS IN SATURATED HYDROCARBONS

30. A.-C.TANG, SCI. SINICA 3, 279-299 (1954) THE PROBLEM OF INTERNAL ROTATIONS OF MOLECULES

33. N.W.LUFT, J. CHEM. PHYS. 22, 155-156 (1954) ASSIGNMENT OF TORSIONAL FREQUENCIES IN SOME HALOGENATED ETHANES

34. N.W.LUFT, J. CHEM. PHYS. 22, 1814-1820 (1954) MAGNITUDES OF BARRIERS IN INTRAMOLECULAR ROTATION

35. M.MIZUSHIMA, STRUCTURE OF MOLECULES AND INTERNAL ROTATION, ACADEMIC PRESS, NEW YORK (1954)

38. G. Blanch and I. Rhodes, Wash. Acad. Sci. 45, 166-196 (1955) Table of characteristic values of Mathieu equation for large values of the parameter

42. D. Kivelson, J. Chem. Phys. 23, 2230-2235 (1955) Theory of internal over-all rotational interactions. II. Hamiltonian for the non-rigid internal rotor

48. H. T. Minden, Phys. Rev. 98, 1160 (1955) Molecular distortion caused by hindered rotation

52. E. B. Wilson, Jr., C. C. Lin, and D. R. Lide, Jr., J. Chem. Phys. 23, 136-142 (1955) Calculation of energy levels for internal torsion and overall rotation. I. CH3BF2 type molecules

54. D.G. BURKHARD, TRANS. FARADAY SOC., 52, 1-6 (1956) HINDERED ROTATION IN SYMMETRIC-ASYMMETRIC MOLECULES

56. D.R. HERSCHBACH, J. CHEM. PHYS., 25, 358-359 (1956) INTERNAL BARRIER IN CH₃CH₂F AND CH₃CHF₂ FROM TORSIONAL SATELLITES

57. R.W. KILB, TABLES OF MATHIEU EIGENVALUES AND MATHIEU EIGENFUNCTIONS FOR SPECIAL BOUNDARY CONDITIONS, DEPARTMENT OF CHEMISTRY, HARVARD UNIVERSITY (1956)

58. J.C. MILL AND K.S. PITZER, J. PHYS. CHEM., 60, 466-474 (1956) ENERGY LEVELS AND THERMODYNAMIC FUNCTIONS FOR MOLECULES WITH INTERNAL ROTATION. IV. EXTENDED TABLES FOR MOLECULES WITH SMALL MOMENTS OF INERTIA

59. C.C. LIN AND R.W. KILB, J. CHEM. PHYS., 24, 631 (1956) MICROWAVE SPECTRUM AND INTERNAL BARRIER OF ACETALDEHYDE

60. T. NISHIKAWA, J. PHYS. SOC. JAPAN, 11, 781-786 (1956) FINE STRUCTURE OF J=1-0 TRANSITION DUE TO INTERNAL ROTATION IN METHYL ALCOHOL

61. J.O. SWALEN, J. CHEM. PHYS., 24, 1072-1074 (1956) CALCULATION OF ENERGY LEVELS IN MOLECULES WITH INTERNAL TORSION

62. E. TANNENBAUM, R.J. MYERS, AND W.D. GWINN, J. CHEM. PHYS., 25, 42-47 (1956) MICROWAVE SPECTRA, DIPOLE MOMENT, AND BARRIER TO INTERNAL ROTATION OF CH₃NO₂ AND CD₃NO₂

63. T. DAS, J. CHEM. PHYS., 27, 763-781 (1957) TUNNELING THROUGH HIGH PERIODIC BARRIERS. II. APPLICATION TO NUCLEAR MAGNETIC RESONANCE IN SOLIDS

64. J.O. HALFORD, J. CHEM. PHYS., 26, 851-855 (1957) PARTITION FUNCTION FOR INTERNAL ROTATION IN METHANOL AND SIMILAR MOLECULAR MODELS

65. K.T. HECHT AND D.M. DENNISON, J. CHEM. PHYS., 60, 631-647 (1957) HINDERED ROTATION IN MOLECULES WITH RELATIVELY HIGH POTENTIAL BARRIERS

68. D.R. HERSCHBACH, J. CHEM. PHYS., 27, 975 (1957) TABLES OF MATHIEU INTEGRALS FOR THE INTERNAL ROTATION PROBLEM

69. D.R. HERSCHBACH, J. CHEM. PHYS., 27, 1420-1421 (1957) COMMENTS ON THE INTERNAL ROTATION PROBLEM

SPECTRUM, STRUCTURE, AND INTERNAL BARRIER OF METHYL SILANE

A SIMPLE MODEL FOR BARRIERS TO INTERNAL ROTATION. II. ROTATIONAL ISOMERS

MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION I. PROPYLENE

MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION II. METHYLALLENE

75. Y. MASHIKO, Nippon Kagaku Zasshi 78, 1131-1139 (1957)
POTENTIAL ENERGY SURFACE FOR TORSIONAL OSCILLATIONS IN DIMETHYL ETHER

MICROWAVE SPECTRUM AND BARRIER TO INTERNAL ROTATION IN CH3BF2

MICROWAVE STUDIES OF THE INTERNAL MOTION AND STRUCTURE OF METHYLAMINE

MICROWAVE SPECTRUM AND BARRIER TO INTERNAL ROTATION FOR TRANS-FLUOROPROPYLENE

INTERNAL BARRIER OF PROPYLENE OXIDE FROM THE MICROWAVE SPECTRUM I.

MICROWAVE SPECTRUM AND BARRIER TO INTERNAL ROTATION OF ACETIC ACID

PRINCIPLE OF MINIMUM BENDING OF LOCALIZED AND DELocalIZED ORBITALS-ETHANE BARRIER AND RELATED EFFECTS

PRINCIPLE OF MINIMUM BENDING OF LOCALIZED AND DELocalIZED ORBITALS-ETHANE BARRIER AND RELATED EFFECTS

83. S. GOLDEN, J. Phys. Chem. 62, 74-75 (1958)
EVALUATION OF THE PARTITION FUNCTION FOR RESTRICTED INTERNAL ROTATION

MICROWAVE SPECTRUM OF CH2=CH=CH2 EQUILIBRIUM CONFORMATION OF PROPYLENE

INTERNAL BARRIER OF PROPYLENE OXIDE FROM THE MICROWAVE SPECTRUM II.

INTERNAL BARRIER IN ETHANE

MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION III. TRIMETHYLAMINE

MICROWAVE SPECTRA OF MOLECULES EXHIBITING INTERNAL ROTATION IV. ISOBUTANE, TERT-BUTYL FLUORIDE, AND TRIMETHYL PHOSPHINE

89. C. C. LIN, Amer. J. Phys. 26, 319-323 (1958)
ON THE CLASSICAL MECHANICS OF 50
THE INTERNAL ROTATION OF MOLECULES

108. T. KOJIMA, J. PHYS. SOC. JAPAN, 15, 284-287 (1960) POTENTIAL BARRIER OF PHENOL FROM ITS MICROWAVE SPECTRUM

111. H. DREIZLER, Z. NATURFORSCH, 16A, 477-484 (1961) GROUP THEORETICAL CONSIDERATIONS OF THE MICROWAVE SPECTRUM OF MOLECULES CONTAINING TWO METHYL GROUPS WITH HINDERED ROTATION AND WITH DIFFERENT CARBON ISOTOPEs

118. L. PIERCE, J. CHEM. PHYS., 34, 498-506 (1961) ENERGY LEVELS FOR INTERNAL AND OVERALL ROTATION OF TWO TOP MOLECULES I. MICROWAVE SPECTRUM OF DIMETHYL SILANE

121. W. G. FATELEY AND F. A. MILLER, SPECTROCHIM. ACTA, 18, 977-993 (1962) TORSIONAL FREQUENCIES IN THE FAR INFRARED II. MOLECULES WITH TWO OR THREE METHYL ROTORS

122. E. HIROTA, J. CHEM. PHYS., 37, 283-289 (1962) ROTATIONAL ISOMERISM AND MICROWAVE SPECTROSCOPY I. THE MICROWAVE SPECTRUM OF NORMAL PROPYL FLUORIDE

123. E. HIROTA, J. CHEM. PHYS., 37, 2918-2920 (1962) ROTATIONAL ISOMERISM AND MICROWAVE SPECTROSCOPY II. THE MICROWAVE SPECTRUM OF BUTYRONITRILE
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.</td>
<td>C. R. OuaDE, Tables of integrals for application to the internal rotation of certain asymmetric internal rotors, Department of Physics, University of Oklahoma (1962)</td>
</tr>
<tr>
<td>133.</td>
<td>W. G. Fateley and F. A. Miller, Spectrochim. Acta 19, 611-628 (1963)</td>
</tr>
<tr>
<td>134.</td>
<td>D. R. Herschbach, UCRL-10404 (1963)</td>
</tr>
<tr>
<td>138.</td>
<td>B. Kirtman, J. Chem. Phys. 41, 775-788 (1964)</td>
</tr>
</tbody>
</table>
INVOLVED IN BARRIERS TO INTERNAL ROTATION

140. V. W. LAURIE, J. MOL. SPECTRY, 13, 283-287 (1964) INTERNAL ROTATION AND CORIOLIS COUPLING IN SYMMETRIC TOP MOLECULES

141. I. A. MUKHTAROV, OPTIKA I SPEKTROSKOPIYA, 16, 910 (1964) DETERMINATION THE FREQUENCY OF TORSIONAL VIBRATION FOR TRIFLUOROETHYLENE FROM THE MICROWAVE SPECTRUM

142. S. NAKAGAWA, T. KOJIMA, S. TAKAHASHI, AND C. C. LIN, J. MOL. SPECTRY, 14, 201 (1964) MICROWAVE SPECTRUM AND INTERNAL BARRIER OF METHYLTHIOCYANATE

143. D. STELMAN, J. CHEM. PHYS., 41, 2111-2115 (1964) DENOMINATOR CORRECTION TO THE VAN VLECK TRANSFORMATION-INTERNAL ROTATION PROBLEM

145. R. C. WOODS III, MOLECULAR SPECTROSCOPY SYMPOSIUM, OHIO STATE UNIV. (1964) A COMPUTER CALCULATION OF INTERNAL ROTATION SPLITTINGS APPLIED TO THE MICROWAVE SPECTRUM OF FLUORAL

147. E. HIROTA, J. CHEM. PHYS., 42, 2071-2089 (1965) ROTATIONAL ISOMERISM AND MICROWAVE SPECTROSCOPY. III. THE MICROWAVE SPECTRUM OF 3-FLUOROPROPENE

149. R. A. SCOTT AND H. A. SCHECAGA, J. CHEM. PHYS., 42, 2209-2215 (1965) METHOD FOR CALCULATING INTERNAL ROTATION BARRIERS

