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ANNOTATION

In the book the theory of a turb-
ulent boundary layer of a compressible
gas 1s set forth or based on a study of
the relative change of the coefficients
of friction and heat transfer with growth
of the M number, the heat trsnsfer factor
AY and the wall permesbility factor b.
The exlstence 1s shown of a limiting lew,
corresponding to very large Re numbers
and almost full of self-simulation of
relative changes of the coeffilclents of
friction and heet transfer. On this
besis simple engineering methods sre pre-
sented for solving the basic problems of
friction and hest transfer in turbulent
flow of a gas past a solid body.

The theoretical conclusions sre com-
pared with experimental data.

The book 1s designed for scientists,

engineers of aserodynemics and thermophysics,

students of senior courses in these speci-

alties and mey be used as a guide for prac-

tical calculsetions in design offices,
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PREFACE

In nature turbulent flows are the most wide-spread, starting with
the flow of water in a stream and finishing with the motion of inter-
stellar gas. Flow of operating medla in machines and apparatuses of
contemporary technology in the overwhelming majority of cases 1s turb-
ulent, During high speed flight, in combustion chambers and the
nozzles of motors, in nuclear reactors, in high-forced gas equipment
and so forth streamlining of solid bodies of different shapes by =
turbulent stream of compressible gas takes place., In addition, flow
is accompanied by intense heat transfer or mass transfer of some sort
of matter.

As 1s known, aerodynamic drag and heat and mass tronsfer ere de-
termined by the conditions of the transfer of momentum, heat, and
matter in the boundary layer of gas or liquid forming near a stream-
lined surface, In a stream of compressible gas, all phenomena are
complicated by innate compressibllity and by changes of temperature,

connected with high glow velocities. In thls connection, the grest

attention, which has been allotted in the past few years to the problem

of the boundary layer of a compresslble gas 1s understandable, How-
ever, 1f the theory of a laminar boundary layer can be consldered as

basically completed, then with respect to the turbulent boundary layer

vii



the position to now, remains far from satisfactory.

The semli-empirical thecries of near-wall turbulence of Frandtl-
Karman and Taylor to a certain degree permitted, explanation ¢! *he
existence of a logarithmic veloclty proille in an isothermal f£1uid
current with weak pressure gradients and Impenetrar’ e surface, :xfe}-
slon of this theory to nonlsothermal I .:w with zerc pressure gradlents
was carried out in the works of F. I. Frank'! and V, V. Voyshel!,

A. A, Dorodnitsyn, R. Delsler, L. Ye, ¥2 ikhman, V. ¥, lyevlev, E. Ven
Driest, W. Dorrance and F. Dore, V. P. Motulevich, Yu., V. lLaepln, et al.
In the works of K. K. Fedyaevskly, V. Stsablevskly, L. &. Loytsyanskily,
et al. Certain problems are considered of thv Ti:rw o an incompressible
liquid in the presence of a pressure gradient in the Ilow region, not
close to the point of separation of the btoundary layer. In addition,

it 1s necessary to accept a series of additional, physlcally insuffi-
clently vallid, and sometimes contradictory assumptions. As a result
calculations by these methods substantielly differ amcng themselves,
which was noted repeatedly in the iiterature., Therefcre, 1t 1s rnot
surprising, that in engineering practice purely empirlcal methods of
calcuiation of friction and heat transfer in thne turbulent bcundary
layer of a compressible gas, based on the intrcduction of some "gov-
erning" temperature, have obtalned wide circulation, It 1is necessary
to note that in the semi-empirical methods of calculation it 1s also
necessary to introduce a "governing" temperature for calculation of
physical properties of gas in a viscous sublayer. The problem of the
parameters of separation of the turbulent boundary layer remalns the:-
retlcally nearly unexplored.

This monograph 1is devoted to discussion of *he limiting law of

change of the coefficient of friction in a turbulent boundary layer
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under nonisothermal conditlons, transverse flow of matter, and pressure
gradient as established by the authors. Thils law, derived for Re = o,
in the general form does not depend on empirical constants of turb-
ulence and 1s not connected with any special type of semi-emnirical
theories,

The known fact of the weak influence of the Reynolds number on the
relative change of the coefficlents of friction and heat transfer in
connection with nonisothermal conditions and transverse flow of matter
permits extending the limiting law to flows with finite Re numbers,
with good accuracy. As a result we managed to construct relatively
simple methods of solving the integral equations for the momentur and
energy of a turbulent bounday layer.

Theoretical results are compared with a large number of diverse
experimental data,

It is possible to propose that the possibillties of the new method
are by no means exhausted by the problems, considered in this mono-
graph and will be still developed, supplementing the existing theory
of a turbulent boundary 1layer.

It 1s assumed that the reader 1s acquainted with the princionles
of aerodynamics and the theory of heat and mass transfer,

The authors will be very grateful for all critical remarks,

which are raised by readers in connection with the material considered

below,

ix



List of Baslc Cyrillic Symbols

—t

Kr = kg
M = m -
KKa.J = kecal

KI'M = kg.m

CcT = wall = wall
CekK = sec = secontd
rpan = deg = degree
T = t = thermal or thickness
u = hr = hour
rp = b = Dboundary
KD = o<t = critical
T = t = thermal turpulent

Rasic Symbols

1 [ wna.i
“’25[533 - thermal equivalent of work;

a= 2 - relative speed of blowing (in pumping) of metter into
' ®u the boundary layer through the wall;

! ]
a[-Z ] - thermal diffusivity coefficient;

= M
a[ - ] - gpeed of sound;

’:-iha!klﬂ- wall permeability factor;
N,



— _Pcm Ucn
AN

c,.,. C,,." =

< [_w_‘_,] -
N2 - 2pad

D [x] -
ol ]-

F[le_

‘.'l__ AKd.1
1 &2 2pav

70"

=5

o] -

e[ ]-

P

H=2

3.

dw,,

KNe
({43

5[&“'.‘.';!}-

x2 |

j[JE;SEZ_

j'[n-mr'_

N9

- wall permeability factor, referred to the recl volue

of the friction coefficient;
local friction coefficient
average friction coefficient;

friction coefficients during streamlining of a2 fiat,
impenetrable plate to an unlimited isothermal flow;

specific heat at constant pressure;
specific heat at constant volume;
diameter;

diffusion coefficient;

surface &sresa;

shape parameter;
mass flow rate;
acceleration of grevity;

shape parameter, the ratio of the depths of displrce-
ment to loss of momentum;

specific enthalpy;
pulsational component of mass velocity (flow + rote);

mess velocity of transverse flow of matter through o
permeable wall;

criterion of phase transition;

index of the adliabatic curve;



{ (%] - 1inear dimension;
{[#] - length of the path of hydrodynamic mixing;
li|x}- length of the path of trermel mixing;
L |4} - full length of the body;
m - exponent;
Ns = — - Nusselt number;

R - exponent;

M=—-—2—- Mach — Mayevskly numbrer;
Pr=— - Prandtl number;

P [—-— - pressure;

Q['mu - heat flow;

q[“""q - heat flux; oo
R[—-—-'-'f-'-L]- gas constant;
R | %] - radius;

Re = - Reynolds number;

Re** =2%" _ characteristic Reynolds number of boundary layer;
r - temperature recovery coefficlent;
r[ﬂlj- latent heat of flow transition;

$St=->_ . Stanton number;

xii



T[°K| -~ absolute temperature;

T*PK]l- ihhibition temperature;

T;.l.‘Kl ~ adiabatic wall temperature;

T*P’K] ~ calculated temperature, determined by formula (2.45);

t {°C] - temperature on the centigrade scale;

U= —2_ _~ ratio speed of undisturbed flow to the maximum pos-
' l/.zc_! -~ sible speed of flow;
A
4= —=f— - the same for the local value of velocity component w_;
/ 2&1. b ¢
l el
V (s3] = volume;
V|- - volume flow + rate;
cex |
V{;zl - pulsational vector component of velocity;
. €
v[fgi - specific volume;
=/ =[] .
Uy !""wl dynemic velocity;
w[—*] - flow velocity;
| cen
w,[-2-] - velocity outside the dynamic boundary layer;
x|
»,|-2-| - velocity on the calculated boundary of turbulent nu-
L v 1 ecleus and viscous underlayer;
.w&:-%fﬂ - longitudinal gradient of velocity outside the boundary

layer;
x - coordinate, directed along the flow according to the
outline of the contour;

¥ - coordinate, normal to the streamlined surface;

xiii



PN S e A

y -

NNd.$ |

o .y -'I'il(‘

pe -

o° '[“] -

8 [x] -

calculated thickness of the viscous underlayer;

heat transfer coefficient;

angle;

compressibllility factor in the expression for turb -
lent tangential stresces;

form parameter;

density;

sign of difference;

heat transfer factor;

pulsational component of density;

thickness of the dynamic boundary layer;

thickness of the thermal boundary layer;

thickness of displacement;

thickness of loss of momentum;

thickness of loss of energy;

coefficient nonsimilerity temperature and veloclty
fields;

coefficient nonsimilarity of concentration and velocity
flelds;

coefficlent of aercdynamic drag during flow in a pipe;

dimensionless distance from wall, expressed in the form
of "local Reynolds number;"

xiv



& A

dimensionless thickness of the viscous underlayer;
pulsational component of temperature;
dimensionless temperature (see formula [2.46]);
form parameter;

form parameter, referred to cfo;

- coefficient of thermal conductiuity;

coefflcient of dynamic viscosity;
coefficient kinematic viscosity;

dimensionless distance from wall;
denslty of the medium;

tangentlal stress;

relative magnitude of tangential stress in the thick-
ness of the boundary layer;

dimenslonless velocity;

relative change of coefficient of friction at Re#** =
= idem;

relative change of the Stanton number at ReT** = 1dem;
temperature factor;
kinetic temperature factor;

cross sectional area;

dimensionless velocity;

Xv



Indices:
M= b = bdoundary;
kp= cr = critical;
T= ¢t = thermal, turbulent;
cr= wall = wall;
0 - s8cale point, parameters outside boundary layer;
00 - conditions for inhibition parameters;

1l - parameters of matter, introduced intc the boundary
layer at the intersection of the wall;

xvi



MT-64-164

Turbulent Boundary Layer of a Com-
pressible Gas, Publishing House
of the Siberian Branch of the
Academy of Sciences of the USSR,
Novosibirsk, 1962

Pages: Cover — 180,

CHAPTER I

BASIC EQUATIONS OF A TURBULENT BOUNDARY LAYER

1.1, Equations of Motion and Thermal Conductivity of a
Plene Boundary Layer of Gas

List of Designations Appearing in Cyrillic

CT = wall = wall
KD = kg
M = m

A stream of fluld forms near a streamlined surface a dynamic
boundary leyer, i.e., a reglon, in which the velocity of the fluid
changes from the velocity at the wall (for a nonrarefied gas it is
equal to zero) to a magnitude very close to the speed of an undistrubed
flow = Wy In the presence of heat transfer and diffusion thermel and
diffusion boundary layers appear, In a thermal boundary layer the
temperature 1n practic: changes from Twall to TO; in a diffusion
boundary layer the concentration at the diffusing substance changes

" '

!
from Pwall to Po Strictly speaking, for a dynamic boundary layer
the boundary conditions take the form;

|¥=0. w,=0; y-- 00, W, = W,. (1.1)



Due to a sharp change of speed in direct proximity to the well, fhne

exact conditions of (1.1) can be replaced by the app-oximate;
]y:ﬁ, w,=0; y=" w, =l —-19) 2w,

where € 1s a prescribed small magnitude,
In that sense we are speaking of a toundarv laver of finite thickress
8.

