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CHAPTER |
INTRODUCTION
General

When the design of protective structures to resist blast and other close=in nuclear weapons effecis is considered, it is
only logical to realize that simultaneously large amounis of initial and fallout radiation may be inevitable realities. The
shielding that is required to provide adequate resistance to close~in radiological effects, and the structural strength
required to properly resist the blast effects in these regions, suggest buried structures as the most feasible solution. It is
observed that the buried structure, in addition to providing resistance to these effects, possesses a hardness which is
applicable to resisting other effects, for example those from the immediate thermal pulse and the effects of later fires.

Laymen, and engincers olike, hcve for years concluded that such shelters are beyond the reach of economical
programs, This in fact is reflected in current national OCD policy and the National Shelter Program. However, such
reasoning is usually not based on studies which consider true minimum cost structures, In general, the structures on which
these conclusions are based are traditional in concept. These traditional structures in general grew from application of
traditional design procedures to situations in which loadings are of one or twc orders of magnitude greater than traditional

Traditional Configuraticns

Traditional building configurations or shapes were originaily conceived and generated to house man in everyday
functions; and were called upon, structurally, to resist only naturai and self induced loads of moderate magnitude. Most
of the engineering technolugy developed for traditional cr conventional design was dirscted toward the development of
procedures and methodologies to adequately assu-e the designer that this structure, which for example was conposed of
beains and slabs, would properly resist these conventional loads. The magnitude of load rarely affected very greatly the
choice of structural type. When overpressures from nuclear bursts are considered, and then the existing design procedures
are applied to design traditiona! type structures for these higher loadings, there is little wonder that expensive designs result,

Design Economy

Two aspects (anong others) are present in the design of all civil engineering structures. They are the selection of
configuration, and the determination of size. The configuration, or shape, is a qualitative matter which describes in
general terms the nature of the structure such as a flat slab, beam slab, concrete joist, or dome type. The other aspect is
size of the structural components which are contained in the shape. These are aspects such as thicknesses, amounts and
location of reinforcement, etc. In the traditional civil engineering structure, the shape decision has generally been
somewhat arbitrary. The size decision within the shape, has beer determined by more or less rigorous caiculations.

This procedure results in reasonably economicel solutions if loads and spans are small, In the case of design for blast
resistance, the loads are significantly higher than any considered previously. The spans may be shortened, but usually
at a loss of functional value, Thus it is not surprising to discover that selection of configuration can no longer be as
arbitrary,

'n summary, if the structural configuration is seiected without regard to the magnitude and type of loading, the
resulting size determinations will invariably lead to the requirement of a great amount of material, and therefore higher
cost. [If, however, structural configurations are chosen out of proper respect for loads, the resulting sizes will be
reasonable and hence material quantities which arz related to cost will be reduced and held near a minimum,

Efficient Protective Siructures Configurations

The most efficient forms that man knows to resist pressures are doubly=curved shell structures. A shell structure
achieves its efiiciency Ly resisting loads primarily through the development of direct stress. Examples of these types are
the spherical and parabolic domes that are common in civil enginesring solutions to the problem of spanring large orenas
with @ minimum of material, The shell of an egg is anothar common example of this form which exhibits the sams type of
structural efficiency, Amona the classes of doubly—curved shells, which are available, are some which exhibit truly the
ultimate in structural efficiency. These are the constant=stress funicular shells, The spherical pressure vessel is an
example of this type,

Constant stress funicular shells resist pressure loads by sither developing uniform tensile or uniform compressive
stresses depending on the particulor configuration, The concrete sheil works best in compression; the steel shell in tension.




Unfortunately, compressive funicular shells which have iow thickness to curvature ratios tend to buckie on overload, As
a general statement, a shell structure (or any structure) in a state of compression may buckle catastrophically if certain
combinations of geometric and material parometers are iil chosen. Because the calculation or prediction of this tendency
is a complex procedure for all but the simplest of structures; and at best is an upproximation, it is probably better to avoid
the problem entirely by insisting that tensile furicular shells be used, These structures cannot buckle.,

The Contract

This report is the result of a contract, a quote from which foilows. It investigates the feasibil ty of the application

of these funicular structures to the probiem of sheltering people from dynamic overpressures caused by nearby nuclear or
conventional bursts,

"A. The contractor, in consultation and cooperation with the Government, shall furnish ali
engineering, labor, equipment, tools, materiais, supplies, facilities, and services necessary
for a feasibility study relating to optimizing shelter design, The work and services shall
pertain to the analysis and design of flexible yielding menibrane elements of a shelter to resist
normal dynamic effects not unlike those which may result at the soil-structure interface os a
result of a nuclear blast,

B. The general areas of investigation shall include, but not be limited to the following:

1. Investigate the theoretical prediction of the configuration of a yielding membrane
and determine its application to the shelter.

2, Perform certain loading simulator studies to corroborate the intuitive foct that yielding
buried structures are efficient structural systems,

3. Extend the theory of studies involving the investigations of the membrane supportud on
yielding boundaries.

4, Determine ihe feasibility of future possible exploitation in this area,”




CHAPTER il
SHELTER APPLICATIONS AND CONSTRUCTION TECHNIQUES
General

In the course of introducing new concepts, such as that of the yielding membrane, it is often desirable (from o
prasentation standpoint) to indicate the ultimate uses of the product before the invelved supporting celculations and data
are presented. This pattem is used here; therefore, the matericl in this Chapter serves in part os illustration of an
application of the concept. Models are used as examples of possible shelter applications.

The first example illustrates the rather limited application of o discontinuous circular dish membrane as the roof
structure of a community shelter which is designed to resist 55 psi blast overpressure from o 5 MT nuclear weapon which is
detonated as a surface burst, The second is on attempt at approaching the ultimate in efficiency of this application.

This approach involves a multistory cubicle structure in which the yielding membrane is continuous and completely
encloses the cubicle volume,

Circular Membrane Structure

The model shown in Figures 1 through 6 illustrates the application of the concept through the use of a dished
membrane as a roof structure. Although blast simulator studies (Chapter 111) indicate that the preliminary dishing is in
fact unnecessary, from a structural standpoint, the application shown is a conservative one and is to be recommended
until more test and analytical dato are obtained,

The steel cap or membrane carries blest overpressure loadings primarily by the development of direct uniform
tensile stress. Little or no bending exists; hence little or no shear is present, In the application shown, the membrane
is not continuous. That is, it is a series of individually dished elements, This break in continuity requires the use of
boundary arch structures which are the reinforced~concrete edge rings. They are, in fact, concrete arches which lie in
a kerizontal plane, They eveniually transmit the vertical component of the load to the supporting wall structure.
Note the visual expression of structural efficiency which is present when steel is used in tension and concrete in compression.

To provide added toughness in design concept, the modular system is used. Nature has used the same system, that
of duplication of self sustaining elements, in many naturally occurring designs; in order to assure survival of the function
of the overall product against attacks by facets of hostile environments., These modular units are 30 feet in diameter and
conservatively use 3/8 inch steel membrane roofs, Each unit is an independent structure which does not rely upor the
strength of adjacent units to provide a reaction or to contribute to the support of external forces. The particular advantage
of this independent action is that the other elements of structure would not collapse if one unit failed, It must be noted
here that large structures would be subjected to unsymmetrical loading caused by the transient nature of the blast wave,
which would tend to shear each unit from the other vertically . The design suggested adjusts to this shearing tendancy .,

The prototype, which the model illustrates, would lend itself readily to precast and prefabricated construcion
methods. The entire wall structure con be constructed from one bosic snape. Precast concrete piers moy be sat in ploce,
Roof caps may ke field welded to attachment points. A variation of this concept includes o membrane floor of the same
configuration, and material, as the roof. An intemal floor system would be required as wel! as other chenges in
construction technique. Cost estimotes for this structure were reported previously on othaer contracts,*

Rectangular Membrane Structure

if optimization of efficiency of configuration and opplication to the totul shalter is attempted in concapt, one
solution which reswlts is that presented in Figures 7 through 7. These oie views of o model which is neorly the shape of o
cuba, The cuba is the rectilinear solid which has the maximum interior volume for tha minimum exterior surfoce, Becuute
blost overpressures in sheiters are hopefully resisted oniy at tha exterior suituzes, the structure that incorporotes o minimum
of thess surfoces uses a minimum of material within the configuration or shope clustification. Such is o fundamentl
requirement of material cost minimization,

*  Final Report, "Local Civil Defense Systems,” Cotroct OCD-05-62-232, Univensity of Asizona, June, 1964
and Final Report, "Cost Studies in Protective Construction Systems,” Subcontrort Institute for Defense Analyas,

133-4, Jonuory, 1965,
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Figure 2 . Cross~section of community shelter module
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Figure 3 , Cross-section of community shelter module
showing disn~type membrana roof structure,
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Figure 5. Comtruction procedure orxi Figire 4 . Precast column which anerbivs
sloping entronce to form cll interior wolls
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Figure 7 (Right), A cutaway view
of a model which illustrates the
concept of the use of rectangular
yielding membranes as exterior
structural parts of a shelter complex.
This model us2: a minimum of
exterior skin to a moximum of
interior voiume, The "egg crate"
walks and floors provide the needed
rigidity to keep the membrane in
place.

Figure 8 (Left). The membranes take 2 dishea f~rm z3
indicated in this photograph when they are subjecte
te external pressure, This dishing process promotes
favorable soil-structure interaction behavior.

Figure 9 (Above)., Regquirement of flesibility in
connections ore crudely iflusircted by this detoil,

It is nacsssony 1o vie flexible linky betneen the baiic
shalter ond ik somewhot disconnected entroce.,




To further optimize the use of material, the exterior skin of this shelter is a continuous yielding membrone, As in
the previous example, dished elements are used even though tesis indicate such prelimincry dishing is unnecessary. The
odvantoges of continuity are opparent in the savings produced by the lack of reinforced concrete supporting edge rings.
The interior walls and floors, which are of reinforced concrete, transfer the thrust through the entire shelter where it is
equilibrated by the loads on the opposite sides. This shelier overcomes, in port, many of the structural disadvantoges of
lorge one-story structures., Aside from using a minimum of exterior surface, it resists the "slicing up" shears that occur in
most large structures as the blast wave travels across the shelter. it iz noted in passing that these can be extremely lorge
but they are not usually considered in normal routine design proctice.

The structural shell as illustrated possesses reserve strength to resist all conceivable ground motions associoted with

any overpressures for which it is designed. Interior details, of course, must be designed in such a way that the creation
of intarior missiles and associated damage to occupants i prevented .

Other Applications

Mo doubi, in the reviaw of the applications presented in this Chapter, other opplications of the membrane
concept are indicated. These, in fact, do exist and include such items as blast dnors, end walls to tube structyres and
above-ground protective enclosures for supplies; and otner items which are unaffected by such factors as zlectromagnetic
pulse, initial nuciear rediation, ard fallout gomma radiation. Exiremely thin membranes can resist very high overpressure
in such applications but they must be shielded from missile penetration. in most cases, it is not necessary for such
membranes to be pre-formed. Their ultimate resistance to blast overpressures is unaltered by leaving them initially flot.




CHAPTER 11}
ENGINEERING ANALYSES
Introduction

Intuitively, it oppears that yielding membranes are technically sound protective structure components. To support
this intuitive reasoning, it is appropriate to consider certain suppcrting calculations and analyses of un engiaeering
nature. In addition to the analysis of the continuum, attention must be given to the boundaries where the membranes
terminate,

With respect to these problems the details of the historical development of analysis of these structures, together
with specific developments for the instant shapes, are presented at length in Appendices A and D to this report. A
summary of some of the more essentiol engineering features, which are in part abstracted from this analysis, are included
in this Chapier.

General Membrone Theory

Flexible buried structures, because of yielding characteristics which produce negative settlement rctios, offer the
ultimate in economy in view of the way in which they force the soil to resist the overioad. The most efficient flexibie
struciure is that which simultaneously yields under constant stress at every point in its plane. The behavior of such a
structure moy be predicted in advance by an inverse solution of the differentiol equations fcr stress in shell structures
under normal pressure loodings. These structures by definition ore called funicular.

For an example of the
structural efficiency of a system
such as this, consider the following
simple comparisons. These structures
cre intentionally not buried for
simplicity of presentation,

Aiembrane Analysis of a Thin Plate

1 1 M

For a comparison consider a 1 5 o Lol uI' >\
previously designed one-way : 15'-0" R R L 4
fiat slab., we o - ." e s ,,:

Where under a standord B
design with g, = 50 psi the .
resuiting section is as follows: ' 19

Now concider the same -.-_?1_ : l_ 2
span covered with a thin steel A =4 %in"/ft

s
plate. : ! 1/4" <teel plate
L 1 | ) 2
Assume that when the load “AY/7AVY 7 Ll" * u] qJ
is opplied the plofe will yield into 15'-0" | 15'-0" . 15'-0" , 15'-0"
a circular arc. Consider a free 71 1 _ i L N

bedy of the ioaded section, as v
shown on the next page.




By static Equilibrium: 1T___—]
/\
5 o /
v
L2, _
PO(L) - 2(10,000 T )=0

_ 10,000 _
Po- T or R = 3 R

For this particular case of loading:

P°=SOPSi R=—]-o-§§92=200in. /

This determines the Radius as a function of the load only,
independent of the length (L). This condition in itself is
insufficient since no consideration is given to the percent-
age elongation, To determine this percentage, consider
the equation of the triangie bounded by R ond R-h.

.’
.’

e

-

,,,,,,,,,,,
...............

!
1
L_ ; L od

2
2 2 L -
(R=h) " =R" -~ ()
? |
2 1 2 Atyield T= fst = 40,000 (1/4) = 10,000 lbs./in.
h=R- YR - )
2 2 /2
h for this cese is given by~ h =200 = [(200)° - (50)°] = 200 - 178 = 22"
Calculation of the percentage of elongation:
—Q-L M = = -1 .-?2 )= it
% e ==— whereQ is the arc length Q =R@ = (200) 2 tan 78 (m) 187.2

of the membrane

- .87.2— ]80 __:_7_2_ = 0.0424% .'. OoKo

%e=——g— "0

Thus it is seen tnat ¢ 1/4" steel Qembrane is capable of resisting os great a load cs a 19" reinforced concrete slab whick
is reinforced at a rate of 4.08 in“/ft. The plate contains 3.0 in“/ft. - less steel than in the reinforced slab. The strain
of 4% is less than the ultimate uniaxial strain capacity of mest structural steel plate.

For increased efficiency of sieel membrane, it may be used in a biexia! state of stress - such os that found in a
circulor diaphragm, cn example of which follows,

Two-Way Circular Membrane

Consider a circulor plate of diameter L , PO
subjected to a load of P, PSi and clcmped ! } 't ' 1 1 i/4"
arourd the circumference, as shown at the K : ,
right. . ¢ , 7

I

T= 1t = 40,000 () = 10,000 lbs,




From static equitibrium:

Erv=o

2 2
L L
P 7 &) =10,000 47 &)
. LM000 20,000
o R Po

For P =50 psi, R =400 in. E/

2

lhe same examy:les may be solved by

o more general approach  This apgroach involves
the application of the gencral membrane theory of shell

structures to the situation presented, An introduction of

this approach to design was made at the Symposium on Shell
Resecrzh, Deift, The Netherlands, August 30, 1961.% The
application at that time was directed toward the "Configuration of

Shell Structures for Optimum Stress," Basically, the approach involves
the initial assignment of a given final siress stcte, such as that of constant stress. The search is then made for the shell
structure which exhibits this fincl state of stress under a previously assigned normal pressure loading.

Consider a free~body of an element of a sheli, as shown above. From the equilibrium conditions, if

N, = N, =+ S {ccastant), and N]

172
P, P
" LRI
en RyT&K S

=0

 J

Note *hat in this equation, R; and R, are the principal radii of curvature of the final deflected surfoce, P is the
normal pressure on the surface and S is the membrane tension in dimensions of force per unit length.
An iilustraticn of the upplicotion of this 2quation is now made with reference to the previous two examples.
A

First example:

/ | /
P.]/ P
// R‘ \\ o \‘—-
/; !\\ \\\\\ ~—~ >
4 ~ l \/\ - "'
»4 e
T ]
v §
9 -
2 ~\@D"\
1 ﬂ‘ |
&3

Ry = P=F S =10,000 Ib/in,

O.C Rl" + E]— z-‘z— becoms
1 2
R 4 _ Po 1 po
e, o =e—
R] @© S R1 S
L _ S
e /= E
)
__10,000 _ .
R‘ ===%5 = =200 in., as before.

* H. P. Harrenstien, "Configuration of Shell Structures for Optimum Stresses," Proceedings of the Symposium on

Shell Research, Delft, The Neiheriands, 1961,




Second Example:

R]=R, R2=R, P=P°=50psi

S = 10,000 Ib/in.

1 1 P
-R—-+-r2—§— becomes

2
R==%
[}

£ oo k== 20920 - 400,

again, as before,

Obviously, it is as simpie to apply the free=body diagram approach as it is to apply the general theory, however
for mcre complex problems, the general theory must be used in conjunction with numericel solutions on a digital
computer. Appendix A presents this approach, the results of which are abstracted in the following material.

General Theory of Funicular Shells

A shell structure may be defined as a materializaticn of o curved surface in space. In general, the structure of a
structural component so formed carries its loads primarily by direct stress. By this process, such structures make maximum
use of the material from which they are formed in resisting applied loads (see Appendix B).

As stated before, among the classes of sheli structures that are available for shelter epplication, there exists those
which initially exhibit uniform direct stress characteristics under certain specified loadings. These types of shell
structures possess the maximum possible structural efficiency that a two=dimensional structure is capable of providing.

A structure which is of one sheet and which exhibits uniform stress characteristic: under normal pressure ioading is
defined as a funicular shell. The particular type of such shell structures that are formed when a thin steel plate yields
with "constant” stress under application of a distributed normal pressure is one such shape and is the subject at hand.
The pressure need not be uniform for the funicular concept to be present,

The exact equation of curvature derived from differential geometry for a funcrion z = f(x,y) is:

2 2

'z azaz Q
| ] [] + %‘) } 5:2- + [] + g- axay 55, o,
- "%

10




Solutions and D esign Curves

This expression may be written in finite difference
form and solved by iteration techniques on a digital
computer for certain membrane shapes and specific edge
conditions, The types considered are shown in Figure 10,
The non~dimensionalized PD/S versus z./D curves, which
are shown in Figure 11,are resulis from the computer study .
Only the curves showing the center deflection are given,
but these are the most important as far as desian is con=
cerned. These curves are based on the behavior of a
rigid~-plastic material. However, to use these curves
with any other type of material the only additional
information required is the appropriate stress=strain curve
for the material.

The PD/S vs. z./D curves are based on the average
stress and average strain across the center of the membrane,
It is known that the strains are not uniform over «
deflected membrane surface (2,3,4). However, as far as
vertical deflections are concerned, the ossumptions of
unifc m stresses and strains appear justified.

The only regions where this assumption leads to
appreciable errors is in the corners of rectangular
membranes, If reasonable care is taken during the con-
struction to insure proper full=strength weids and if the
design strain is reasonable (less than 2,5%) the yielding
membrane structura! element should serve quite weli.

Either the circular or rectangular problems could be
programmed for the computer with a non-uniform lateral
pressure. Soon, it may be possible to predict the
attenuation of pressure on a yielding
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Figure 10. Plan Views of Shopes Considered

structural element and the resulting

pressure distribution, However, ' Circular
in working with yielding elements, 2 Square
they can be designed as if they ol »
were to be subjected to the fuli ' 3 1.5Dx
uniform lateral pressure. The 4 DD
yielding characteristics force the
surfoce to take the shape it must 5 U aD
assume, RS

Although certain metals, PD ! !
especially mild steel, have very S

large plastic elongation proper.ies Vo
on uniaxial tests=-sometimes l
greater than 30% strain==this doec 1
not mean the material will admit |
such large strains under biaxial 05— .1
conditions, In fact, most of the

common yielding materials will

not admit average strains greater

than 9 to 10 percent even in a o

Dic. D

Dx D

10.0

]

i

Strain (Percent)

membrane state of stress. Since a 0
true membrane state of stress may be
difficult, if not impossible to

reclize in actual consfruction, o
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Figure 11, PD/S versus zC/’D Curves
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maximum design strain of 2.5% is recommended. This strcin corresponds to a z/D ratio of about 0,10,

To illustrate the use of these design curves, consider the circular membrare which was solved previously, In that
example

< Yielding Membrane

P =P=50psi

D=15f=180in,

$ = 10,000 Ib/in. = 27

For this case PD_ (50)(180) _ 0.5 i > "Shock Isolated" Floor  }:.".