Section IX. INVERSION

Early microwave studies of ammonia8-$^{12},^{14}$-17 led to an immediate interest in the inversion problem. A number of twofold, potential functions2-$^{6},^{13},^{21},^{52},^{53}$ were applied to ammonia to calculate the barrier height and inversion splittings. These functions have also been adapted to inversion in asymmetric rotors.$^{20},^{47},^{56},^{58},^{62}$ Recent interest has been directed toward near-planar molecules,$^{40},^{44},^{50},^{61}$ and has led to the development of matrix elements in both the harmonic oscillator and quartic oscillator representations.$^{54},^{55}$ These efforts have been aided by far-infrared vibrational data.43

The J-dependence of the inversion doubling has been treated with expressions of linear$^{20},^{47},^{59}$ and exponential dependence.$^{18},^{59}$ Interactions with other molecular vibrations have been of considerable interest in ammonia$^{29},^{53}$ and methylamine.$^{24},^{34},^{35}$ The possibility of two coupled inversion-type motions was encountered in hydrazine.$^{47},^{57}$
1. F. Hund, Z. Physik 43, 805-826 (1927) Significance of molecular spectra. Part III: Notes on the oscillation and rotation spectra of molecules with more than two nuclei

4. N. Rosen and P. M. Morse, Phys. Rev. 42, 210-217 (1932) On the vibrations of polyatomic molecules

11. H. H. Nielsen and D. M. Dennison, Phys. Rev. 72, 1101-1108 (1947) Anomalous values of certain of the fine structure lines in the ammonia microwave spectrum

18. C.C. Costain, Phys. Rev. 82, 108 (1951) An empirical formula for the microwave spectrum of ammonia

34. D. Kivelson and D.R. Lide, Jr., J. Chem. Phys. 27, 353-360 (1957) Theory of internal motions and application to CD3ND2

LEVELS AND MATRIX ELEMENTS OF THE QUARTIC OSCILLATOR

55. S.I.CHAH AND D.STELMAN, J.CHEM.PHYS. 39, 545-51 (1963) OSCILLATORS PERTURBED BY GAUSSIAN BARRIERS

57. T.KASUYA AND T.KOJIMA, J.PHYS.SOC.JAPAN 18, 364-368 (1963) INTERNAL MOTIONS OF HYDRAZINE

58. V.W.LAURIE AND J.WOLLRAB, BULL.AM.PHYS.SOC. 327 (1963) MICROWAVE SPECTRUM AND INVERSION OF DIMETHYLAMINE

60. C.B.MOORE AND G.C.PIMENTEL, J.CHEM.PHYS. 40, 1529-1534 (1964) OUT-OF-PLANE CH2 BENDING POTENTIAL FUNCTIONS OF DIAZOMETHANE, KETENE, AND RELATED MOLECULES

62. W.M.TOLLES AND W.D.GWINN, J.CHEM.PHYS. 42, 2253-2254 (1965) QUADRUPOLE COUPLING CONSTANTS AND LOWER LIMIT TO THE BARRIER FOR INVERSION IN ETHYLENIMINE
Section X. STARK EFFECT

1. R.D. L. KRONIG, PROC. NATL. ACADEMY SCI. 12, 488-493 (1926) THE DIELECTRIC CONSTANT OF DIATOMIC DIPole-GASES ON THE NEW QUANTUM MECHANICS

2. R.D. L. KRONIG, PROC. NATL. ACADEMY SCI. 12, 608-612 (1926) THE DIELECTRIC CONSTANT OF SYMMETRICAL POLYATOMIC DIPole-GASES ON THE NEW QUANTUM MECHANICS

3. P. DERYE, POLAR MOLECULES, CHEMICAL CATALOG COMPANY INC., NEW YORK (1929)

4. F. BROUWER, DISSERTATION, AMSTERDAM (1930)

5. W. G. PENNEY, PROD. MAG. 11, 602-609 (1931) THE STARK EFFECT IN BAND SPECTRA

6. R. P. BELL AND J. E. COOP, TRANS. FARADAY SOC. 34, 1209-1214 (1938) THE DIPole MOMENTS OF HYDROGEn AND DEUTERIUM CHLORIDES

9. B. P. DAILY, PHYS. REV. 72, 84-85 (1947) FIRST ORDER STARK EFFECT IN THE MICROWAVE SPECTRUM OF METHYL ALCOHOL

13. C. H. TOWNES AND F. R. MERRITT, PHYS. REV. 72, 1266-1267 (1947) STARK EFFECT IN HIGH FREQUENCY FIELDS

16. S. GOLDEN, T. WENTINK, R. HILLGER, AND M. W. STRANDBERG, PHYS. REV. 73, 92-93 (1948) STARK SPECTRUM OF H2O

17. S. GOLDEN AND F. B. WILSON, JR., J. CHEM. PHYS. 16, 669-685 (1948) THE STARK EFFECT FOR A RIGID ASYMMETRIC ROTOR

19. W. A. NIERENBERG AND M. SLOTNICK, PHYS. REV. 74, 1246 (1948) A NOTE ON
THE STARK EFFECT IN DIATOMIC MOLECULES

21. L.G. Wesson, TABLES OF ELECTRIC DIPOLE MOMENTS, TECHNOLOGY PRESS, CAMBRIDGE, MASS. (1948)

24. A. Lenard, TABLES FOR CALCULATION OF STARK AND ZEEMAN EFFECTS, DEPT. OF PHYSICS, STATE UNIV. OF IOWA (1949) (OUT OF PRINT)

27. F. Coester, Phys. Rev. 77, 454-462 (1950) STARK-ZEEMAN EFFECTS ON SYMMETRIC TOP MOLECULES WITH NUCLEAR QUADRUPOLE COUPLING

32. J.N. Shoolery AND A.H. Sharbaugh, Phys. Rev. 82, 95 (1951) SOME MOLECULAR DIPOLE MOMENTS DETERMINED BY MICROWAVE SPECTROSCOPY

34. M. Mizushima, J. Chem. Phys. 21, 539-541 (1953) THEORY OF THE STARK EFFECT OF ASYMMETRIC ROTATOR WITH HYPERFINE STRUCTURE

42. C. A. Burrus, J. Chem. Phys. 28, 427-429 (1958) Stark effect from 1.1 to 2.6 millimeters wavelength - PH3, PD3, DI, and CO

43. C. A. Burrus and J. D. Graybeal, Phys. Rev. 109, 1553-1556 (1958) Stark effect at 2.0 and 1.2 millimeters - nitric oxide

47. C. A. Burrus, J. Chem. Phys. 31, 1270-1272 (1959) Stark effect at 0.93-1.18- and 1.5 millimeter wavelength - DCl, DBr, and DI

53. B. N. Battacharya and W. Gordy, Phys. Rev. 119, 144-149 (1960) Observation of \(\sigma \) Stark components in microwave spectroscopy - precision measurements on HCN

STARK EFFECTS IN THE MILLIMETER WAVE SPECTRUM OF FORMYL FLUORIDE

57. G. H. KWEI AND D. R. HERSCHBACH, J. CHEM. PHYS. 32, 1270-1271 (1960) STARK EFFECT AND DIPOLE MOMENT OF CH3CHF2

58. D. R. LIDE, JR., J. CHEM. PHYS. 33, 1519-1522 (1960) STRUCTURE OF ISOBUTANE MOLECULE-CHANGE OF DIPOLE MOMENT ON ISOTOPIC SUBSTITUTION

60. L. WHARTON, L. P. GOLD, AND W. KLEMPERER, J. CHEM. PHYS. 33, 1255 (1960) DIPOLE MOMENT OF LITHIUM HYDRIDE

62. H. A. DIJKERMAN AND A. DYMANUS, PHYSICA 28, 977-992 (1962) \(\sigma \) -STARK EFFECT OF ROTATIONAL TRANSITIONS. II. MICROWAVE SPECTRUM OF METHYL ALCOHOL

63. H. KIM, R. KELLER, AND W. D. GWINN, J. CHEM. PHYS. 37, 2748-2750 (1962) DIPOLE MOMENT OF FORMIC ACID, HCOOH, HCOOD

64. W. M. TOLLES, J. L. KINSEY, R. F. CURL, AND R. F. HEIDELBERG, J. CHEM. PHYS. 37, 927-930 (1962) MICROWAVE SPECTRUM OF CHLORINE DIOXIDE V. STARK AND ZEEMAN EFFECTS

66. J. S. MUEENTER AND V. W. LAURIE, MOLECULAR SPECTROSCOPY SYMPOSIUM, OHIO STATE UNIV. (1964) ISOTOPE EFFECTS ON MOLECULAR DIPOLE MOMENTS, MICROWAVE SPECTRUM OF MONODEUTEROACETYLENE

Section XI. ELECTRONIC AND MAGNETIC EFFECTS (ZEEMAN EFFECT)

1. E. L. HILL, PHYS. REV. 34, 1507-1516 (1929) ON THE ZEEMAN EFFECT IN DOUBLET BAND SPECTRA

2. J. H. VAN VLECK, PHYS. REV. 33, 467-506 (1929) ON σ-TYPE DOUBLING AND ELECTRON SPIN IN THE SPECTRA OF DIATOMIC MOLECULES

3. R. S. MULLIKEN AND A. CHRISTY, PHYS. REV. 38, 87-119 (1931) Δ-TYPE DOUBLING AND ELECTRON CONFIGURATIONS IN DIATOMIC MOLECULES

4. F. H. CRAWFORD, REV. MOD. PHYS. 6, 90-117 (1934) ZEEMAN EFFECT IN DIATOMIC MOLECULAR SPECTRA

5. R. RENNER, Z. PHYSIK 92, 172-193 (1934) INTERACTION OF ELECTRONIC AND NUCLEAR MOTIONS IN TRIATOMIC ROD-SHAPED MOLECULES

7. H. M. FOLEY, PHYS. REV. 72, 504-505 (1947) SECOND-ORDER MAGNETIC PERTURBATIONS IN NUCLEAR QUADRUPOLE SPECTRA AND THE PSEUDO-QUADRUPOLE EFFECT IN DIATOMIC MOLECULES

8. C. K. JEN, PHYS. REV. 72, 986 (1947) MICROWAVE SPECTRA AND ZEEMAN EFFECT IN A RESONANT CAVITY ABSORPTION CELL

11. C. K. JEN, PHYS. REV. 74, 1396-1406 (1948) THE ZEEMAN EFFECT IN MICROWAVE MOLECULAR SPECTRA

12. G. C. WICK, PHYS. REV. 73, 51-57 (1948) ON THE MAGNETIC FIELD OF A ROTATING MOLECULE

15. W. GORDY, O. R. GILLIAM, AND R. LIVINGSTON, PHYS. REV. 76, 443-444 (1949) NUCLEAR MAGNETIC MOMENTS FROM MICROWAVE SPECTRA I (127) AND II (129)