In experiments the value of & cern colncilde with the gsencitivity

of the measuring instrument.

In Fig. 1 1s given a diagram of a boundery layer on a certein
curvilinear surface.
In a plane boundary layer in the abhsence of slgnificant ftrensvers:

forces (for instance, centrifugal) the following conditions are ful-
filled:

9 . 9p
dy = dx '
_o < 9 .
ox oy '
Bf . P
d xt gy " )

(1.3)
where for f1 are understood wx’ T, and p.

In connection with this,
the equations of thermal conduc-
tivity, motion, and continuity
for a stationary, plane boundary
layer of compressible gas on an

impenetrable surface have the f-vm,

0 (l oT )_1_‘4:‘(%_)3=

Fig. 1. Diagram of a boundary 9y L9y y
layer on a curvilinear surface, =‘~H('l~"r Al +w, di )_ Aw, dp :
In front of the body is a T ox oy . dx

shock wave,



dp . ] dwyg \ _ "’" ouw, ’_dv, . 1.5
dx K dy ( dy )—'(‘«" dx +u"dy )' ( )
ofpwy) . Odpwy) _
S s oy =0.- (1.6)

At cp = const -—g%— = cp —%%—, what 1s practically true for a

uniform gas.

To these equations one should join the equation of state, determ-
lning the magnitude of the density of the gas p, and temperature func-
tions of the coefficlents of thermal conductivity and viscosity.

For a gas, obeying the Clapeyron — Mendleyev equation, we have

- P
"“__K—R_;' (1.7)

The coefficients of thermal conductivity and viscosity are re-

lated to the epecific heat via the Prandtl number,

{

. _&BS
Pr=—" (1.8)

For undissoclated gases the values of Pr and c_ change little with

p
temperature and pressure, Therefore, for such a medium practically

one may assume that

-%-::umﬁ. (1.9)

The magnltude of Pr depends chiefly on the number of atoms in the

molecules of the gases, and its order 1s given in Table 1.1.

Table 1.1. Order of Pr number for undissociuted gases.

Atoms 1 2 3 24

Pr number..........'...... 0066 0075 0084 1

OQutside the boundary layer frictional forces do not appear
oW
-J;ﬁ— = 0 ):and for steady-state flow

_3-



dp de,
3 B g =
dx Py

N (1.10)

Substituting in equation (1.4) the value of —%E— from equation (1.5),

we obtain the thermal conductivity equation for a plane boundary layer

in the form of M., F. Shirokov (at G const)
LA [7" (Pr —1) il ]}—
oy oy [T T 2%, )T
- 0T 9T
=gc,go(w,—;;-+'w,—s—.). (1.11)
Here
2
Te = 7. _Aw,
2¢¢, (1.12)

1s the temperature of stagnation.

1.2, Turbulent Viscosity and Thermal Conductivity
in a Plane Boundagy Layer

The real (actual) instantaneous characteristics of turbulent flow
- effect at every polnt disordered oscilllations around a certain mean

value, Thus, for the flow veloclity we have

E‘ ir.,, (1.13)

81}

w =

where -v"? — vector of the averaged velocity at a given point of flow,
¥ — vector of pulsational component, giving the deviation of
the true veloclty, at a given moment of time, from the averaged value,
In a gompressible gas the flow veloclty, pressure, temperature,
density, and flow + rate of the medium pulsate., The corresponding

equation of motion of a plane steady state boundary layer has the form

dp |, 0 [ Tow,
T Tdx dy (» oy Jy V")_
=W —+f,w..._.7'__ (1'114')



Here a line above a letter signifies averaging during a time fairly
large as compared to the period of pulsation.
In turn, the averaged product of the vector components of pulsa-

tion of tie flow + rate Jy and vector velocity pulsation Vi are

=

jy = ;V;V_v - E’.\' Vi o W, .\'.a’ (1'15)

where 6 1s the density pulsation,
=
By comparing in equation (1.14) the members P-75L and 7V, 1t
is possible to arrive at the conclusion that the latter value can be
consldered as some tangential stress, appearing in the averaged stream
under the influence of turbulent pulsations,

In a gas, obeying cguation (1.7).
dmp—p = —p 2
=p-e=—t0g (1.16)

and correspondingly

o= - ViV, + L2 8V, +-L VY, (1.17)

7

~le

where 8 1s the temperature pulsation.

The value

7y (1.18)

is called the coefficient of turbulent viscosity. This value is a
complex function of velocity and temperature,

The idea of the coefficlent of thermal conductivity At is developed
in an analogous manner,

In the method proposed the values by and Xt are not used directly

and only their ratio i1s important

Pr, = £, (1.19)

-5-



called the turbulent Prandtl number.

This value near a solid wall 1s close to unity.

1.3. Integral Equations of a Boundary layer

The equation of motion can be written recorded ir the form

ow,

¢y (4.20)

dw, de dw,
=, —— 6N
“ + o’ (‘ x (’.T y

o W
true for laminar and turbulent flows, 1f corresponding velues of
variables are introduced into it.

Integration of this equation with respect to y from O to D gives

RE ety s 0=
é
_ dw, 0w ow, c
‘o P x v y d’ ,’ »
(1.21)

On the outer boundary of the layer, by definition v = O and we = Wqe.

On the surface of a streamlined body

= Ten w.t=0- Pwy :jl-
Here
I =t e
(1.22)

1s mass flow veloclty of matter througn a suriece, This flow may be
as a result of a change of the aggregate state (evaporation, conden-
sation), porosity of the wall (blast of gas intc the boundary layer
or pumping from the boundary layer), chemical reactions.

Subsequently, & surface, on which Ji # 0, we will call permeable.

Taking into account these boundary conditions and the equation of

continuity, it is possible to transform equation (1.21) to the form

oLl SO ST S NP S, 2
dx LY : ] £ Qw, (1.23)
where
- e Y d?u\
H=-—7 and w=—



In this equation, called the Karman momentum equation

-5 (i - Ly (1.24)

is the thickness of displacement,

YT 2 Lw, ‘ - _ﬂ'_.‘ I
y Wy ( L /’ y (1.25)

is the thickness of loss of momentum.

The upper limit of integration y = ® corresponds to the theory
of an asymptotic boundary layer; the limit y = © corresponds to the
theory of a layer of finite thickness.

Due to a sharp change of speed in the interval from O to b,

b* and 6#** have the same value for both upper limits, i.e., there are
certain "internal” linear scales, the one and the same within the
theory of an asymptotic layer, and in the theory of a layer of finite
thickness.

The analogous integration cf the thermal conductivity equation
leads to the equation of the energy of a boundary layer (without

consideration of radiation and inte:rnal sources),

ai’ [ w @1y o R
dx ' e AT I % "
Cp1 J1 . 9er -
€. Py X = gt’op.,w...\ T (1'%)

where (AT)!' =(d/dx)(AT),AT is the temperature difference,

cpi is the specific heat of the gas, introduced
through a permeable surface,

cpo is the specific heat of the basic ges.
The quantity
$‘S —E—1- W) dy
.‘o'v

(1.27)
is called the thickness of loss ¢f energy.

-7-



The cocefficient of friction 1is
e

L N Fa G
R 1 20

t‘,z

and the coefficient of heat transfer is

ez

aT (1.29)
The dimensionlegs forme of the hee’ coefficient “rernzfer (Stanton
and Nusselt numbers) have the form,
I .
peTe®e 1.30)
L
Ne == (1.31)

where lo is a characteristic linear dimension,
In integral (1.27) ¢ is & certain dimens'ic.less temperature, At
Pr = 1 and dp/dx = O, the value of § is exsotly squal %o the ratic
- -T * * valie of the inhititlan temperatu
Tyall T*/T,a11-To*» where T* 1s the valiz of the inhi an temperature
*
at a given point and To is’ the value of the stzgnation temperature

outside the boundary layer,

The temperature difference 1s determined by the expression

T=71,- 75,
8 = (1.32)

n

where T;;ll is the adlabatic temperature of the wall, i.e., thet
temperature, which is established on a given surface, if the latter
is completely heat-insulated and Denil ™ C.

In genereal it is assumed that

Aw}
¢ ' (1.33)

1‘:.=T.+r

where r is the temperature recovery factor.
In a turbulent boundary layer
r=Pr'?, (1.34)

i.e,, for gases close to or equal to unity.



Fig., 2.

Dlagram of a
boundary layer on an axlally
symmetric body.

9w R,)

In Fig. 2 1s given a diagram of a
boundary layer on an axlelly symmetric
body. Because of the small thickness
of the boundary layer relative to the
radius of curvature R.» the equations
of motion and thermal conductivity do
not change their form as compared to
Planar flow. The form of the con-

tinuity equation changes, taking the

form:

ox

d‘P',R“ B _o
oy. |

(1.36)

In connection with this the equations of momentum and energy are

somewhat modified; namely,

b 8“(2+H)+( L IBh G )"’*—
dx g [, ] R,
— jl — &L ; 1037
fo W h'z ( )
a} ” ar fo R, \..
dx +( », -\7+'h+kx)"_
S1h Yer
fpofo o ECptawe AT (1.38)
Here
] , v
Wy
e -2 (EE L ETR R O
-l -
- Wy ___!5_. y % .
3..__5 i_;( e )(l:}: R, coa,s)dy. (1.40)
ond
%,“=J 22 ll—ﬂ)(lj;——g’—cosp)dy. (1.41)



1.4, Characteristic Reynolds Number .
& Boundary layer

The trivial determination of the Reyncldeg nurber hasg the form:

Yo

y

| )

where w, 1s characteristic velccilty:

lo the charecterlstic linear dimensi-n of g2 slreemlined body:

Yo the kinematic viscosity at & characteristic point of the
system, However, in boundery leyer thecry such = detcrnlineticn of e
basic hydrodynamic criterion is ineffective. - uslily, rrom the
momentum equation it is clear that such 2 very imuorient integrel
characteristic of the interaction of flow with & body; as the coefri-
cizsnt of friction Cos is connected not with the length x, but with
certain "internal" dimensions of the boundary leyer — O*+* and 0%,
Besides the structure of the momentum equetlor shows that the firct
of these quantities is the most importent,

The universality of the linear characteristics O%, 0U** and B %
becomes especially evident, if we remember that (heir devermination
is not connected with the idea of a layer of finite thickness and the
change of the upper limit in integrals (1.24), (1.25), and (1.27)
from & to ® does nct change thelr value, In ccnnection with this
characteristic Reynolde number for a dynemic boundary layer it is

expedient to construct in the form of the quantitys

-“..A

Re** = (1.43)

or

‘.
Ret = 2=,
LN

(1.44)
In an isothermal turbulent boundery layer fer from tLhe point of

breakaway, the ratio 5*/6#* ig almost constant (see formula (3.13)),

-10=-



i.e., in this case the numbers Re** and Re* differ only by a constant

factor,

For a thermal boundary layer we have correspondingly

.y
w, b

- (1.45)

The dominating role of the quentity 06#*#* in the momentum equation

p
Re! =

and consideration of the expedient uniformity of the characteristics
of dynamic and thermal boundary layers force us to select as basic
modifications of the Reynolds the expressions (1.43) and (1.45).
Regarding selection of the quantity Vs it is more convenient to
relate to conditions outside the boundary layer. Such a determination
is convenient from a computation point of view, inasmuch as the param-
eters of undisturbed flow usually are known.

The relation hetween the Reynolds number

. (1.46)
and the numbers Re#*¥*, Ret** is established vie the equations of momentum

and energy, 1f the following relations are known:

and .
s':/t‘R¢|" (1.48)

These relations are called, respectively, the law of resistance
and law of heat transfer,

Definition of these laws 18 a basic problem of boundary layer

theory.