—Y:

’ “ o

y
From Figure 11; z /D = 0,057, which corresponds to a strain of approximately l Yielding Membrane
1%. The center deflection, z., is then 0.057 D, or 10.3 in.
Figure 12. Yielding Membrane Shelter
The ultimate strength of this membrane may be easily determined by
entering Figure 11 with o maximum biaxiol strain requirement of 2,5%,

For this strain PD/S = 1.5 and zc/D = 0,097, IfPD/S = 1,5, then

_1.95 _1,5(10,000) _ .
P= 5 T80 = 83 psi

The center deflecticn, z_, for this condition is z, = 0,097 (180) = 17.5 in. This example demonstrates the remarkable
reserve strength of these elements,

To achieve the greatest economy and overall toughness of the shelter, it is suggested that the same type of membrane
be used on the floor as on the roof. Figure 12 above, illustrates this concept.

Usually the center deflection to span ratio will be the governing design factor but, clso a check should be made to
insure against an excessive pressure increase in the structure which may be induced by the sudden deflection on the roof.
5

This "back pressure" 3. (hc) ‘ /
should not be greater than pop D l
4 to 5 psi. The Lovelace a AV 2o 4 /
Foundation indicates that - 6(—0) (-z-) -3-\- ) [
this is the threshold of the - D < y d
eardrum damage region . - /
The back pressure curve . -I h h. 2
which is shown in Figure 13 N i o /

is for a circular structure
but will work well for
square areas. |f used for

3
A
N
ol
"
8

Back Pressure

other rectangular shapes,
the actual pressure would 2f- /~w¢4
be greater than the value / /
from the graph resulting in / / h
non-conservative answers, / / / D 1.0
The whole problem of ] /
back pressure can be /
ignored if the membrane /) //
has an initial "dish,” j l

0 - |

0 0.04 0.08 0.12 0.16 0.20 0.24

Figure 13. Peak Pressure vs. Center Deflection = Circular Membrane
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Membranes Supported by Yielding Beams

If yielding membranes were used in the
design of blast shelters, it might be advantogeous
to use yielding beams as ribs across the membrane
to decrease the maximum deflections, As with
the yielding membrane itself, the force in the
yielding beam would have to be resisted in some
manner. In the following figures the behavior
of such reinforced membranes is indicated,

The PD/S versus z./D curves (Figures 14,
15, and 16) are non~dimensionalized pressure
versus deflection curves for the points of maximum
deflection of the membrane and the center points
on the beams for the conditions of edge constraint.
The numbers inside the circies are values of the
ratio F/SD where:

F = strength of beam and membrane
S = membrane strength
D = short span distance

The subscripts refer to the locations of the point.
For example, g refers to the PD/S vs. z/D
curve for the center’ point of the membrane, when
the ratio of beam strength to the product of the
membrane strength and the spon is one. These
graphs are for symmetrical cases, i.e., it is
assumed that the conditions on both sides of the
supporting beams are the same (see Figures 18 and

19).

Boundary Conditions

The yielding membrane, to be effective,
must be supported by bounding structural
elements which are capable of absorbing
the full thrust of the material, at yield.

For the type of situation shown in the first
example of Chapter Il, the concrete arches
are well suited to provide the necessary
support. For the second example shown in
Chapter Il, other details must be considered.

The following considers, in detail, examples
of preliminary design solutions to the enumerated
types of boundary support problems (Figure 17):

1. Yielding membranes supported by
concrete arch rings

2, Yielding membranes supported by
straight edge beams

3. Yielding membranes supported by
curved edge beams

4, Yielding membranes supported by
in plane beams

5, Yielding membranes supported by
membrane elements

29 —
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Figure 14. PD VS, ED; Square Membrane with One Edge Beam
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Square Membrane with Beams
on Two Adjacent Edges
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Y ielding Meibranes Supported by Concrete Arch Rings (Figure 17a),  For on exampie of a supporting reinforced
concrete arch ring for the circulor membrane, see the design on page 7. Assume that the span, L, is 30 feet, a con=
siderable span for o 1/4 inch roof structure which supports 50 psi. The edge ring requirement may be determined
approximately as follows:

Consider the section loaded as shown by the fuli PR Al 1
vield strength of the membrane. Note that ot 10,000 ib/in. R b
initial yield, the membrane force is horizontal, ‘"—""""‘-':-—-A
J'd 9
‘ ‘e vacd
for preliminary calculation purposes, assume a SEL
square arch cf cross secticn b x b and reinforced by
mild steel «:t a percentage of 4%, A free body diagram of this arch is shown below. [T 7§,
y 3 F =0 yield
10,000 Ib/in, — . 2P = {10,000) (30) (12)

P=1.8x 10" Ib.

It is assumed that ihe ultimate concrete strength is 3,000 psi and that the yield strength of the reinforcing stee! is
40,000 psi. Equation (19-7) of the 1963 code of the American Concrete Institute applies to this situation ~= that is, a
~olumn which is under direct compression.

= ! -
P:) 0.85 fc (Ag Asr) + Ast fy

where
Po is the ultimate axial load
f:: is the ultimate concrete strength
Ag is the gross section
ot is the area of the steel, and
fy is the yield strength of the steel.
Substituting
A =0.04b°  aud A =b2,
st o]
we heve

2¢
2 2 2 po
P,=0.799 F b" +0.04f b°=b [799 (3,000) + .04 (40,000) ]

P_=0.85F (b2 - 0.04 b%) + 0.40 b

= 3997 b2
Equating to P:
1.8 x 10° = 3997 b
2 - 450,34
b=21.2 in.

A, =0.04 (b2) = 0.04 (450.34) = 18 in,>

14




Use, for preliminary purposes, the following section:

5/16" continuous fillet welds

22“

22"

10,000 ib/in

Required bearing area for angles = =8in., Try 4 x4 x 3/4 angles. Check bending stress in outstanding

leg,
2000 3.25
.. Me _ —5— (3.25) (—3—) 6
i 2
t
] N N
40,000 :2_‘5_2_5. f2 =0,53 :2,000 psi\ 4"
¥ .
t=0'73 in, ‘ .‘.JL__.. 5,000 lb/in.

Use 4 x 4 x 3/4" angles with t = 0.75 in. 2,300 psi

Determination of area of reinforcing steel:

Two 4 x 4 x 3/4 angles have an area of 10.88 in2..

The required Ast is 18 ir|2, therefore 7.12 in2 must be added as reinfcrcement.,

If 12 bars are used, As per bar is 0,595 ;n2“

Use 12 #7 20,60 i"2 per bar. 5/16" continuous fillet weld

Use *3 ties at 16" as shown,

4x4x3/4Ls
1/4" membrane —2_

22"

-2 [‘_/ supporting wall




Yielding Membrane Supported by Straight Edge Beams (Figure 17b). It is logical to consider the method of
supporting rectangulor memkranes ot their cuter edges by initially straight steel beams which, on loading, yield inward
much in the same manner as the yielding stiffening ribs,discussed previously. If the design of such are considered, it
becomes obvious that the amount of material required is excessive and such a support is impractical, This is demonstraied
in the following development,

S Ib/in.
Consider a straight edge member which is loaded by /
a uniform membrane tension, Let the span be L between M‘B‘LM
supports and the tension be S in ib, per in., The situation L ”r
is showr at the right. Under action of force S, the beam If‘ *{
deflects in a circular arc of radius, R, to a maximum
center deflection, h. The beam in this configuration carries a maximum axial load of P Ib, A free=body diagram of the
deflected member is shown as follows:

R
P S p TF <0 yields
L J 2&2 =51
L
- .
or
P=SR

For a given steel beam with an area, A, and a yield stress, fy'
P=f A
Y
on substitution and simplification

. SR
A =y

Thus, for a given situation, the area of edge beam that is required is only a function of the membrane tension,
the yield stress, and the radius of curvature of the deflected shape. Now, S is the membrane yield tension which is
fy t where t is the thickness of the membrane, Cn substitution

f IR
A=-Zr—=tR

If limits are established for the axial strain in the
edge beam, say about 10%, then R has a limit based on N
this strain. To determine the upper limit of R, which is :
actually the minimum value of R, consider the geometry
shown at the right. The average % strain is

RO-L/2 (100)

L/2

Now

KO -L/2

S (100)=10 \

L W
RO - L,"2 = 76

Rg=llL

16




-——-—-—-—-—:—-—-—-—n-ﬂﬂ-l‘-—u-

kut L/2 L
0 = arc sin _{2- = arc sin R

R arc sin %‘ﬁ = l—;—-‘-‘-

arc sin =-Hs X

The solution to this transcendental
equation is approx'mately x = 0,685, If
L/2R = 0,685 for 10% strain, then

N S
R_2 .685 - 0.73[.

A=tR=,73tL

and

Solutions to this equetion are plotted
on the figure at the right,

t=1/4"  t=3/8"

18 5 3—
%
16 At= 2
/ v
14 4

A
/

12 :
T 0 / / z/ //"&’“”3/ "
NESN4 e
Vi

AN

v A=8.761t1
) /// Maximum strain 10%
0 20 40 0 80

A - area - in2

It is seen that even ‘or small spans of around 10 ft,, a 1/4 in, membrane requires a steel edge beam of 21.5 in.2
in cross section. This assumes, of course, that the beam is initially straight and that it yields to a limited maximum

uniaxial strain of 10%,

Yielding Membranes Supported by Curved Edge Beams (Figure 17c). If the edge beams are ini’ially curved to

radius, R, they will act more etticiently when the membrane yields; because they are not limited to small curvatures,
by strain requirements. For this case, A =t R as before. This equation, for various membrane thicknesses, may be

plotted as shown below,

It is observedthat a curved
member of 5 ft, radius ond area
15 inZ would provide support for a
1/4 in, membrane, This produces
a slight saving in material over the
last case, but is much more difficult
to construct. |t is therefors concluded
th~* such support is impractical,

t=1/4" t-~3/8" t=1/2"
16 é/ ¢ —_
|
14 . +
! f i y
1 A 1A

/

N\

Ayt =34

R - rodius = fi.
-—
<
\VQ
\‘

0 20 40 60 8¢

A - atea - in




Yielding Membrcoes Supported Ly Reinforced Concrete Sheor Slabs (Figure 17d). One of the mast proctical
solutions Is use of reintorced concrete slabs in cil ouiside porels and cllow these sloos to resist the membrane thrust of

interior elements through beam action as deep beums, In this coie, membrone economies will only be cchieved if large

numbers of repetitive bays are used. The design of these reinforced cancrete slabs (deap beams) is fairly routine and
will not be presented here.

Yielding Membranes Supported by Membrane Elements (Figur- "), A method of support that seems most
likely s use of yielding memErones supporfed by membrane o
elemenrs, At the comers of cubicol structures, in which
yield membraones are usea as the exterior structural skin,
membrane elements thensslves may be used to "comer”
the thrust,

Pi rt
For this case pe suppo

Fx=0 tzfycos(\)=t‘ f). /

- 2y
t, cos 6= h
if o c 1.6
0=45 ! e
a 1.2 —>
t 2, <
= = 1 - ,8
fz '.767 1.4i4 f.l :(E, ] /
* 0.4 7/
A plot of the relative thicknesses is shown above. <

For 1/4 in. side membranes, 0.35 in. thick corner ’ U2 0.4 . 0.6 0.8 1.0 1.2
membranes are required, by - thickness - in,
L Vse by for © = 45°
Membrone Splices.  Practical construction considerations, based on limited sizes of available sheet steel,
require the use of splices on membrane plates, Two types of full strength splices are recommended, They are shown
as follows:

t

iy C —— i o~

Simple lap splice

Simple butt splice

it is felt that either of these splices can be properly designed ard constructed to develop the full yield strength
of the membrane plotes.

W




Yielding Membrane Boundary Situaticns

FiQUI’Q 17,
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U ynamic Tasts

»namic tes's were conducied in the University of Arizona blast simulator. This simulator is a plone-wave:
genzrator powsred by o hydrogen-oxygen explosion. The blast chamber, shown in Figure 20, is o 300 gallon,
8 . by 2.5 {t diameter tank mounted vertically on rubber bushings to a heavy corzrete base. Access to the chambar
it uchieved by undoiting the top :ection of the tunk ond swinging the bottom section and the base around a pivot.
The 2,5 it. x 2.5 ft. 30l bin is then expused for the placement of model structures, govges, ond sond. There is also
o 14 in. diameter access holc in the botrom of the saii bin and two 4 in. diameter access hoies and windows in the too
section, ;

The blast weve is cuused by o hydrogen—cxygen explosion detonated by an electric syark. Predetermined
qucitities of hydrogen, axygen, and air are mecsured in the three auxiliory tanks on the side of the chomber. The
Gir controls the rise time of the Elast wuve. The gases ara fed into an evacuated plastic bug ar the top of the tank,
The explosior. is detonated by an electric spark which is triggered by the same switck that sterts the recording instruments,
Th= decay time is controlles by edjustcble exhaust valves a:id spocing washers between the chamber sections. The
decuy curve is exponential. The detorating sperk and the gas bag ore centered in the tank to minimize dynamic
imbailonce during fests,

The overpressure vange is from 0 to 50 psi with variable rise times from less *han one millisecond to aver one-
tenth of a second, ond decay times from one-tenth of a second and up. The blast weves could be controtled to within
10 cercent from test to test, The instrumentation and recording device« included two Statham pressure tramducers (0 to
50 p3?), two Tecironix ducl beam oscillators with cameras, one six~channel Brush recorder, and one two-channel
Sanbor recorder . 2% ; .3 ‘ : :

The: plost sinwiator
has been v-ed to test
yielding membrane models
above and below 3round.
The test models were 3.5
to 4.0 inch cytinders which
were constructed so that
the edges held ¢ membrane
tightly clamped (Figurs 21).
The investigations were
made 7o determine the
effe<ts of depths of buriul
and structural flexibility

on ihe percentage of loac Figure 18. Square Membrane Test Figure 19, Square Membrane w

-t -

ith

carried by the yielding Yielding Two Yiolding Bears
elements. TR ———. -

Frem the tests made
in the blast chamber, some
insight has veer. gained
intu the amount of
aitenuarion of overpressure
which is caused by soil
cover, These tasts showed
that seil cover does
attenuate overpressures
aroreciably; inainly due to
on arching action in the
soil as the membrane yields.
Had these models been
rigid they would have been
subjected to pressures ziose  Figure 20, Blast Simulator Figure 21, Model Structure and
to the surface overpressure, Deformed Model Shells
As cun be sezn from the
test evidence, the arching
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octicr was acting well befcre the model wos
buried one-holt the diameter and ot one i =
diometer only one-tenth of the overpressure

is felt by the buried membrane roof (Figure 22).

These results are not useable for pro- [N S e e B PR
totype predictions hecouse the principles of
similitude are not satisfied. They do serve
to itlustrate the attenuation due to soi! '
arching. The arching, in this case, has,as a S . . . SR
point of support, the edge ring of the model e
structure. Heod this edge ring not been al”
present, i he soil would have arched from a
point outside the structure, but the orch

would have been longer and flatter and thus >3 F
the attenuation of overpressure would have
been less.
In tests with the circular models, it i T T T T
was noted that the deflected shape was nearly . ; 5 ;
spherical except that near the edges where % Lo t —— —d
the soil arch was supported by the structure , i
the curvcture was greater. The racii of 0 5 1 il > ’ 3
curvature aiong a diameter was meosured 2 (diameters of burial)

and by making use of the basic formula

Figure 22. Attenuction of Pressure with Depth

11 _ P
. RS
L
a fairly accurate distribution of the pressure
across the membrane was determined —_—
(Figure 23). Note: a thin rubber sheet A
was placed over the surface of the sand to K o
prevent the blast wave from permeating = 10
the peres. N .
= —
o
Tests have shown that yielding membranes e
have the ability to deform dynamic overpressures. 80 5 |
it has been noted in the test conducted at the 2
Universitv of Arizona that there is 10 to 20 3
. . . . o
percent increase in deflection under a dynamic
load as compared to the same magnitude of 0
- H ¥ ¥ Y -
overpressure applied statically . 0 0.50 100 150 3100
Distance Frem Center, r (in.)
~ 20
R
a
o
3
2
¢ 107
a
0 . . . g
0 0.50 1.00 1.50 2,00

Distance From Center, r (in.)

Figure 23. Radius of Curvature and Pressure Distribution across
a Circular Membrane with Soil Cover
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CHAPTER IV

SUMMARY AND CONCLUSIONS

Yielding membraries as elements of shelters to protect civilion population from overpressure effects of nuclear
weapons are definitely feasible. As indicated on poge 8 of this report, under certain conditions a 1/4 in. thick steel
membrane will carry more load than a 19 in, thick concrete slab which is reinforced with steel at a rate of 4,08 in. 2/4,
The membrane itself uses less steel than the reinforced concre’e slab, Favorable soil=structure interaction effects are
induced, by these elements, in all situations.

Construction difficulties, brought about by pre-dishing, may be overcome as more intormation is obtained on
the response of flat membrones to blast overpressures. Problems cssociated with corrosion, and continuity of welds, may
be largely overcome by using (as pseudo~membranes) thin concrete slabs whick are reinforced by a closely spaced wire
mesh which runs continuously in both directions. The wire mesh then acts cs the membrane and the concrete as the
corrosion resisting and local transfer medium,

Boundary supports and full scale testing are items that need more attention and cre suggested as parts of future
investigations. In addition, anclytical studies on strain variations and time resoonse functions to dynamic loads are

needed.

At the present time, however, the response of these structures has been sufficiently bounded to warrant their
use in civil defense situations. The methods used in this feasibility study are as valid ond reliable as any that are
currently being used on the design and analysis of conventional types of structures. It is recommended that the Office
of Civil Defense seriously consider adding these types of sclutions to the ever expanding inventory of such solutions,
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APPENDIX A
YIELDING MEMBR,\NE FORCES
Introduction

This Appendix considers the configuration taken by yielding membranes under uniform lateral pressure loeding.
It deals with rectargulor membranes which are rigidly supported on four sides and rectangular membranes which have one
or more sides supported by yielding supports, in the form of beams which deflect as the membrane deflects. Some of the
results of this effort were presented in Chapter Ill, but the complete details are included in this section.

The deflecticns of the membranes are very large, producing center defiection—to-span ratios os large as 0.20
which results in averoge biaxicl struins ac large os 10 percent. The result is that bending forces in the membrane are of
little impertance ard membrane forces predominate.,

If D is defined os the short-span distance, the types of membranes considered are: (1) D x D with four edges
clomped, (2) 1.5 D x D with four edges ciamped, (3) 2 D x D with four edges clomped, (+; D x D with a plastic edge
beam on one side and clamped on the other three sides, (5) D x D with plastic edge beams on two sides and clamped on
two sides, {5) D x D with plastic edge beams on three side: and one side clamped, and (7) plastic edge beams on all four
sides. Plan views of the shepes are shown in Figure A-1.,

Only membrare fcrces ore considered. Further, the assumption is made that the same membrane stress level

exists at all points on the resulting surface. The problem considered in this investigation involves uniform lateral pressure
only. However, the differential equations developed can be soived for other types of lateral loadings.

Yielding Membrane Theory

Formulation of the Problem.  To oroperly predict the cenfiguration of yie!ding membranes under normal pressure
loading, it is necessary to develop adequate theories. Few of the theories presented in Historical Review (Appendix D)
are directly appliccble to the problem ot hand. However, miror modifications to them allow appliability. The work
which follows presents these modifications.

NOTATION
S Width of plate or radius of circular plate
b, Length of plate
c,d ... .. Dimensions of membrane
D ....... Spon of membrane or flexural rigidity of plate
E o Modulus of Elasticity
€ ~rennn Strain
Fooooo.. Force in yielding beam or stress function
| S Thickness of plate, x direction grid size

e Grid poirt in x direction

[ Grid point in y direction

| S y direction grid size
L........ Length of membrane

N ..., Normali force per unit length
Poo.. Pressure

Ve Poisson's ratio

R Radius of curvature
S, Membrane strength




Y Stress
Gorvens Constant stress (usually the yield stress)
L Thickness of membrane
u,v,w.... Components of displocements in x,y, z directions, respectively
X,y,z .... Rectongular coordinates
Zooens Vertical deflection in center of membrane
i ... Vertical deflection ot grid point, x =i, y = |
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The formulation of the basic equation of membrane shells is well known. From the statics of a membrane shel!
this equation of equilibrium is obtained

N] N2
% h !