16. C. K. JEN, PHYS. REV. 76, 471 (1949) ROTATIONAL MAGNETIC MOMENTS FOR H_2O AND HDO

MAGNETIC RESONANCE ABSORPTION IN NITROGEN DIOXIDE

20. A.F. HENRY, PHYS. REV. 80, 396-401 (1950) THE ZEEMAN EFFECT IN OXYGEN

21. A.F. HENRY, PHYS. REV. 80, 549-552 (1950) HYPERFINE STRUCTURE OF ZEEMAN LEVELS IN NITRIC OXIDE

22. H. MARGENAU AND A. HENRY, PHYS. REV. 78, 587-592 (1950) THEORY OF MAGNETIC RESONANCE IN NITRIC OXIDE

23. K. B. MCAFEE, JR., PHYS. REV. 78, 340 (1950) MAGNETIC ELECTRON SPIN-NUCLEAR SPIN INTERACTION IN THE ROTATIONAL SPECTRUM OF NO2

24. N. F. RAMSEY, PHYS. REV. 78, 699-703 (1950) MAGNETIC SHIELDING OF NUCLEI IN MOLECULES

25. R. S. ANDERSON, C. M. JOHNSON, AND W. GORDY, PHYS. REV. 83, 1061-1062 (1951) RESONANT ABSORPTION OF OXYGEN AT 2.5-MILLIMETER WAVELENGTH

27. C. K. JEN, PHYS. REV. 81, 197-203 (1951) ROTATIONAL MAGNETIC MOMENTS IN POLYATOMIC MOLECULES

30. J. H. VAN VLECK, REV. MOD. PHYS. 23, 213-227 (1951) THE COUPLING OF ANGULAR MOMENTUM VECTORS IN MOLECULES

31. R. BERINGER, ANN. N. Y. ACAD. SCI. 55, 814-821 (1952) MICROWAVE RESONANCE ABSORPTION IN PARAMAGNETIC GASES

32. R. BERINGER AND E. B. RAWSON, PHYS. REV. 86, 507 (1952) LAMBDA-DOUBLING IN A MICROWAVE SPECTRUM OF NITRIC OXIDE

34. J. R. ESHBACH AND M. W. P. STRANDBERG, PHYS. REV. 85, 24-34 (1952) ROTATIONAL MAGNETIC MOMENTS OF 1Σ MOLECULES

35. R. A. FROSCHE AND H. M. FOLEY, PHYS. REV. 88, 1337-1349 (1952) MAGNETIC HYPERFINE STRUCTURE IN DIATOMIC MOLECULES

36. C. K. JEN, ANN. N. Y. ACAD. SCI. 55, 822-830 (1952) MOLECULAR AND NUCLEAR MAGNETIC MOMENTS

38. R. STERNHEIMER, PHYS. REV. 86, 316-324 (1952) EFFECT OF THE ATOMIC CORE ON THE MAGNETIC HYPERFINE STRUCTURE
39. B.F. BURKE AND M.W.P. STRANDBERG, PHYS. REV. 90, 303-308 (1953) ZEEMAN EFFECT IN ROTATIONAL SPECTRA OF ASYMMETRIC ROTOR MOLECULES

40. J.T. COX, P.B. PEYTON JR., AND W. GORDY, PHYS. REV. 91, 222 (1953) ZEEMAN EFFECT IN THE MICROWAVE SPECTRA OF METHYL FLUORIDE AND METHYL ACETYLENE

41. S.L. MILLER AND C.H. TOWNES, PHYS. REV. 90, 537-541 (1953) THE MICROWAVE ABSORPTION SPECTRUM OF O(16)12 AND O(16)0(17)

43. N.F. RAMSEY, PHYS. REV. 91, 303-307 (1953) ELECTRON COUPLED INTERACTIONS BETWEEN NUCLEAR SPINS IN MOLECULES

45. J.O. ARTMAN AND J.P. GORDON, PHYS. REV. 96, 1237-1245 (1954) ABSORPTION OF MICROWAVES BY OXYGEN IN THE MILLIMETER WAVELENGTH REGION

50. M. MIZUSHIMA, PHYS. REV. 94, 569-574 (1954) THEORY OF THE HYPERFINE STRUCTURE OF NO MOLECULE

51. M. MIZUSHIMA AND R.M. HILL, PHYS. REV. 93, 745-748 (1954) MICROWAVE SPECTRUM OF O2

57. R.L. White, Rev. Mod. Phys. 27, 276-288 (1955) Magnetic hyperfine structure due to rotation in $^1\Sigma$ molecules.

68. C. A. Burrus, J. Chem. Phys. 30, 976-983 (1959) Zeeman effect in the 1- to 3-millimeter wave region—molecular g factors of several light molecules.

75. P. THADDEUS AND J. LOUBSER, NUOVO CIMENTO 13, 1060-1064 (1959) BEAM MASER SPECTROSCOPY ON HDO

78. B. D. OSIPOV, OPTIKA I SPEKTROSKOPIYA 8, 581-582 (1960) I-J INTERACTION IN THE METHYL IODIDE MOLECULE

91. Y. CHIU, J. Chem. Phys. 41, 3235-3249 (1964) ROTATION-ELECTRONIC INTERACTION IN THE RYDBERG STATES OF DIATOMIC MOLECULES
92. K.M. EVENSON, J.L. DUNN, AND H.P. BROIDA. PHYS. REV. 136, 1566-1571 (1964)
Optical Detection of Microwave Transitions between Excited Electronic States of CN and the Identification of the Transitions Involved

93. F.X. POWELL AND D.R. LIDE, JR. J. CHEM. PHYS. 41, 1413-1419 (1964)
Microwave Spectrum of the SO Radical

94. H.E. RADFORD. PHYS. REV. 136, 1571-1575 (1964)
Hyperfine Structure of the B \(\Sigma^+ \) State of CN

95. W.T. PAYNES. J. CHEM. PHYS. 41, 3020-3032 (1964)
Spin Splitting and Rotational Structures of Nonlinear Molecules in Doublet and Triplet Electronic States

96. P. THADDEUS, L. C. KRISHER, AND P. CAHILL. J. CHEM. PHYS. 41, 1542-1547 (1964)
Hyperfine Structure in the Microwave Spectrum of NH2D

Hyperfine Structure in the Microwave Spectrum of HDO, HDS, CH2O, AND CHDO- Beam-Maser Spectroscopy on Asymmetric-Top Molecules
Section XII. GENERAL MICROWAVE PAPERS AND RELATED TOPICS

4. P. M. Morse, Phys. Rev. 34, 57-64 (1929) Diatomic Molecules According to the Wave Mechanics II. Vibrational Levels

10. E. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Braunschweig (1931)

12. R. De L. Kronig, Physica 1, 617-622 (1933) Note on the Determination of Isotopic Masses from Band Spectra

16. G. H. Dieke and G. B. Kistiakowsky, Phys. Rev. 45, 4-28 (1934) The Structure of the Ultraviolet Absorption Spectrum of Formaldehyde. 1

30. C. Gilbert, Phys. Rev. 49, 619-624 (1936) The theory of the band spectra of PH and NH

32. A. Budó, Z. Physik 105, 73-80 (1937) Rotational structure of $^2 \rightarrow ^4 \Pi$ bands

33. B. L. Crawford and P. C. Cross, J. Chem. Phys. 5, 621-625 (1937) Elements of the factorized secular equation for the semi-rigid water type rotator with application to the hydrogen sulfide band at 10,000 Å

72

38. E.B. WILSON, JR., J. CHEM. PHYS. 6, 740-745 (1938) NUCLEAR SPIN AND SYMMETRY EFFECTS IN THE HEAT CAPACITY OF ETHANE GAS

39. H. MARGENAU, REV. MOD. PHYS. 11, 1-35 (1939) VAN DER WAALS FORCES

40. T.Y. WU, VIBRATIONAL SPECTRA AND STRUCTURE OF POLYATOMIC MOLECULES, NATIONAL UNIVERSITY OF PEKING, KUN-MING, CHINA (1939)

41. B.T. DARLING AND D.M. DENNISON, PHYS. REV. 57, 128-139 (1940) THE WATER VAPOR MOLECULE

42. D.M. DENNISON, REV. MOD. PHYS. 12, 175-214 (1940) INFRARED SPECTRA OF POLYATOMIC MOLECULES: PART II.

43. I. SANDEMAN, PROC. ROY. SOC. EDINBURGH 60, 210-223 (1940) ENERGY LEVELS OF A ROTATING VIBRATOR

44. E.B. WILSON, JR., CHEM. REV. 27, 17-38 (1940) THE PRESENT STATUS OF THE STATISTICAL METHOD OF CALCULATING THERMODYNAMIC FUNCTIONS

45. H.M. HULBURT AND J.O. HIRSCHELDER, J. CHEM. PHYS. 9, 61-69 (1941) POTENTIAL ENERGY FUNCTIONS FOR DIATOMIC MOLECULES

47. H. EYRING, J. WALTER, AND G.E. KIMBALL, QUANTUM CHEMISTRY, JOHN WILEY AND SONS INC., NEW YORK (1944)

49. R. BERINGER, PHYS. REV. 70, 53-57 (1946) THE ABSORPTION OF ONE-HALF CENTIMETER ELECTROMAGNETIC WAVES IN OXYGEN

50. B. BLEANEY AND R.P. PENROSE, NATURE 157, 339-340 (1946) AMMONIA SPECTRUM IN THE 1 CM WAVELENGTH REGION

51. D.K. COLES AND W.E. GOODS, PHYS. REV. 70, 979 (1946) STARK AND ZEEMAN EFFECTS IN THE INVERSION SPECTRUM OF AMMONIA

52. D. TER HAAR, PHYS. REV. 70, 222-223 (1946) THE VIBRATIONAL LEVELS OF AN ANHARMONIC OSCILLATOR

53. L.N. HADENY AND D.M. DENNISON, PHYS. REV. 70, 780-781 (1946) THE MICROWAVE SPECTRUM OF AMMONIA

54. W.D. HERSCHBERGER, J. APPL. PHYS. 17, 495-500 (1946) THE ABSORPTION OF MICROWAVES BY GASES

55. C.I. BEARD AND B.P. DAILEY, J. CHEM. PHYS. 15, 762 (1947) MICROWAVE SPECTRUM AND STRUCTURE OF ISOTHIOCYANIC ACID
56. D.K.Coles, E.S.ELYASH, AND J.C. GORMAN. PHYS. REV. 72, 973 (1947)
MICROWAVE ABSORPTION SPECTRA OF N2O

PRELIMINARY ANALYSIS OF THE MICROWAVE SPECTRUM OF SO2

MICROWAVE SPECTRA OF SEVERAL POLYATOMIC MOLECULES

BOND DISTANCES IN OCS FROM MICROWAVE ABSORPTION LINES

MICROWAVE ABSORPTION FREQUENCIES OF N(14)H3 AND N(15)H3

PRECISION FREQUENCY MEASUREMENTS OF MICROWAVE ABSORPTION LINES AND THEIR
FINE STRUCTURE

MICROWAVE SPECTRA - THE HYPERFINE STRUCTURE OF AMMONIA

63. W. GORDY, J.W. SIMMONS, AND A.G. SMITH. PHYS. REV. 72, 344-345 (1947)
NUCLEAR AND MOLECULAR CONSTANTS FROM MICROWAVE SPECTRA - METHYL
CHLORIDE AND METHYL BROMIDE