1.5, Similarity of the Velocity and Temperature Fields

The equations of motion (1.5) and thermal conductivity (1.11)
become identical relative to the quantities Wy and T* upon fulfillment

of the conditions:

-11 -



Pr = i}.

. o ’

Py G
But ldentity of the differential equations signifies identity cf
thelr Integrels during simliarity of boundery ceondltlons,
Consequently, during pressureless
by & polyatomic gas (Pr = 1) and for similarly defined boundary con-
ditions the longitudinal flow velocity ancd stegnation temperature

fields are similar, 1.e.,,

O\
<50

b

(
These conditions are exactly fuifilled during iongitudinal flow by an
unbounded stream of a polyatomic, planar gas w!.h a constant surface
temperature,

Similarity the velocity and tempereture fields &t Pr = 1 meens

that between the heat flux q and the tangentlal stresses 7 there

exlsts the relationship

)......_._.
o I 1 e )
: ows L 151
F \ /
[4
St — 24 :
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CHAPTER 1II

LAWS OF RESISTANCE AND HEAT TRANSFER

Definitions of Cyrillic Items in Order of Appearance

T = t = thermal, turbulent
cT = wall = wall

Kp = cr = critical

2ids Tangential Stresses in a Planar Boundary Layer
of a Compressible Gas

Molecular friction is comnensurate with turbulent only 1in the
thin near-wall layer. This region of the turbulent boundary layer 1s

called the viscous underlayer,
The relative thickness of the viscous underlayer
s.=,-{l- (2.1)
in a flow of an incompressible liquid is 1-3%, and in a flow of a
compressible gas can reach 10-15%,

In the remaining part of the turbulent boundary layer, the so-

called nucleus,

Be>p
and
1:1,:—;"7",(1—.3). (2.2)
where
3= B VB + V;V,0 : (2.3)

' V.V, ?



— g coefficlient, taking into account the influence of density pulsa-
tions on momentum transfer, '
Below the sign of the average values of p, w,and 7 wlll ve ooltle .
A8 cen be seen from formula (2,2), the fundamcotal p3

theory of turbulence 1s the connection between the sverage products

&

the vector components of the pulsational compconent of the flow velocity
and the average velocity, Thils relation 1s expressed very generally

ty the Prandtl formula,
VoV, = (157 (2.4)

where 1 1s a certaln proportionality factor, having the dimension of
length, Usueally the gquantity i iz called the length of the mixing path,

Formula (2.%) follows from dimensional analysls, if we assume that
in the reglon of significant changes cf the average velocity, momentum
1s proportional to the derivative FTN

Introducing the value VX V., from (2.,4) in (2.2) we can write that,
J

~ a turbulent nucleus

- Qu, ¢ (2.5)
t=e, —ofl —= — 9. D)
5 ’( dy )‘l
Thiz expression leads to the form
. . p(1 —-P) ow, \? 5 \
. = (t "'), (2.6)

: T mede

is the distributive law of tangential stresses elong

Twall
-ne thickness of the boundary layer,

2.2. Law of Reslstance

From equation (2.6) it follows that

By

/g o® g R (2.7)

! 1;2%:3

=14 -




where Yy is the thickness of the viscous underlayer,i.e., the
coordinate of the lower boundary of the turbulent
nucleus of flow,
W
Wy = Wi 1s the dimensionless velocity at this boundary.
0
Equation (2.7) is written in a form, not connected with any sort

of theory concerning a boundary layer of finite thickness, The transl-
tion of the terms of the theory of a boundary layer of finite thickness

is accomplished according to equation

1
“—_—-_z A 2.8
Vs j _5_/,_, (2.9)
” Gt )
where 6 1s the thickness of the dynamic boundary layer;

£ = % 1s the dimensionless distance from the wall;

61 = z} is the dimensionless thickness of the viscous underlayer,
The upper integral of equation (2.7) has the same limits in the
theory of an asymptétic boundary layer and in the theory of a layer of
finite thickness,
Let us introduce the relationship

; -‘ t’ [} L[]
€=( e (2.9)
where Ce is the value of the local friction coefficlent at given con-

ditions of streamlining of a body;

Ceo is the value of the friction coefficlent at an 1sothermal,
gradient less streamlining of an impenetrable wall, 1i.e.,
during isothermal streamlining of a planar impenetrable
plate by an unbounded flow,

Comparison the friction coefficlents 1s carried out for identical
values of the characteristic Reynolds number of the boundary layer,
because integration in (2.8) is carried out with respect to the thick-
ness of the latter,

Multiplying both parts of equation (2.6) by the quantity‘?o,

u-(izj" %") (2.10)

-156~

it 1s possible to write:



whers

Z=‘/ P ['/- £« _dy (5 44
“‘T",- T e (2.11 ;
In the formuleacs ~b 1s the distributive law of tne quantlty &

elcng the thickrniess of the lsctheimal boundary laye: at an impenelravlic

piate, with streamlining of an unboundsd unliimited flow (1,
dp

ax = 9

From the glven formulas it is cleer that for estzblishment ol law
of resistance it 1s necessary to know tne !2ws

ties 1, Yqs T and B. The quantity W, cau be computed by calcula-

£,
Po
tion of molecular friction and moleculay thormal conduction, if the
guantity y, and the relation w(T; =re known.
i
In the contemporary semi-empiricsl trecories equsation (2,7) is

celculated on the assumption that £ = 0, 1 = Tua1l? L~ ¥s OF which is

rre-tically the very same,

-7 the dimensioniess thiceness f the viscous uradsriavery,

P %

magintains the value, found experimentally for ilsothermal flow on a

=
zte, if the viscosity is related tc a certzin "determining" tempera-
ture., It is clear that boundary layer theories for a compressitle
Z2& based on such assumptions cannot lead tc sufficiently reliable
results,

However, equation (2,10) obtains special properties at Re — o,
0 wnich attention has not been paid until now, We will now turn to

en examination of these properties,

-
-

2¢3, Values of the Quantities [, W,
and £, at Re =

We wlll show that =2t Re = ® the quantities =, «, end *.  =zpproach

-16-



Zzero,

Equation (2.4) assumes the existence of a correlation between
the vector components of the pulsotlonal portion of the velocity of

the form: N
V'-V’s( -,)
Analogously, for temperaturs pulsation it 1s possible to assume the

relationship:

e oT
V,0~n2% o7
4 dy dy

From (2.,2) it follcws that

d
-. =Vvv, =v, . (2.12)

where v.==l/rst- is the dynamic velocity.
With accuracy up to the coefficients, taking into account the in-
fluence of density pulsation, the relationship between the heat flux

and tangentlial stress in a planar turbulent boundary layer has the form

9 . Ve .
— =86 0
< v, V’

In the degree of similarity temperature and velocity filelds con

dition (1.51) is fulfilled, i.e.,

V8 _ a7 (2.13)
VeV, )

Introducing these relationships in formula (2,3), we can write

that in order

’ 4 , ~
=y 7)o (ool

A )

The transverse velocity component at an impenetrable wall in

succession is equal to the quantity:
ay - 3 L e 3 . €
. 3 'Tf_

-~ "l."

W “ax > dx N

i.e., in thils case
-c AT
z( o +'/ ) ' (2.15)

Let us consider flow with "disappearing viscosity," 1.,e., with

.

L=+ 0, In this case Re — ®, and the friction coefficilent Cp —* 0.

467t



Correspondingly, the coefficient P also approaches zero, ¥t 4 cermeeble

wall the maximum additional component of the velccity -omponent wy

occurs at y = O and, as 1s shown in Chapter IV, is eauati to Woall s
c p ¥ L.
£0ro g R O o — pemrg— ey o
S where b is a finite coantity, oveo sy ontly, 3t
P Por¥or cr : ¢
Puall
- Woo.. &L arproeTnes Zero,
Ce 0, the quantity well 2+350 "EPruC e
The equation of motion of a planar bcundery layer in dilrec
proximlity to a wall has the form (since ‘n this <2se w_ = O).
4% . o . 9w PR
dx ' dy Py sy (2.1€)
ow
Aty <y, «<BT=u —X% and, in the first aprroximation, p = Pl
oy -’
=3 . = i the guasntlty v , 1s urdersto
M bwall’ wy Wieall Here for < At ¥ derstoocd the
value of wy at y = 0,
Integrating (-.1€) we have
5 dp du') \
Tt = | —— == —- Gpw Weq ——— 1Ay =
ot J d}' { Py + e @y, dy ) b,
dp i o 7
T dx Y i Pl ® . \""">
Correspondingly, the v2locity distributi-n 'n the nearest proximity
of the wall 1s determlned by the eauation:
ow. d, i
Pu“;’—='ct’* d: Y T Per W W, . (2.18)

By reducing this equation to the dimensionless form and taking

into account dependency (1.10), we have

do 00 } & bt Wer 2.19
=R (g ), (2.19)
where
..— .05..
Re~ = _—“n

the characteriitic Reynolds number of the boundary layer, referred Lc
the wall temperature,

The quantity
f=1  de _ (2.20)

», dx

-18-



can be considered as a measure "of aerodynamic curvature" of a stream-
lined surface and is called the form parameter,

During streamlining of an impenetrable surface Wiall = O and
integration of equation (2.19) gives:

= pe* 3 & 3V .
o = Re., g ( 9 . = Nee ")' (2'21)

The value of 9%1 is finite for any Re numbers. The value of W,
by definition lies between O and 1. The coefficient of friction o
1s always inversely proportional to the Re number in a degree, leés
than 1 (see, for instance formula (3.24)).

Taking into account these circumstances and reducing equation

(2.21) to the form:

Y

CIE| o -.7).:.- 53 - -: ':RC:,'; ’ (2.22)
we note that at

Re—’m s. _’0.

Thus, the thickness of the viscous underlayer decreases with
growth of the Re number relatlively faster than the thickness of the

whole turbulent boundary layer.

At £ =0
Relpl: ."'— -"’.5..
Ver
T (2.23)
Ren e — W) py M
at f = fcr « 0, i,e., at the point of breakaway of the boundary layer,
Cp = O and
Wy a0 /f 2Re;;
Req, = == =wi'}/ —7e—. (2.24)

Since as the critical Reynolds number of the viscous underlayer is
always finite then at Re = w, w, = 0.
An analogous result 1s also obtained for a permeable plate, 1.e.,

in general:
" | Re - « — 0. (2.25)



&

2.4, Limiting Law cf Resistance

4

At Re = o, v, = 0, 51 - O, Bp=0, and accora.is omie (2.t )

1
Z". 4"/"“,‘._ “‘/ s ?‘v—- u’i. .{‘t‘.‘ Bt
') e 3
= .

1

Let us expand the funetion W-?’V/WV n o cevin Yy degrees -F
! )
the perturbation factor ana let us c20.crate tha wum of the terms “rom

1 =2 tol =c«by &b, Then in accordance with torm (2,11)

Z == Z" wE Aq) ﬁ‘i ‘.';. A ? i ;3'."
The quantity Z, = 1 - w,,, which follows *rom fe.l¢), 1r in this
equation are inserted p = Pos T = T andg Y = 1.