If it is assumed that the entire membrane is at the same stress ievel S such that N‘ = N? = S*, this equction of
equilibrium becomes '

! 3
r‘- * T - _g. (2)

The linear theory of membrane shells uses this approximation to the curvature

B L )
L N A

which is Poisson's equation. Von Karman's equations under the assumption of a uniform stress level in a membrane
reduce te

Z . < 2 P
'z ) O 2 N _d z _ 3

2 ox dy 2 T )
o x dy

Y Mixhy1ezy) Y
i — Secant
/Mxory0,20) Y ——
/ /( M)
Curve C J
Ps - X
2 2

The tangent to a curve at a point M is the limiting position of the secant through M and a point My of the
curve M) approaches M as a limit. The equations of the tangents through M und M] are

X=X y -y 2~z

o (o) . o h (5)
dx dy dz
T & &

wherc x, y, and z are coordinates of o point on the curve, their values depanding upon the paramoater h,

* H. P. Harrenstien, "Configuration of Shell Structures for Optimum Stresses, " Proceedings of the Symposium on
Shell Research, Celft, The Netherlands, 1961,

A-3




A tangerit line to o curve upon o surface is called o "tangent line to the surface” at the point of contact, It is
evident that there is an infinite number of tangent lines to a surface ot any point. However, all of these lines lie in a
plane called the "tangent plane" which is tangent to the surface ct the point, If the equation of the curve, C, in
curvilinear coordinates is v = f(u), then the above equations may be written

N i 3 x du
° du Qv & (6)
. ay '

y-y _h + f Y du (7)
° I ik
- Jz v 9z | du

2=z h 55 tf -7 }—as_ (8)

where the prime indicates differentiation. In order to obtain the locus of these tangent lines, eliminate f' and h from
these equations. This gives

X =% Y Y, 2~z

o x oy dz = 0 )
v du o

d x Sy 0z

o v BV v

which is evidently the equation of a plane through M,

The equation of the tangent plane may be written as

(x-xo)xv b -y) Y‘(Z-ZO)Z=0 (10)
Now define
2
LR IR o
N d v \OU v (”)
£ - Ix Ix dy dy dz dz
Jdu Qv Jgu av ov v
d x 2 j Oy 2 022
i
G = lav) '\av) *(()Vj




oy dz
i 3u v

x_‘
H dy dz
v v
c)z o x
avu ov

v !
R 0z dx
v ov
0 x dy
du dvu

Z=I
R 9 x dy
v ov

The positive direction of the normal-to~the=tangent plane is defined to be that for which the functions X, Y and Z are
the direction cosines.

Consider any curve, C, on o surface, S, through a point, M. The direction of its tangent, MT, is determined
by a value, dv/du. Let @ denote the angle which the positive direction of the normai to the surface makes with the
positive direction of the principal normal to C at M, angles being meosured toward the positive binormal . Thus

d2 d2 dzz !

x 3 - .

Cos © --r(x_T‘Y-{r+L~;) (12)
ds ds ds

where r is the radius of curvature of the arc of C. In terms of du/ds and dv/ds, the derivatives in the parenthesis have
the forms

2 .
dx _ 9 «x (du 27 2 azx du dv N azx {dv
7 7 \d& duov & & 7 &
ds du v
. 9 x d2u R J x dzv
v dsz v dsg (13)
Now define:
2 2 2
D X .2__..’:, R .i.,‘Z v 2 .i)__.z,.
du v V]
Y3 2 2
| a X a y B Fa
D= X 355 A v R Y ¥ (14)
2 2 2
)
o X O “x Ly 6:/ L7 z
ov ov dv




Making these changes

Cs® D du2 - 2D dudv- D" dv2 (15)

' Edu2+2qudV4deT

Consider the tangent curve in which the surface is cut by the plune determined by MT and the normal to the
surface at M, called the "normal section” tangent to MT, and let r_ denote its radius. Since the right-hand member
of the above equation is the same for C and the normal section tangent to it,

Cos ©

r

(16)

- e
r
n

where e is +1 or =1, depending on whether 8 is less than or greater than a right angle. The radii r and r, are positive.

Now, let us introduce o new function R which is equal to r, when 0 £ 2 £ = /2, and equal to =r_ when
/228 S x, ond call it the "radius of normal curvature” of the surface for the given direction MT. As defined:

) _ D+ 2D dudv + D (17)
R Edu’+2Fdudv+ Gdvl
or on substituting t = dv/du
| D+20't+D“!2
rc (18)

E s 2Ft + G

To obtain the values of t for which R is a maximum or minimum, differentiate this expression with respect to t
ond set the result equal to zero. This gives

0 = (D +D"t)(E~2Ft+ sz) - (F+GH(D+2D't+ o-wz) (19)

This is o quadratic in t. It con be shown that at every ordinary point of o surface there is a direction for which the
radius of normal curvature is a maximum aond a direction fer which it is a minimum, aond they are at right angles tc one
another,

Thus the two values of R become

! _ D'+ DMt ond i . D+D" (20)
-3 - F oGt R E‘h

and the foliowing relations hold between the principle radii and the corresponding values of t

£+ F -R{D DM - 0
(21
F+ Gt =R(D'+D"W) - 0

Eliminating t from these equations
() 62 2 < o¥H g [} 1~ 2
0= (DD «DYR" <« (KD" + GD - 2FD) R+ {EG - F) (22)

The roots of this equation are the principal radii. These principc! radii are denoted by R, ond R2 and thus:




1 1 D"+ GD -2 FD'

+ N

LI R (23)
] ~ DD" D'?
e T

Now, for the case of a surface defined by z = f(x,y), the follawing values are obtained:

X = 55’ D - r
2,
(e e qh) (1.p2:q2) 7"
A =q D = s (24)
/
(1 - p2 . q2) (1 p?q?) 1?2
!
Z -
y 1/2 D" !
(-2 qd) —_
T/2
(1-p2- G2 )
where
p = . d:
Tex ! q '—‘ay
r = 321 821 2 2
<7 0 YT eIy, ' —
A x ax Oy dy
and thus
2 2
| ! (1 »o)t-2pgs+ (1 +q)e )
L A (23]
¢ r 4D
alse
_n'... . -RL- - comtant
1 2
Using this excct expression for the normal curvatures the equation of equilibrium becomes:
2 .
(rq)r-2pg {1vpyt -P (26)
0epd.qgh vt >

where P is the unifoem loteral pressure denoted by P3 previously .

This equation, wkick govems the thape of o membrane that is loaded Ly pressures large enough to cause
deformatings in excess of the "lorge” deflection theory, ganerully may not be solvad by meons usually emnlcyad for
squctions of this type. The equation is distinctively non-linear, involving products ond powen of portial derivatives.
The mettud presented here consists of defining the partial derivotives in the equation in terms of finite diffecenc s
ond iteroting the rewiting equations by the MNewton-Rophson tecwique to obtain a description of the surface.
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An over-relaxotion procedure was used to speed the iterctive process. This iteration procedure was too involved
to attempt by desk calcuiator so a high-speed digital computer was used. The procedure was programmed in basic Fortran

computer language for the IBM 709 computer at the University of Arizona. The comouter program is presented in
Appendix B.

Yieiding Edge Beams. In : ‘tuations where the boundar:.s ore .ixed, z = 0 on the boundary is a sufficient
condition to admit o unique solution. However, in cases whare these boundaries yield, as in the case of an edge beam
which yields normal to the initial plane of the surface, this condition is not valid.

In this case the differential equation governing the behavior of this plastic beam across the membrane is

g “z dz

Oy v v PW=0 (27)
Sy 2]3/2 2 e
s [

where F is the plastic strength of beam plus membrane strength and W is the Leam width. The second term is o load term
giving the contribution of the pull of the membrane to the shape of the plastic beam. The 2 in the numerator arises
bezause the membrane is considered symmetricol about the beam,

This equation assumes that the coordinates extend to the edge of the beam. Thus F is actually the strength of
the beam and the membrane combined, which must to taken into account with wide beams. However, in the computer
study, the coordinates wure taken from the center of the beam, the beam width was assumed zero, and F became the
strength of the beam alone. This assumption results in less than two percent error in most cases.

Finite Difference Equations.  The equations presented for the membrane and the yielding edge beams were
written in finite difference form in order to reduce the differentiol equations to more easily handled olgebraic equations.
The computer programs were written using the finite difference forms of equations. In the progrems involving the yie!ding
edge beams the two sets of equations were solved simultaneously,

The membrane equation written in terms of finite di ferences about a point involves nine points as shown in
Figure A=2, In this case thers is no need to write a special finite -!ifrerence equation to handle points along the
boundaries because the boundary points are cither zero along the clamped edges or a point on a yielding beam, The
peints on the yielding beems are obtained by soiutions of the beam equation.

The partial derivatives written in finite difference

form are
) Y
p4 " .
2h —"7}. = l.th Z' = Lr- Z' 4 (O)h Q‘ a or
i
Z . L2
2koy<‘i—hu-zb+ (o) k
| i r
b2 D 2, =z =22, + 12 +(0)h2 (28) 1 -
XX i v i |
- k v-n-——h—-—-
KD 2 =2 -2z vz 1 Ok
yy i o i b o 4l br

dhk ny 5T % T %l T e Y el ! (0) hk

Figure A-2, Finite Difference Grid Arrangement




In finite difterence form the membrane equilibrium equation becomes

2 . 2 2 2
[‘“‘ (zo"’lb) .J[l'-2zi* zl] + [4}\ o(zr-z') ]{z°-2zi* zb]

] ,
- - -z - - R (29)
7 G gz mzy o)
2,2 2 2 21 V2
+_°F 4h* K - - =0
T [ k™ + k (z' z') (zo zb) J
For a square mesh, h = k;
4h2 +{z . )2 ] 2 . 02 2
R 2 -2z -2 4h” ¢ (zr - zl) z - 21i t 2
1 (30
I AR RN CHLENEL NN )
Phf,2 .2 1372
*52[4"\ 4(lr-ll) #(ZQ-ZL‘ I = 0
If k = (d/c)h, i.e., if there are an equal number of divisions . 1 each direction, then
2
d 2 2 1
[4(—6) h ‘(zo-zb) ][Zr-2zi?ZIJ
2 2] [
+ [4"\ + (Zr - ZI) .] LZQ -2 Z; 3 zb;!
)
|
~7 (zr - 2'l) (zo B Zb) (zor - qu " b zbl)
2 2 2/3
Phic) [ .4d1° .2 (d 2 214
v i_4(z) h '(E) (zr-Ll) (zc-zb) ] =0
Note that ¢ is the x-dimension of the membrane and d is the y~dimer.sion.
In finite difference form the yielding beam equation is
BFik (z(J -2 z, - zb) 2S (zl - zi) 2)
el ¢ S L v PW =0
2 + - <2 d 2 . - 2 1 ‘/ 2
[4k (za 2} ] [h (rl zi) J

Where
F = Strength in beom and membrane
S - Strength in membrone
Laterol pressure
Width of beam
n - Grid sice in x direction
k Grid cize in y ditection

z, - Deflection at point |




Computer Results.  The membrane equation in finite difference form (Equarion 29) was soived by the computer

using a modified Newton-Raph:on technique. Pressure-to-membrane strength ratios of from zero to three were used in
ihe computer programs. In the cases of membranes supported by yielding edge beams, Equations 29 and 32 were solved

simultaneously. Values of tha ratio of beam strength to the product of the membrane strength and span of 6.5, 1.0 and
2.0 were used in the programs,

The i'lustrations in this section are the result of the computer study. Curves are computed for a uniform stress
distribution over the entire surface, However, this ascumption does not noticeably affect the center daflection values

as will be shown in the comparison of resuits section. In fact, the orly creas this assumption affects, to any degree,
is the comers,

These curves of PD/5 versus 2 /C are general curves and may be used for any ductile material if the biaxial
stress=strain curve for the materiol is available, Only in the case of a rigid=plastic material can the 5 value be
considered a constant,

Figure A~3 shows the standard
grid layout used in all of the foliowing
graphs, tables and discussions. It was

found that a 16 x 16 grid gave results
within the desired degree of accuracy . 1,17 5,17 92,17 13,17 17,17
In the following z; . means z, . The
PD/S versus 2./D Erves (Figulfeys A-4 f R i
through A=9) are non-dimensionalized | | |
pressure versus center defiection curves ' I |
for membranes with clamped edges. The
PD/S versus z/D =urves (Figures A-10 ! | |
through A~16) are n.n~dimensiona'ized
pressure versus deflection curves for the 1,13 |5, 13 b, 13 |l3, 13 17,13
points of maximum deflection oi the = — —-— —_ _ —
membrane and center points on the heams —T r_ T
for various conditions of edge constraint. l I ‘
The numbers inside the circles are values | | I
of the ratio F/SD, where
l l |
F = Strength of beam and
membrane 5 1,9 bp9 b09 |l3,9 __‘17,9
n P - = - -

$ = Membrane strength —T r- T

D = Short span distance 1 I |
The sucscripts on the circles refer to the | | |
location of the point (see Figure A=3). | i |
For example, GSO refers to the PD/S 1,5 ,5 &5 13,5 17,5
versus z/D curve or the center point of b — — _— — —_——— -

the membrane, when the rotio of edge | '
beam strength to the nroduct of the
membrane strength and the span is one,

|

The graphs and tables, shown |
relating to membranes supported by |
various yielding edge beam arrangemenis,
are for s)‘;mmetricol cotes, Thatis, it is A P" P“ 13,
assumed that the conditions on both x
sides of the yieldin, beams are the same, o e e
These tables and graphs are useful in
prelimirary design, The octual values
of membrane strength and beam strengths
involved in a design should be fed into
a comguler program to determine the

I
!
I

|
|
l
|
l

e i e o o

Figure A-3. Stondard Grid Layout
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Figure A=4, PD/S versus zc/D Curve for a Circular Membrane
TABLE
Summary of Computer Results; Membranes with Clomped Edges
Circular lx 1 1.5x T 2x 1 Ix 1 OOx |
fsl?_ zc/D Strain zC/D Strain zc/D Strain | C/D Strain zc/D Strain zc/D Strein
0.25 .018} 0.08 .018 0.10 | .025 0.17 .028 0.22 .031 1 0.25 .031 0.24
0.50 031 0.25 .037 0.38 | .051 0.70 .057 0.38 082 1 1.02 .064 1.07
0.75 .0441 0.52 .055 1 0.88 ] .077 .59 .087 2.03 095 | 2.38 097 2.49
1.00 .0641 1,07 .075 1.58 | .104 2.90 e 3.74 130 4.44 134 4.68
1.25 .080] 1.65 .095 2.52 ] .132 4.49 152 6.1 169 | 7.43 75 7.93
1.50 0781 2.55 15 3.75 1 L1863 7.05 190 9.43 214 111,78 | 225 12.88
1.75 151 5.4 137 5.24 | 196 ] 10.16 .233 | 14.00 269 113.33 293 21.36
2.00 1341 4.70 160 7.12 | .233 | 14.27 284 | 20.49 .347 | 29.55 420 41.45
2.25 1551 4.0 186 9.47 § 277 | 19.87 2352 | X0.69 - - - -
2.50 1751 8.00 23| 12,42 .332 | 27.99 - - - - - -
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Figure A-10, PD/S versus zc/D Composite Cunve
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actual deflections of the surface.
However, olthough the edge conditions
and strengths ond loadings of one panel
affect the adjacent panels, it ‘s not
likely that they will offect panels

farther away to any significant extent,
Conservative use of the irformation given
here will allow membrane structures to be
designed within the desired degree of
accuracy .

Equivalent Curves for Other
Materials. The PD/S vemus-zyl_)—
curves are completely general end nay
be used with any type of ductile
material . For u rigid=plostic matericl
the S value is a constant which simplifies
the use of the graphks. If these curves
are used a number of times with a certain
materiai, it may be advantageous to
choose some constant S value (such as
the yield strergth) and draw o new
“equivalent rigid-plastic” design curve.
This eliminates unnecessary reference
back to the biaxiai stress-strain curve,
for the material, to obtain an S value at
various strain levels,

To construct this "equivalent
rigid-plastic” cirve, a stress .alue, UZ,
is chosen at which the gencral PD,S
versus z./D curve is to coincide with
that of lsrlme given material (pcint A of
Figure A-17). A tahle with the
following headings is then constructed
(Table 7). Columns 1, 2,and 3 ore
obtained by < o0sing a number of points
from the general ©  versus z./D versus
stzain curve, A. c.ua three or four pointe
should be used in ine portior below
PD/S = 0,25. From the biaxiai stres.-
strain curve, stress values . re found
which coincide with the strains in
column 3. The values of celumn 1 are
rultiplied by the values of column 4
and divided by the "constant" stress g_.
A plot of coluran 2 versus column 5
will resuit in an "equivolent iy 4~
plastic” PD/S versus z./D curve for
the given mcterial. The new constant
S value is g+

Summary of Computer Results - Squere Membrane with

TABLE 6

Yielding Beams on Four £dges

| Yy i
][ Corners at .0
i 1,9 9,9 “max 9,9
ﬂ Beam Width = 0.0
|
L1, .
x
F PD % max % Strain 4,9 % Strain
B D along 1=9 ) along 1=1
0.5 .0819 0.20 .0538 0.804
1.0 719 0.33 .48 3.452
0.5 1.5 2855 1.96 1976 10.74)
2.0 - - - -
SR
0.5 L0611 0.27 .0295 0.229
1.0 L1244 1.10 . 0601 0.951
b0 1.5 198 2.60 .0928 2.259
2.0 L2666 5.00 L1290 4.342
0.5 .0497 ¢.32 .0156 ! 0.063
1.0 1005 1.30 L0315 0.254
2.0 1.5 1539 | 3.08 0475 0.580
2.0 L2117 5.90 L0639 1.048
J
TABLE 7
Column Headings for "Equivalent-Rigid-Plasiic” Curves
Columna No.j 1 2 3 4 5
4
Heading -g[;- ‘e strain tiaxial dn PD
T siress GC S
A-20




Exparimental Analysis

Introduction,  Tesis were conducted on various membrane shapes. These tests were designed to obtain membrane
deflection data which could be used to check the cccuracy of the computer results and compare with the predicted
defiections. Tests were runon 1:x 1, 1,5x 1 and 2 x i clamped edge membranes. Tests on membranes with yielding
beams included a 1 x 1 membrane with 2 beams, 1.5 x | membrane with 2 and 3 beams and 2 x 1 membranes with 1, 3
and 4 beams,

Test Equipment. A testing device was constructed to test the membranes. The test bed was a 25 x 15 x 3/4 in,
high strength oiummum plate. Edge beams 2-1/2 x 3/4 in. thick were bolted to the test bed by 1/2 in. cap screws
spaced 1 in, apart, These edge beams were used to clamp the membrane in place, Fluid pressure was applied to the
membrane through a hole in the test bed. One edge beam could be moved so that membranes of 10 x 10 in,, 10 x 15 in,,
and 10 x 20 in, could be tested (see Chapter ill).

Two tracks ran paraliel to the long side the test bed. A framework was fabricated t. span from one side to the
other over the membrane. This framework held a sliding bar to which was fastened a 2 in, dial gage which measured
within 0.001 in,

The dial gage was positioned crosswise on the membrane by means of a calibrated screw thread which moved
the sliding bar. The entire framework was positioned lengthwise on the membrane by means of another calibrated screw
thread. :3reat care was taken to ensure that the tracks were level, the sliding bar was parallel to the test bed, and
the gage was dead cente: on the test bed when the screw threads were positionecl. This arrangement permitted test
results accurate within 0,002 in. in the vertical direction, and within 0,005 in. in the horizontal direction,

Water pressure was applied to the membrone as the loading medium, This reduced the danger to personnel

which could have been present with air pressure only. Air under pressure stores energy which would have been suddenly
released when the shell burst and could have caused some shell fragments to be thrown about. A surplus oxygen tank

j?_z - PD '/
=5 | A

/)

0 Agid Plasti._ //
—+—(S = Qonstant)
/|

1.5 /‘ 7.5

7 Strain
PD Soff AluminJ)m /
T /
y —(S Yaries with strain)

1.0 /
Elostic- /
Pladtic pd

v
0.5 7/ /, ‘ ‘ 2.5

/‘ 1
+
."’/
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0
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2.0 Aho.o

5.0

Strain (Percent)

04 0.08 0.12 0.16 0.20

Figure A=17, “Equivalent Rigid-Plastic" PD/S versus z /D Curve for a
Circular Membrane
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was used as a reservoir and air pressure to water pressure conversion unit. A sensitive pressure test gage was attached to
the tank, Also o 60 psi pressure celi, in conjunction with a strain box, was used to record the pressure. The pressure
was measured to within 0,015 psi.