64. W. GORDY, A.G. SMITH, AND J.W. SIMMONS. PHYS. REV. 71, 917 (1947)
MICROWAVE SPECTRA - METHYL IODIDE

ANALYSIS OF THE HYPERFINE STRUCTURE IN THE MICROWAVE SPECTRUM OF
THE SYMMETRIC TOP MOLECULE CH3I

MILLIMETER-WAVE SPECTRA - HYPERFINE STRUCTURE OF BRHC AND ICH3

67. W.D. HERSHEYGER AND J. TURKEVICH. PHYS. REV. 71, 554 (1947)
ABSORPTION OF METHYL ALCOHOL AND METHYLAMINE FOR 1.25-CM WAVES

(1947) THE MICROWAVE ABSORPTION SPECTRUM OF CARBONYL SULFIDE

69. G.W. KING AND R.M. HAINER. PHYS. REV. 71, 135 (1947)
INTERPRETATION OF THE MICROWAVE ABSORPTION OF HDO AT 1.3 CENTIMETERS

EXPECTED MICROWAVE ABSORPTION COEFFICIENTS OF WATER AND RELATED
MOLECULES

71. H. RING, H. EDWARDS, M. KESSLER, AND W. GORDY. PHYS. REV. 72, 1262-1263 (1947)
MICROWAVE SPECTRA - METHYL CYANIDE AND METHYL ISOCYANIDE

72. W.V. SMITH AND R.L. CARTER. PHYS. REV. 72, 638-639 (1947)
SATURATION EFFECT IN MICROWAVE SPECTRUM OF AMMONIA

ROTATIONAL SPECTRA OF SOME LINEAR MOLECULES NEAR 1-CM WAVE-LENGTH

74. C.H. TOWNES, A.N. HOLDEN, AND F.R. MERRITT. PHYS. REV. 72, 513-514 (1947)
MICROWAVE SPECTRA OF LINEAR MOLECULES

75. R.T. WEIDNER, Phys. Rev. 72, 1268-1269 (1947) THE MICROWAVE SPECTRUM OF IODINE MONOCHLORIDE AT 4.5 CENTIMETERS WAVE-LENGTH

76. D. WILLIAMS, Phys. Rev. 72, 974 (1947) FURTHER WORK ON SATELLITES IN THE MICROWAVE SPECTRUM OF AMMONIA

80. A. FLETCHER, Math. Tables and Other Aids to Computation 3, 27-29 (1948) G.W. KING PUNCHED -CARD METHODS IN ANALYZING INFRA-RED SPECTRA

81. O.R. GILLIAM, H.O. EDWARDS, AND W. GORDY, Phys. Rev. 73, 635-636 (1948) ANOMALIES IN THE HYPERFINE STRUCTURE OF CH3I AND ICN

84. M.KESSLER AND W. GORDY, Phys. Rev. 74, 123 (1948) METHODS IN MICROWAVE SPECTROSCOPY

85. M. MIZUSHIMA, Phys. Rev. 74, 705-706 (1948) ON THE AMMONIA MOLECULE

86. A. ROBERTS, Phys. Rev. 73, 1405 (1948) ROTATIONAL SPECTRUM OF OC(14)S AND THE NUCLEAR SPIN OF C(14)

87. A.H. SHARBAUGH, Phys. Rev. 74, 1870 (1948) MICROWAVE DETERMINATION OF THE MOLECULAR STRUCTURE OF CHLOROSILANE

91. M.W.P. STRANDBERG, Phys. Rev. 74, 1245 (1948) MICROWAVE ROTATIONAL ABSORPTION IN D2O

94. B. BAK, E. S. KNUDSEN, AND E. MÅDSEN, PHYS. REV. 75, 1622-1623 (1949)
MICROWAVE ABSORPTION OF SOME ORGANIC VAPORS

95. C. I. BEARD AND B. P. DAILEY, J. AM. CHEM. SOC. 71, 929-936 (1949)
THE MICROWAVE SPECTRA OF CH3NCS AND CH3SCN

96. D. BIANCO, G. MATLACK, AND A. ROBERTS, PHYS. REV. 76, 473 (1949)
ISOTOPIC FREQUENCIES IN THE MICROWAVE SPECTRA OF OCS AND CH3CL

97. J. K. BRAGG AND A. H. SHARBAUGH, PHYS. REV. 75, 1774-1775 (1949)
MICROWAVE SPECTRUM OF FORMALDEHYDE

MICROWAVE SPECTRA OF NITROUS OXIDE

MICROWAVE SPECTRUM OF CF3CL

100. G. L. CUNNINGHAM, A. W. BOYD, W. D. GWINN, AND W. I. LEVAN, J. CHEM. PHYS. 17, 211-212 (1949)
STRUCTURE OF ETHYLENE OXIDE

MICROWAVE ROTATIONAL SPECTRA AND STRUCTURES OF GEH3CL, SIH3CL, AND CH3CL

102. H. D. EDWARDS, O. R. GILLIAM, AND W. GORDY, PHYS. REV. 76, 196 (1949)
MICROWAVE SPECTRUM OF METHYL ALCOHOL AND OF METHYL AMINE

NUCLEAR AND MOLECULAR INFORMATION FROM THE MICROWAVE SPECTRUM OF FCL

MICROWAVE INVESTIGATIONS OF METHYL FLUORIDE, FLUOROFORM, AND PHOSPHORUS TRI-FLUORIDE

O(17) AND S(36) IN THE ROTATIONAL SPECTRUM OF OCS

ON THE AMMONIA MOLECULE II.

107. W. J. PIETENPOL AND J. D. ROGERS, PHYS. REV. 76, 690-691 (1949)
MICROWAVE ABSORPTION SPECTRUM OF METHYLENE BROMIDE

108. A. ROBERTS AND W. F. EDGELL, J. CHEM. PHYS. 17, 742-743 (1949)
THE MICROWAVE SPECTRUM OF CF2=CH2

THE DETERMINATION OF THE MOLECULAR STRUCTURE OF BROMOSILANE BY MICROWAVE MEASUREMENTS

110. A. H. SHARBAUGH AND J. MATTERN, PHYS. REV. 75, 1102 (1949)
MICROWAVE SPECTRUM OF METHYL BROMIDE

111. J. W. SIMMONS, PHYS. REV. 76, 686 (1949)
THE MICROWAVE SPECTRA OF CD3CL AND CD3I

112. W. V. SMITH AND R. R. UNTERBERGER, J. CHEM. PHYS. 17, 1348 (1949)
MICROWAVE
INVESTIGATIONS OF CHLOROFORM

113. M.W.P. STRANDBERG, J.CHEM.PHYS.17, 901-904 (1949) ROTATIONAL ABSORPTION SPECTRUM OF HDO

119. E. AMBLE AND B.P. DAILEY, J.CHEM.PHYS.18, 1422 (1950) THE STRUCTURE AND DIPOLE MOMENT OF HYDRAZOIC ACID

120. B. BAK, E.S. KNUDSEN, E. MADSEN, AND J. RASTRUP-ANDERSEN, PHYS.REV.79, 190 (1950) PRELIMINARY ANALYSIS OF THE MICROWAVE SPECTRUM OF KETENE

121. B. BAK, R. SLOAN, AND D. WILLIAMS, PHYS.REV.80, 101-102 (1950) MICROWAVE INVESTIGATION OF SCSE

122. C. I. BEARD AND B.P. DAILEY, J.CHEM.PHYS.18, 1437-1441 (1950) THE STRUCTURE AND DIPOLE MOMENT OF ISOThIOCYANIC ACID

123. H.J. BERNSTEIN, J.CHEM.PHYS.18, 1514 (1950) THE STRUCTURE OF NITROSYL CHLORIDE FROM THE MICROWAVE ABSORPTION SPECTRUM

126. C.D. CORNWELL, J.CHEM.PHYS.18, 1118-1119 (1950) MICROWAVE SPECTRA OF BROMODIBORANE AND VINYL BROMIDE

127. S. GESCHWIND, H. MINDEN, AND C.H. TOWNES, PHYS.REV.78, 174-175 (1950) MICROWAVE MEASUREMENTS ON THE STABLE SELENIUM ISOTOPES IN OCS

128. O.R. GILLIAM, C.M. JOHNSON, AND W. GORDY, PHYS.REV.78, 140-144 (1950) MICROWAVE SPECTROSCOPY IN THE REGION FROM TWO TO THREE MILLIMETERS

77

136. W. LOW AND C. H. TOWNES, PHYS. REV. 80, 608–611 (1950) EVIDENCE FROM NUCLEAR MASSES ON PROPOSED CLOSED SHELLS AT 20 NUCLEONS

139. W. J. PIETENPOL, J. D. ROGERS, AND D. W. WILLIAMS, PHYS. REV. 78, 480–481 (1950) MICROWAVE SPECTRA OF ASYMMETRIC TOP MOLECULES

140. S. J. SENATORE, PHYS. REV. 78, 293–294 (1950) MICROWAVE ABSORPTION SPECTRA OF POF3

141. A. H. SHARBAUGH, B. S. PRITCHARD, AND T. C. MADISON, PHYS. REV. 77, 302 (1950) MICROWAVE SPECTRUM OF CF3BR

144. J. SHERIDAN AND W. GORDY, PHYS. REV. 77, 292–293 (1950) INTERATOMIC DISTANCES IN CF3BR, CF3I, AND CF3CN

145. J. SHERIDAN AND W. GORDY, PHYS. REV. 77, 719 (1950) MICROWAVE SPECTRA AND MOLECULAR CONSTANTS OF TRIFLUOROSILANE DERIVATIVES, SIF3H, SIF3CH3, SIF3CL, AND SIF3BR

146. J. SHERIDAN AND W. GORDY, PHYS. REV. 79, 224 (1950) MICROWAVE SPECTRUM OF METHYL BROMOACETYLENE

MICROWAVE SPECTRUM AND MOLECULAR CONSTANTS OF HYDROGEN CYANIDE
ERRATA—PHYS.REV. 86, 1055 (1952)

THE STRUCTURE OF METHYL BROMIDE FROM MICROWAVE SPECTRA

THE MICROWAVE SPECTRUM OF BROMINE MONOFLUORIDE

THE MICROWAVE SPECTRUM OF BRCl

THE ISOTOPIC ANALYSIS OF NITROGEN BY MEANS OF A MICROWAVE MASS SPECTROGRAPH

MICROWAVE SPECTRA AND MOLECULAR CONSTANTS OF CD3NC AND CD3CN

154. R.TRAMBARULO AND W.GORDY, J.CHEM.PHYS. 18, 1613-1616 (1950)
THE MICROWAVE SPECTRUM AND STRUCTURE OF METHYL ACETYLENE

MICROWAVE DETERMINATION OF THE STRUCTURE OF CHLOROFORM

156. A.A.WESTENBERG AND E.B.WILSON, JR., J.AM.CHEM.SOC. 72, 199-200 (1950)
THE MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF CYANOACETYLENE