Thus, it is possible to write thaou

Z =, &bi f?;_ (D 281

-

At Re= o w, =0, c ~ 0, Cons~equently, 1f the function A at

1( fo
Re = ® remalns finite or approaxhes irfinity more weakly than V «.

approaches zero, then there occurs the conaltion:

Zpe . ) (2.0Q)

Thus, during certaln conditions there exist certain limiting laus
of the relative influence of nonisothermalness, compressibllity, and

other dilsturbing factors on the coefficient of friction in a turbulent

boundary layer, determined by an integral of the form:
1

d o
(‘ = — =1. (2.30)
v ‘/ ‘A '.:t._

" ¢

-
L1

More detailed information about the properties of the limiting
relative laws of friction in a turbulent boundary layer can be obtainea,
if one considers 1n a sufficlently general form the connectlion between
the length of the path of mixing i and the coordinate y. Let us expand

the function %(E) in a series by degrees of the coordinate £:

- 2() -



_.l_:.‘: 2!‘54-,. (2051)
=] :

Experimental material shows that the quantity % can be considered

as some universal constant, but the sum of the terms Miﬁi"'i

1s always
finite, although the coefficients "1 are also functions of the non-
isothermalness, pressure gradient, transverse flow of the substance,
and other disturbing factors,

In particular, during diffusion flow of an incompressible liquid

0<Z'45"'<l.

From experimental data it follows (see chap, III) that at Re = ®

on an impenetrable surface

2 In Re**

Introducing these relationships in (2.26) and expanding the func-

tion ¥ § 1n a series by degrees of £, we find that at Re = @

r
.

« +-‘-'=i€‘)-‘c—-
Y s B m—n':j' (2.32)

From the data, given in chapter III, it follows that on an
impenetrable surface at %§ = 0O the relative thickness of the viscous

underlayer 1s related to the Reynolds number by the relationship:

| —l Re** s
In addition the values 111,

¥*
= Y always are finite,
Putting this value at 61, in formula (2.32), we find that in the

considered case at Re — :

v, 4% e

lnlnkc“~ln—T—}
Z 11— = - 1.

ln .‘O.

In Chapter V it 1is shown that during diffusion flow (%% > 0) of an

isothermal boundary layer on an 1mpenetrable surface at the point of



AN

breakaway of the boundary layer:

E| const

Y ——————
Rete U5 -
e

Putting the value &1 in (2,32), we find that ot Re — ) 7 = (£

L

Thus, 1n the general care the lntegral (o,7.; .. cgual vo » cortal
value %n’ not beling a function 4 Fsynr ids numbter, H-cid=zs the faranm-
eter ;m is exactly equal to unit or zic-se to 1t,

2,5, Approximetion of vhe Tanpontial
Stresses Pro! .

From determination of a dynamic coundary laver o1 finite thilckness
we have the condition:

E=0. < -, |

S.B3)
s (3222
Frcm the condition of smoothness o7 the “uncticn 1(f, at the point £ =
= 1 it follows that
' | 8V g
YRR (2.34)

In the region € =~ O with accurecy up tc smail guantities ot the scoond
orcer equatlcen (2,17, should be satisiica,

Conditions (2.17), (2.33), and (2.34) are oatlsii=u by the cubic

parabola, - -
=1 =0 L NE b (] = (235
where
dp 26 - 7\
A:—- —— T e 3 \
er dx ey g (2.30]
— oy =
h-—j;;ﬁf—- (2.37)

The first of these quantities 1s a certain modification of the

form parameter, The second quantity characterizes the influence of the
feeding or removal of a substance thrqugh the surface of a streaml’'i.za
bod&. We will call 1t the parameter of wall permezblity.

Subsequently we will deal again with several modifications of the

form parameter and permeablility parameter,



V2§
s

L_- . L ; e ?‘ : 3

At gradlant less streamlining of an impenetrable wall according
to the given approximation:

;=:.=l—3’+2?°. (2'38)
Correspondingly
=14+ b)) (2.39)
%
where
KR =(2%+1)

The value of this function changes from 1 at € = 0 to-% at € =1,

Tc formula (2.39) corresponds the relation

-~

¥ ; =!'.+(A.E+bm)f(5). (2.40)

where
A= - ,,'ﬁ.. f; (2.41)
b= ;':'h—'f"— (2.42)

2.6. Approximation of the Temperature Profiles

Inasmuch as pressure across boundary layer does not change, then
in accordance with (1.7) the density in equation (2.2) at a uniform
boundary layer can be expressed by the density of an undisturbed flow
by formula

p=|~—%- (2.43)

Thus, for solution of equation (2.30) it 1is necessary to know the
connection between the temperature and velocity flelds, Thls relation
was known previously only for the case of simllarity of the velocity
and inhibition temperature flelds examined in section 1,5,

For gases the Pr numbers are equal to or differ 1little from unity,
i,e.,, one of the baslc conditions of the exlstence of such similarity

1s always fulfilled. Therefore, 1t is possible to put dependency



& 2 RO . ™ by TR d 4 2, " "i-m'll.& F
¥ X : * y o (»&ﬁ’ h
# g . padl i ,

(1.52) in the base of the unknown relation. However. 11 1t necegrary

to glve 1t a form, taklng into aczount the <isturbance f similarity,

due to the Independent effect of the Inkhipitlon ' ha f"-~:% at, P°r 7
# 1, which !1s seen from the gtruccure o equation . 1L1).
Let us take the re:.:>t o0l
Tey = T° iy W .
Zur A e (2.54)
/ :1: LI - . {"-‘\
P T or )
2L e .
g (2.1;5)

The form of the functions e€(£) and r/¢), in general, depends on the

vressure gradient, nonlsothermainecs, ana mas ranster,

»
At e =T =1, ™ = T and equation Lo, v, transforms to (1.50),

i
b

.» there occurs exact similarity I .. veloclty and stagnation

[=]
=

temrarature fields.
~el us require, that on the coundar.cs oi tne thernal layer the
quantity

e T (2.46)

satisii~2d the same conditions as the quantity @ on the boundarles of

a dynamic layer, Then at y = bts = 1, to which correspond the values

-v-*" T*

wall
has the order Pr;/B, i.e,, for gases close to unity. Therefore, with-

and r(€) = 1. 1In a turbulent boundary layer the quantity r

out z2ppreclalbe error it is possible to assume 1in all sections of a

thermal boundary layer r(€) = r and

Aw)

7o (2.47)

The problem of the function e(£) 1s considered in section 2,7.

P=T-r

The vaiue of the dynamlc temperature can be connected wilth the

dimensionless velocity

= 2 (2.48)



by the relationship

Aw? A1 2.49
PPy i ( )
where
M= :" (2.50)
e

1s the Mach — Mayevskiy number, referred to parameters outside the
c
boundary layer; k = ER i1s the index of Polsson's adiabatic line,

v
From (2.44) and (2.47) it follows that

= -830— (3* - 1), (2.51)
[ ]
or
—- = ¢ dpem— (§* — e, (2.52)
[ )
The quantity ' .
$=—3— (2.53)

is called the temperature factor;

The quantity
T, k— 1| = S gl
| _Je— L34 X .
9 _'-i:'-l'+' 5 M (2.54)

is the kinetic temperature factor, determining the degree of aero-
dynamic heatlng of a body;

Av¢ —° (2.55)
is the heat-transfer factor, since at Ay = O adiabatic streamlining
of a body occurs;

At Ay > O a body giveﬁ up heat to a flow, at &Y < O a body recelves
heat from a flow,

2.7. Coefficient of Nonsimilarity of the
Temperature and Velocity Flelds

The veloclty and temperature fields in the nucleus of a turbulent
boundary layer are well approximated by exponential formulas of the

form:

J's (2.56)



In flow regions, not close to the polnt cof brearaw.y of the
bouidary layer (see chaps. IV and V), both exponsn sl 1.8,
the protiles are very complete.

frum (2.56) 1t fullows that

'r ( \‘F”‘f')
N 8- v b
wnere
. 3 e
e (______)”,. { :;.58)
&

Far from the poirt of bregkaway n =~ »n , 1.o,. tuere cxicte o
relative similarity of the temperature an’d ve. oy flelis, expressed

by tne formula

’—l\
)I

f~ew. Ea
The ratio £— 1in a uniform tourinre lasev i “elermined by formula
0
©.L7) and equation (2.51). In add!tion, two cases ar. .atingulsbed:
wnen the thickness of the dynamic bounisry layer 1s less than the
*hRinceoc of the thermal and when Lher: Is sn dnverse relationshlp.
n the filrst case & < $r arid e process of heot transfer occurs
2 *ha whole thilcknes~ of +he dimnamic layer. Correspondingly, in the

i)

oole reglon 0O < ¥y < B formuia “2.52) fs walld,

In the second case b > ﬁt, i.e., in the reglcn Et <y < t, heat

transreyr i« absent and the temperature is determined by the condition

)
-+

7T = ~onst, Correspondingly, in the region 0 < y < b, formula (2.52)

s valid, and in the region bt <y < b — formula

T — a8 _ (h% ) m?, .
LSO (2.60)

2.8, Limiting Law of Heat Transfer

In the nucleus of a planar turbulent boundary layer the heat 1lux
along the normal to the streamlined surface 1s determined by formula
1=q,=-—c,1'l7;_6(l-.3,), (2061)
where BTAis a coefficient, taking into account the influence of density
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pu.«:tions on turbulent heat transfer.

Analogously to (2.4) we can write that

_pow, OT
m—li'w * dy C (2.62)

In the general case 14 # 1. From (2,57) .c follows that

PRI ] (2.63)

L Ry

At c_ = const equation (2,61) 1s reduced to the form
S‘: [ _ o . l“ 1'17 ’2 de . 00

6T % o 3 oy dy ' (2.64)

L_o
Qa1

In a region, not close to the point of breakaway n = ng, and from

where

ob;
]

(2.64) 1t follows that:

K (7:_ (‘/%“) ’ (2.65)

where

Y S e (2.66)

= r=| G _dy
x ‘"’.h/l—a. L, (2.67)

Transition to & thermal boundary layer of finite thickness 1s

carried out according to equation

- 1
o . &y o . b 4.
S'/ -k & "5'/ EERCE (2.68)

n

where €t = %%%
t

In these equations sto 1s the value of the Stanton number for the
conditions p = Pos %E = 0, Wogll = O,

The quantities 91, Bto, B, and Z, possess the properties of the
quantities W5 Cpps p end Z, 1.e,, at Re = o, 8t, — 0, 31 - 0, Bt - 0,
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7

.’A+ = lt
Correspcnaingly, at Re = « equation (2.66) Nas » Llneving solution

ot che tform:

]
e f-—.—-.. \
Y _( ‘1/ f ‘ RN
\ aWa ‘
This equation 1s ancelogiue © eaun Pyl TEy wha 2 Ymd tdne Claw Gf
i} )

resistance,

2.9, Approxlimation ol ti.. = i Frux erofil

R - ——— e o

I'rom determlnation of tne thermal v und:rv _.yer of f[inite thick-
v

L. we have the conditlons:

3 - - .
At e ] q & qCYv ! / IS r‘-”k
A l W50 ]

B == L. ’
. the conditicn of smoothness of il :unctlion r(?r) al the puint
2 1t follows that:
—%—:'_,;,‘;L:(}' (2.71)

(AW 3 . = +
e thermal conductivity cquetlion near the wall (wx ~ 0, T = T )
e Torm:
e aTr 7:\\
o —‘pTCthtT- (2'l =V

Integrating (2.72), we find that 1in the neighborhood of the wall

[

9 =G -+ can'w“ T*. (2'7—7)

These conditions are satisfled by the cubic parabole:

g=1— 38 + 28 £5,,00 ) (2.74)
Correspondingly
Go=1 — 3t + 2, (25"
v, "=m+48fmx
- v (2.76)
where
— __Pex® .
M= g (2.77)
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-— fer Wer

b,—-TM_o—'; (2.78)
@) =@2,+1)"". (2.79)

At ¢, # const the quantities b,, and b, should be multiplied by
c

the ratio p all

At Pr = 1 and—%.—.o 6=38, ¢=¢, and ;a;.
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CHAPTELR p 1

LONGITUDINAL STREAMLINING Of . " UEWWTRALLE PLATE

Definitions of Cyrillic Items in Order - * -corance

eT = wall = wall
KD = Cr = crit’ nl

T =t = thermal, ‘.riulent

2.1, dscriiermal Scundmry Las

‘(D

4 the chapter the streamlining of Fiat nlale Ly an unbounded
I gas for tne conditions
Iz .
—f..z= and 7. const
dx o ?
couniary layer for the variables Yo and Twall is considered in
i ! t:'r Vo
A large quantity of experiments confirms for the region £ < C.4,

Logarithmic distribution of velocities in a well-developed tur-

L 1sothermal boundary layer 1is expresced by the Prandtl-Nikuradze

ula:
¢=55+2,5 Iny, (3.2)
llere
:Pa—!L_.- 1:.!._,- 'v - _‘." = /,/'-‘.;'
. ". » 5 ] E P — 0 ‘ 2 .