Test Procedure. Test memkranes were held flat by a styrofoam block as the edge beams were attached, The
water level in the reservoir tank was of the level of \“e test bed at the start of each test, At this point all gages and
screw threads were checked to be certain they were zeroed, Deflection measurements were taken at set grid points.,
(Each membrane wos divided into 16 grids each direction and measurements were made on 1/4 or 1/2 of the membrane
depending upon the symmetry involved.) As a result, either 64 or 128 deflection readings were taken at each pressure
level. There were usually five or six pressure levels in each test., Test results were reproduceable and so, in the latter
tests, only one * st was made on each membrane shape.

Yielding beams were simulated by No. 8 soft steel wire. They were stretched by means of a simple jacking
device fo assure that they were well into the plastic range before the test was started. In this manner the load-
displacement curve for the beam was essentially horizontal, and the load in the beam was relatively independent of the
strain and could be more zlosely approximated. All the initial strain during testing was assumed to take place across
the width ot the shell because the edge beams clamped down on the wire as well as the membrane, This strain was
obtained from the z/D versus strain curves. At points where the wires crossed, a small device bent one wire over the
other so that the wires themselves were in the same plane. The added strain, caused by bending the one wire, was
taken into account,

The yielding beam tests were all of a type in which sag was permitted at points where the beams crossed.
The apparatus would have been unnecessarily cluttered if a heavy bar had been used to hold those points at zero
deflection,

Experimental Observations. It was noted that as the membrane deformed the material seemed to stretch quite
unevenly == even though, at the same time, the deflections were very regular and predictable. [t could be explained
by the nature of the thin metal membranes == copper, aluminum, and steel all acted the same way == in that the
membranes seemed to thin out along irregular paths leaving thicker areas surrounded by thinner areas. As the material
was stretched, the thicker areas gradually decreased in size and finally, just before failure, most of the earlier thick
areas had thinned, It seemed that this thinning of the materic! occurred at first where the strains were greater (at the
center and about half woy toward the center from each edge. As the material was stretched the thinner regions were
strained into the strain-hardening region and thus reached a point where the membrane force in the thinner portions
became equal to the force in the thicker, less strained, portions; in effect equalizing the membrane force in almost
the entire membrane. The arecs in the corners of the rectangular shapes were the last to be strained ir: » the plastic
region, Also, it was noted that the circulor tests (used to obtain the biaxial stress—strain curve) the straining was
regular and more uniform,

In on attempt to measure the strain distribution over the shell surface, a photo grid of 20 lines to the inch was
fixed on the surface of the clamped edge membranes. Near the edge, the strain becomes more uniaxial than biaxial;
therefore, in order to maintain the uniform stress level, t!ie membrane must straiin more near the edges (see Figure A~18).

As is shown in Figure A-18, the stress does not vary much even though the strain does vary considerably. The
points in the square symbol are the stresses taken from the uniaxial stress=strain curve. As can be observed, the uniaxial
stress at the edge is the same value as the biaxial siress at the center, This is another point in favor of the uniform=
stress=distribution essumption. The significance of this graph is also considered later with material on comparison of
Computer and Test Results.,

Because of the irregulor strain distribution and the apparent ability of the material to equalize the membrane
forces, it seems that the assumption of a uniform stress distribution may be applicabie. This assumption obviously results
in some eitor in the values of the displacement in the corners of a rectangular membrane, The amount of error and the
region it involves becomes apparent in Computer and Test Resuits comparison,

The vielding beams strained fairly uniformly across the span. When the center deflection of the beam become
larger than one inch, straining began to localize neur the edges. Failure did occur in the wire during one of the tests

and, as anticipated, it failed near the edge due to a combination of tensile and bending strains.

The stress=strain curves for *he membrane material are shown in Figures A-19 and A=20, The material used
was annealed steel sheet 0.004 in, thick. The load=strain curve for the yielding beom material (No. 8 soft, drawn,
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fencing wire) is shown in Figure A-21, The biaxial stress=strain curve is an average siress, average strain curve
computred by assuming spherical deformation over a circular membrane, This results in the following equations:

r z z
Strain : - _r_c_ ) arcton _rc_ -1 (33)
c /
r r ZC
Radius of Curvature -: 2 = v (34)
Membrane Strength -: Pr L i
Mt |t (35)
¢

The deformation was spherical == at least to within the least count f the measuring system which was 0,001 in,
Although the strains may not be uniform, they were assumed to be for the computation of the biaxial stress=-strain curve
because this was to be the assumption used in the rectangular membranes.

The stress=strain curves and the membrane tests were run af the same strain rates =~ zero strain rate. At each
load leve! the deflections were allowed to stabilize before readings were taken. In this way, the discrepancies, which
may have arisen due to unequal strain rates, were minimized,

The deflection readings on the membranes were tkane with the pressure held constant so the deflections, and
thus the strains, included both the elastic ond plastic portions, This is what was intended since a normal stress=strain
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Figure A-20, Biaxial Stress~Strain Curve for Membrane Test Material
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curve includes both portions. However, as a note of interest, the pressure was relieved u number of times during various
tests to get an indication as to the effect of the elastic strains on the deflections, When the nressure was relieved the
decrease in the amount of deflection was 100 percent up to z./D - 0,023, 50 percent at 2¢/i) = 0,030, 10 percent ot
z./D = 0.073, 5 percent at z./D = 0,103, and 2 percent at z./D = 0.163, These can also be obtained by using the
biaxicl yield strain of 0,0015 in/in and the strain versus z_/D curves.

Membrane Boundary Conditions. The membrane forces are independent of bending and are wholly defined by
the conditions of static equilibrium. However, the reactive forces and deformation obtained by the use of the membrane
theory at the shell's boundary usually become incompatible with the actual boundary conditions.

As will be shown, there is no doubt about the mambrane state of stress existing in the main portion of the shell.
However, very near the boundory the clamped edge causes a narrow band in which the curvature is of the opposite sign
from that of the main portion of the membrane. In this region, then, there are large bending and shearing stresses.
Fortunately, this region is of the order of thickness of the membrane, which in the tests was enly 0,004 in,; or more
accurately, the boundary layer would beJRT, which in the tests would only be V’ .03(,004) in.t,or 0.01 in,
Because, in this edge region, bending stresses and shear stresses exist as well as the membrane stresses; it is very likely
that this is where failure will occur first,

If the strain present in the membrane is broken into two parts, €, due to tension and ¢, due to bending, then
the relative amounts of each can be determined from the deflected shape. If a circular deflectecf shape is assumed for
this purpose it will be a simple matter to determine ¢ and ¢p, Choosing z, = center deflection, D = span,

R = radius of curvcture, t = thickness of the membrane, then it can be shown that

R D %
6‘ = —5 arestn W l ( )
and
= 37
€ (37)
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Figure A=21, Tensile Loed=Strain Curve for Yielding Beam Test Material
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For the tests D = 10 in, and t = 0,004 in. TABLE 8
Table 8 is presented for the center portion Strains in Center Portion of Membrane
of the membrane shell.

This shows the insignificance of the ZC/D R(iﬂ) €1 fmembeane) €2 (bending)
hending strain cver the major portion of the
shell area. Also if Ry, Ry £ 0 bending stresses 05 2500 .006 0000008
are not restricted to tne edge zone of the shell,
In this case, howeve,, Ry and Ry are both of the 10 1250 .027 -00C001 6
same sign; thus Ry Rp > })and the banding 15 833 .059 .0000024
stresses are rosiricted to the edge zone, Just
at the edge of the membrane the curvatures .20 626 101 -0000032
measured in the deformed shells were as small .25 500 158 . 0000040
as 0,03 in. This occurred at the midpoint of

the longer edge. From Figure A-22
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Figure A-22, Edge Conditions
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<
This resuits in an ¢, at the center of the clamped edges on the order of 0.0625 in/in. just before failure. The shells
usually failed along the edge whes the z./D ratio was somewhat cver 0,20, At failure, then, the tota! strain at the edge
was €1 + €5 =0,1635,

This rough calculation of the strain existing at the clamped edge at failure indicotes only that the strain would be
increased by the flexure cccurring at the boundary. However, using a Poisson's ratio of 1/2, which would be valid in the
plastic range, it can be shown that the maximum biaxial strain should be only hvo-thirds of the maximum uniaxial strain,
This explains why the circular membrane tests failed at strains of about 10 percent; wherecas the uniaxial test specimens
failed at strains of 16 to 17 percent. The circular membranes did not fail at the edges but rather at some point of weakness
in the material. This indicates that, although the rectangular membranes failed at the edges, they were near failure due
to biaxial strains in the center portion of the membrane,

To prevent premature failure at the edges of a membrane, a rounded edge of some type must be provided, ™ the
tests, the edge beams were purposely rounded to retard failure at the edges and, yet, the rounding was not great er.ough
to effect the deflection readings or the dimension of the span.

Analytical and Experimental Comparisons

Updating Previous Work., From published results of t¢ t: conducted on circular membranes and analytical studies
on circular membranes an accurate check of the PD/S versus z/D curve for a circulor membrane may be obtained. This is
shown in Figure A=23 and Tables 9 and 10, Both of these studies attempted to acquire stress and strain distributions over
the membrane surface. In order to correlate with the present results the average stress in the membrane was used. Note
that the results correspond very well in the region below a PD/S value of 1,5; above this point the membranes are
approaching the “instability strain" or the strain at which a secondary bulge forms at the crown, The greater ervor is
found in this upper region because at the time this secondary bulge forms a noticeable leveling off occurs in the pressure
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versus deflection curve. The PD/S versus z./D curves are not meant to account for this loss in membrane strength ==
similar to the decrease in stress just before failure on a stress=strain curve for ductile materials. Failure follows soon after
this "instability strain" is reached,

Test results for the deflection of square clamped plates under uniform ioteral load included one test in which the
center deflection to plate thickness ratic was 12:2, The tests were made with aluminum specimens with the following
specifications: D =7.5in., t =0.0158 in., E = 10,300 ksi, 0 = 37.5 ksi at 0,002 in/in offset, The stress=strain curve
for the material was also given, Using this data, the 5, 8, 10 and 12 w_/h ratios were converted to z./D values and the
Pa?/Et ratios were converted to PD/S values. The results are shown in Figure A-24 and Table 11, This gives some
indication of the point ot which the bending forces can be taken as having a negligible effect on the deflections. If the
bending forces were affecting the load=carrying capacity of the plate, the points plotted should be above the curve. The
reason the points are below the curve may be in the difference in strain rates between the stress=strain curves cnd the test,
If all the values were increased so that the largest value coincided with the curve, then it can be seen that somewhere
between the w./h values of five and eight the bending forces begin to exert a negligible effect, In fact, at o wc/h of
5.1 the bending forces carry only abcut 12 percent of the load.

Results of failure tests on 1,55 x 1 rectangular membranes with clamped edges subjected to uniform lateral pressure
are shown in Figure A~25 and Tabie 12, There is substantial scatter in the data. The ultimate stresses of the materials
tested were obtained by uniaxial tests on coupons of the materials, The scotter of data may be due partly to the difference
in the rate of strain between the coupon tests and the membrane tests, It is not known if any attempt wos made to run the
tests at similar rates of strain,

Greenspon considered the problem of large deflections of a plate under uniform pressure loading, He used the
Poisson Equation approximation

2 2
oz Q2 -P
éxz ' ayz i Y (40)
} | [ ’
2.0 — ‘ - ‘“"“”% 10.0
| | /
| | /
-0 — o/
S - |L S e e 2T
‘ ; »/ =
PD \ ; /f g
5 ' /S+in o
1.0 ! | / S 1 5.0 :
* ' S I : E
| WA f w
yan

71 O |Gleyzal, 1948

i ok o, 5] 2
l

0.5 b .

0

0 0.04 0.08 0.12 0.16 0.20
ze/D
Figure A~23, Comparison with Gleyzal (1948) and Weil and Newmark (1955), Circilar Membrane
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TABLE 9

Results of Circular Diaphragm Tests (Gleyzal, 1948)

Pa

T: Ave. Radial Ave. Radial Ye PD %
(ksi) Strain (%) Stress (ksi) Iy < D

2.09 0.035 24.0 0.024 0.174 0.012

7.83 0.190 3.5 0.054 0.430 0.027
21.37 0.875 47.0 0.13 0.908 0.057
35.28 1.580 58.5 0.156 1,208 0.078
55.92 3.200 70.0 0.221 1.595 0.110
71.68 4.700 74.5 0.247 1.925 0.133
84.76 6.400 78.5 0.314 2.160 0.157

TABLE 10
Results of Circulor Membrane Tests (\Weil ond Newmark, 1955)
Po . .
Ave. Rodial Ave. Radial w z

A Strain {5) Stress (ksi) ¢ PO <
(ksi) N 5 T
2.7% 0.225 11.75 0.342 0.47 0.030
5.51 C.675 13.85 0.582 0.80 0.051
11.02 1.775 17.30 0.954 1.26 0.083
22.04 4.400 24.20 1.484 1.82 0.129
35.82 8.200 32.50 2.056 2.20 0179
51.80 16.300 43.70 3.052 2.37 0.266

TAMNE 11
Resuits of Square Membrane Tests (Rumberg, et. ol., 1942)

w 4 R 2

c Po Stra‘n Stress p PO c
w "‘TEh (%) (ks!) (psi) < T
5.1 320 0.040 3.75 1.03 0.131 ] 0.011
7.67 900 7.075 7.50 2.91 0.184 | 0.016
10.05 2200 0.125 12.50 7.1 0.270 { 0.021
12.20 3700 0.180 18.00 11.96 6.315 | 0.026

. 1
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and obtained a general solution to the

TABLE 12
problem
Results of Failure Tests on Rectangular Membranes (Greenspon, 1956)
2
w - 0.164 Pa
max 2 41
s((3)°] e T w o | Ye | | %
) (ksi) (in.) (in.) (psi) (in.) T D
This equation may be rewritten, in terms
used here, as follows:
. 61.0 9.113 13.5 920 2.77 1.80 | 0.205
¢ - _D.164PD wy | 2.7 [ ome | a5 | 9o | 254 | 152 0188
s[u(%) ] 4.8 | 0.134 13.5 700 2.44 1.69 | 0.181
. 46.1 0.104 13.5 500 2.76 1.69 | 0.205
Thus if
PO 4] .8 0.068 13.5 435 3.12 2.07 | 0.231
D=t z/D - 0.082 72.3 1 o0.2s 54.0 226 9.47 | 1.35| 0.175
15D = L, 2 /D = 0‘”35PD 65.0 0.182 34.0 245 7.06 1.12 ] 0.131
¢ <
and
D=L, /0 = PC

¢ ‘0.14/6-5-

The comparison of this Poisson Equation approximation and the more exact equation presented here, is shown in Figure A=26,
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Figure A-26, Comporiwn with Greempon (1960); Poisson Equation Curves




Comparison of Test Results and Computer Results.  All of the comparisons of the PD/S versus z/U curves made in
this section are based on the "equivalent rigid-plasiic™ curves. Thus, to make a comparison or determine the magnitude
of the errors the "equivulent rigid-plastic” curve (a dotted line) und the test points (a dot in a circle) should be used., Use
of the "equivalent rigid-plastic" curve is one way to make the non-linear behavior of the material more apparent (see
Figure A-27 and Toble 13).,

It will be noted that, for all the shapes tested, the poiats in a Land cbout onu=half the spon «f the membrane in
either direction across the center of the membrune show negligible error between the test results und computer results, In
fact, the only region in which errors appear is in the comers in an area with a rodius of about one=-fourth the span with the
center at the comer. The error in the corners, as shown in Figure A-28, is very large at low pressure levels, and about
20 percent at high pressure fevels. This is to be expected because the computer program assumes a uniform stress distribution
which does not exist in the comers of u rectangular .nembrane. However, in Figure A=29, for a point a little further away
from the corners, the error is much i2ss (less than 10 percent for most of the curve).

In Figure A-30, for a point away from the corners but clong the edge, the errors are less than 5 percent. This
same trend is evident in all of the shapes considered and also in the membrone supported by yielding beams (see Figures A-31
through A=~40).

In the illustrations titled "Comparison of Results = z/z x++es" beginning with Figure A-41, the omount of error
and the location is readily apparent. From these illustrations o few characteristic cross=sections have oeen plotted.

The results for the square membrane with one yielding beam show excellent correlation betweer, computer end
test results. The results for the square membrane with two yielding beams show an error of abo .t eight percent in the main
portion of the membrane. To construct these charts, first the stress~strain curves were made for the matericl: used in the
membrane and in the beams; then the tests were conducted. The yielding beams were stretched to about three percent
strain before pressure was applied. The average stroin across the point of maximuin deflection was computed. Going to the
bioxial stress=strain curve, the stress in the material was found. Thus, the volues of pressure and membrane strength which
were fed into the computer program were determined from the test results, In this way, if the computer program gave
results very nearly the same as the test results the conclusion could be made that the assumptions used in the theory were
justified (see Figures A~41 through A-53).

It can be observed f..m the results on the square membrane with clamped edges, and the square membrone with
one yielding beam, that the results of the tests correspond very closely with those of the computer study. The siroins were
easily measured in both of these cases, so accurate valies of the membrane strength could be obtained. The errcrs in the
:quare membrane with o yielding beams were due mainly to the errors in the membrane strengths which were fed into
the computer. It was difficult to obtain a high degree of occuracy in computing the strains in the membrane, and thus the
membrane strength, The program is very sensitive to this value of membrane strength.

The greatest errors between the test results and the computer results occur in the corners. Here the membrane is
not strained as much, Because the strain is at «. lov. - level, the stress in the corner is also at o lower level than in the
main portion of the membrare, and in fact the stresses in the comers approach zero. Thus, because the strength in rhe
corners of the test membrane has not reached the some strength as in the rest of the membrane, the ueflections in the
ccrners of the test membrane are greater than the computer volues which are bused on o uriicin stress distribution.