MICROWAVE SPECTRA AND MOLECULAR CONSTANTS OF TERTIARY BUTYL CHLORIDE, BROMIDE, AND IODIDE

158. J.O.WILLIAMS AND W.GORDY, PHYS.REV. 79, 225 (1950)
MICROWAVE SPECTRUM OF BROMOFORM AND PHOSPHORUS TRIBROMIDE

159. E.AMBLE, PHYS.REV. 85, 210 (1951)
THE STRUCTURE AND DIPOLE MOMENT OF TRIOXANE

160. W.E.ANDERSON, J.SHERIDAN, AND W.GORDY, PHYS.REV. 81, 819-821 (1951)
MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF GEF3CL

161. W.E.ANDERSON, R.TRAMBARULO, J.SHERIDAN, AND W.GORDY, PHYS.REV. 82, 58-60 (1951)
THE MICROWAVE SPECTRUM AND MOLECULAR CONSTANTS OF TRIFLUOROMETHYL ACETYLENE

162. D.G.RURKHARD AND D.M.DENNISON, PHYS.REV. 84, 408-417 (1951)
THE MOLECULAR STRUCTURE OF METHYL ALCOHOL

163. R.O.CARLSON, C.A.LEE, AND B.P.FABRICAND, PHYS.REV. 85, 784-787 (1951)
THE MOLECULAR BEAM ELECTRIC RESONANCE METHOD STUDY OF THALLIUM MONOCHLORIDE

164. G.F.CRABLE AND W.V.SMITH, J.CHEM.PHYS. 19, 502 (1951)
THE STRUCTURE AND DIPOLE MOMENT OF SO2 FROM MICROWAVE SPECTRA

THE MICROWAVE SPECTRA, STRUCTURE, AND DIPOLE MOMENTS OF ETHYLENE OXIDE AND ETHYLENE SULFIDE

79.
166. S. GESCHWIND AND R. GUNTER-MOHRENSTEIN, PHYS. REV. 81, 882-883 (1951) MICROWAVE STUDY OF Fe, Si, AND S MASSES

168. F. K. HURD AND W. D. HERSHEYBERGER, PHYS. REV. 82, 95-96 (1951) MICROWAVE SPECTRUM OF METHYL MERCAPTAN

169. C. M. JOHNSON, R. TRAMBARULO, AND W. GORDY, PHYS. REV. 84, 1178-1180 (1951) MICROWAVE SPECTROSCOPY IN THE REGION FROM TWO TO THREE MILLIMETERS. PART II.

170. P. KISLIK AND C. H. TOWNES, PHYS. REV. 83, 210 (1951) NEW MICROWAVE DATA ON TRICHLORIDES OF ELEMENTS OF THE FIFTH COLUMN

172. C. C. LOOMIS AND M. W. P. STRANDBERG, PHYS. REV. 81, 798-807 (1951) MICROWAVE SPECTRUM OF PHOSPHINE, ARSINE, AND STILBENE

174. N. W. LUFT, DIS. FARADAY SOC. 10, 117-118 (1951) GENERAL DISCUSSION

176. K. B. MCAFEE, JR., PHYS. REV. 82, 971 (1951) MICROWAVE SPECTRUM OF NO2

178. J. D. ROGERS, W. J. PIETENPOL, AND D. WILLIAMS, PHYS. REV. 83, 431-434 (1951) THE MICROWAVE ABSORPTION SPECTRUM OF NITROSYL CHLORIDE NOCL

179. J. D. ROGERS AND D. WILLIAMS, PHYS. REV. 82, 131 (1951) MICROWAVE ABSORPTION SPECTRUM OF HYDROGEN AZIDE

180. J. D. ROGERS AND D. WILLIAMS, PHYS. REV. 83, 210 (1951) MICROWAVE ABSORPTION SPECTRUM OF FORMIC ACID VAPOR

181. T. F. ROGERS, PHYS. REV. 83, 881 (1951) FAR WING ABSORPTION OF ATMOSPHERIC SPECTRUM LINES

182. T. M. SHAW AND J. J. WINDLE, J. CHEM. PHYS. 19, 1063-1064 (1951) MICROWAVE SPECTRUM AND DIPOLE MOMENT OF METHYL MERCAPTAN

183. J. SHERIDAN AND W. GORDY, J. CHEM. PHYS. 19, 965-970 (1951) THE MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF TRIFLUOROSILANE DERIVATIVES

185. M. H. SIRVETZ, J. CHEM. PHYS. 19, 938-941 (1951) THE MICROWAVE SPECTRUM OF
SULFUR DIOXIDE

186. M.H. SIRVETZ, J. CHEM. PHYS. 19, 1609-1610 (1951) THE MICROWAVE SPECTRUM OF FURAN

188. R. M. TALLEY AND A. H. NIELSEN, J. CHEM. PHYS. 19, 805-806 (1951) VIBRATION ROTATION TRANSITIONS OF C2D2 IN THE MICROWAVE REGION

190. R. O. CARLSON, C. A. LEE, AND B. P. FABRICAND, PHYS. REV. 85, 784-787 (1952) THE MOLECULAR BEAM ELECTRIC RESONANCE METHOD STUDY OF THALLIUM MONOCHLORIDE

191. V. W. COHEN, ANN. N. Y. ACAD. SCI. 55, 904-914 (1952) SPECTROSCOPY OF RADIOACTIVE MOLECULES

193. S. N. GHOSH, R. TRAMBARULO, AND W. GORDY, J. CHEM. PHYS. 20, 605-607 (1952) MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF FLUOROFORM, CHLOROFORM, AND METHYL CHLOROFORM

194. N. J. HAWKINS, V. W. COHEN, AND W. S. KOSKI, J. CHEM. PHYS. 20, 528 (1952) THE MICROWAVE SPECTRA OF POF3 AND PSF3

196. A. JAVAN AND A. V. GROSSE, PHYS. REV. 87, 227 (1952) MICROWAVE SPECTRUM OF MN03F

197. H. R. JOHNSON AND M. W. STRANDBERG, J. CHEM. PHYS. 20, 687-695 (1952) THE MICROWAVE SPECTRUM OF KETENE

198. P. KISLIUK AND G. A. SILVEY, J. CHEM. PHYS. 20, 517 (1952) THE MICROWAVE SPECTRUM OF CF3SF3

199. S. KOJIMA, K. TSUKADA, S. HAGIWARA, M. MIZUSHIMA, AND T. ITO, J. CHEM. PHYS. 20, 804-808 (1952) MICROWAVE SPECTRA OF CHB3 IN THE REGION FROM 11 TO 12.5 CENTIMETERS

201. D. R. LIDE, JR., J. AM. CHEM. SOC. 74, 3548-3552 (1952) THE MICROWAVE SPECTRUM AND STRUCTURE OF METHYLENE FLUORIDE

203. J. M. MAYS, ANN. N. Y. ACAD. SCI. 55, 789-799 (1952) SPECTROSCOPIC
MEASUREMENTS ON HIGH-BOILING, REACTIVE, AND UNSTABLE MOLECULES

204. J. M. MAYS AND B. P. DAILEY, J. CHEM. PHYS. 20, 1695-1703 (1952)
MICROWAVE SPECTRA AND STRUCTURES OF XYH3 MOLECULES

J. CHEM. PHYS. 20, 1112-1114 (1952) STRUCTURE OF METHYL HALIDES

206. R. MOCKLER, J. H. BAILEY, AND W. GORDY, PHYS. REV. 87, 172 (1952)
MICROWAVE INVESTIGATIONS OF HSICl3 AND CH3SICl3

THE MICROWAVE SPECTRUM OF VINYLACETATE

THE MICROWAVE SPECTRUM AND MOLECULAR CONSTANTS OF HYDROGEN CYANIDE

209. N. F. RAMSEY, PHYS. REV. 87, 1075-1079 (1952) VIBRATIONAL AND
CENTRIFUGAL EFFECTS ON NUCLEAR INTERACTIONS AND ROTATIONAL
MOMENTS IN MOLECULES

RESULTS OF MICROWAVE SPECTROSCOPY FOR NUCLEAR THEORY

211. J. SHERIDAN AND W. GORDY, J. CHEM. PHYS. 20, 591-595 (1952)
THE MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF TRIFLUOROMETHYL BROMIDE, IODIDE,
AND CYANIDE

212. J. SHERIDAN AND W. GORDY, J. CHEM. PHYS. 20, 735-738 (1952)
THE MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF METHYL BROMOACETYLENE AND
METHYL IODOACETYLENE

OF THE STABLE TELLURIUM ISOTOPES FROM THE MICROWAVE SPECTRUM OF TECs

THE MICROWAVE SPECTRA OF THE DEUTERATED METHYL HALIDES

MICROWAVE SPECTRUM OF NITRYL FLUORIDE

216. S. J. TETENBAUM, PHYS. REV. 86, 440-446 (1952) MICROWAVE SPECTRUM OF
BRCN AT SIX MILLIMETERS

217. S. J. TETENBAUM, PHYS. REV. 88, 772-774 (1952) SIX-MILLIMETER SPECTRA
OF OCS AND N2O

218. T. L. WEATHERLY AND D. WILLIAMS, J. CHEM. PHYS. 20, 755 (1952)
THE MICROWAVE ABSORPTION SPECTRUM OF ACETONE VAPOR

EVIDENCE FOR A COMPLETELY PLANAR STRUCTURE OF PYRROLE FROM ITS
MICROWAVE SPECTRUM

THE MICROWAVE SPECTRUM OF VINYL CYANIDE

221. Q. WILLIAMS, J. T. COX, AND W. GORDY, J. CHEM. PHYS. 20, 1524-1525 (1952)
MOLECULAR STRUCTURE OF BROMOFORM
222. Q. WILLIAMS, J. SHERIDAN, AND W. GORDY, J. CHEM. PHYS. 20, 164-167 (1952) MICROWAVE SPECTRA AND MOLECULAR STRUCTURES OF POF3, PSF3, POCL3, AND PSCl3

225. B. BAK, J. BRUHN, AND J. RASTRUP-ANDERSEN, J. CHEM. PHYS. 21, 752-753 (1953) MICROWAVE SPECTRUM AND STRUCTURE OF S1D3F

226. B. BAK, J. BRUHN, AND J. RASTRUP-ANDERSEN, J. CHEM. PHYS. 21, 753-754 (1953) MICROWAVE SPECTRUM AND STRUCTURE OF S1D3CL

227. B. BAK AND J. RASTRUP-ANDERSEN, J. CHEM. PHYS. 21, 1305-1306 (1953) MICROWAVE INVESTIGATION OF PYRIDINE

228. Y. BEERS AND S. WEISRAUM, PHYS. REV. 91, 1014 (1953) AN ULTRA-HIGH FREQUENCY ROTATIONAL LINE OF HDO

230. G. BIRNBAUM AND A. A. MARYOTT, PHYS. REV. 92, 270-273 (1953) CHANGE IN THE INVERSION SPECTRUM OF OD3 FROM RESONANT TO NONRESONANT ABSORPTION