Tne last quantity is called the dynamic velocity.
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Formula (3.1) is not applicable at a large distance from the wall
and because in it an unlimited increase in y leads to unlimited growth
of L whereas the latter quantity at y — ® is equal to Woe Thus,
this formula should be used within the framework of the theory of a
boundary layer of finite thickness.

Since in the region € > 0.4 in a turbulent boundary layer on

e an lmpenetrable plate w > 0.9, then the indicated circumstances do
not introduce appreciable errors in the calculations of friction and
heat transfer,

In Fig. 3 is given a graph of ¢(n), also including data for the
region of the viscous underlayer. Distribution of velocities in it

is determined by the expression
o=n, (3.2)

which corresponds to formula (2.21) at f = O,

v T T

0
o®

o~

2 i : > ,lL
VO'/I .."__,.w"
L4 L (i
bl -.‘( ) v
s

a "M ™ @0 00 300 43 2000 5000 0000 ]
Fig. 3. Universal veloclty profile

on a flat plate.
Intersection of the lines, calculated by the formulas (3.1) and
(3.2), gives the calculated thickness of the viscous underlayer in a
two-layered diagram of isothermal turbulent flow o = 11.6. Dimen-

sionless velocities on this boundary are equal to:
C ee=lls (3.3)

</ e
=116 |’ —‘,‘{-—
Such a diagram, which nominally divides the stream into a viscous

underlayer, in which u > by and a turbulent nucleus, in which p < by s
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turns out to be fully acceptable for calculations of friction. I+

is also applicable for calculatlions of hea' tran:' .~ [or Pr = 1

\

poohers. Aty =0 w = wy, and from (3.1) it follows =uat

/

- - ——

2 " {7
——- 9525 R -t
tfu o] :
where
Re - =0
) ]
Further, we have
W _‘g_;___ L. v ’ -
L - \?). )
' . - .
Qo —— w, @, Coe,
— = L L \dE=15 //_’ tes e -
' J‘ L) ( «, ’ l 2 e (3.)
* * R - 0
Putting the value of © in {3.4) ingt - © 8, we will obtain
1. law of resistance:
*
V‘ 2 = 5,5 "é' 2,5 |ll —Re el -~’ ,
clo . \ €0 (3’ 7)

el
valculations show that the quantity In (8.5 - 1z.5 ~%g) cher.ges

-y *‘ ’ [3
oo, 3lightly in a wide range or valiues of' Re and in practice
ad of expression (5.7), it is possivie to vie tne significantly
convenient iormula of T, Karman:
) .

Crg = -,

”» (2.5!nRe** + 3,8 (3.9)
From (3.1) it folliows that

(":‘ ), = ot ewlx' == (3.9)

i ~
S aTals

N e (3-40)

1ne logarithmic veloclty profile is an envelope of a family of expc -

nential profiles
,: 447‘.. (3.11)

I'br many calculations the use of such an anproximation of the velocity

profile is very convenient,
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By putting in (5.11) the values of W, =Wy and y = b, we find
that

- (ARe'a‘)‘*—"‘. (3.12)

o

For the thickness of displacement and loss of momentum we obtain:

e s
¥ T o 1+n
 (d [
= ; .1
J (1 + n)(1 +2n) (3.13)
H=-:.—:=l'+2n.

From this the exponential law of resistance follows:
¢y =BRe* ™", (3.14)

where

a=2a'n’f?'[ (1+ n) (1 + 2n) ].-i——
n

b1 (3.15)

1+na '

For the thickness of the boundary layer and the relative thickness of

the viscous underlayer we have:

()= 4 F s (3:16)
.2,.:11.6.4':'_(—'2&'—)7". (3.17)

The momentum equation takes the form:

s ¢

s (3.18)
or

dRe**

= (3.19)

Putting in (3.19) the value of c, from (3.14) and considering
boundary layer, developling turbulently from a certain cross section
X, ps WE find that

Ret*' +™ _ Re:;' =

- Lg-’l'-B(Re,- Re,., . (3.20)
If Xop = 0, i.e., the turbulent layer in practice starts at the

leading edge of the plate,
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1

) 1 - m -
eﬁa'r. i R v e -
R k 2 -8R ) . ( S
tn which corresponds the value:
C/tp:H] Re|-m‘ \ = ALY,
v I§ €D
- ,.'l‘ 3 - )
Vi M) | i 9 i - N
t m (= <
i S
(]
,.‘v k3 . 1
' 1l m '
The valuves of the co2fficients 1+ " e¥xponenties? laws of resis-
tance and the velocity distributions . UGV 1 U IR R b T ol

~ame place are also glven certain other oot = encsuing from these

lawes,

Table 3.1. V= o r -
ficlents in Foruiis: )
(3.14), (3.22) L i
. | w 5 R RTE
T T
8.7{ | 9.7: l”,() . A.L)
X H A
ry 0,0075 | ©.78u0 | 0018 | €077
i
H i, 1oy 1,22 l 1.20
m 0,20 0,222 | 0,200 | 0182
B 0,052 | 00206 | 0,0:90 | 6,148
m, 0,204 0,182 | 2,167 ‘ 0,154
&, FG0si6 | 000 15,0362 1 0,uv8

4

¥* ¥ 1
. practice in the region of Re numbers < 10, it 1s possible

V.o formulas For the distributive law of velocities according

i L&

‘he exponent n = 1/7.

In the region 104 < Re** < 106 the Faulkner formula gives good

iltse
-
C/‘):0,0l:}l Re*" " .
t'or a turbulent layer, developing from a cross section x = 0, the

formula
(3.25)

In Fig. 4 is given a comparison

srresponds to relationship (3.24).

of the ¢iven formulas with experimental data.
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7 S -
’ e
?
¢
’ ! N : 1
4
@
T 1- e
l’ .
11 q - 2
< [ . :‘ :
p] a 0-::
'] N
o ($2252 456 ‘m' 1$2250 450 8 (522534568 (52283 45¢ 0 " ($2263 48
© e 0 ©
Ro=-:—

Fig. 4. Average coefficients of friction during isothermal stream-
lining of a flat plate: 1) Blasius' law (laminar conditions); 2)
the Prandtl law; 3) the Prandtl-Schlichting law; 3a) transition
region; 4) the Schultz-Grunov law. Measurements by Wiselsberger,
Hebers, Frude, Kempf, Schenger.

3.2, Heat Transfer Coefficient for ¢ =1

For polyatomic gases Pr » 1 and in the case considered the

dependency (1.52) is fulfilled.
Putting in it the value of c, from (3.14) we have:

St =2 Rere . (26)
For a plate, on which dynamic and thermal boundary layers are
developing from a cross section x = O, the dependences
Sty = 2 Re; ™ (3.27)

or
Nn..zz-l,:—'kc',' = (3.28)

correspond to the formula (3.26).
For a region, in which we will apply distributive law of veloc-
ities by the degree n = 1/7, 31 = 0.0576, and m = 0.20. Correspon-

dingly, at Pr = 1
Nu, = 0,0288 Re’". (3.29)
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In Fig. 5 are glven the experimental data of B, 3. Petukhov,

A. A, Detlaf, and V. V., Kirillov on the 1local values of the Nusselt

4

-0, ; . N
¢ Nupr nunber during subsonlce streamlining

5 I T

4 —— |-~J of 2 el LY

1 : o R § A

' | As can be 3271, iIntroduction

2 L . S

| H | o 1. factor Pr puts these
- | dat~ on the l'ne of tormula (3,29),
8 1 i ircumstance 1s confirmed by
6

s i the experimerts of Emas, Frank,

‘ | h

’j : | et al,

2 ___-I There e, for gases it is

A i

4 | POSs 1T witn great accuracy to

- |

o

% A 7 45678 .”c 2 4 poctulate that

Re
x No,— -8 PR ™, (3.70)
o . Local values of Nu_ B
X = LF ] o s . e N
.. subsonic streamlining to which corresponds the dependence
plate by air (according B 5 s m,
.he experiments of B. S. S 2 Prm""Re, ™. (3.31)
Ty o - r = 2" 3 o .
0t Hk.V). C VVO o}V m/ ec; At (dpl/,;‘x/» ~ O and P 11 -
Wy = 245 m/sec; O — Wy = Lis
A.':*/sm:; X =Wy = 168 m/sec; = const the ,mergy equation takes
woo . = 102 m/sec; ++ — Wy = the form:
10 o m/secs - w, = 62, =
T om/sec; © g 5 dRe, St (3.32)
secy @ =Wy = 42,3 m/sec; dRe,
iy = 34,1 m/sec. Putting in (3.32) the value of 8t
rom (3.31), we find that for the conditions examined:
. -06
Rey - P Re,-™. (3.33)

2(l — m,)
., replacing, according to this formula, Re  in (3.31) by Re:*, we

fil’ld that
Sty= 2 pr 040 e " (3.34)

Inasmuch, as the experimental value of the exponent for the

Prandtl number is determined for m = 0.25, and the number itself for



gases 18 close to unity, it is possible to consider with a sufficient
degree of accuracy that
Sty = —— Pro . Rel’" (3.35)
From formulas (3.35) and (3.14) it follows that

R

St=Lopr ()" (3.36)

T

Comparing formula (3.21) arnd (3.33) we find that

t {44

-an‘~ ‘

(3.37)

1

Consequently, according to formula (2.58) the nonsimilarity coef-
ficient for the velocity and temperature fields for a plate, com=-
pletely covered by dynamic and thermal boundary layers, 1s equal to:
tx Prtn. (3.38)
By this formula for air € = 0.97, 1.e., it differs little from unity.

3.3. lLaw of Resistance for a Nonlsothermal Boundary Layer

Let us integrate equation (2.10) for the case of nonisothermal
streamlining of a flat, impenetrable plate by an unbounded flow of
gas. Assuming T = ?b and determining the ratio p/p, by formulas
(2.43), (2.52), and (2.59), i.e., for conditions of relative simil-
arity of the temperature and velocity fields, we will calculate the
right integral of the equation,

For the case 6 < Gt we obtain:

Le K

T w-n2 VT AW - D)(g+ 8 + (A1)
2(4* ~ Do+ e8¢ I

(3.39)

- grc sin

Vo A0 = D4+ A) + (s8Y)

In the case & > bt

;‘:‘/:E' d.:;;‘: v *_“_‘:-‘.n“o_, o S ” e (3.40)

_x77



i - A

where W, is the dimensionless velocity at the point y = 6t.

For the relative similarity W, = 5'1, because at. the point y =

=5t3=1.

Carrying out the integration, we firc¢ *that at & > St

24" - 1) T4 a8 .