As can be suer from the comparison of results tabies, the iwo sets of results always ogree we!l in the main portion
of the shell; ye! have errors as high as 30 percent in the cornern in some ccves. Note also that the error in the corners
decreases as the total defiection increases, This is because the stress in the main portion of the membrane ha; been
increasing rapidly in the elastic range of the stress-strcin curve (see Tobles 14 ond 15),

The: membranes yield to a very nearly circulur deformation pattem in the short span direction, even near the
clamped edges. The greotest deviation from a circular shape occuns of o distance of okout 178 the rpon from the edges.
A circular deformation pattem is evident from the strain versus center deflection curves which show that the stiain varies
very little fiyr the different rectongular pluis and the circular plon, The circulor membrone and the strip me sbrone both
defiect to a circulor deformotion pattern under uniform latersl loud,

The stress ond strain distribution curve (Figure A=18khowy that the averoge stress is abou! 44,8 xyi, If the strain

versus 2_ 0 curve is entered with 2., G 0.125, the volue of strain is 4,4 percent, From the bioxial stress=strain curve
(Figuro S-ZO) a stress volue of 48.5 ki is obtoined. This iy the value of siress vied to obtain the $ value used for
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comparison purposes in Figure A-36, Had the true average stress value of 44,8 ksi been used the correlation would have
been even better,

If an ottempt is made to use a stress function which has a maximum value ot the center of the membrane and
approaches zero in the comers, the discrepancies between computer results and test results wiil decrease.
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TABLE 13
Computer Results and T =+ Results - Square Membrane

Figure A-28. Comparison of Computer und Test Results = Squate Membrane,

/D

A-33

12,2

(Points 2y o1 25 g1 25 5
Computer Results Test Results
z 2 z % Strain Biaxial 2 2z 2
PD 9,9 | %59 5,5 | Across |00 Cn PD PD $,9 5,9 5,5
T ) 5 D Center resCa '3’: 5 S v o] D
0.25 .0184 0143 0112 | 0.0956 25.5 0.15 0.20 .0207 L0173 | .0142
0.50 L0349 0288 .0227 1 0.3853 41.3 | 0.50 n.37 .0278 L0229 1 ,0194
0.75 .0558 .0435 .0343 | 0.8769 41.4 0.75 0.56 .0414 L0330 | .n264
1.00 .0750 .0586 .0463 | 1.5829 42.8 1.03 V.81 0594 L0470 | .C384
1.25 .0948 0744 L0587 | 2.5235 44.4 1.34 1.i14 .0828 L0660 | .0532
1.50 L1155 .0909 .0718 | 3.7278 47.0 1.71 1.49 , 1060 .0842 | .0674
1.75 1372 .1088 .0858 | 5.2413 49.5 2.10 1.85 L1265 L1010 { .0304
2.00 L1604 L1275 §,..1010 | 7.1248 51.5 2.49 2.23 . 1480 190 ) L0936
2.25 1856 . 1485 1178 | 9.4862 52.8 2.98
2.5 L2135 722 1370 112.4226 - -
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Computer Results and Test Results (Points z

TABLE 14

19'5, ond 25’5) =~ 1.5 x | Membrane

9,9' 5,9’

Computer Results . I Test Results
% Strain| Blaxial | o~
PO 1799 %59 | 29,5 | 5,5 | Acress | swes | LR T2 %991 el %5 %,

3 D D D D~ | Center o, | c D D D D
0.25 L0252 | .0192} .0205 | .0157 | 0.172 41.3 0.25 0.067 | .0158 | .O115{ .0130 | .0102
0.50 .0507 | .0386] .0412 | .0317 | 0.696 4.3 0.50 0.249 | .0253| .0'99] .0222 | .c180
0.75 L0767 | .0587] .0625 | .0482 | 1.593 42.8 | 0.78 || 0.410 | .0390| .0308| .0322 | .0252
1.60 L1033 | .0798] .0845 | .0653 | 2.902 45.0 1.09 0.619 ] .0592 | .0450] .0489 | .0378
1.25 13221 .1022) L1077 | 0836 | 4.686 438.8 1.48 0.911 | .0878| .0634| .0724 { .0560
1.50 L1627 | 1269 L1327 | .1034 | 7.054 51.4 1.87 1.240 | .1163| .0907| .0967 | .0758
1.75 900 | 1545 (1800 | .1255 |10.161 53.0 2.24 1.568 | .1400| .1090| .1158 | 0% 7
2.00 L2335 .18641 .1910 | .1509 {14,272 - - 1.845 | 1596 .1250| .1335 | .1050
2.25 L2774 | 2252} .2275 | .1815 |19.872 - -
2.50 .3324 1 .2756) .2737 | .2214 {27.993
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TABLE 15
Computer Results and Test Results (Points 29,¢‘ 15'9,
19’5, and 15’5) = 2 x | Membrane
Computer Results Test Results
. . . 2 % Strain | Biaxial :
PD 9,91 5,9 | %9.5 5,5 | Across | Swess | Tn PD|| PO | %99 | %59 | %9,5 | 5,5
5 8] D D Center Gn |Cec S —g'c D ) o] o)
0.25 L0285 | .0218] .0243 | .0816 0.218 41.3 | 0.25 0.062 1 .0181 ] .0137] .0'72 0129
0.50 0573 | .0434| .0488 | .0373 0.380 4.4 | 0.5 0.126 | .0220| .0174; .0208 0167
0.75 .0872 | 0663 .0741 | .0568 2.028 43.4 | 0.79 |} 0.250 | .0304 | .0235] .0273 | .0n%
1.00 L1187 1 L0909 1007 | 0775 3.739 47.0 1.14 0.522 | .0604 | .0462] .0515 | .n397
1.2 825 (11771 1290 | 0998 6.135 50.5 1.53 |] 0.848 | D2 | .0757] .0853 | .0662
1.50 L1899 | . 1483] 1602 | 1248 9.431 52.7 1.9 1.150 ) 1250 | .0953| .1085 0838
1.7% (2327 | .1845] 1954 | 1538 | 13,997 - - 1.555| .1565] .1200] .1395 | .1069
2.00 L2840 | .2295] .2372 | .1889 | 20.493 - -
2.25 AS17 f .2919) L2919 | L2368 | 30.488
2.5 - - - - - - -
d
(Tc = 4).3ks! = Equivalent Plastic Strem
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APPENDIX B
YIELDING MEMBRANE PROGRAM

A bstrcg:f

This Appendix presents a computer program for iterative solution of the large deflection membrane equation
using finite differences. An investigation of relaxation factors at various P~/S ratios and grid sizes is included. Graphs
cre given showing the relationship between strain in he membrane, P3/S ratios and center deflections.

Modifications of the basic program are given which allow variation of pressure across the entire membrane, use
of Poisson's Equation, inclusion of plastic beams across the membrane along the center lines, and creating free edges
with or without plastic beams, '

Introduction

The equation defining the shape a membrane takes when loaded with pressures large enough to cause deformations,
in excess of those allowed by small deflection theory, defies solution by means usuclly employed for equations of this
type. The equation is distinctively nonlinear, involving products and powers of partial derivatives. The method of
solution presented here consists of defining the partial derivatives in the equatior: in terms of finite differences, and
iterating the resulting equation to obtain a description of the surface. An over-relaxation procedure is used to s;2ed
the iterative prociss, The iteration procedure involves a long and tedious process and may be cccomplished cnly
through use of high speed digital computers. Therefore, the procedure presented here is orogrammed ir hasic Fortran
computer language.

|4

Mathematical Formulation of the Problem

- §4 = eonstant

Consider a typical element of surface (Figure B~1.
£ and £, are general curvilinear coordinates, which, 2
when combined with the position vector, r, describe
the surface completely, n is the normal to the surface 1
at the point, Then the general equation for the I

principal curvatures k,, o the surface as developed Ve
by Wang* is: /!4/ 1
HAC = (EN = 2FM + GL)k_+ (LN - M) =0 () /
T

Figure B-1. Typicai Element of Surface

Solving this equation for k, and k2 by the quadratic formula:

i

= ; )
ol - 2R + GL +ﬁan- PFM + GL) - 4H (1N - i) 5
K - (2)
1,? oY
Where:
ax \ N AN (3-a)
4 + — + —
" 351) <)<1> (‘51)
_oX JX -y ¥ ot ot 3-b
F 7?: RIS * S R * e ) g-;_ Q-5
5 » o2
Jdx R 1§
» =] + —] o+ — (3-¢)
¢ <()E;) '\-«‘J ""‘f) ( : "-/)
T
I »w¢ EG-F (3=d)

¥ C. Y. Wang, Applied Elasticity, McGraw=Hill, New York, 1953,




O%F

L s B. 0o

J&? (3-e)
&2

M= § JJ-_glasz (3-£)
%r

AT 4 (3-8)

If we choose for our generalized cocrdinates £I = x and €2 =y, equations (3) become:

E =1 + dzz 4
R v (4-0)
r - 2’% f;";' (6-b)
v\ 2
G w1+ (3; (6=c)
2 ”
u-Ji+ ozY , (<2Y (4-d)
2 cx oy
0“2
L -__x__gz_ (4-e)
H
92,
M = 2 (4-1)
2n
N = SE (4-8)
H

The five equations developed by Wang defining the equilibrium of the
element in Figure B-1 reduce to a single equation if all of the stress
resultants except N; and N are assumed zero. For this stress
condition to exist only rnormal loads may be consicered as shown

in Figure B-2. Let Ry and R, be the principal racii of rurvature,

then the equation of equilibrium of the element i.:

i

NG o
[T N 1e)
v it - o

Rl Rq -

=$ = a constant, this equaticn becomes:

If we et N] = N2
1 1

=t =" M Figure B-2, Element Under Stress
Ry Ito 3

In terms of principal curvatures this becomes:
kl + k;) T - -22
From equation (2) we see that:

N - PFF + GL

kl-fk?:: >
H

Substituting equations (4) in this equation:

- \27:2 ‘ . 2 21 2
H@_&) 2y acpis +[1+(1ﬂ '
U R AL 3 LA KR < )
1 : . (;jl\? , {an ¥ 3/?
R 4




Substituting this expression into equation (5) we arrive at the final equations describing the surface of a membrane under
a pressure loading Py

90 \?)0% _ ,da g g% £)?)g2
e ()]83 - oo e2 o i (31)7)
(6)

- She )

The finite difference expressions for the partial derivatives in equation (6) are:

f§i' - 21.J+;;{xz:.3-1 (7-8)
_3_;_ = A ‘%A_yzm‘i (7-b)
3; . Page” 21?.1 MICTR (7-¢)
S ¢
5%& . P44 - 21-1.344/; 141 4-1 4 P14 (1-¢)
xy
0% . e, Mt h1y 7-
e P (7-¢)

Substituting these in equation (6) und reducing we find:

o 1 Ie] p 1 o]
BbAL +A%)C - m ABE « (47 + B7)D + ¥ - BA2 42
hee K00z am - (y » 800 o2 A

, / (8)
2 DAyt 2
+A, B ¢+ Ay &) = 0
Where:
A = (?.1.1+1 - 7:1"-1,.\ (9-5)
B = (7.1*1.‘1 _?.1_3’J ) (9°b)
C = (ryer 5= "7y gt ryly,y) (9-¢)
D = (T‘i,j*l - '2'.1.‘3 4 fvi.J_l) (9'(])
o= (o, ge = "o, 00 7 Taen, et * Taor, g (9-¢)
A < " grid sirc parallel to the X axis

A o grid size parallcl to the Y axis




If equation (8) is satisfied by the comrect value of Z;,. the identity will hold. However, through the iterative
proces; the correct value of Z; : are not known and equation (8) is not equal to zero but rather to some value f which
approaches zero as the values Hz. . approach their correct values,

2]
This suggests the following relaxation scheme:

7.1'3 {new) = Zi,j {old) — o L (01d)

91 (old) (10)
Where: % oJ

¢ ~» over-relaxation factor L o
' I
]

oL (old)
3,y

Discussion of the Computer Program _ “F 1 i i
N
:

? 2
= - 2(b2Z 4 +ln;+32)

Figure B=3 defined the various parameters < } o
used in this program to describe the physical ol
dimensions of the n.ambrone. Because the pressure
is assumed constant over the surfoce, symmetry can ‘
be used and only cne-quarter of the membrane i ‘
need be computed, B - T

—

A series of trials was made to Jetermine
the optimum relaxation foctors that would give
convergence in the least number of iterotions,
The trials were made at PD/S ratios of one Figure B-3. One=-quarter of the Membrane
and two (Figures B=4 and B-5), It should be
noted that the relaxation foctor is noi
critical for large grid spacing and low
PD/S values but becomes increasingly
critical as either PD/S rises or grid
spacing decreases, There is little chonge
in the relaxation factor with respect to
the convargence limit CONVL; however,
the number of iterations increase a3 the
convergence limit decreases.

|

S
VORI G -
VL; i /f s‘

Figures B=6 and B-7 indicate that the error decreases sharply as the grid size decreases, Less than one parcent
error may be achieved with ori 8 x 8 grid. These curves are for o square membrane and the "exact" volues shown are
from o 32 x 32 grid size with a converge~» limit of CONVL = 0,0001. This wos considered to be exact enough for the
purposes of an error analysis. A 16 x 15 grid size with CONVL = 0.001 was used to obtain the compL er PD/S versus
zC/D curves. It wos found that minus signs oppuaring in the output column giving maximum change for each iteration
indicate tha reloxation factor is too high. The ideal relaxation factor was found to produce only one or two minus
signs in this column,

The programs hod numerous commaent statements to aid in identification of the program components ond the
variobles involved, it also hod many additional features such as: initial values could be read in as datg; all points
could begin o3 zero; o limit on the number of iterctions; o convergence linit (usually CONVL = 8,001 in.); o stop
on the iterations if the center deflection becorie lurger than one-half the spon; and strain computed ocross the
point of moximum deflection ond along the yielding beams,
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Coegci?/. The program will

handle o finite~difference grid 64 by 64

on one-quarter of the membrene. The
capacity of the program may be
altered by replacing the parameters
of the DIMENSION statement,
anpearing at the beginning of the
program, with new parameters; and
replocing the limiting values of the
two DO statements, immediatety
following the DIMENSION statement,
with the new parameters. The
parameters to be entered must be

the desired maxinmum size of grid

plus two. This requirement arises
bacause the program includes the
boundery points and one line of
points post each centerline. Thus,
the altered statements would read

os follows:

DIMENSION Z(XXX,XX7)
C  ZERO 2(I, J) BAD

1 D021 = 1,XXX
D0O2J = 1,XXX
(I, J)=0.

(%)

where the new array size would appear
in ploce of the X's,

74
— | T T AT T —h———X
075 =
\ z,
B 4
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< |0
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c
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Ervor ]
070 —
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o 8maGrld Size 12x12 Mxl%
Figure B-6. Percent Error versus Grid Size, PD/S = 1.0
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: —T—12
—
160
_ ) 4{s
PO _
lc o T 2.0
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b 1 4
.150 , P— —— <
4x4 8x8 12x12 16x16

Grid Size
Figure B-7. Percent Error versus Grid Size, PD/S = 2.0

Detailed Procedure.  Before each set of duta cards is read, the storage spaces for Z(i, J) are set to zero.

Input: Necessary data is read into the computer on two data cards.

Card 1: IDENT . . .

ez . ... ..

-+ . Data identification, May be any three

digit number. It will be printed out
witlh the results as:

IDENTIFICATION, , XXX

This parameter tells the computer whether
or not initial values of 2(I, J) are to be
read in from data cards. Punch column 10,

1 1f initial 2(I, J) are given, 2 if not
given.

Percent Erroc

Percent Error




— wr— . [ ] e [ . 3] [

—— . oAy Pm——-

IX .., .. ... The nuwber of finite divisions on one-
quartcr of the membrene parallcl to DDMA.
Max., = 64

I¥Y ... .. .. The number of finite divisions on one-
quarter of the membrane parallel to DIMB.
Max. = 64

ITFRL . . . . . . The maximum number of iterations allowed.

CONVL . « . . . . The maximum change detween iterations to be
allowed at any point. The membrane will
converge approximastely to an accuracy one
place less taan the convergence limit set.
Thus, 1f CORVL = .001 the results will be
accurate to .0l.

PAI . . . . . . Over-relaxation factor

Caré 2: DIMA . . . . . . Dimension of one-quarter of the plate
parailel to the X axis.

PIMB .. .. .. Dimension of one-quartor of the plate
parallel to the Y axis.

STRE: . . . . . . The mombrane stress. The stress usually
used here is the plastic strength of the
nmatericl to be used per unit length,
Thus, 1if steel with a yield point of
36,000 psi 2né a thickness of .125 inches
is to be used, we would compute:;

STRES « 36,000 x .125 = 4500 lbs/in.

PRES3 . . . . . . Pregsure acting normal to the membrane
surface.

It is possible to read initial values of deflections into the computer through use of ICODZ. if ICODZ is
punched 1 in column 10 of card 1, the computer will read in initial values for defiections. If ICODZ is punched 2 in
the same column, the cemputer will bypass reading of initial deflection values ond nitial deflections will be assumed
zero. If initial deflections are to be read in, the following procedure must be followed. The machine will read the
first word of the first card as Z |}, the second os Zy,, efc., until the first row has been read in. The machine finds
the nuinber of pieces of dota to place in the first row by interpreting the parameters given it on Cards 1 and 2. If more
than one card is required to fill the first row, the machire will read 2 second card and continue placing numbers in the
first row until the first row has been completed. The first number of the second row will then be read, i.e., Z5 , os
the number immediately following the last number of the first row, A new card must not be starfed for each new
row unless the first value for that row begins o new card as a natural part of the sequence. The data must be placed
on the cards in the 10 column fields, with decimal points included, continuously beginning with the first deflection
of the first row ond ending with the center point of the membrane. All boundary points must be included but only
one~quarter of the membrane may be read in. The following example demonstrates this procedure. Suppose we have
the plate, given in Figure B=8, with initial deflections as shown at the grid points. Then suppose we wish to determine
the deflected shape of the plate under pressure of 20 psi. The plastic strength of the plate is 100 Ibs./in, The
information wou'd be entered on the data cards as follows:

Card 1;

ITEM CARD CJL. EXAMPLE

IDENT 8-10 XX wxxx x125
1C0oD2 20 xx oo xxl
X 29-30 o ooex X..04
Y 319-40 X xxxx xx04
ITERL 41-50 XX 0ox xx50
CONVL 51-60 xx oox 001
PHI 61-70 xx xxx 1,50
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Card 2:

DIMA 1-10 XX Xx=x xx5.
bIMB 11-20 xx Xxax xx5.
STRES 21-3v o xxax 100.
FRES] 31-40 . xxxx x20,
CARD RN SO, romwr EXLPLE
3 1-10 21 1 00 000C¢ V000
3 11-20 2, 20 0000 0000
3 21-30 2, 90 0000 0000
3 31-40 zl' “ 00 0000 0000
3 41-50 2, 00 0000 0000
3 51-69 22'1 00 0000 000C
»
3 61-7¢ Z2 2 00 0000 Q0.2
3 71-80 Z2 3 00 0000 00.3
1
4 1-1¢ Zz 4 00 0000 00.3
]
4 11-20 Zz 5 00 0G0O0 00.4
4 21-30 z, 00 0000 0000
cte. ’
Where x's are shown the card columns may be left DI¥A = 5
blank. Decimals may not be included where not shown. 2 - e
Where decimals are shown the data may be placed anywhere " ,\,x_ = 1.29"
within the fen column field desigrated, provided the decimal > o I. =&

is supplied. If the decimal is not supplied, it will be "o o 5 SQ

auvtomatically placed after the last column in the field 1 . — -
regardless of where the data is placed. Preceding zeros n 0 5 A <
need not be punched. =l * IR
vy
i

After reading in all deta cards, the machine comoutes ;'3 ’<>} 0 L3 .5 6. _.€
necessary parameters and sets up checks for use later in the = :
program, The frst value computed is Z, ,. Equations 9 Qa 0 3 W6 L7 7
are evaluated, using the initial values given, then
substituted into equation (8). The value of f, thus found, f b S . Y A ¢ o
is substituted into equation (10) and a new value of 22'2

is found. This value is checked ogainst the old value

of Z5 2 to see if convergence has been obtained. The Figure B-8. Example
old value is then replaced by the new value and the program

moves to point 2,3 where the process is repeated.

At each point, the new veclue is subtracted from the old value and the difference is compared with the lorgest
difference yet fourd. If the new difference is larger, it replaces the old largesi difference. At the complerion of an
interation the largest difference anywhere in the plate, together with its coordinates, is printed out. If this difference
is smaller than the convergence limit set, the prograin goes to print; if not, the program returns to 2,2 and the process

is repectad,

At the center-lines the program makes use of symmetry to obtain values of points outside the quaster-plate
being computed, At the completion of each iteration the number of iterations completed is checked against the
iterction limit given in the input dcta. If the limit ic reached, before convergence is reached, the program prints
out all the data obtained to that point and goes on to read tae next data cords. Each point is computed consecutively,
row by row, beginning with point 2,2 and ending with the center point of the plate.
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Altar the equations have converged or the limit set on iterations has been reached, the program computes the
averoge strain along the centerline parallel to DIMB and along the centerline parallel to DIMA, To find this strain the
computer sums the chord distances between grid points along the zenterline and subtracts the plan projection of the
centerline from it. This gives the elengation. To find the average percert strain, the elongation is divided by the plan
projection of the canterline ond multiplied by 100,

It was found thar the equations diverge after the average slope (computed as the cenier deflecticn divided by the
shortest side) exceeds 1:1, The computer computes the siope aiong both centerlines. The program will automatically
stop iterating, when this slope is reoched, and print out all available deto plus the following statement:

AVERAGE SLOPE EXCEEDS 1:1, EQUATIONS DIVERSE BEYOND THIS POINT

Output. A flow diagram and a print of the computer program fotlews. The program is supplemented with comment
statements to tacilitate coordination with the flow diagram. The first four cards of the program (the fourth card is blank)

Flew Diagram, Funicular Shell

Start

Y

Compute Finite Dif-
fgr:%%% G;;d Spacing,

Dimension Z.

Iterations=1
C | Zero Zii Array Storage

‘ _
Read: =2, =2 . IA\

Datu Identification
Code Z, 1, ly )

iteration Limit
Convergence Limit Convergence Check=0

Relaxation Factor Convergence Switch=1
Retum Switch=1

C Read:
b, 5, Ps GO TO

Compute Array Size

‘ Read Initial Zii }—b—

B-10




Flow Diagram, Funicular Shell

D Compute New Zi-L =%

4
Compute Change Be-

tween new Zii and
oid Z;i

Has This

Point Converged? | Convergence Switch=2

Is This
Change Largest Yet
Computed?