231. C. A. BURRUS AND W. GORDY, PHYS. REV. 92, 1437-1439 (1953) ONE-TO-TWO MILLIMETER WAVE SPECTROSCOPY. III. NO AND DI

232. C. A. BURRUS AND W. GORDY, PHYS. REV. 92, 274-277 (1953) ONE-TO-TWO MILLIMETER WAVE SPECTROSCOPY. II. H2S

233. H. D. CRAWFORD, J. CHEM. PHYS. 21, 2099 (1953) TWO NEW LINES IN THE MICROWAVE SPECTRUM OF HEAVY WATER

234. B. P. DAILEY, PHYS. REV. 90, 337-338 (1953) THE ROTATIONAL SPECTRUM AND MOLECULAR STRUCTURE OF CYCLOPROPYL CHLORIDE

236. G. ERLANDSSON, ARKIV. FYSIK 6, 477-478 (1953) MICROWAVE SPECTRUM OF FLUOROBENZENF

238. G. ERLANDSSON, ARKIV. FYSIK 6, 491-495 (1953) PRELIMINARY ANALYSIS OF THE MICROWAVE SPECTRUM OF FORMIC ACID

239. R. C. FERGUSON AND E. B. WILSON, JR., PHYS. REV. 90, 338 (1953) THE MICROWAVE SPECTRUM AND STRUCTURE OF THIONYL FLUORIDE

240. A. HONIG, M. L. STITCH, AND M. MANDEL, PHYS. REV. 92, 901-902 (1953) MICROWAVE SPECTRA OF CSF, CSCL, AND CSBR
| 247. | J. A. Klein and A. H. Nethercot, Phys. Rev. 91, 1018 (1953) | Microwave spectrum of DI at 1.5 mm wavelength |
| 251. | M. Mizushima and P. Venkateswarlu, J. Chem. Phys. 21, 705-709 (1953) | The possible microwave absorption in the molecules belonging to the point groups D2D=VD and TD |
| 253. | R. C. Mockler and W. Gordy, Phys. Rev. 91, 222 (1953) | Microwave spectrum of trimethyl chlorosilicane |
| 254. | N. Muller, J. Am. Chem. Soc. 75, 860-863 (1953) | The microwave spectrum and structure of chlorofluoromethane |

261. K.SHIMODA AND T.NISHIKAWA, J PHYS SOC JAPAN 8, 133-134 (1953) MICROWAVE SPECTRUM OF METHYLAMINE

262. K.SHIMODA AND T.NISHIKAWA, J PHYS SOC JAPAN 8, 425-426 (1953) MICROWAVE SPECTRUM OF METHYLAMINE

264. D.F.SMITH, J CHEM PHYS 21, 609-614 (1953) THE MICROWAVE SPECTRUM AND STRUCTURE OF CHLORINE TRIFLUORIDE

265. N.SOLIMENE AND B.P.DAILEY, PHYS REV 91, 464 (1953) THE ROTATIONAL SPECTRUM AND MOLECULAR STRUCTURE OF METHYL MERCAPTAN

266. T.E.TURNER, V.C.FIORA, W.M.KENDRICK, AND B.L.HICKS, J CHEM PHYS 21, 564-565 (1953) PRELIMINARY ANALYSIS OF THE MICROWAVE SPECTRUM OF ETHYLENIMINE

267. P.VENKATESWARLU, R.C MOCKLER, AND W.GORDY, J CHEM PHYS 21, 1713-1715 (1953) MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF TRICHLOROGERMANE

268. S.WEISBAUM, Y. REERS, AND G.HERRMANN, PHYS REV 90, 338 (1953) S-BAND SPECTRUM OF HDO

272. C.A.BURRUS AND W.GORDY, PHYS REV 93, 897-898 (1954) SUBMILLIMETER WAVE SPECTROSCOPY

273. C.A.BURRUS, A.JACHE, AND W.GORDY, PHYS REV 95, 706-708 (1954) ONE-TO-TWO MILLIMETER WAVE SPECTROSCOPY, V= PH3 AND PD3

276. G.ERLANDSSON, ARKIV FYSIK 7, 189-192 (1954) MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF FLUOROBENZENE

277. G.ERLANDSSON, J CHEM PHYS 22, 563-564 (1954) MICROWAVE SPECTRUM OF CYCLOPENTANONE

278. G.ERLANDSSON, ARKIV FYSIK 8, 341-342 (1954) MICROWAVE SPECTRUM OF CHLOROBENZENE
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Authors</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>279</td>
<td>G. ERLANDSSON</td>
<td>J. CHEM. PHYS. 22, 1152 (1954)</td>
<td>Microwave spectrum of benzonitrile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>W. Gordy</td>
<td>J. PHYS. RAD. 15, 521-523 (1954)</td>
<td>Spectroscopy from 1 to 5 mm wavelength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>W. Gordy and C. A. Burrus</td>
<td>PHYS. REV. 93, 419-420 (1954)</td>
<td>Spectrum of DBr in the one-millimeter wave region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>W. Gordy and J. Sheridan</td>
<td>J. CHEM. PHYS. 22, 92-95 (1954)</td>
<td>Microwave spectra and structures of methyl mercury chloride and bromide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>W. A. Hardy and G. Silvey</td>
<td>PHYS. REV. 95, 385-388 (1954)</td>
<td>Microwave spectrum of TECs and masses of the stable tellurium isotopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>291</td>
<td>A. Javan and A. Engelbrecht</td>
<td>PHYS. REV. 96, 649-658 (1954)</td>
<td>Microwave absorption spectra of MnO3F and ReO3Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>D. R. Lide, J. R. Lide</td>
<td>J. CHEM. PHYS. 22, 1577-1578 (1954)</td>
<td>Microwave spectrum and structure of RFNzonitrile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>R. J. Lovell and E. A. Jones</td>
<td>PHYS. REV. 95, 300 (1954)</td>
<td>Potential constants for carbonyl fluoride</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THE MICROWAVE SPECTRUM OF REO3F

317. C. A. Burrus, Jr. and W. Gordy, Phys. Rev. 97, 1661-1664 (1955) One-to-two millimeter wave spectra of TCl and TBr

320. G. Erlandsson, Arkiv Fysik 9, 341-343 (1955) Microwave spectrum of cyclopentene oxide

353. B. Bak, D. Christensen, J. Rstrup-Andersen, and E. Tannenbaum, J. Chem. 89
PHYS. 25, 892-846 (1956) MICROWAVE SPECTRA OF THIOPHENE, 2- AND 3-MONODEUTERIUM, 2-, 3- AND TETRADEUTERIUM THIOPHENE STRUCTURE OF THE THIOPHENE MOLECULE

354. A.I. PARCHOLOV, I.M. MAKHAYA AND A.M. PPOHKUPOV, SOVIET PHYS. JETP 7, 760 (1956) MICROWAVE ROTATION SPECTRUM OF THE ETHYL CHLORIDE MOLECULE

355. G. BIRD, J. CHEM. PHYS. 25, 1040-1043 (1956) MICROWAVE SPECTRUM OF NO2-A RIGID ROTOR ANALYSIS

356. G. ERLANDSSON, J. CHEM. PHYS. 25, 379 (1956) MILLIMETER WAVE SPECTRUM OF FORMIC ACID

357. G. ERLANDSSON, J. CHEM. PHYS. 25, 579-580 (1956) MILLIMETER WAVE SPECTRUM OF FORMALDEHYDE

358. G. ERLANDSSON AND J. COX, J. CHEM. PHYS. 25, 778-779 (1956) MILLIMETER WAVE LINES OF HFAVY WATER

361. H. HIRAKAWA, T. OKA, AND K. SHIMODA, J. PHYS. SOC. JAPAN 11, 1207 (1956) MICROWAVE SPECTRA OF HCHO-D1-D2

365. V. W. LAURIE, J. CHEM. PHYS. 24, 635-636 (1956) MICROWAVE SPECTRUM AND DIPOLE MOMENT OF CYCLOPENTADIENE

366. A. A. MARYOTT AND G. BIRNBAUM, J. CHEM. PHYS. 24, 1022-1026 (1956) MICROWAVE ABSORPTION IN COMPRESSED GAS-F-SATURATED HYDROCARBONS

368. A. OKAYA, J. PHYS. SOC. JAPAN 11, 258-263 (1956) MICROWAVE HYPERFINE SPECTRUM OF FORMALDEHYDE

373. V. G. VESELAGO AND A. M. PROKHOROV, ZHUR. EKSPTL. I. TEORET. FIZ. 31, 731 (1956) The hf sf microwave spectrum

375. R. WERTHEIMER, COMPT. REND. 242, 243-244 (1956) Absorption spectrum of formic acid vapor in the vicinity of 3 mm.

376. R. WERTHEIMER, ARCH. SCI. (GENEVA) 19, 47-48 (1956) Absorption spectrum of formic acid vapor between the wavelengths of 4.5 and 2.5 mm

377. R. WERTHEIMER, COMPT. REND. 242, 1591-1593 (1956) The rotational spectrum and inertial constants of the formic acid molecule

378. P. N. WOLFE, J. CHEM. PHYS. 25, 976-981 (1956) Microwave spectrum of chloroform

381. W. ZEIL, Z. NATURFORSCH 11A, 677-678 (1956) The microwave spectrum of 1,1,1-trichloroethane

386. C. A. BURRUS AND W. GORDY, J. CHEM. PHYS. 26, 391-394 (1957) Spectra of some symmetric top molecules in the one-to-four millimeter wave region

PURE ROTATION SPECTRA OF LIGHT AND HEAVY VINYL BROMIDE BY MICROWAVE
METHOD

PURE ROTATION SPECTRA OF Vinyl BROMIDE

391. H. HAPPI, Z. PHYSIK 147, 567-572 (1957)
MICROWAVE SPECTRUM OF
THALLIUM(III) IODIDE AND RISBURY CHLORIDE IN THE 3 CM AND 1.5 CM BAND

POTENTIAL BARRIER AND MOLECULAR STRUCTURE OF METHYL MERCAPTAN FROM ITS MICROWAVE SPECTRA

393. KRISHNAI AND G. P. SRIVASTAVA, PHYS. REV. 106, 1186-1189 (1957)
MICROWAVE ABSORPTION IN ETHYL CHLORIDE

MICROWAVE SPECTRUM, STRUCTURE, DIPOLE MOMENT, AND QUADRUPOLE COUPLING
CONSTANTS OF FORMAMIDE

395. V. W. LAURIE, J. CHEM. PHYS. 26, 1359-1362 (1957)
MICROWAVE SPECTRUM,
DIPOLE MOMENT, AND STRUCTURE OF DIFLUOROSILANE