VoAt DT AY) + (A

2(4° — et - edd
' + 1
Y 4@° - D £ 39+ eaygy (3.41)

+ arc sin f“l-amﬁn‘iijr
*O

e

L 2 =——-----‘ 1 (
T !arc sin

-- arc sin

It 1s necessary to consider that in formula (%.39) & < 1, and
in formule (3.41) € > 1, These formulas can be used not only for
theoretical analysis, but also for the experimental determination of

the functions Z2 and wl.

3,4k, Limiting Law of Resistance

Assuming in formulas (3.39) and (3.41) w, =0 and Z = 1, we find
that at Re =

a) at € < 1

¥ = -1.0' 1 ['rc sin — 2yt + o -
v A 1)+ 3 + (a3
.“ (3‘42)
— arc sin — r;
VoA - D+ A4+ (ed
b) at € > 1

_ 1 2(4° — 1) s~ b + s8¢ _

v= oy

[atc sin
V40 — 1)(4° + B%) + (B}

VAT DG+ 8 - (8P

+ arc sia ‘,f:*—;._'—'— —- arc sin ‘/ EI

184

Formulas (3.42) and (3.43) express the limiting laws of friciion
for a nonisothermal turbulent boundary layer on an impenetrable plate.
They do not contain empirical "constants of turbulence" and are not

connected with any special tyre of semlemperical theories of turbulence,
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The quantity Cro in the limiting law is defined independent of
the method of 1its derivation, i.e., can be defined both from special
theoretical considerations (for instance, proceeding from any sort of
semiempirical theory of turbulence in isothermal flow), and directly
from experimental data.

During adiabatic flow the limiting ratio cf/cfo does not depend
on the degree of.nonsimilarity of the temperature and velocity fields.
This follows from formulas (2.52), (3.42), and (3.43), which at & ='6

glve one and the same expression.

-1\ {
‘o ‘_\m: sin m ). (3.)“;),
-1
For w* -1, i.e., for subsonic flows, we obtain:
a) for e < 1
¥ = 2 :
VT L=k
b) for € > 1
¥ = . ’_2_ + Ll 2; .46
[ (Vv +1) ¢ ] (3.46)
c) for € = 1 and v -1
v=f(—2 \
( Y 4o+ ) (3.47)

The formulas obtained show that the quantity e affects the relative
change of the friction coefficient due to nonisothermalness the most
noticeably during subsonic velocities. The degree of this influence
is seen from Table 3.2.

It is interesting to note that the influence of the nonsimilarity
of the velocity and temperature fields on the quantity ¥ during
cooling and heating of a gas is opposite and small.

In the majority of practically important cases the ratio Q/ﬁt

is located in the limits from 0.5 to 2, which allows one to assume



in the formulas for cf/cfo the quantity € = 1, This circumstance

L M” ’_' ;a’;f‘ E

essentielly simplifies calculation of boundary layerc.

Table 3.2, Values of (Cp/Cpn)pess

' During Subsonic Velocitics tror the
Limiting Formulas (3.45) and (3.46)

s ' ‘ !
S~ o =02 65 g2 K} 4 S
[ ) t 1
e |o 400)|20| v |0,50|0,33]0,25]|06.25
0,98 0,7112,65]|2.35| 1 [0.62]0.45]/0,35]|6,29
0509 ]1,8]1,451 t |0,65/0.50!0,4110.35
i osloor|1 8|14t 1 |u,67|0,52]0,43] 0,37
; 1 |1,0001.78|1,38| 1+ |0.69]{0,5¢{0,45|0.38
2 |L0]1,69]1,331 1 }0,7i|0,58]0.47]0,43
g 11,8]159]1.8] 1t |0.75]0.63{0.,5 10,49
10 |1.®|1.54[1,86] 1t |0.77]0.65]|0.58 | 0,54
o | » |1 1 1 | 1 1 11

1The quantity e is defined by
formule (2.58) at n = 1/7.

During supersonic flow the influence of €& decreases with the
growth of w*, i.e., the number M. In general, the quantity e does
not =ffect the limiting friction law during adiabatic flow.

In Fig. 6 is shown the dependence of ¥ on w* and &), calculated

ov the formula:

¥= ..ol | ['rc sin — 2 N4 b -
¥ VoA - DR+ 8y < (apP
. (3.48)
- arc sin : I
b4 - DT A+ (A3

‘nis formula 1s from (3.42) and (3.43) at € = 1.

As is seen, the function !(w*; &)) has a complicated character,
wnereby the degree of influence of the heat transfer factor &
éecreases with growth of the M number. The upper limit for w* is
determined in this case by the fact that at M ~ 8-10 a noticeable
dissociation of the ges begins due to high temperatures, developed
during inhibition of flow in the boundary layer,

Cooling of a gas (& < O) causes an increase of the resistance
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V’ of friction of flow against the wall;

"4

R\ heating of a gas (& > 0) lowers this
* 4 resistance.
"0 During subsonic flow w* ~ 1 and,
08 /// according to formula (3.47), the ratio
. cf./cfo at Re = ® depends only on the

\\' temperature factor ¥. <The solution is
o4 ._—i asymmetric in relation to heating and
02 . cooling. During cooling of a gas the
d temperature factor ¥ cannot be less

o 2 < é 8 0

than zero, to which corresponds at
Fig. 6. Dependence of ¥ on

¥* and & from the limiting € = 1 the limiting value ¥ = 4, 1In the
formula 3.48 (r = 0.9).
region of heating the growth of ¥ is
unlimited (if the problem of dissociation is excluded) and the
quantity ¥ can vary from 1 to 0.
In the neighborhood of ¥ = 1 expansion of the right side of

formula (3.47) gives

—a— 0 _ 2
== (3.59)
The quantity
b+l _ T+ T
2 2 'y

is the dimensionless arithmethic mean temperature of the boundary
layer.

The dependences (3.49) satisfactorily approximate the exact
solution of (3.47) in the practically important range of values of Y
from 0,5 to 3.

3.5. Limiting law of Heat Transfer

If 6 < bt’ then in the region O < y < 6 distribution of the
temperatures is determined by formula (2.51). In the regiony > &
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DU N 4 a_‘L....__.-: sl w J‘i"

AT

(031, ioe., at5<y<5t

1
ru

(5 ) ) <

following from (2.69) at 'Ef - ?;'O and p = pO;l-,T-‘-, breaks up into two:
0

I S

‘-' boagh @t - "(—:-).

f;
|+A¢u 1)

Putting in (3.51) the corresponding expressions for T/TO and

24 AL W), (3.50)
Besides the integral '

M
N
H
~—

(3.52)

integrating, we obtain an expression for the limiting relationships
of the Stanton numbers:

a) for 6 < 5,(e < 1)

LAY
T, = |- 4 arc s! = - Se==
p -1 l/ 4.__?.:,_'._("‘ = al) (ALY
— arc sin 2 ¥ (3.53)

¢4 a4 o

+—‘2+—[I/I+A+(l--t) V1483 ]}’;

b) for & > Gt(e >1)
. 2_1‘—_' + M
v, = "'. srcsin - ¢ -

—
| e O ORI

(3.5%)
—arcsin L
‘/ 44’—.;'—(@'“&)“:{-»-

During subsonic flows, when v' e~ 1, the limiting relationship of

the Stanton numbers, in general, does not depend on

-42-



¥, = 2 )'
The given analysis shows that during the majority of ratios of
the thicknesses of the thermal and dynamic boundary layers met in

practice in a region not close to the point of breakaway, it is pos-

sible to assume:

v, =¥ | (3.56)

3.6. Comparison of the Limiting Law of Resistance with
*%iperimental Data for Supersonic Flow

In Fig. 7 1s given a comparison of calculations by the limiting
formula (3.48) with experimental data, obtained at fairly large values

2

F... of Re**, and mainly at very high velo-

LiJ ng clties and intense heat transfer.

To
f’*: %fj';_ Not only the qualitative, but also

=

iL_4i__§

of theory and experiment is clearly

0 20 20 40 50 &0 30 80 20
ki revealed.

Fig. 7. Comparison of cal-

culations bxethe limiting Thus, the limiting law of the

formula (3.48) with experi-

full satisfactory quantitative agreement

mental data for large fac- relative change of resistance of friction

tors of heat transfer:

O = experiments of Lobb, with nonisothermalness® sufficiently
Winckler, and Persh; & —

experiments of Sommer and well describes real flows with finite
Short.

Re numbers. This result agrees well

with the known experimental fact of the weak influence of the Re number

on the ratio cf/cfo. In this case it has an exclusively important

value,?
Indeed, the limiting formula (3.48) is obtained from the general

solution of (3.39) by means of conversion to limiting values of the

l1Subsequently, for brevity, the term "limiting law of resistance"
will be used.

2pdditional confirmation was obtained in the last work of Matting,

Chapman, and Nyholm,
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quantities Z and W, 5 which depend on the Reynolds number. But close
agreement of the limiting ratios cf/cfo with the corresponding ratios
for fully finite Re numbers means that the joint influence of the
functions Z and Wy is small. Therefore, 1t is fuliy permissible, for
calculation of the influence o the Re number on the relative change
of the coefficlent of friction due to *he nonisothermalness of flow,
to introduce in (3.39) the second known limiting value of these func-

tions, corresponding to isothermal flow:

l.‘-l = ?luV ‘:. ’

o = $o _%"’_ .

(3.57)

For a plate @,, = 11.6.

With such a substitution we obtain the formula (at e < 1):

V= L arc sin AL el R
¢ —n(1-8,2y'cr, ¥ VI DO+ 4 (A
— . (3.58)
- arc i OGNV ep b ety ]
S - 1)L+ AY) - (LAY
For adiabatic flow (& = O) we have
‘o (atcsln'/ -m:smﬁ)‘/ o Cp) (3.59)
% -l

- 0,2V o

In Fig. 8 is given a comparison of a large number of experimental
data with calculations by formula (3.58). Characteristics of the
experiments are given in Teble 3.3. Experimental data, obtained in
the presence of heat transfer are reduced to adiabatic conditions by
recalculation by formula (3.58). As can be seen, change of the Re "
number from its smallest value, at which a turbulent boundary layer
can still exist to infinity leads to a change in the quantity ¥ less
than two times for M = 10. Essentially, the zone outlined by the
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Fig. 8. Comparison of experimental data with

formula (3.59) (designation see Table 3.3).

Experimental data with heat transfer are re-

duced to heat-insulated conditions by equa-

tion (3.58).

%* % 3 * %

theoretical dependences for Re = 10“ and Re = ™ embraces a zone
of scattering of experimental points.

A fairly distinct tendency toward subdividing the experimental
data according to Ie** numbers can be noted, which corresponds to
theory.

Appearance of certain groups of points 10-20% from the theoret-
ical value hardly can be considered significant, bearing in mind
the whole complexity of carrying out the experiments in supersonic
streams.