Save This Change For
Print Out

4
o

Set Old Zii = New Zii
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Flow Diagram, Funicular Shell

Return Switch=2
Z

1,1 2L

GO TO

Ziel, Zim1,0

%, 14175,

il —i=1,4
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Flow Diagram, Funicular Shell

Have All
Points Converged?

Compute Ave, Strain
at X=aand Y =b

Required ,
[terations Complete?

Print:

Iterations Completed

Z at Center Point of Shell
Point of Max. Change
Max,. Change

rint:

Data ldentification
Relaxation Factor
Ave, Strainat X =a
Ave. Strainat Y =b
Pas S, P3/S

dyt lyl a,

- &IX' Iy
l

"/ Print:
Zi : for Entire Shell

Print:
Iterations Completed
Z at Center Point of Shell
Point of Max. Change
Max. Change

Does Max.
Average Slope
Exceed 1:1?
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* %
E2 ]

[aXaNa¥aXaXaEnlaNaXalakeaEaNaXa¥eXaXakaXaKaXalXal

* HANSEN 2R
PROGRAM 1S ITERATIVE
COMPILE FORTRANSEXECUTE FORTRAN

FUNICULAR SHELLs PRESSURE CONSTANT
RESTRAINING BANDS ACROSS X=0 AND X=2%#DIMA
DIMENSION 2166466
ZERO Z(1+J) DANC
1 DO2I=1466
D02J=1466
2(1+J)=0.
MAX 1Y = MAX IY = 64
1CODZseeePUNCH COL 109 )1 IF Z(19J) GIVENs 2 IF NOT GIVEN
IXeooos s e NUMBER OF DIVISIONS ALONKG DIMA
IYeoosoe s NUMBER OF DIVISIONS ALONG DIMB
ITERLeos e MAXIMUM ITERATIONS ALLOWED
CONVLeoe e CONVERGENCE LIMIT.seMAX CHANGE BETWEEMN ITERATIONG
DIMAseess HORIZONTAL DIMENSION OF 1/4 SHELL
DIMBeessse VERTICAL DIMENSION OF 174 SHELL
STRESese e STRESS PER LINEAR DISTANCE
PRES3eee s PRESSURE PER UNIT AREA
PHles00e s RELAXATION FACTORs4#USE 147 FOR AN B BY 8 GRID
S5TRNRssseYIELD FORCE OF BEAMs POUNDS
[TERaweee ] TERATIONS COMPLETED
2l eeeRIZE AT POINT IsJ
TCON2eeeeMAX CHANGE BETWEEN THIS ITER AND LAST
[IPsJPeoe e POINT OF MAX CHANGE
PSeceeeses PRESSURE OVER STRESS RATIO
STNBXees s AVERAGE STRAIN OF RESTRAINING BAND (BEAM) AT X=0
STNSXeeo s AVERAGE STRAIN OF MIDDLE LINE AT X=DIMA
COMPUTED AS 100 TIMES (ARC LENGTH = DIMB)/DIMB
XL_AMos oo e MESH SI12E ALONG DIMA
YLAMsao e MESH SIZE ALONG DIMB
INPUT
READ 50CyIDENTSICODZy[XsIYsITERt s CONVL oPHI
500 FORMAT(511092F1U.0)
READ 501 +DIMASDIMBsSTRESHPRES39STRNBIWIDTH
501 FORMAT(6F10.C
PRINT 599
596 FORMAT(RGHIFUNICULAR SHELLsRESTRAINING BANDS ACROSS X=0C» X=2DIMA/
118H IDENTIF[CAT[ONO.~I3)
500 FCRMATI(T75H {TER CENTER DEFLECTION MAX CHANGE IN SHELL
1 MAX THANGE IN vEAM/)
COMP'JTE ARRAY SIZE
M=zIX+1
N=TY+1
CHECK TN SFE IF INITIAL 2(14J) ARL GIVEN
IFLICODZ-1)9%99s34
3 READ 502 {120 TeJ)ed=leMigl=] N}
502 FORMAT (fFluaev)
4 Xi=1X
Yi=1Y
XLAM:=DIMA/X]
YLAM=DIMB/Y I
ITER=]
10 1=2
J=2
TCONZ=0U
TCONG=I,
JCOWH=]
[EANCH=]

ro
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(8]

101
12
11

152
151
154

IFIN=]11999+154100
ISWCH=2
ZUI+1s0)=2(1=14J)
GO TC 100
NENLS
IFIM=J)150+20021
ZU1ad+1)=Z(1vd=1)
ZUI+1 o) =Z(1=14 )
GO T2 100
ZUI+1,01=201=140)
GO TC 100
CCMPUTATUCN PHALL
CCMPUTE NFEW 2(14J)
A=Z{ls0+1)-2014J=1)
B=2(1+1,J1-2(01=141)
C=Z(I41sJ) =221 J)+2(]=14 )
D=Z(1sJ+1)1=2.%2([3J)+211yJ=1)
E=Z0I+19J4)1)=201=10J4101=20141sJ=1042(1=19J=1}
Foll o XLAMRE 24468 ) KCmo5HARI YL+ (4o SYLAMBR2 43502 ) 5D
O=PRELI/USTRELTZ R XLANKYLAN ) # {4 o EXLAMEI 2 BY L AMB D4 XLAMB# D 61 % %2
I+YLAVRRE R 0a 28] ¢
HE2 g B {U B XL AMRE AT 244 4 HY L AVER 233402 )
TEZUL s J)4PHIRE+GY /M
PE=DPRES3/STRES
SET UP COMVERGENCE CHECK
TCONL=T=-2(1y2)
IFIARSE{TCONI)=CONVLIII1s1)24107
[{SWH=?2
TFLABSFTCONII=ADSFITCON2IITINE+1064108

TCSN2=TCONY
1P=1

JP=J
ZUlsd)=T

FIND RETURN STATEMERNT

GC TD (1C1+102)s15WCH

CCMPUTE BEAM

=2

J=1

AB=Z(140+1)~2(1sJ}
SB2t1410J)=2(1=14J)
Co=Z(I41sJ1=2e#2(1+J)42{1=1,4J)
DB=(hagxy AMER ez a2 ) %n] 6
FO=2+#STRESH#LAUL/SURTFIXLAM# 324AR %2
COB=8.*5TRNG*YLAM®CH /Db
GUG=PRES3I*WIDTH
HE=]166¥STRMURYLAM /LB

TB=Z2{ 12 J)+(FB+GU+GHE) /HB#*PH

SET UP CONVERGENTE (HECK
TCON2=TB=Z11+J)
IT(ABSFITCONI)=CONVL)15])91%) 4152
[CSWH=2

IFLABSFITCONI) ~ABSFITCONG) 115341534154
TCONA=TCON3

IPE=1
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M

JPB=J
153 2(1+J)=TH
I=1+1 =
1FIN~-11200+156+155
126 2Z(1+1e0)=211=10J)
GO TO 155
CHECK CONVERGENCE
200 GO TO (2034202)+1CSWH
CHECK ITERATIONS
202 IF(ITERL=-ITER1203,204+204
DATA TO BE PRINTED OUT EACH ITERATION
204 PRINT610+ITERs2Z(NsM) s IP»JP»TCON2y IPByJPBTCONS
610 FORMATI(15+F184%9y 10H Zt 124 1Hy 129 2H)= FGe5y
1 10K 20 12+ 1Hs 12 2H)= F945)
CHECK AVERAGL SLOPE
IF(1e=2(N+M)/DIMB)29929+30
29 PRINTS11
611 FORMAT(64H AVERAGE SLOPE EXCEEDS 1 TO 1ls EQUATIONS DIVERGE PAST TH
11S POINT)
GO TO 2C3
ITERATE AGAIN
3C ITER=ITER+]
GC TO 10
COMPUTE STRAIN IN BEAM AT X=0
2C3 I=1
J=1
ARC=0.
4] APCI=SORTF(YLANFS#2+(Z(1+19J)-2(1sJ))2%2)
ARC=ARC+ARC!
1=1+1
IFIMN=1)29T46246]
42 STRAX-(ARC-DIMB)/DIMA*100.
COMPUTE STRATM IN 3HELL AT X=A
1=1
J=M
ARC=0C.
7] ARC1=SORTF(YLAM®#2+(Zl1+19J)=7(14+J))*%2}
ARC=ARZ+ARCI
I=1+2
IFIN=1)29G4+32431
32 STNSX=(ARC=D1M5) /0 1Me* 100,
PRISTAI Y ITERYZ (M s IP s PR TCOR2IPRLJIPRTCONG
PO IMTHIN W ILINT
PRINT 679.PHI
657 FOMPAT(17H RELAXe FACTCReeeF104%)
PYINT BY2 4 LTHEX
612 FORNMATIARM _TRATN ALONG J=1246H 15 FSe2)
PRINT &7 WPREL s TREX
5:1 F(‘--”.“AT(]"H I’:-:..,:;:'u!ﬂi....-.-.FlCob’Z('.‘H "AT?A}’Q IN EEAMo-.FlO.B)
PIINT AQ7 o ST=L Gy 3TRAY
602 FORMATI]7H SiELL STRENGIHeoFL10e%s20H  gLAY STRLMUTHeseeF104Y)
PRIMT £224PLyal0TH

65032 F’;R"”\T(l?"‘ P/esassseansaseef |NeHe2M BLAY WI0NTY seesssFl045)
PRINT €24 XLANOINA :

626 FORMAT() 7 LANLA Xeooossonsel Dot a2nH NesessesesensesssfFl(ed)
PRINTAIA Y ANHOIME

5095 FGR"AT(]7’4 LAk Y..--...o.."lk"-‘iozt"}' fasnssscassacsseaFlCed)

PRINT 67h«IX01Y

6Tk FOPVATI]7H Rl sldtesesseel danll  5VII)
PRIMT ACT .

607 FORMATI28MCE UILTANCES FOR 174 SHELLZ)

PRIMT 6ovs Ciledadtladlad-TeMtalrl oM

Lo EoReAT NN AR RS EIRY RN D T P NN ZU12a1Ha 126281 =F8,0,
1 5H ZUL2 s Lis P20 2HY sT R e b ih ZATZwIH 1242101 =F 845
2 ] “ i 20T el el TalF)eFR,840H ZUTSelH I3l HzFEWD)
poAT MY TLT
groTrod
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are instructions for the computer necessary for correct handling of the program and for time charges. These cards will,
of course, vary with the individuai system. A print of the somple data follows the program. This data was run on the
computer for both zases wherein init.al vrlues were given and not given. It is interesting to note that the same number
of iterations was required for canvergence in both cases. Closer invastigation of the ovtput for each iteration revealed
that initial rise of the membrane is very rapid. Indeed, by the end of the sixth iteration, the center deflection for both
causes was almost identical. This property makes the method even more desirable because initial values are not necessary
in order to reach convergence within a reasonable computation time,

The first page of output gives storage locations of the parameters used in the program. This information expedites
modifications in the program because all statement numbers and all variable names cre given. Tho second poge of output
gives the center deflections at each iteration and the point of maximum change and the value of the maximum chonge
for that iterati~rn, The rhird page of output gives all of the final data.

Relaxation Fcictors

A series of trials was made to determine relaxation factors that would give convergence in the least number of
iterations, These trials were all made on a 10 x 10 inch plate with a yield strength of 100 lbs./in, The trials were
made with pressure of 10 and 20 psi. Figure R=9 gives a comparison of the two pressures, It should be noted that the
reluxation facter is not critical for low grid sizes and low pressures but becomes increasingly critical as either the
P4D/S ratio rises or the grid size increases, For a 16 x 16 grid ot a P3/S ratio of 2,0 the graph is extremely shape and
slight error in the relaxation factor will mean a sharp increase in iterations required for convergence. Although error
in the relaxation factor becomes imgortant as the PoD/S ratio increases, there is little change in the factor itsclf. A
comparison of Figures B-10 and B-11 reveal that both give almost identical relaxation factors for a particular grid size;
however, as expected, a larger number of iterations is required for che higher P3D,/S ratio. These two figures also
indicate that there is little change of relaxation factor with respect to the convergence limit § ; however, the number
of iterations increase as the convergence limit decreases. Figures B-12 and B-13 indicate that the error decreases very
sharply as the grid size decreases. Indeed, less than 1% error may be achieved with an 8 x 8 grid. In developing these
curves, it was found that minus signs appearing in the output column, giving maximum change for each iteration,
indicate *he relaxation factor is oo high, The ideal relaxation factor was found to produce only 1 or 2 minus signs
in this column. This feature became a guide in arriving ot the best relaxation factor, An example of ‘oo large o
relaxation factor may be found in the paragraph on modifications, to follow. Modifications to the physical conditions
cf the basic program may alter the "best" relaxation factor slightly; however, the curves in Figures B=-10 and B~11 have
been shown in use to be excellent guides.

Strain

A series of ‘rials determined the strain relationships ar various pressures and iength-to-width ratios. The trails
were all maode with a base width of 10 inches, The length was varied irom 10 to 30 inches, with an additional series
of infinite length, The strain was calculated as the average strain of the centerline parailel to the narrowest sids. The
length of centerline, used in this calculation, was the sum of the chord distances between grid points. Figure 3-14
gives the results of this series. It should be nuted that the curves relating per cent strain and dC/D ratios for the case
of the square membrane, ond the case of th : semi=infinite membrane, are very close. This indicates that the strain along
the centerline of the membrane is very close to that of the semi-infinite case of the same width and d_/D ratio; and
therefore, for all practicable cases, independent of the length-to=width ratio. This, of course, would not be true for
other lines across the membrane. The curves relating P3D/S and dc/D ratios indicote that the center deflection becomes
almost independent of the length=to=width ratio above a length-to-width ratio of approximately 3:1,

Modifications to the Program

The program for the membrane has, as its boundary conditions, fixed edges lving in the same pione. Verigtions
may be obtained by altering thesc boundary cenditions. The boundory may be given on arbitrury form by reoding in
initial values other than zero. However, the boundciy must remain symmetrical nbout boih axcs becouse only one-
quarter of the plate is considered in the program. Further alteration moy be hod by ollowing the boundaries to be
supported by plostic beams which take their shape by responding to the force of the pressure and the pull of ithe supported
membrane. These beams may clso be ploced ozrows the interior of the plate. Euges of the membrone may be freed by
reducing the plastic strength of these beoms to zero. The pressure reed not be o constont over the surface of '1e membrone.
The pressure may be made o varicble by introducing, into the program, a routine that compute: the presiure ot eoch
point; or by reading in a given set of preswres defined ot every point in the grid. If it is necesnory to consider the
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entire plate, rather than just the quarter plate heretofore considered, the parameters M and N following statement 600
should be changed to reod: M=2*X+1

N=2*%Y + ]

This changes the indexing so that the iteration process covers the entire plate. By using combinations of these conditions,
a wide variety of boundary and loading conditions are possible. The equations have been isolated from the iteration
process. They are listed from statement 155 to the beginning of the convergence check. Poisson's equation, or an, othe:
suitable equation, may be inserted provided the same parameters are used to identify information either given to or
required by other parts of the program. Several of these variotions will be discussed in the following parographs.
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ROD/S

Two Parallel Edges Free. Under a constont pressure looding the membrane with two poraliel edges free, t: kes

on a cylindrical shope that is independent of the coordinate perpendicular to the free edges. For this condition the
goverming equation is:

s
+ B = 9

| 4‘12? 32 S
[ () ]

In terms of finite difforences:

FMogy - 2 ¢ ry) P R
[lt AZ 4 (7444 - 7y ¢ )‘”] 3/2 S

The parameters of this program are the same as those previously discussed, where applicable. They are individually
identified in the comment statements ct the beginning of the program. Input requirements are those dictated by
READ 500 immediately following the comment statements. Output is similar for all of the programs.
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Figure B-14

B-20




m— s R BEED -

- ot et - Pr oy

Py o proge——

Srag wbet B e Y

e

lala)

(@) aNaNaNalateakaNaaXaXaXa¥aFala)

m

[2%]

500

612

(8]

ia

1o

HANSEN 1R
COMPILL FORTRANSEXECUTZ FORTRAN

FUNICULAR SHELL» PRESSURE CONSTANT

TWO EDGES FREEs CYLINDRICAL SHAPE

DIMENSION Z2166)

ZERC 2(1}) BAND

0021=1+66

2(1y=2C,

MAX 1Y=64

IYseenees NUMBER OF DIVISIONS ALCUNG DIMB
ITEPL o e e s MAXIMUM TTERATIONS 'ALLOWED ’
CONV0L oo o o CONVERGENCE LIMITe.eMAX THANGE BETWEEN I1TERATIONS
DIMBaseoo VERTICAL DIMENSION OF 172 SHELL
CTRE D eees STRESS FER LINEAR DISTANCE
PRES2...+PRESSURE PER UMIT AREA
OMEGAW s+« RELAXATION FACTOR

Z{1)aseeeRISE AT POIRT I

TCON2 eese®AX CHANGE BETWREN THIS ITER AND LAST
JPcecasee POINT OF MAX CHANGE

PSecesers PRESSURE OVER STRESS RATIO

STRNe e« »AVERAGE STRAIN

YLAM e, o MESH S122 ALONG D]1MB

INPUT

READ SOCIDENTs 1Y ITERLSCONVL sDIMBSTRES sPRES3 »OMEGRA
FURMATI3120Gr571040)

PRIMT &6C0»1DENT

C FORMATI26HIFUNICULAR SAELLy CYLINDER/18H IDENTIFICATIONeeel s/}

PRINT €32 T rmmmmmmmmmsmes
FORMAT(51H ITER CENTER DEFLECTION MAX CHANGE IN SHEWLL/)
COMPUTE ARRAY SIZE

N=[Y+]

Yi=1vy

YLAM=DIME/Y]

ITER=]

TCON2=Ca

1CSwWid=

1=2

Az (j+1)=2.%2(1)+2(1=-1)
B=Z(1+11-2101-1)
C=(Q*YLAMX#2LQ822 ) %%] .5
C=A¥*B.#YLAM/CH+PRES3/STRES
E=16e%YLAM/C

T=Z(1)+D/E*OMEGA
PS=PRES3/STRES

SET UP CONVERGENCE C(HECK
TCON1I=T=21(1}
IF(ABSFITCONI I ~CONVL)I 10910511
1CSwWH=?2
IF(ABSFITCONL)~ABSF{TCCN2)1) 12512413
TCON2=TCON1

IP=1

2¢i)1=T

I=1+1

IFIN~-T)Y1CO0s1443

ZUI+1)=7(1~-1)

GO T 3

CHECK CORVEROENCE

GO TO (10141C2)9ICHWH

CHECK ITERATIONS
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122 1FCITeRL-1ITER)IIVLEWiC391CH
DATA TC 3E PRINTED OQUT EACH ITLRATION

103 I=N
PRINT £10s17TERZ(1)sIP»TCON2
61 FORMAT(IS59FiB8e5413H 2:i12+2H)=FS.5)

CHECK AVERAGE SLOPE
IF{.9=2(1)/DIMB1104»1G4+105
164 PRINT 611
611 FORMAT(66H AVERAGE SLOPE EXCEEDS 0.9 TC 1y EQUATIONS DIVERGE PAST
1THIS POINT:
60 TO 101
ITEPATE AGAIN
105 1TER=ITER+]
GO TO &
COMPUTE STRAIN I Shtcl
101 1=1
ARC=0.
126 ARC1=SORTF(YLAME*2+ (Z{1+1)=7(1))%%2)
APC=APC+ARC]
1=1+1
IF(N=11790,107,106
157 STRN=(ARC=DINL)/D1Ho¥1GTs
PRINT 63C:ITERSZ(1) 1P sTCON2
PRINTES( IDENT
PSINT 609,0NEGA
§09 FORMAT(17H5 RELAXe FACTOR.soF1245)
PRINT £719PRESS ,
671 FORMAT(17H PRLSSURLeseaceee1Ce5!
POINT 5)245TRE:
672 FORMAT(17H SHELL STIERGTHeT1045)
OPINT 6024P5
6:? F’Y?'AAT(I-"H p/f‘.-o.‘o.‘.o.lorlf‘ct})
PPINTE.S s YL AN D13

6?5 FTR"‘:{T(:?H LAI".{‘U"\ Ycooilooowrl?oSlzr\';‘: §~o.ano'o.oool.C.oF1005;
PRINTA . AglY s InN
636 FORMAT(1TH SRIU Ziilesssenel327H STRAIN TN SHELL«»FIN3)

PRINT 607
67T FORMAT{?26H::-Z UIoTANCES FOR 172 ZHILLZ)
PRINT CTEstIaZl])sl=1sN}

608 FORVAT(4H ZU1Z24261=FBe5y5iH 7012,2H)=FBe595H Z(12s2H)=F8.5
1 IH {(]24.11=FBe598H FUI242H)}=FRh)
PEAL NEYT DATA
CSAE AT

0972 END
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The genera! shape of the memhrone derived from
this equution is given in Figure B-15, !