MICROWAVE SPECTRUM AND STRUCTURE OF PROPIONITRILE

MICROWAVE SPECTRUM AND STRUCTURE OF FORMIC ACID

MICROWAVE SPECTRUM AND STRUCTURE OF SULFURYL FLUORIDE

MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF BROMINE TRIFLUORIDE

400. K. MATSUURA, Y. SUGIURA, AND G. M. HATOMAYAMA, PHYS. REV. 106, 607 (1957)
FREQUENCY OF THE AMMONIA (3,3) LINE

401. I. A. MUKHTAROV, SOVIET PHYSICS-DOKLADY-2, 357-358 (1957)
MICROWAVE SPECTRA OF 1,2-DIFLUOROCHLOROETHANE

402. B. D. OSIPOV, OPTIKA I SPECTROSKOPIYA 3, 94-95 (1957)
HYPERFINE STRUCTURE OF ROTATIONAL TRANSITION J=3-4 OF THE MEI(127) MOLECULE

PURE ROTATIONAL SPECTRA OF THE PARTIALLY DEUTERATED AMMONIAS IN THE
FAR INFRARED SPECTRAL REGION

MICROWAVE SPECTRUM OF VINYLIDENE CHLORIDE

405. H. SELEN, ARKIV. FYSISK 13, 81-83 (1957)
MICROWAVE SPECTRUM OF
CHLOROBENZENE

406. K. SHIMODA, J. PHYS. SOC. JAPAN 12, 558 (1957)
PRECISE FREQUENCY OF THE
3,3 INVERSION LINE OF NH3
Spectrum and Structure of (CH3)3CCN

408. L. F. Thomas, J. S. Heeks, and J. Sheridan, Z. Elektrochem. 61, 935-937 (1957)
Microwave Spectra of Some Molecules Containing -CF3 and SiF3 Groups

HDOE Microwave Spectrum

Spectrum of Ethyl Chloride

Microwave Spectrum of Ethyl Bromide

634-637 (1957) Microwave Spectrum, Structure, and Dipole Moment of S-
Trans-Acrolein

413. R. Wertheimer, Arch. Sci. (Geneva) 10, 184-186 (1957) Molecular
Constants of Formic Acid from the Rotational Spectrum

414. R. Wertheimer and M. Clouard, Compt. Rend. 245, 1793-1794 (1957)
Absorption of Sulfuric Anhydride (SO2) in the Millimeter Wave Region

415. B. Bak, D. Christensen, L. Hansen-Nygaard, and J. Rastrup-Andersen,
Fluoride

416. B. Bak, L. Hansen-Nygaard, and J. Rastrup-Andersen, J. Mol. Spectry. 2,
54-57 (1958) The Structure of Tertiary Butyl Isocyanide

417. B. Bak, L. Hansen-Nygaard, and J. Rastrup-Andersen, J. Mol. Spectry. 2,
361-368 (1958) Complete Determination of the Structure of
Pyridine by Microwave Spectra

418. A. I. Barchukov and N. G. Basov, Optika i Spektroskopiya 4, 532 (1958)
Frequencies and Intensities of Hyperfine Structure Lines of CH3I
(The Transition 1=0-1)

419. A. I. Barchukov, T. M. Murine, and A. M. Prokhorov, Optika i Spektroskopiya
4, 521-523 (1958) Microwave Spectrum and Rotation Constants of Ethyl
Chloride Molecule

420. A. I. Barchukov and A. M. Prokhorov, Optika i Spektroskopiya 5, 530-534
(1958) Quadrupole Bond, Dipole Moment, and the Internal Rotation
Barrier in the CH3GEH3 Molecule, Determined from Its Rotational
Spectrum

421. A. I. Barchukov and A. M. Prokhorov, Optika i Spektroskopiya 4, 799 (1958)
Microwave Spectrum of CH3GEH3

Spectra of Thallium, Indium, and Gallium Monohalides

Measurements of Millimeter and Submillimeter Wave Spectra of Deuterium Chloride, Deuterium Bromide, and Deuterium Iodide
MICROWAVE SPECTRA OF DIAZOMETHANE AND ITS DEUTERIO DERIVATIVES

MICROWAVE SPECTRUM OF NICKEL CYCLOPENTADIENYL NITROSYL AND THE CONFIGURATION OF THE MOLECULE

STRUCTURE OF SOME HETEROCYCLIC MOLECULES

MILLIMETER WAVE SPECTRUM OF FORMIC ACID

428. G. ERLANDSSON AND H. SELEN. *Arkiv Fysik* 14, 61-64 (1958)
DIPOL MOMENT OF FORMIC ACID

MICROWAVE STUDIES OF THE STRUCTURE OF CYCLOPROPYL DERIVATIVES

430. H.O. FRITZKY. *Z. Physik* 151, 351-364 (1958)
THE MICROWAVE ROTATION SPECTRUM OF THALLIUM(I) HALIDES

ROTATIONAL STRUCTURE OF THE INFRARED ABSORPTION SPECTRUM OF HYDROGEN PEROXIDE VAPOR

MICROWAVE SPECTRUM, STRUCTURE, DIPOLE MOMENT, AND QUADRUPOLE COUPLING CONSTANT OF PROPARGYL CHLORIDE

DETERMINATION OF ROTATIONAL CONSTANTS OF CH3GCl3 FROM ITS SUPER-HIGH FREQUENCY ABSORPTION SPECTRUM

MICROWAVE SPECTRUM OF HYDRAZINE

MICROWAVE ABSORPTION IN METHYL HALIDES

436. J. MATTAUCH, Z. NATURFORSCH* 13a, 572-596 (1958)
MASS UNITS FOR ATOMIC WEIGHTS AND NUCLERIC MASSES

THE MICROWAVE SPECTRUM, STRUCTURE, AND DIPOLE MOMENT OF NITRYL CHLORIDE

ROTATIONAL CONSTANTS OF THE MOLECULE OF FH2CCH2Cl (35)

MICROWAVE SPECTRUM, INTERNAL BARRIER, STRUCTURE, EQUILIBRIUM CONFIGURATION, AND DIPOLE MOMENT OF METHYL MONOFLUOROSILANE

MICROWAVE SPECTROSCOPY IN ANALYSIS AND PROCESS CONTROL

THE PRINCIPLE OF MINIMUM READING OF ORBITALS

462. W.W.LAURIE, J.CHEM.PHYS.30,1210-1214(1959) MICROWAVE SPECTRUM OF METHYL GERMANE

463. D.R.LIDE, JR., SPECTROCHIM. ACTA 15,473-476(1959) MICROWAVE SPECTRUM OF TRIMETHYLAMINE

467. K.MATSURA, J.PHYS.SOC.JAPAN 14,1826-1828(1959) FREQUENCY SHIFT IN AMMONIA ABSORPTION LINES OTHER THAN (3,3)

470. I.A.MUKHTAROV, OPTika I SPEKTROSKOPIYA 6,260(1959) MICROWAVE SPECTRUM OF THE FH2CH2CLC(37) MOLECULE

475. G.P.SRIVASTAVA, PROC.PHYS.SOC.(LONDON) 74,401-407(1959) MICROWAVE ABSORPTION IN ETHYL CHLORIDE

477. K.TAKAYANAGI, J.PHYS.SOC.JAPAN 14,1458-1459(1959) ROTATIONAL TRANSITIONS IN HYDROGEN AND DEUTERIUM

479. V.G. VESELAGO, OPTICS AND SPECTROSCOPY 6, 286-289 (1959) DETERMINATION OF THE STRUCTURE AND DIPOLE MOMENT OF HDSE FROM ITS MICROWAVE SPECTRUM

480. R. WERTHEIMER, COMPT. REND. 248, 1640-1641 (1959) ABSORPTION SPECTRUM OF SULFURIC ANHYDRIDE IN THE MILLIMETER WAVE REGION

483. J. D. GRAYBEAL, J. CHEM. PHYS. 32, 1258-1260 (1960) MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF MONOCHLORACETONITRILE

484. E. HIROTA AND Y. MORINO, RULL. CHEM. SOC. JAPAN 33, 158-162 (1960) MICROWAVE SPECTRUM OF MALONONITRILE; CH2(CH)2 I, THE MOLECULAR STRUCTURE IN THE GROUND VIBRATIONAL STATE

485. N. A. IRISOVA AND E. M. DIANOVA, OPTIKA I SPEKTROSKOPIYA 9, 261 (1960) ULTRAHIGH FREQUENCY ABSORPTION OF CH3GEF3

488. L. G. JOHNSON, J. CHEM. PHYS. 33, 949-950 (1960) THE MICROWAVE SPECTRUM OF QUINUCLIDINF

493. T. KOJIMA, J. PHYS. SOC. JAPAN 15, 1284-1291 (1960) MICROWAVE SPECTRUM OF METHYL MERCAPTAI

494. L. C. KRISHER, J. CHEM. PHYS. 33, 304 (1960) MICROWAVE SPECTRUM OF ACETYL CYANIDE

495. L. C. KRISHER, J. CHEM. PHYS. 33, 1237-1241 (1960) MICROWAVE SPECTRUM, BARRIER TO INTERNAL ROTATION, AND QUADRUPOLE COUPLING OF ACETYL BROMIDE

513. A.M. Prokhorov and G.P. Shipulo, Optics and Spectroscopy 8, 218-219 (1960) Microwave Investigation of the Molecules F3BNH3 and F3BNHC(H)3

515. K.V. Lin, Sastry, Proc. Indian Acad. Sci. 51a, 301-309 (1960) Microwave Spectrum of Methyl Amine I. Experimental Details and Spectrum of
1 CD3NH?

517. T. SHIMIZU AND H. TAKUMA. J. PHYS. SOC. JAPAN 15, 646-650 (1960) MICROWAVE SPECTRUM OF CIS 1,2 DICHLOROETHYLENE

520. B. BAK, J. S. DEPT, COM. OFFICE TECH. SERV., AD 262, 113, 26 PP. (1961) DETERMINATION OF THE STRUCTURE OF α- AND β-FLUORONAPHTHALENES AND OTHER SELECTED MOLECULES BY INFRARED AND MICROWAVE TECHNIQUES

528. S. DE HEPCE. ANN. SOC. SCI. BRUXELLES 75, 194-211 (1961) ROTATIONAL SPECTRA OF VINYL BROMIDES IN THE GROUND STATE AND A VIBRATIONALLY EXCITED STATE IN THE MICROWAVE REGION

530. E. HIROTA. J. MOL. SPECTRY. 7, 242-260 (1961) MICROWAVE SPECTRUM IN THE EXCITED VIBRATIONAL STATES OF MALONONITRILE, CH2(CN)2: A POSSIBLE ASSIGNMENT OF CCN BENDING MODES

537. V.W.LAURIE,J.CHEM.PHYS.,34,1516-1519(1961) MICROWAVE SPECTRUM OF ISOBUTYLENE, DIPOLE MOMENT,INTERNAL BARRIER,EQUILIBRIUM CONFORMATION,AND STRUCTURE

544. J.D.ROGERS AND D.WILLIAMS,J.CHEM.PHYS.,34,2195-2196(1961) NITROSYL CHLORIDE STRUCTURE

547. J.F.WESTERKAMP,BOL.ACAD.NACL.CIENC.,42,191-200(1961) ASYMMETRIC TOP MOLECULES IN THE MICROWAVE REGION II, CARBONYL CYANIDE AND PERFLUORODIMETHYL ETHYL

549. W.ZEIL,M.WINNEWISER.AND K.MUELLER,Z.NATURFORSCH 16A,1250-1251(1961) MICROWAVE SPECTROSCOPIC INVESTIGATIONS OF (CH3)3CCL AND (CD3)3CCL

OXYGEN MOLECULE AND THE VELOCITY OF LIGHT

553. B.BaK, D.Christensen, L.Hansen-Nygaard, L.Lipschitz, and J.Rastrup-Andersen. Microwave spectra of 1,3,4-thiadiazole and (S(34)) 1,3,4-thiadiazole. Dipole moment of 1,3,4-thiadiazole.