On the graph are placed also data on heat transfer. They are
disposed together with data on aerodynamic drag. Thus, there is

direct experimental confirmation of the validity of formula (3.56)
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for a boundary layer of a gas in the range of values € close to

Table 3.3,

a) Turbulent friction on a plate

‘ Parameters of Experiments, from
Which the Graph Fig. 8 1is Constructed

e e® T y1*l Conditions Method of Jeter-
- 5 e wall >
Authors .g L] M Neo® = of experi- mination of C(.
n.;:':w | wnll ment
. !
O |26 600 1,0 Heat - Direct measure=
6 2.6 |10200} 1,0 | insulated ment with the
. 37 laioo! 1.0 plate aid of & float
eF - »
Coles ® |37 |460] 10
. ® 45 |2000] 1,0
4,5]U701 1,0
@ J45 |50 1,0
@ | 45690 1,0
® |8,99 ] 1245 0,448] Cooled walli | By the velocity
1 4 . of a coni- gradients or
' 9.0 an 0,460 cal nozzle the wall
© 9,07 1908 | 0,474
® 19,10 287 | 0,495
Hi11 o 8,22 | 281} 0,493
@ [08.35| 2498 | 0,497
© |98.,27] 2885 | 0,500
@ |0.29]322] 0,500
® 8,2 34651 | 0,502
|
¢. s, v 277 1.0 | Heet- Direct measure=~
insulated ment with the
plate aid of a float
5. 7,780 . 1,0
Korkegi ¢ z '
4 |50 10
@ |50 wn| 10
G | 4,93} 530 0,969 Cooled wall By velocity
of a plane oradients orn:
0 8,01 0,713 nozzle ' the wall and
via the
0 s.m 0.575 . R.ynold.. L J
oo, | © |58 w| e e
Winckler 20l 0 of heat
Persh ¢ .0 11 fluxes in the
¢ 681 0,508 investi gated
section
[..7. 0,313
*9'lcan 0,457
|
G |7.67] S0y 0,465 |
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Table 3%.3%a Continued

£ . _n‘l Conditions | Msthod of
Authors |Sw | M | ke of experi- determination
£ walll ment of C,
==
o 1,83 1,0 Heat- By changes of
insulated velocity pro-
® 110 1.0 plate files and
Wilson o |17 1,0 momentum
Q . equation
1.9 1.0
@ |2.10 1.0
@ 0,51 1,0 Streamlin- Direct measure-
2 ,0 ing of a ment of mean
@ |08 ! heate values
Chapman, | @ | 1,99 1,0 insulated
Kester oylinder
©. |24 1,0 | in the
longitudie
® |29 1,0 rel direce
tion
P [8.3% 1.9
o |36 1.0
0,42 1,0 Streamlin- Direct measure-
Lipn, | ® {063 1.0 | ingof a ment of local
Davan 0,82 1,0 | heat- values
i 8 ::42: ::g inluI.lo.'tod
, 2,81 0, Shot by a By measurements
- 3,82 1,268 hollow of the velocity
Sommar, 5,63 0.176! oylinder in | of flight of a
Short , g-g g- :6] a wind model
* 7 0,21y bumel
¥ e toward the
[ ' 3,67 0,285 o
Monshan | @ | 2,43 1.0
2,55 | 1.0 By measurements of
Rubesin ¢ I : velocity profiles
® [3.0 5,0 Cylindrioal By velooity
Brinich surfaoe profiles

b) Turbulent heat exchange on plate

Authors

Points, N

Conditions of

Mathod of deter-

(Fig.8 experiment mination of 8¢
Bradfield, ® { 2,506 | Streamlining Measurement of heat
Coursin { 8,800 | of a come transfer by a none
© | 3.410 steady state method
s ;o Plate with By consumption of
Pappas . uni form pree electric power and
heating wall temperature
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Table 3.3b Continued

Authors Points M Conditions of Methoo of dutur-
(Fig. 6} exporiment mination of $¢

-Q 2.00 Plate with By consumption of

Shulberg { 2,% uniform pre- heat trarsfer ty
Q t 309 reating ? norgteany stnle

- 1n@Llivd
Slack, }; 2.5 | rate not sttec
Mllis 2,5

3.T. Plate with Initial Adiabatic Section

A diagram of the problem is shown in Fig. 9. A dynamic turbulent
bounciary layer is developed from the leading edge of plate. On the

section with length Xq heat transfer is absent. [Irom section x = X

heat transfer begins between the plate and *the gas. The forming

thermal boundary layer 1is submerged in the dynamic layer, 1.e., 5t <

< b,

FrrTTITrTIYYYY I ?
Heat trarsfer region ¥ J

T -
0 ¢+ 2 38 4«4 5 ¢ ’ 8 9 ®©

Fig. ©. Plate with initial heat-
insulated section (Pr = 0.72).

Assuning Pr = 1, p = po,‘Bt = 0, lt = 1, a'- ab, and 6 > Bt, we
bring equation (2.64) to the form:

St --pp 9% . 9%
Sty = F P TR (3.60)
On the other hand, for these conditions it follows from (2,6) that
de R ch -~
l‘a,_=‘/—r ' (3.61)

Combining these equations and integrating, we obtain the dependence
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T - e——
A £ N ) .
“j‘ ‘r T’- T‘l-—l-“... (3'62)
From (3.61) we have
i
.«.,.:JV—_-;L; —:—- dt. (3.63)
Consequently,
X 4
T"‘v".u)=‘“.m (3.64)
where
’ L]
- (). (3.65)
The dimensionless temperature difference in the viscous under-
layer:
o [
.,.:-—1'-——3!"1“.‘ ‘—"._o
ioeo,
o= :’“ Pra,. (3.66)

Putting this value of $,, in (3.64), we find that at Pr = 1:

288 = 1 ] (3.67)

7] L 1]

In a first approximation, for n = 1/7 and Pr = 1,

Ry 0,009

dRe, RO”?—. (3068)
dRe*s 001N

are, T Tpper

Let us integrate the first of these equations, assuming that at
X = X, Gt = 0, Let us integrate the second equation, assuming that
at x = 06 = 0, As a result we obtain relationship for the thicknesses

of the boundary layers:
_.%'__= ( X = Xu ‘)0.0. (3.69)

X
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Correspondingly,

r ¥ - X 0.104 2
“w "(t-x.) ' (3.70)

As can be seen from Fig. 10, this formula is well confirmed by ¢xper'-

\

o g .

ment.

) \ ) i AR

¢ I

|

v 1) @ 2 14 (s “i,
Fig. 10. Heat transfer to a
plate with initlal heat-
insulated section; ————- cal-
culation by equation (3,70);
O - calculation by the equa-
tion, describling the experi-
ments of W. Reynolds, W. Kays,
and S. Kline.

Since in thls case I.:’ = (bt/a)no**, then

§t = 00D ( X~ %y )"-‘- (3.71)

Lol X
Re;

or

$ ( X — X ‘)'."‘6

0, o \ X ! (3.72)

where
S, = 00120 Re; ** .
A second appronximation slightly refines this result.
The correction for isothermalness can be calculated by the for-

mulas given earlier upon substitution in them of the value:

o= [pra(2 - (3.73)

X — Xo
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Table 3.4. The Ratio 8t/8t, vy
Formula (3.72)

]
. 1L [ 131 j1® s} 2 ) l -

Rle

0| 0,81] 0,87 0,91 0,93 0,94 O.DI !

For quasiisothermal conditions it is possible to assume:

L 0.0129' PR 2
4 Re, - "P." ";’“' ( *

(3.74)

X

Hence, for a plate with a completely turbulent boundary layer:

Ref ™ Sl (1( 5 e g (3.75)
£y
Correspondingly,
' s::o.mrr"‘kc:'-’,(—f—) (3.76)
3 ( ]
or
Ns, ;m”"klf?( :. ;.o (3.77)

Here

P
)
-
'( lo) [x :.’ l ( )]
Re, = (s- 2 (3.78)
“ha=='%‘0“'30-
The function w(x/xo) is represented graphically in Fig. 11.
At (x/x5) > 1.50 with an error not exceeding 8%, it is possible

to assume:

Ns. = 0,0288 Pr™ Re', (3.79)

i.e., to calculate heat transfer by the usual formula with substitution

in it of the true length of the heated section:
"-—-X-x.. (3.80)
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’ 2 4 A e 1 20 22 §

Fig. 11. The func:ion @(x/x,)
in formula (3.78).

Formula (3.79) was offered by M. A. Mikheev on the basis of
treatment of the experimental dats (Fi

g. 22).
Fruoy o
1
; -
L ‘71“—-
|
ﬁ_.’ -
.//L 2
2 > ,‘E’"'
| o
of
o Y
K
&
P al
a 7
/
.. ’
F
’
[ | ",
¢ ¢ s o 2 « o o 0° ¢
Fig. 12.

Comparison of experimental data

for hiat transfer to a plate with formula
HE

Dotted 1lines — calculation of the
1 laminar section.
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3.8. Solution of Eguations of Eomentum and Energy for
a Nonlsotherma unda er for
wall = COns

The analysis condu:ted showed that the difference in the thick-
nesses of the dynamic and thermal boundary layers slightly affects
the relative change of the coefficient of friction in connection with
the nonisothermalness of the flow. This important result allows in a
majority of the practically interesting cases to assume in the expres-
sion for Y the quantity e = 1.

Just as important is the fact of the weak influence on the ¥
Reynolds number. The latter allows introduction in the equations of
momentum and energy the quantity ¥, referred to the I.’. number, aver-
age in the considered section, or simply the limiting law, strictly
self-simulating relative to the Re number.

Both these circumstances are the result of the small value of
the exponent in formula (3.11), i.e., high population of the velocity
profiles in turbulent flow.

Let us consider nonisothermal turbulent layers, developing from

the leading edge of a plate at T = const. We have

v, (3.81)
are; _ o
LR, X (3.82)

Introducing in these expressions the values of Ceo and lto and carrying
*
out integration for the conditions ¥ = const, x = 0, Re = I.:’ = 0

we obtain
|
-JL. — -!L. -
( o e, = (" Jpe, =¥ (3.83)
Thus, the ratio of the coefficients of friction and heat transfer

for identical values of Rax numbers more weakly depends on the non-

' *a
isothermalness than for identical values of In" and R.t .
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In Fig. 13 is given a comparison of calculations by the theoret-
ical formulas (3.58)-(3.83) with calculations accoriing %c & method,
based on the semiempirical Prandtl-Karman theory. At the samc plac:
are placed experimental points. The knowm fact that, at large M
numbers and intense heat transfer, the contemporary semiempirical

theory does not give satisfuctory resuits, is clearly confirmed.

L
"

7
-ar

Fig. 13, Comparison of experimental
data with calculations by various
methods: 1) Van Driest's method; 2)
by formula (3.83); @ — experiments
of Sommer and Short. .
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CHAPTER IV

LONGITUDINAL STREAMLINING OF A PERMEABLE PLATE

Definitions of Cyrillic Items in

Order of Appearance

CT = wall = wall

XKp =cr = critical

3

= t = thermal, turbulent
nax = rad = radiated, radiation

OTH = rel = ralation, relative

4,1, Formulation of the Problem

The problem of calculation of a boundary layer on a surface,
penetrated by a flow of substance, has an extraordinarily important
significance, Such processes arise during protection of parts of
machines from the influence of high-temperature gas streams (so-called
"porous cooling" of blades of gas turbines, the enclosing surfaces of
combustion chambers, and so forth) during evaporation and condensation,
the presence of chemical reactionr ir the flow and at the wall, hard-
ening of a liquid, and fusing of solias,

Below is considered a turbulent boundary layer of a gas on a
surface permeable at all points, If gas is injected into a boundary

layer or is pulled from it, then the number of openings in the wall is
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great, and their dimensions are small, Therefore, the temperature of
the penetrating gas should be equal to the wall temperature, A
diagram of the flow problem is shown in Fig, 14,

Mass velocity of a strear

of gas intersecting a wall,

h=nmw,. (4.1)

An N

Fig. 14, Diagram of a Boundary layer Inside the boundary layer
on a Permeable Plate,

this flow causes an additiona
component of the velocity vector wy and gradually it is dispersed so
that at the wvall J1 * Pwall“wall’ and in the region y = 6 transverse
flow of the injected substance is equal to zero,

Transverse flow of the substance causes the turbulent viscous
underlayer, This circumstance favors application of the method of
conversion to the limiting laws of friction and heat transfer, corre-
sponding to Re = ®,

In connection with the above further research is built on the
basis of equation (2.30).