The same sumgle problem used praviously was / ,
reused here. For this shall, the deflections became too [ :
large and the equations began to diverge. Experience o ~ -
has shown that divergence begins for this shell at an . ~ .
average siope of about 0.9:1. ‘\ BN ~. IR

4

~_ " v .
Plostic Becn Across Center of Membrane. The "~ : Y A /
differential equation govemirg the plastic beans is: . ~ 7/ e

Py £2 2s 92 Y ~
'?T%ﬁ+-[;-“*‘§m+f’z¢4=o ~

.L"’,_v‘_z,1
-Jx]

,_.._
<k
| S

Figure B~15, Two Parallel Edges Free

The secon] term is a load term giving the couniribution of the pull of the membrane to the shape of the plastic beam.
The 2 in the numerator crises because the membrane is considered symmetrical about the beam. If the plastic beam is
placed ot the edgc of the membrane, without on adjoining membrane to create symmetry, the number 2 should be dropped.

In terms of finite differences:

BPlilzf(zi+1J‘1 - O?i_:i + Zi-llj) . ?‘S(""i,jol - Zi.i)

[‘*"5 * (2441,1 - Zi-l.ﬁ?]ﬂz_ e+ (g 500 - oy, 2

+ PBJ =0

Ny

Wher=:
P] = plastic strength of the keam, lbs,

W = width of the beam, inches. Point of Moximum

Rise of Beam Point of Maximum
The ingut requitemenis are given by Rise of Membrane
READ 500 and READ 501. These are identical /
to the previous requirements except the second ?
/

data card must now include the strength of the

heam and the width of the beam, Initial valves  ——

of the surface may be reud in, as before, / /
1

o

/
/
‘r/\\
\

Because the point of maximum rize is no longer |
at the cenver of the plate, the program saves the

N

point of maximum rise by comparing each point, ' //,_,_
~

l
|
as it is iterated, and saves the coordinates of the — l
point with the largest Z value. Strains are then v o h
computed through ihis point and averoge slopes \ 1
are considered between this point and the edges |
paratlel to both ceordinate axis. The point of \ | \
maximum rise is identified in the output. \ I
Average strain in the plastic becm is also given. \ \
The large number of minus signs in the maximum
change columns indicate the relaxation factor
was too high and the program waos "overshooting "
The shape of membrane derived from this
program is shown in Figure B-16,

Figure B-16, Plostic Beam Across Center of Membrane
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1C1

HANSEN 2R
PROGRAM 1S ITERATIVE
COMPILE FORTRANSEXECUTE FCRTRAN

FUNICULAR SHELLs PRESLSURE CONSTANT

DIMENSION-Z{f6+66)

ZERC Z(1sJ) ®BAND

D021=1+66

D02J=1,66

Z(I’J)=Oo

MAX IX = MAX 1Y = 64
"1CODZeeeePUNCH COL 1Cs 1 IF Z2(149J) GIVENs 2 1F NCT GIVEN--
JXeooooe o NUMBER OF OIVISIONS ALONG DIMA

IYeoooseeMUMBER OF LUIVISIONS ALONG DIMG
ITERLesos o MAXIMUM [TERATIONS ALLOWED

CONVL e 0 s e CONVERGENCE LIMITeosoeMAX CHANGE BETWEEN ITERATIONS
DIMAgews e HORIZONTAL DIMENSION OF 174 SHELL

DIMBeeseo VERTICAL DIMENSION OF 174 SHELL .
STRESeee s STRESS PER LINEAR DISTANCE

PRES34e4sPRESSURE PER UNIT AaREA ’
PHleeoeeeRELAXATION FACTOR4.4eUSE 1.7 FOR AN 8 BY 8 GRID
ITEReoeee I TERATIONS COMPLETED

ZllsJ)eeaRIZE AT POINT 1sJ

TCON2 4 aseMAX CHANGE BETWEEN THIS ITER AND ILAST &
IPsiPesasPCINT OF MAX CHANGE ’

PSecsess e PRESSURE CGVER STRESS RATIC

STNSXeeseAVEe PERCENT STRAIN OF SHZLL THROUGH POINT OF MAX RISE
AT X=Js COMPUTED AS 1GC TIMES «ARC LENGTH - CIMBI/DIMB
STNSYeoeoAVEe PERCENT STRAIN CF SHELL THROUGH PQINT OF MAX RISE
AT Y=1, COMPUTED AS 1CC TIMES (ARC LENGTH ~ DIMAJ/DIMA"

XLAMeoose s MESH SIZE ALCNG DIMA
YLAMe s oo oMESH SIZE ALONG DIMR

INPUIT )
READSOOT s IDENTICODZ o IXsIY»ITERL yCONVL o FPHI
FORMAT(511092F1ue0Q)

READ SCT1+sDIMAYDIMBsSTRESHPRESA
SORMAT(4F1Q0)

PRINT 5994 [ DENT

FORMAT(16H1FUNICULAR SHEELL/18h 1DENTIFICATIONeeol2/}

PRINT 600

FORMAT (49H 1TER CENTER DLFLECTICON MAX CHANGE IN SHELL/)
COMPUTE ARRAY STZE

M=IX+1

N=lY+1

CHECK 70O SEu TF INITIAL Z(1,J)Y ARE GIVEN
IF{ICODZ=1)99G9 244

READ B5L2s({21]sJ)ed=1sM)yl=1,3N)
FORMAT (8F1lual)

XI=1X

YI=1Y

XLAM=DiMA/X]

YLAM=DI"B/YI

ITER=1

i=2

J=2

TCON2=0

JCSVWH=1

ISwCH=1

GO TO 100

J=Jd+1

IF(M=J)}1llselaslisd

B-24
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12

1]

15

162

20

21

10C

1C7
111
1C8
106
199
2C¢
202
204

610

35
29

611 FORMAT(A4H AVERAGE olLukFE EXCoel$
11S POINT)

30

203

J(led+]1)=Zl1sd-])
GO T0O 190
I=1+1
J=2
IFIN=1)969415,10C
ISWCH=2
ZiI+14J)=21(1=14J)
GO TO 1060
J=Jd+1
IF(M=J)200492Cy21
Ulyd+1)=Z(1+J-1)
Z{I+14J)=2(1=14J)
GO 70 100
ZUI+14J)=200~19J)
GO TO 1l¢¢0
COMPUTATUON PHAGE
COMPUTE NEW 201 +d)
AzZ 1T od+1)=2114J=1)
B=Z{(I+15J)=2(1=14J)

CzZ(1+4) 9J)=2e%2(14J)4211=1y)
DzZ(loJ4l)=Ca#Z (] 9d)+Z(]1sJd=1}

E=Z(T+414J+411=2(1-20Jd+1)=20121sJ=-1)+2(]=10J-1)
Folao®XLAMEX2+ARND ) HCm g SRAXIRE 4 (Lo #YLAMVER24B2%2) %D
G=PRES3/{ISTRESH* 2o #XLAMEYLAMYH {4 o *XLANRR 2 XY AMB R+ XLAMB X XD % %D

I+YLAMAR2HARSED )i # ] o5
H=2 e # (4 o ¥XLAMBRZ+AR® 244 o #Y [ A'A% ¥

T=2{19yJ}+PHI%(F+G)/H
PS=PRES3/STRES
SET UP CONVERGENCE
TCON1=T=2(1+J)

CHECK

IF(ABSF(TCCONL)-CONVL) 11191215107

ICSWH=2

IFLABSF{TCCRL)-AbsF (TCON2) 110651064108

TCON2=TCON1

1P=1

JP=J

Z(1sJ)=T

FIND RETURN STATEACHT
GO TC (1Clelvz)elSuCh

CHECK CONVERGINCE
GO TC (2(0392u2)slCuwH
CHECK ITFRATIONS
IFCITERL-ITLR)IZU342049204
DATA TC Bt PRINTED OUT

FORMAT(I5sF 1Be5s10H
CHECK AVERAGE
IF(1e=2(NIyMI/DIMB)IZ29929935
IF(Lle=2(NsMI/LINAIZF 929930
PRINT 4511

GC TO 203
ITERATE AGAIN
ITER=ITER+1
GO 10 10
COMPUTE
I=1

J=M
ARC=0,

STRATN AT X=A

ZACH
PRINTHICsITERSZINM ) o IPodP e TLONE

ZUI291Hs1292H)=FI45)
SLOUPE AT POINT OF MAX RISE

1

3%%2)

ITERATION

ls

3] ARCL=SQRTF(YLAMRX® 2+ (Z{1+]1ed)=7(1yJ))¥%2)
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ARC=ARC+AR(1
I=1+1
IFIN=1)999y32431
32 STNSX=(ARC-DIMB)/DIMB*1004
COMPUTE STRAIN AT Y=B
1=N
J=1
ARC=0.
33 ARC1=SGRTF(XLAM®H24 (2 (1 aJ+1)=2(19J))#42}
ARC=ARC+ARC]
J=J+1
IF{M=J)1999 934433
34 STNSY=(ARC=DIMA)/DIMA*100.
PRINTO1OsITERZ(NIM) o IP+JP»TCON2Z
PRINT599» I DENT
PRINT 609sPHI
6C9 FORMATI(]7H RELAXe FACTOReeoeF1Ca5)
PRINT 612sNsSTNSYsMsISTNSX
612 FORMAT(16H OSTRAIN ALONG I=12+4H 15 F5e24s18H STRAIN ALONG J=12»
14H 1S F£5,2)
PRINT 6C1sPKES3 :
601 FORMAT(17H PRESSUREeesesee0eFl10e5)
PRINT 6029S5TRe>
€02 FORMAT(17H oALLL S5TkiANUTHe oF1Ce®)
PRINT 603+P>
603 FORMAT(17H P/Seocssesevecseeeflleb)
PRINT 6049 XLANUIMA
64 FOR:"-'AT(],_/H LAMDA XeeoseceooaF10e5920H LosceasscessssseesnFl0e5)
PRINT6.5sYLAMU M
609 FORMAT(17H LANDA YeoeseosesolF10eH9s20H fFessesscsensovareclrlNes)
PRINT 60691 Xs1lY
606 FORMAT(17H ORIL S1Z2Fesecevel 294 5YI13)
PRINT &0 )
607 FORMATI(26HCZ DISTANCES FCR 174 SHLLLYZ)
PRINT 608y ((ladsZiTed)ed=147)sl=]sl)
6C8 FCRMATI(SH ZU1ZalHs1292H)=F8eDs5H Z{1291Hs1242H)=FEB5

1 5H L(12slmalz2s2r) =FBededH ZUI29lriel24+2H)=FE45y
2 S5H Z(1291He[292H)=FEeZs5Hn LU1291He1Z42H)=F845)
READ NEXT DATA
GO TO 1
999 END
B=-26

&=t  ed | e S
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Plastic Beams Across Two Parallel Edges.  The same differential equation governs these beams. It should be

noted that the differential equation considers only a symmetrical case abou. the beam. Thus, in this instance, the

membrane is computed as though there were an i

of the force carried by the plastic . .eam,

Input requirements are identical to the ¢
derived by this program is given in Figure B=17,

Figure B-17.

nfinite set of such membranas set end-to=end, each contributing one~half

ase of a plastic beam across the center of the membrane. The shape

Point of Max, Rise
of Meumbrane

Poirt of Max, Rise
of Plasti~ Beanm

Plostic Beams Across Two Parallel Edges
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1

HANSEN 1R
PROGEAM IS ITERATIVE
COMPILE FORTRANSEXECUTE FORTRAN

FUNICULAR SHELLs PRESSURE CONSTANT

RESTRAINING BAND ACROSS X=DIVA

DIMEMNSION 2(66566)

ZERD Z(lel) SANL

DO21=],h6

D02J=1446

ZilsJ)=0,

MAX IX = MAX 1Y = 64

[COUZeeoaoPUNCH COL 10w 1 IF Z(1sJ) GIVENy 2 IF NOT GIVEN

IXeoooos s NUMBER OF DIVISIONS ALONG DIMA

IYeoaeoo o NUMBER OF DIVISIONS ALONG DI'R

ITERLeo e e MAXTMUM TTERATIONS ALLOWED

CONVL e e o s TONVERGENCE LIMITeqeMAX CHANGS BETWEEN 1TERATIONS

DIMAsas e s HORTZUNTAL DIMENSION CF 174 SHELL

Uithiseesee VIRTICAL »IMENSICN OF 1/4 SHELL

STRES s reaSTRESS PZIR LINEAR DISTANCE

PEEC3 a0 e PRLESHURE PEK UNIT AREA

PHlsooeo e RCLAXATION FACTORW,eUSE 17 FCR AN & BY 8 GRID

DTRNBeeeoeYItLu FORCE QOF wtAM, POUNDS

1TERse0ee I TERATIONS COMPLEZTFD

Il eJ)easRIZE AT POINT 144

TCONZ2 s e e o MAX CHANGE BETWEZN THIS 1TFR AND LAST

[PsJPeeeePOINT CF MAX CHANGE

PSeaseee e PRIZIURE OVER STRFSS RATIC

STNAXsaeaiVoe PERCENT STRAIM OF PESTRAING DAND (BEAM) AT X=DIMA
TOMPUTED A5 160 TIMES (ATZ LENGTH - DIMR)/DIMS

ST X eeeefVre PLRIZNT oTRAIM OF SHELL THROUGH POINT OF MAX RISE
AT X=Jy COVPUTED AS 10C TIMES (ARC LENGTE = DIMBI/DIMBE

STN Yoeseenviie PERCLNT STRAIN OF SHELL THROUGH PNINT OF MAX RISE
AT Y=1» CCMPUTED A 1002 TIMFS (ARC LENGTH = DIMA)Y/DIMA

XLAMaoaeo™b Lty D120 ALUNG 1§ A .

Y ' A gaeeertbtt LIZE LLONS DI

NPT

PEAS SCT s TOENT W ITOR s IXa Y ITERLsCONVL oPHI

FORHMAT(S IO/ Fluel)

REAL ST DT VA NIV STRESyPRTO2STRNR W IDTH

FORMAT(AF 1 el

PPINT 59394 IDFNT

599 FORMAT(4RAHIFLINVICULAR Sailbly “08TIATMNING CAND ACRQOSS X=zDIMA/18H

&C0

a3

1¢

INTIFICATIONceol 2/

PRINT 600

FORMAT (75K [TER CUNTER DOFLLECTION MAX CHANGE TN SHELL
1 MAX CHANDE T 2Ny

COMPUTE APRAY L1147

MelIX+l

N=ly+el

CHECK 10 St tb LN TTHAL 26T ey w2 clve y
ICCICON7 =1 148Gy 340

PEAD L vy (et s d Y d e b el aN)
FORMIT (AFlue )

Xl=1x

Y11y

X{LAM=DIMA /X ]
YULAM=D MY |
ITER=1

1=2

J=2

8-28
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101

11

15

1C2

21

100

22

TCON2=U

TCONG=",

RISE2=0,

ICSwH=1

ISWCH=1

GO TO 100

Jrd+l

IF(IX=J)119100»100

I=]+1

J=2

IFIN=-119994154100

[SWCH=2

L1141 J)=2(1=1sJ}

GO TJ 100

J=J+l

IF(IX=J)150421,421

20141 4J1=201=19J)

Go TO 1¢0

COMPUTATUCN PHASE

COMPUTE NEW Z(14+J)

AzZ(leJ+]1)=211s0=1)

B=Z{l+1e)=2(]=19J}

C=Z(l+19Jd)i=2e*2 (1 oJ)+L(]1=14))
D2Z(1eJ+1)=2e%2(19J)+2(14J=-1)

E=Z (141 3J+1)=2(1=1sJd41)=2(]41sJ=1142(]=109J=1)
F:(A.*XLAMIi24A{§2)lC-.S&AlRlE+(A.{YLAM!!Z+B’!2)!D
GzPREST/ISTRI R2o ¥ XLAMRYLAN ) R (4 (XL AMBRDHY | AMBRD 4 X AMBRO ST # 8D
J4AYLAVEXORARRD ) %27 6

Hz 2o % (4 o * XLAMB R 24ARR D44 Y[ AMER24 3522
T=2(1eJ)+PHIR(F+G)/H

PL=PRES3/STRES

SAVE POINT OF MMAX RISE

IF{T-RISE2123423422

RICEZ=T

[pg=1]

JP&=J

SET UP TONVERGENCE CHECK

TCONI=T=21142)

IFLABSFITCONL)Y=CONVL 11191024107

. SWH=?2

[FIABSFUTCONL)Y=AGSE(TION2) 10601064108

TCON2=T7INNI]

[P
JP=J
2tled)=T
FIND RETURN STATEMERANT
GO TG 1'31e]0d)slow(H
COMPUTE JEAM
[=2
Jz=m
FLEPA N WWESE EPA R IR
CBz2(lel st =Ce®Zilad)el(l~1yd)
BAx2lelasi=dil=1eu
Dz (L BYL_AMES Poijpua e ) 0e ] 5
FR2D o TREGBAN/OGRTI XL AME S o128
GB=B ¢S T INZEY L AME /(Y
GER=PRE L Yan o Ih
itz L he s TRANBEY AM/ 013
T2l edieirientis un) /nuep]
CET R CONVERUDNG D uHEoR
TOANYeT o,

8-29




[}

204
6.0

35

29
611

31

(V5]
o

34

a7

IF(ABSF{TCON3)~CCNVL)I 15191519152
1CSWH=2
IFUABSF{TCON2)-ABSF(TCON4) 115391535154
TCON4=TCON3

1PB=1

JPB=J

2U1J)=T8

I=1+4]

[IF(N~11200+1564155
ZUI+1901=2(1=140)

GO TO 155

CHECK CONVERCENCE

) GO TO (2034+202)+ICSWH

CHECK ITERATIONS

IF{ITERL=ITER)I20U342045204

DATA TO BE PRINTED QUT EACH ITERATION
PRINTH61CITERSZINIM) 9 IPsJP s TCONZ» IFD s JPE ¢ TCONS

FORMAT(I5+F 1845y 1CH Z( 12y 1Hy 129 2H)= F9,.5,
1 10H Z( 12y 1Hs 129 2H}= F945)

CHECK AVERACE LLOPE AT POINT OF MAX RISE
1=1PS

J=JPS

XJ=J~1

TF{le=Z2(19J)/ (XJXY_LAM))29920,25%

XI=1-1

IF{Ye=Z{T o)/ {X]IHXLAM; 12992930

PRINTS11

FORMAT (64H AVERAGE SLOPE EXCEEDS 1 TO 1s EQUATIONS DIVERGE P*ST TH

115 POINT)

G0 70 203

ITERATE AGAIN

ITER=ITER+]

GO TO 10

COMPUTE STRALIN IN BEAM

I1=1

Jzp

ARC=C,
ARCI=SORTFIYLAME* 2+ (2 (419 J)=2(14J))%%2)
ARC=ARC+ARCL

I=1+1

[FIN=1)299:22,431
STHURX={ARC=DIMB)Y/UTNMEX]100

COMPUTE “AX SIrATN TN SHELL AT X= CONSTANT
i=1

Jz=JPS

ERT=0,
ARCL=SQRIFIYLAVERZHLZ2 1+ 9 V=2 (19J) ) 2%2)
ARC=ARC+ARC L

[=1+1

[T M= )YN0D 434472
STINCSY=(ARPC-Ul vy /LM% ]100s

COMPUTE MAX LIRAIN IN SHELL AT Y=COMSTANT
[=1PS

J=1

APC=0.
ARCLI=SQRTFUIXLACHES (LT ad+]1)=2 ]9y yu%2,
ARC=ARC+iR{ ]

NENES

IF(aJ)9% 2y 2 7e 30
SETMNSY=(ARC-DIMAY/OIMA¥ 100

PRINTAT O I TLRIZIM M 9 [P s JPyTIOLZ W [Py PR $TCONG
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PRINT599 4 [DENT
PRINT 609sPH]

609 FORMAT(]7H RELAXe FACTOReweF1045)
PRINT £129IPSsSTNSYsJPSySTNGX

612 FORMAT(16H STRAIN ALONG I=12+4H IS F5¢2+18H STRAIN ALONG J=12»
14H 1S F542) o o
PRINT 601 9PRES39STNBX

601 FORMAT{17H PRLSSUREeeveeseeFl0e5120H STRAIN IN BEAMeeeFl0e%)
PRINT 6029STRES»STRNB

602 FORMAT(17H SHELL STRENGTHeeF1le3920H BEAM STRENGTHeseeF10e5)
PRIMNT £034PSeWIDTH

632 FORMATI(1I7H P/Oseseesssnsssefl0eSr20H BEAM WIDTH eeeeeeaFl0e5)
DRINT 674 e XLAMsDIMA

624 FCRMAT(17H LAMUA XeecoeoeseFl10e5920H AceesosssescvecneasfFl0e5)
PRINT6E35 ¢ YLAM DI A8

605 FORMAT(17H LAMDA Yeseoeoosener10e9920H BessescososssssesasFl0e5)
PRINT 606¢!XslY

606 FORMATI(1TH ORID SI12Ecseeeeel3stH 5Y13)
PRINT 607

6C7 FORMAT(26HOZ DISTANCES FOR 174 SHeLL /)
PEINT 6089 ({leJaZ(led)-Js1sM)sl=1N)

608 FNRMATI(EGH ZU1291Hal29c V1 =FRe5sH Z(12+1Hs1242H)=FB845

1 5H Z{I2+1HeI292H - FBeHs5H Z{1291Hs1292H)=F845
2 S ZOT241Hs1292HY. "Ry54EH 2(1291HsT1242H)=zFB45)
READ MEXT DATA
G0 10 1

939 END
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APPENDIX C

SOIL STRUCTURE INTERACTION

introduction

The yielding membrane elements, in addition to beiny efficient structural diaphrams in themselves, bring about
favorable soii=structure interaction behavior, This Appendix presents background into the gualitative aspects of this
behavior and suggests proboble moagnitudes of ultimate attentuation of blast overpressures thot couid result from these
interactions,

Soil=Structure Interaction Fcrces

Soii-structure interaction forces are those forces which act at the interfoce between a buried stiucture and the
surrounding soil medium, These are generally considered to be normal pressures but, to be sure, shearing forces also exist
at this interfacial junction,

Normal forces result from pressures which act normally te the interfacial surfoce are generally in the same order
of magnitude as the surface overpressures in the air medium above the ground surfoce, Shearing forces are those forces
which act tangential to the interfacial sutface and generally are in the same order of magnitude as the respective shearing
forces in the soil under these conditions. In general, the normal forces preduce the grearer effect or response in the
structure; because of this fact, discussion will be limited to the action of structures under this interaction component only .,

Effective Soil=Structure Interaciion Pressures

The effective soil=structure interaction pressure is defined as that normal pressure distribution which at a given
instant will produce a static free=-field deformation in the structure equal to the deformation of the structure in the soil
medium at the same instant. It follows then, if we can neglect the shearing components of interaction fcrces, that the
moments ond stresses under this effective pressure will equal those in the confined structure at the same instant,

Effective soil-structure interaction pressures depend upon the characteristics and homogeneity of ti-e soil, the
nature of the loading, and the stiffness and geomeiry of the buried structure with relation to the surrounding soil.