MICROWAVE SPECTRUM, STRUCTURE, AND DIPOLE MOMENT OF CARBONYL FLUORIDE

568. D. R. LIDF, JR., J. CHEM. PHYS. 37, 2074-2079 (1962)
MICROWAVE STUDIES OF BUTADIENE DERIVATIVES I. SPECTRUM OF FLUOROPRENE

MICROWAVE SPECTRUM AND STRUCTURE OF TRICHLOROFLUOROMETHANE

MICROWAVE SPECTRUM OF ACETONITRILE-D3 CD3CN

MICROWAVE SPECTRUM AND MOLECULAR STRUCTURE OF CHF2CL

ROTATION SPECTRUM OF ETHYL ALCOHOL BY MICROWAVES

573. A. M. MIRRI, P. FAVERO, A. GUARNIERI, AND G. SEMERANO, ROLL. SCI. FAC. CHIM. IND. BOLOGNA 20, 110-114 (1962)
MILLIMETER SPECTRUM OF ASYMMETRIC TRIATOMIC NITROSYL CHLORIDE MOLECULES

574. A. MOZUMDER, PROC. NATL. INST. SCI. INDIA 28, 57-73 (1962)
THE MICROWAVE SPECTRUM OF METHYL ALCOHOL I, GENERAL THEORY

THE MICROWAVE SPECTRUM OF METHYL ALCOHOL II, NUMERICAL PART

MICROWAVE SPECTRUM OF 1,1,2-TRIFLUOROTHANE

MICROWAVE SPECTRUM OF METHYL DIFLUOROSINE

MICROWAVE STRUCTURE DETERMINATIONS ON TERTIARY BUTYL ACETYLENES AND TERTIARY BUTYL CYANIDE

579. T. OKA AND Y. MORINO, J. MOL. SPECTRY 8, 300-314 (1962)
ANALYSIS OF THE MICROWAVE SPECTRUM OF HYDROGEN SELCIDE

580. L. PIERCE AND SR. V. DOBYNS, J. AM. CHEM. SOC. 84, 2651-2652 (1962)
MOLECULAR STRUCTURE, DIPOLE MOMENT, AND QUADRUPOLE COUPLING CONSTANTS OF DIAZIRINE

MICROWAVE SPECTRUM OF FORMALDOXIME

582. A. RACHMAN, ARKIV FYSIK 23, 291-299 (1962)
ANALYSIS OF THE MICROWAVE SPECTRUM OF M-FLUOROCHLOROBENZENF

MICROWAVE SPECTRUM OF HROMOCYCLORUTANE

584. R. H. SCHWENDEMAN AND G. D. JACOBS, J. CHEM. PHYS. 36, 1245-1250 (1962)
MOLECULAR STRUCTURE OF ETHYL CHLORIDE

585. R. H. SCHWENDEMAN AND G. D. JACOBS, J. CHEM. PHYS. 36, 1251-1257 (1962)
102
MICROWAVE SPECTRUM, STRUCTURE, QUADRUPOLE COUPLING CONSTANTS, AND RARRIER TO INTERNAL ROTATION OF CHLOROMETHYLSILANE

587. K. SHIMODA, MASER SPECTROSCOPY, PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI, XVII COURSE, TOPICS ON RADIOFREQUENCY SPECTROSCOPY

588. G. P. SHIPULO, OPTIKA I SPEKTROSKOPIYA 13, 593-594 (1962) MICROWAVE SPECTRUM OF THE HDNCN AND D2NCN MOLECULES

596. A. BAUDER, F. TANK, AND H. G. ENTHARD, HELV. CHIM. ACTA 46, 1453-1463 (1963) MICROWAVE SPECTRUM, DIPOLE MOMENT, AND STRUCTURE OF CYCLOBUTANONE

597. S. S. BUTCHER, J. CHEM. PHYS. 38, 2311-2311 (1963) MICROWAVE SPECTRUM OF PROPYLENE SULFIDE

598. J. C. CHAUFFOURAUX, ANN. SOC. SCI. BRUXELLES 77, 171-176 (1963) GROUND STATE OF VINYLIDENE FLUORIDE, DATA ON THE FIRST EXCITED STATE

603. C. FLANAGAN AND L. PIERCE, J. CHEM. PHYS. 38, 2963-2969 (1963) MICROWAVE SPECTRUM, STRUCTURE, AND QUADRUPOLE COUPLING TENSOR OF ETHYL BROMIDE

610. R. L. KUCZKOWSKI, J. AM. CHEM. SOC. 85, 3047-3048 (1963) SULFUR MONOFuORIDE-MICROWAVE SPECTRUM OF A SECOND ISOMER

613. V. W. LAURIE AND D. T. PENCE, J. CHEM. PHYS. 38, 2693-2697 (1963) MICROWAVE SPECTRA AND STRUCTURES OF DIFLUOROACYLENES

614. I. N. LEVINE, J. CHEM. PHYS. 38, 2326-2328 (1963) STRUCTURE OF FORMALDOXIME

615. D. R. LIDE, JR., J. CHEM. PHYS. 38, 456-460 (1963) MICROWAVE SPECTRUM AND STRUCTURE OF DIFLUOROMETHANE

616. D. R. LIDE, JR., J. CHEM. PHYS. 38, 2027 (1963) MICROWAVE SPECTRUM OF ALUMINUM MONOFuORIDE

618. I. A. MUKHTAROV, DOKL. AKADE. NAUK SSSR 148, 566-568 (1963) MICROWAVE SPECTRUM OF THE F2HCCHDF MOLECULE

619. I. A. MUKHTAROV, OPTIKA I SPEKTROSKOPIYA 15, 563-564 (1963) MICROWAVE SPECTRUM OF CF2=CHF

620. I. A. MUKHTAROV, DOKL. AKADE. NAUK SSSR 151, 1076-1078 (1963) MICROWAVE SPECTRUM OF THE F2HC-CH2F MOLECULE

621. I. A. MUKHTAROV, FIZ. PROBL. SPEKTROSKOPII, AKADE. NAUK SSSR, MATERIALY
THE MICROWAVE SPECTRUM OF TRIFLUOROETHANE

638. A. Bauer and J. Bellet. Compt. Rend. 258, 873-876 (1964) ROTATION SPECTRUM OF SO2 IN MILLIMETER WAVELENGTHS (6 MM. AND 2.2 MM.)
639. R. A. BEAUDET, J. CHEM. PHYS. 40, 2705-2715 (1964) MICROWAVE SPECTRUM, BARRIER TO INTERNAL ROTATION, AND QUADRUPOLE COUPLING CONSTANTS OF CIS-1-CHLOROPROPYLENE

640. S. S. RUTCHER AND E. B. WILSON, JR., J. CHEM. PHYS. 40, 1671-1677 (1964) MICROWAVE SPECTRUM OF PROPIONALDEHYDE

641. C. C. COSTAIN AND G. P. SRIVASTAVA, J. CHEM. PHYS. 41, 1620-1627 (1964) MICROWAVE ROTATION SPECTRA OF HYDROGEN-BONDED MOLECULES

642. P. A. CURNUCK AND J. SHERIDAN, NATURE 202, 591-592 (1964) MICROWAVE SPECTRUM OF FLUOROROMETHANE

647. G. JONES AND W. GORDY, PHYS. REV. 135, 295-296 (1964) EXTENSION OF SUBMILLIMETER-WAVE SPECTROSCOPY BELOW A HALF MILLIMETER WAVELENGTH

652. D. R. LIDE, JR., P. CAHILL, AND L. P. GOLD, J. CHEM. PHYS. 40, 156-159 (1964) MICROWAVE SPECTRUM OF LITHIUM CHLORIDE

653. D. R. LIDE, JR., AND M. JEN, J. CHEM. PHYS. 40, 252-253 (1964) MICROWAVE STUDIES OF RUTADINE DERIVATIVES II. ISOPRENE

655. D. B. MCLAY, CAN. J. PHYS. 42, 720-730 (1964) MICROWAVE SPECTRUM OF DICHLOROFLUORETHANE

656. Y. MORINO, Y. KIKUCHI, S. SAITO, AND E. HIROTA, J. MOL. SPECTRY. 13, 95-118 (1964) EQUILIBRIUM STRUCTURE AND POTENTIAL FUNCTION OF SULFUR DIOXIDE FROM THE MICROWAVE SPECTRUM IN THE EXCITED
VIBRATIONAL STATE

657. I.A. MUKHTAROV, OPTIKA I SPEKTROSKOPIYA 16, 360 (1964) MICROWAVE SPECTRUM OF THE MOLECULE F2OCCD2F

658. T. OKA, K. TAKAGI, AND Y. MORINO, J. MOL. SPECTRY, 14, 27-52 (1964) MICROWAVE SPECTRUM OF FORMALDEHYDE IN VIBRATIONALLY EXCITED STATES

659. T. OKA, K. TSUCHIYA, S. IWATA, AND Y. MORINO, BULL. CHEM. SOC. JAPAN 37, 4-7 (1964) MICROWAVE SPECTRUM OF S-TRIOXANE

660. H. E. RADFORD, J. CHEM. PHYS. 40, 2732-2733 (1964) SYNTHESIS OF DIATOMIC MOLECULES

661. V. M. RAO AND R. F. CURL, JR., J. CHEM. PHYS. 40, 3688-3690 (1964) MICROWAVE SPECTRUM OF VINYL FORMATE

662. J. S. RIGDEN AND S. S. BUTCHER, J. CHEM. PHYS. 40, 2109-2114 (1964) MICROWAVE SPECTRUM OF METHYL HYPOCHLORITE

665. G. P. SRIVASTAVA, PHYSICA 30, 1913-1916 (1964) MICROWAVE SPECTRUM OF MONOFLUORO ACETIC ACID

666. F. L. TOBIASON AND R. H. SCHWENDEMAY, J. CHEM. PHYS. 40, 1014-1021 (1964) MICROWAVE SPECTRUM, MOLECULAR STRUCTURE, AND QUADRUPOLE COUPLING CONSTANTS OF 2-CHLOROPROPAINE

667. J. K. TYLER, J. CHEM. PHYS. 40, 1170-1171 (1964) MICROWAVE SPECTRUM OF METHINOPHOSPHIDE, HCP