Distribution of tangential stresses 1s determined by formula
(2.40) at A = 0,

We have

: ¢ =1. (4.2)
\/ ¥ +0eran -

This integral has a finite value, 1.,e,, growth of the integrand
should be limited. Since the quantities w and f(£) lie in the interval
from O to 1, then changes of the integrand in this case are connected
with the change of the permeability factor b, During injection of a
gas through the wall into the boundary layer the quantity b is positive,
Consequently, there should exist some limiting value of the permeability
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factor b = bcx' at which the value o ¥ turns out to be equal to zero,
This phenomenon can be identified with separation of the boundary layer
from the streamlined surface, ®

The critical value of the permeability factor will be determined
by equation

(x=m) @

which ensues from (4.,2) at ¥ = O,

Subsequently, we will be limited by solutions of equations (4,2)
and (4.3) in an approximation, corresponding to the conditions f(¢) =
=1and e =1,

Theoretical calculations, and the principal comparision with
experimental data, show the full acceptability of these conditions for
the majority of practically important cases,

Putting in (2.69) the value or ¥, - from formula (2,76), we
[
obtain an expression for the limiting law of heat transfer on a

permeable surface:

=1. (4.4)

]
4%
5 V %o+ o0y 0700~

Since f(£.) = £(€), then solution of equations (4.2) and (4.4)
at € = 1 have the same form, 1i.e.,
V,(0,)=¥(). (4.5)

The gas introduced through the wall can differ from the substance

of the main flow; therefore, we will distinguish uniform and nonuniform

lFor greater detail see Chap. V.
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boundary layers. A nonuniform boundary layer appears during injection
of a gas, differing from the gas of the main flow, In this case the
boundary layer consists of a mixture of gases, whereby at the wall thre
concentration of injected gas has the largest value, but at the external

boundary of the layer is ¢qual to zero,

4,2, Law of Resistance for a Uniform,
Isothermal Boundary Layer

Assuming in equations (4.2) and (4.3) p = p, and f(£) = 1, we find
that
V=(1 —-03250)%, (4.6)

bp=4. (4.7)

Correspondingly, formula (4.6) can be written in the form:
=fy- LY. 4,8
v..(n n._) (4.8)

As will be shown below, this simple formula possesses great universal-
ity.
The moment in equation for gradientless streamlining of a permeable

plate has the form:

“w* ey g
or
_‘". — ) . 4 4.10
dRe, ”(.+‘)_2£_' (4.10)

Let us integrate equation (4.,10), assuming that the turbulent
boundary layer is developed from the leading edge of plate.

For the case of b = const we obtain:

” ' .7 .
(-, =0+ 9 =0 (4.11)
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When the quantity ¥ is determined by (4.6),

(e, =

Here m is the exponent in formula (3.1%4).

At m = 0,25 and bcr
( Ul
€t

[¢ W
wall wall _ .15t the solution obtained is very

For the case

__EL
|-—,(l+ P (4.12)
.' ‘.
= 4, from (4,12) it follows that
re,= (1~ 0,238)"(1 - 0,258)~ . (4.13)

Po¥o

awkward, but at m = 0,25 1is well approximated by formula

(=

= (1 —0,256) (| + 0,255 -0S,

(4.14)

Formulas (4.13) and (4.14) agree with an error, not exceeding 2%.

In Fig. 15 1s given a comparison of the values of —

for identical values of Re** and Rox.

close to each other,

REER

"0 s 2 4

o0
.u.-’.
CAR G
Fig. 15, Dependence

of the coefficient of

friction on the
permeablility factor:
¢
1) £ for Re** = 1den;
£0

c
2) cf for Re, = idem,
f0

Ce
o
The corresponding curves are

——, compared

In Fig. 16 is shown a comparison of the
theoretical formula with experimental data,
It 1s possible to ascertain full satisfaction
of theory.

Due to the large slope of the relation
¥(b) in the pre-breakaway region, experi-
mental determination of the point of

breakaway is inaccurate,

In practice in experiments the condition
of breekaway of the boundary layer for the
case conslidered can be fixed already at

values of b of the order of 3,
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Fig, 16, Comparison of calculations by formula
(4.14) with the experiments of Hacker, Mickley,
Pappas, and Okuno,

]
O — experiments of Hacker -C.>-— experiments of
£ ) a )
— 13 Mickley{ =— k
(:fo ’ (“o :

® — experiments of Mickley @ — experiments of

(cf ) . Pappas and Okuno,
-— 1
€0

Since the quadratic term in formula (4,8) begins noticeably to
have an effect only in the range of values of the permeability
parameter, close to the critical, then for b, not very close to

bcr’

'%l- 2——‘—-. (‘4.15)

b
The linear relation between the quantities ¥ and b was noteu by several
experimenters and is well explained by the theory expounded, At
bc

r=-1\la.ndb<<bcr

el —05b. (4.,16)
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4,3, Law_of Heat Transfer for a Uniform,
Quasiisothermal Boundary Layer

For smalil temperature differences, when ¥ ~ 1, the physical
properties of a gas in a boundary layer can be considered constant,
By formulas (4,5) and (4.8) the limiting law of heat transfer for

& quasiisothermal boundary layer at a permeable wall has the form:

=1 - b}
=(1- %) (4.17)
In addition:
bow=by (4.18)

In the presence of relative similarity of the velocity and
temperature fields it 1s possible to apply formulas (3.36) and (3.37).
Then

b = Vg W
bPr . (4.19)

During development of both boundary layers from the leading edge
of the plate condition (3.38) is fulfilled, and

b, < bPr. (4.20)

4,4, Calculation of Cooling

Usually in the calculation of a boundary layer on a cooled wall
distribution of the temperature Twall(x) and the initial temperature
of the liquid coolant T1 are assigned, It is necessary to determine
the flow rate of this liquid through each cross section of the

protected surface,

The quantity of heat, transmitted by the main flow to the wall,

in a given section is

9 =12 (T, Tu) = duss ()4 . 21)

where dpgq 18 the heat flow due to radiation,



Let us assume that part of this heat QY is transmitted through

the wall, not in connection with introduction through 1% of the cooling

medium (for instance, by means of thermal conduction through

structural metal)., Then the quantity of heat, which the cooling

medium should receive 1is:

¢:=d— ¢y = L)y (Tee -~ B/

(4.22)

where Jn_- P4%4 is the flow of the mass of cooling medium through the

wall, Combining these equations, we find that

‘o — .' . rn - T. i
! 3 rn -- r" *
where
, e l _q!“_"._—-g.'... -
L

(k.23)

On the other hand, for YS we have the dependence (4.,17). Combining

equations (4,17) and (4.23) and solving them relative to the value of

the thermal permeablility factor of the wall, we obtain the value

where
f rg" r!
! To— Ter .
Av

fi=0 b,=0b,, when £, >0 b,<5,,.

4,5, Laws of Resistance and Heat Transfer for a

e el

Uniform, Nonisothermal, Subsonic Boundary Layer

(4.24)

In a uniform subsonic boundary layer of a gas € = 1 according

to formula (2,52)
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r
:' = T TPp— (9~ 1)w, (‘&.25)

P
Putting this value of _p_O in equation (4.2) and solving it at
£f(¢) =1, we find that:
a) at ¥ <1

2
)

= g fn Y —91(1 +8) T
("'4‘ bl ’/—l_* +'I .'1' (4.26)

b) at ¥ > 1

—11
(?—-l)b,[mt'l/u-n(bnn —mrcig ‘/ﬁ'.ti] (4.27)

At ¥ = 1 we have formula (4.6).

Correspondingly, the critical value of the parameter of
permeability of the walls, calculated by equation (4,3) upon substi-
tution in 1t of the value of -pp£ from (4.25) and f£(€) = 1, are determined

by the formulas:

a) at ¥ <1
bt f1g 1r 1% ’:
.""_ -1 TVavrall B (4.28)
b) at ¥ > 1
b= ¢|l arccos-——'l'—) (4.29)

Table 4,1, Values of b,, by formulas
(4,28) and (4.29),

¢ 028 |oso 075 |1 | 200 400

9462481425 1.4

. 9
(—!ﬂn) 2.3(3136|4] 5.0] 5.7
er



The relation bcr(w) is shown graphically in Fig. 17.

N\
0T \
&40
a0 - — — =
{0
\_ .
201+ P}*r—w::r-—- =
(\
) 490

o Qs 40 1 20 2,5 30

Fig. 17. Influence of heat transfer on the
parameter of breakaway bcr for a uniform
boundary layer, ———— calcvlatlon by
equation (4,28) for the case ¥ < 1 and by
equation (4,29) for the case ¥ > 1,

It 18 interesting to note that in the reglon y > 1 the critical
relationship of velocities changes significantly weaker than the
critical relationship of mass flow rates, In the reglon ¥ < 1 both
parameters change almost equally, although there is observed a

“wall
somewhat greater conservation of the ratio (————-— .
cr

Yo
For engineering practice the case ¥ < 1 has the greatest
significance since in this case introduction of a substance through
the wall into the boundary layer protects the streamlined body from
the thermal influence of the main flow of gas.
In Fig. 18 is given a comparison of calculations by formulas
(4,26) and (4.27) with calculations by formula

b \2
V=4(—’2——l———_ ) . (4.30)
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As can be seen, this simple combination of formulas (3.47) and

(4.8) well approximates the exact solution,

v ¥ .
()
ad

Qe

a4

22—

l ! 1 ol
g g8 g2 a3 a+« gs g6 q’ ar av

Fig. 18. Comparison of calculations by
formulas (4.26) and (4.27) with formula (4,30
during determination of b__ by formulas (4.28
and (%.29). cr

Caloulation by squation

(4.36) i)
¢ 0,% 0.4|0.6,0.l 2 ' 4 I 8
Designation Ol @ 1 D1 @ | D | © | L.

In Fig., 19 is given a comparison of calculations by formula (4.30)
for heat transfer on a plate and in the inlet section of a pipe with
experimental data, In spite of a significant scattering of the

experimental points, they are grouped in a mass around a theoretical

line,
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Fig. 19, Influence of injection of a gas on
convective heat transfer, -——————— calculation
by equation (4.,30), A — experiments of Mickley
(plate); experiments of Friedman (pipe),

Rep.ts 142 u5 | 0zs | e 63

L3 | LSS ' 0,7 1.95 0.3

' ,
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4,6, Law of Resistance for a Nonuniform,
Isothermal Boundary Layer

During supply through a wall into a boundary layer of a foreign
gas the process of diffusion arises, The partial density of the
injected gas 1s changed from the value Pyall On & streamlined surface

to zero in the region y = 6D’ where 5D is the thickness of the diffusion

.boundary layer. The fleld of concentrations can be connected with the

velocity field by a formula of the type (2.44)., For the flow, not

close to the point of breakaway, it 1s possible to assume the relation®

ol (4.31)

'In the general case, for instance, during evaporation of water in
humid air, py # O and in the denominator of (4.31) one should write the

difference p .47 - Ppe
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where

o=(—)" (4.32)

Since in gases the diffusion Prandtl number is close to unity,
then all the conclusions, made in chapters II and III about the weak
influence of the degree of nonsimilarity of the temperature and velocity
fields on the relative changes of the coefficients of friction and
heat transfer, are also valid for the process of diffusion, Therefore,
for a plate it is possible to consider the limiting law of friction,
assuming Ey ™ e =1,

The gas constant of the mixture 1s connected with the density of
the mixture and partial density of th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>