Types of Buried Structures

Because the type of buried structure has so much effect on the nature of magnification cr attenuation ¢ the
passing overpressure, it is appropriate to consider these types in some detail. The three basic types, inte which categories
most buried structures fall, are the rigid, rigid-flexible, and flexible types., Figure C=1 shows exainples of these types
of structuress

Rigid Buried Structures.  Rigid buried structures are those buried structures which by definition undergo
negligible deformation upon loading. As a result of their rigidity, they have certain pecularities of interaction behavior
which will be discussed in more detail later,

Rigid~Flexible Buried Structures. A rigid-flexible structure is one which by definition exhibits rigid
characteristics until some time in its rising loading cycle at which point it yields or flexes in such a nanner so as to
reduce its volume or alter its shape considerably.

Flexible Buried Structures. Flexible buried structures are those structures whizh by definition exhibit yielding
or other noticeable structural detorration immediately on the first sign of an overload., They continue this yielding or
reduction in volume behavior throi.ghout the rising locding cycle.

Settiement Ratios

To fully realize the nature of soil=structure interaction phenomena, it is appropriate to consider three basic
types of settlement rotios. These are positive, negative, and zero /atio,
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The Positive Settlement Ratio,  The positive seitlement ratio by definition is associated yvith the chonge in
geometry of the soil mass surrounding o buried structure such that the structure feels a vertical load in excess of the
resultant of the dead and live loads immediately overhead.

The concept of positive settlement ratio may be described visually by the idec.ized drawing in Figure C-2. [t
will be observed that the soil mass surrounding the structure deflects more than the vertical coiumn of soil in which the
structure is contained. As a result of this idealized geometrical discontinuity, vertical shearing forces are produced which
add to the load that is normally experienced, The effective soil structure interaction pressure for this situation is then
larger than that existing in an undisturbed soil af this same depth. To be sure, this sudden discontinuity does not usually
exist and more corbeling action may be observed, however, the overoll effect is the same.

Systems which produce positive settlement ratios are generally those which contain rigid structures. These rigid
structures increase the overall stiffness of the vertical column of soil in which they are contained, A simplified version
of this result is shown in Figure C=3, If we assume a stress=strain relationship such as Hooke's Law to be valid, the left
column of soil will deflect an amount ALy, where AL} = pl/E. The colymn of soil on the right, which contains the
rigid structure, will deflect an amount ALy = p(L-D)/E, where D is the height of the rigid structure. These two
displacements differ by an amount pD/E. The first is always oreater than the second, all other things being equal .

The magnitude of this difference to some extent determines the amount to which the pressure reaching the structure is
increased by this geometrical action,
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The Negative Settlement Ratio,  The negative settlement ratio by definition is associated with the change in
geometry of the soil mass suroinding a buried structure such that the structure feels o verticol load which is less than
the resultant of the dead and live loads immediately overhead.

The negative settlement ratio is shown visually in Figure C~4. It will be observed that the soil mass surrounding
the structure deflects less than the vertical column of soil in which the structure is contained. As a result of this
idealized geometrical discontinuity, vertical shearing forces ore produced which subtract from the load that is normally
experienced, The effoctive soil-structure interaction pressure for this situation is then smaller than that existing in an
undisturbed soil ot the same depth. As before, the sudden discontinuity does not exist and in reality soil arching takes
place but the overall effect is the same.

Systems which produce negative settlement ratios are generally those which contain flexible structures. These
flexible structures reduce the overall stiffness of the vertical column of soil in which they are contained, A simplified
version of this result is shown in Figure C~5, If the same linear stress=strain relationship is assumed as that previously,
the left column of soil will deflect an amount A L= pL/E. as before. The column of scil on the right, which contains
the fiexible structure, will deflect an amount A Ly= p(L=-D)/E +4 D. If &AD is greater than pD/E, then 4 L2 will be
greater than A Ly, A D will always be greater than pD/E if the structure is more flexible than the soil mass it replaces.
Flexible structures by definition are not as stiff as surrounding soil, therefore, they always produce negative settlement
atios,

Zero Settlement Ratio. A zero settlement ratic is defined as being associated with that condition when the
surrounding soil meass and the soil column containing the structure deflect equal amounts. Under such conditions, the
effective soil structure interaction pressure is equal fo that existing in an undisturbed soil niedium at the same point.
Figure C~6 shows such a condition.
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These systems are those in which the soil and structure possess equal stiffnesses, Certain types of rigid,
rigid-flexible, and flexible structures may at some point in their loading cycle exhibit this behavior. In general, such
situations rarely happen throughout the entire loading cycle.

Soil=Structure Interactions

Rigid Fully=Buried Structures.  Rigid fully=buried structures generally produce positive settlement ratio
conditions,and as a result should be designed for pressures in excess of those existing at similar points in undistrubed
soils. By definition, a rigid structure is one which undergoes negligible deformation on loading. According to the
Air Force Design Manual (AFDM) definition, a fully buried structure is one which is buried sufficiently so that fransient
effects of shock wave loadings mcy be neglected. This arch, if corresponding to the fully=buried definition, can only
und.rgo uniform compressive stress by virtue of its uniform pressure loadings. The only bending that can develop is due
to the change in curvaiure associated with the uniform change in radius that results from this idealized loading.

Qualitative aspects of the behavior of this structure under a traveling pressure wave are shown in Figure C~7,
At initial contact of the wavefront with the structure, non=uniform pressures are developed., These pressures deform
the cylinder immediately with the resuit that passive earth pressurcs develop on the sides ot right angles to the wavefront.
Very rapidly, the situation degenerates or stabilizes into that shown in the later diograms. Once the pressure is uniform,
it then starts to decay scmewhat proportional to the decaying surface wave.

A qualitative load=strain diagram for this shape is shown in Figure C=8., Note that such rigid structures

generally fail suddenly on overload.
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Flexible Buried Structures. Flexible buried stiuctures exhibit the opposite behavior to rigid structrues.
Yielding begins almost instantly with sign of overpressure and continues until such has been relieved. These structures

contain yielding tension membranes as the roof and floor. Such structures will produce negative settlement ratios
which rapidly attenuate wiast overpressures.

A qualitative load=strain dicgram for this shape is shown in Figure C=9, Note the large strain which follows
a low load,

Rigid=-Flexible Buried Structures,  As the name implies, a rigid-flexible structure exhibits the qualities of
each type during its loading cycle. As might be expectad, positive settlement ratios immediately followed by negative
ratios may develop. The qualitative load-strain picture for this siructure may be seen in Figure C~10,

This structure is actually ambidextrous in that it may exhibit rigid, flexible, or rigid-flexible behavior
depending on the nature of loading, type of backfill procedure, etc. Generally, however, it is quite rigid until either
large elastic deformations or buckling takes over. Either of these latter effects are those of a flexible nature.

Figure C=11 shows stable yield of this structure. Figure C~12 shows unstable yield.

Summary of Effocts.  The various types of struciures, because of their various actions, feel different
transmitted pressure waves. These waves, in their different forms, may be seen in Figure C-13. Note the immediate
advantages of the rigid~flexible and flexible types.

Analysis Features

The stage has been set, by the previous qualiiative discussions, for the statement that quantitative predictions
of these soil=structure interaction loads are most difficult. Here we have a statically indeterminate structural problem
of the worst type. Very little quantitative results of any kind are available to substantiate reliable magnitude
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predictions, There is a particularly intense need for more theoretical and experimental data on the soil=structure
interaction phenomenon,

These quantitative predictions are necessary if hopes of meaningful analyses are real, Fortunately, designs may
be produced from what limited knowledge we now have,if we are not overly concerned about being conservative.

Design Features

The ultimate in structural analysis is to find an answer, such as stress and displacement; given a structure, its
supports,and its loads, Obviously, for most physical systems there is generally but one answer, The unalyst hopes to
either find this answer exactly, or gain a close enough approximation so that his answer is acceptable. In shost, the
analyst is a problem solver. The ultimate in desigr is to create a given structure, to resist given loads, over given
boundaries such that an analysis is not necessary to assure that this structure will perform satisfactorily. In short, then,
the designer is a probiem avoider.

A qualitative understanding of the general physical behavior of an underground structure, as we have just
considered, is not sufficient for analysis. However, such an understanding is sufficient for design. Because so little
is known about the quantitative behavior of underground structures, as compared with those above-ground, we
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unavoidably find that our designs are conservative. This is not altogether bad, however, because the source of con-
servatism is gensially found in the supporting strength offered by the soil, For regions in which blast overpressures
are considered, close~in fallout and initial radiation will almost assuredly be such that quite a ot of mass will be
required for adequate shielding. There is no more economical mass for shielding that earth; and, therefore, in such

regions, buried structures make sense from the foliout and radiation standpoint, certainly from the blast resistance
standpoint,
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APPENDIX D
HISTORICAL REVIEW OF MEMBRANE THEORY
A brief review of the development of large deflection theories of plates and the membrane theory of shells is
offered in order fo supplement the previsus analyses. The review is not intended to be exhaustive in these fields, but

rather a survey pointing out major contributions. A reasonably complete bibliography supplements the discussion,

In 1910, von Karman extended the linecr theory of plates by taking into account the strain in the middle plane
of the plate. He derived two non-linear differential equations, as follows:

a4w + 2 d4w . d4w -
f 2x0 axt 3yl ay*
(M)

h |q(x,y) R sz 62w - 2 sz dzw N 62F _a_zw

D™ W dyy 3 2 ox dy ax dy , 7 é;l
| 4 4 4 2 2 2 2
! 3% , , 3F L OF L dw__)_dw 6w] @
‘ dxj dxzdyz d;x x5y x dy ]

In 1§12, an exact solution of von Karman's equations for a thin,infinitely-long rectangular strip with clamped
or supported edges was obtained by Boobnov,

In 1915, Hencky obtained an approximate solution o a laterally Isaded circular membrane, or plate of
negligible flexural rigidity,by a finite difference approach. Later (Hencky, 1921), he applied the same method to
obtain an approximate sclution of a laterally loaded rectangular membrane, This same problem was solved by F. Foppl
in 1922, He reduced the von Karman equations to the following:
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Arother cpproximate soluticn by A, Foppl and L. Foppl in 1924 made use of the Ritz method., They derived
the following equation for the centzr deflection of a circular membrane with clamped edges:
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In 1925, Nodai derived an approximate solution to the circular membrane problem:
. (6)
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And in 1928 Timoshenko used Nadai's approach with an assumed radial displacement and derived the following
equation for the maximum deflection:
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In 19?»4, S. Way obtained o power series of von Karman's large deflection equations for the deflection equations,
for the deflections of a circular plate, He carried the problem out to a center deflection-to-plate thickness ratio of 2/0.
Later (Way, 1938), he obtained an approximate solution for a clamped rectangular plate using the Ritz energy method,

In 1936, Rudolf Kaiser reduced the general von Karman equations to five second=c.der differential equations;
the flexural rig dity was token as zero in one case. These five equations were solved numerically by the use of finite
difference approximations for the solution of a square, simple supported, plate. The moximum center deflection=to=plate
thickness ratio was 2/5,

From a summary of experimental and analytical research of flat plates under concentrated normal loads, R, G.
Stum and R, L, Moore (Sturn and Moore, 1937) concluded that when the deflection does not exceed one half the
thickness of the plate, over 95 percent of the load may be assumed to be carried by bending. For deflections on the
order of eight times the plate thickness, os little as 15 percent of the load is carried by bending,

Most of the theories of plates of negligible flexural rigidity |” nit the maximum deflection to about two to four
times the thickness of the plate. This is certainly in the large deflection theory range but, in addition, these deflections
also cause strains which are small enough to be within the elastic range.

A number of analytical studies have been conducted to determine the behavior of circular membranes (Hencky,
1915; Hill, 1950), Hill states thot, for the special case when the radial and circumferential strains are equal, the
strains vory approximotely as the deflection,

Many circular membrane tests have been co..ducted (McPherson, et al, 1942; Sachs, et al, 1946; Brown and
Sachs, 1948; Gleyzal, 1948; Brown and Thompson, 1949; Weil and Newmark, 1955). It can be noted here that, up to
the initial point of secondary bulge at the center of the shell, the circumferential strains vary approximately os the
deflection in the shell, The radial strain varies frem about one half the center strain at the clamped edge, to the
maximum at the center, (at the center,the radial and circumferential strains are equal). These tests were mainly
interested in the "instability strains" or the strain of the start of the secondary bulge. This point is reached immediately
before failure occurs. These tests also indicated that the circular membranes deflect to form a nearby spherical surface
under uniforn lateral pressure,

Only two of these circular membrane tests provided results which can be correlated with the material
presented here (Gleyzal, 1948; Weil and Newmark, 1955). These are presented in Appendix A with Comparison of
Results,

In an attempt to determine the plostic behavicr of st=el under a biaxial siress state, tests have been run on thin
tubes (Fraenkel, 1948; Davis and Parker, 1948; Fhillips and Kaechele, 1756),

In 1942, Sanwel Levy and associates, working for the NACA, conducted a number of large deflection tests on
thin rectangular plates (Levy, 1942q; Levy, 1942b; Ramberg, et al, 1942), In one of these tests the center deflection
to plate thickness ratio was 12/2. The results of this test are shown in Fiqure D-1. A comparison with the present
results is shown in Appendix A. The reports deal mainly with the solution of von Karman's fundamental equations fcr
large deflections by Fourier series. However, in most cases the center deflection of the plate was less than four times
the piate thickness and the permanent set was less thon the thickness of the plate, |t might be noted that they reached
the conclusion that a plate with clamped edge: having « length to span ratio of two, or greater, deflects substantially
the same s a plate of infinite length,

The solution of von Karman's plate equations for a thin membraie, such that fle wwral rigidity is zero, has also
been - .omplished by Shaw and Perrcne (Shaw and Perrone, 1954), They cast the problem in terms of displacement
components u, v, and ' and thus obtained three simultaneous, non-linear, second-order, partial differential equations.
These equations vrere solved by finite differences nnd o relaxation procedure. However, they dealt with relatively
sn.all deflections (stresses within the elastic range),

The point of interest here is that they solved for the vertical deflections (w) with the horizontal displacements
(u and v) taken to be zero, and they also solved the complete problem for u, v, and w, They noted then that the w
displazements cre large relative to u and v and that the solution for w only, holding v und v zero everywhere, does not
vary appreciably from the w displacements obtained from the complete solution for u, v, and w, That is, the solution
for vertical displacements can be obtained accurately by considering equilibrium in the vertical direction only,
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in 1959, W. Zema developed the 14 ,
equations that must be solved to calculate the L
stresses in a membrane shell which has a
circular cross=section, at any point along its / P4
length (or width); and has the same angle / o 7~
with the horizontal at any point along its 12 74 )
boundaries. The plan area may be quite / e s
irreguloar. 0 <
v L
q 7
A series of tests for ultimate / yd
deflection and strain has been conducted 10 s 2,
by J. E. Greenspon ( Greenspon, 1956). o ,/
Only the results of failure are given in the 7
comparison with present results (Appendix A). r7 D e
/
In 1960, J. E. Greenspon con- {o 8 / V4
sidered the problem of large deflections 3z o / |
in a plate and treated it as a membrane o / h
under uniform static pressure load: as: VA Yo -/
0
62w . aZW ) P (8)'§ ] // m -
3 xz ) 72 H ? / P 1 T 1 T t
3 {
where P is the extemal lateral pressure and & —_—
S is the tension per unit length, For the (/
maximum deflection of a clamped |
rectangular plate he obtained: 4 T _L ]
2 | —2 —
S[1+ (2] ] ; —— Boobnov, @/b=0
2
For the moximum strain at the middle of the — = Foppl, a/b=1
fong side x =0, y = b/2
[ © Rombesg, . al., a/b= 1
€ -0 2 G | S ] |
mox - 132 h b, 2 (10) 0
s+ {2) ] 0 1000 2000 3000 4000
Pressure Ratlo pc‘/Eh‘
where S = o"ut. Figure D-1. Cei.ter Deflection versus Pressure for I'=ctangular Plates

The concept of shell design by an inverse procedure has been suggested by a number of investigators (Poschl,
1927; Horne, 1945; Timoshenko, 1959; Flugge, 1960; Harrenstien, 1961). This concept is that of fii “ng the shape to
which a shell must adapt, in order to carry prescribed normal pressure loads under uniform direct stress, Harrenstien
assumed a uniform compressive membrane force (=5) and reduced the equilibrium equations of a membrane shell (Wang,
1953) to one equation

]

- +

R

1

[>T R

P
3

B ('

He used the exact expression for the mean curvature of a circular nembrare, and an elmost exact expression for the mean

curvature of a rectangular membrane, to solve for the shape o membrane must take to resist o lateral lood completeiy by

compressive membrane force-,

Harrenstien used four approaches to solve the equations: (1) direct i~tegration to obtain a closed form solution,
(2) series solution, (3) numerical approximation by finite diffarences, and (4) membrane analogy. Shell structure models
were built to conform to the dimensions predicted by the solutions of the equations, The presentation (Hurrenstien, 1951)
illustrated the strength of membrane shells designed by this method, Evidence of this fact may be observed by o
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consideration of the failure load exhibited by a 0,120 in. thick plaster-of=paris shell. This unreinforced shell, with o
diameter of 12,0 in., and a center loading diameter of 2.4 in., resisted a center load of 685 Ibs, before failing.

As can be observed from this review, some work has been done in the region of large plastic deflections of
membrane, However, most of the work has been concerned with circular membranes. Little work has been accomplished
concerning yielding rectangular membranes supported by yielding edge beams,
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