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ABSTRACT

The aspects of accurate determination of Earth satellite orbits by the
Minimum Variance Method are presented. In addition, techniques for the
determination of the associated physical constants, such as the coefficients
in the Earth's gravitational potential, cxosphcric temperature, etc.. are
developed. A method for determination of the state transition matrix is
prescnted. Also include 1 are a review of the time systems employed in
satellite orbit determination and a short discussion of the types of ohserva-
tions.

The mathematical model of the dynamical system inciudes nine zonal har-
monics and up to the fourth order tesseral harmonics of the Earth's gravi-
tational potential, Atmospheric drag effects are included on thc assumption
that thc atmosphere rotates with the angular vclocity of the Earth. First
order solar and lunar gravitational attractions and solar radiation pressure
arc also treated. The satellite orbits are integrated in a refererce system
which considers the precession and nutation of the Earth. Rectangular co-
ovdinate systems are used throughout the dcvelopment.
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FOREWORD

This report presents the analytical foundations for several computer pro-
grams now under development. The research is being performed for the Data
Analysis Branch (CRMXA), Technical Services Division at AFCRL, USAF,

L. G. Hanscom Field, Bedford, Massachusetts. The digital computer pro-
gramming in this research effort is being done by Bruce Clemenz and Jacques
Fein, The contractor's report number is ER 13950,
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LNt TCTINN

The orbit of a satellite. in a given reic.~ "ce systen. is determined by six
paramcters, called the orbital elements. These elemeris .an be detcrmined
from & sufficient number of other parameters obiaired a.” obssrvations. How-
cver, the piroblem is usually either under- or oveyr-deteri.ined. In adoition,
the rhservations contain errors. For these reazons, normal algebraic .1ethods
cannot be employed, and the problem enters the rralin of statistice and prob-
ability. Satellite observations are used not ouly to determine the n1bit, hut
also to cstimate the various physical and othcr constants of the dyn:: nmical and
the observation systems. Precise orbit determination and analysie v’ a statis-
tical filtcring technique known a:s the Minimum Variance Method is the subject
of this report.

The motion of a satellite in an inverse-square ceniral force fielu is repre-
sented by conic sections. This motion would be realized if the sole force act-
ing cn the satellite were due to a point mass or a homogeneous sphere. In
nature, however, the orbit of a satellite is perturbed by a variety of forces,
e.g., harmonics in the gravltational potential, atmospheric drag, atiractions
of other celestial bodies, etc. Consequently, the dynamical system is much
more complicated.

As mentioned before, the orbit of a satellite is determined by the six orbi-
tal elements. These elements can represent an orbit in a simple inverse-
square central force field as well as in the actual, complex dynamical system,
Any set of independent parameters which uniquely describe an orbit can be used
as orbital elements. For example, the six classical elements are: a, the semi-
major axis; e, the eccentricity; £, the right ascension of the ascending node;
w, the argument of pericenter; i, the inclination; and M, the mean anomaly,
The orbits in the present report are considered in a rectangular coordinate
system. Consequentily, the orbital elements in this system are most conven-
iently rcpresented by the six components of the position and velocity vectors,
which are thu standard elements in this analysis. The certain numerical dif-
ficulties experienced with these elcments in the Least Squares application are
not encountered employing the Minimum Variance tec.unique.

The standard refcrence epoch for the celcstial equations in this report is
1950 January 1, Gh UT, except as noted.
The present report deals specifically with the orbit determination of close

Earth satellites. including parabolic and hyperbolic orbits. The same princi-
ple, however, applies to satellltes of other cclestial bodies.




11, TIME SYSTEMS

A. MEASUREMENT OF TIME

The accurate mecasuremcent of time has been the concern of a 1ather spec-
ialized field. However, with the advent of the artificial satellite, a new area
has been introduced which is dircctly concerned with the precise aspects of
time and its measurement. In addition, there have been many developments
in the time systems during the last few years. Thercfore, a review of this
subject is necessary. A thorough treatment can he found in Refs. 1, 2 and 3.
The present discussion will deal only with the existing time systems and their
application to satellitc orbit determination and analysis,

In the measurement of time, two importan. facters are involved. One is
the epoch or reference from which time is measured. The otl.er is the rate at
which time 1s measured. A system used to measure time, therelore, must
be some cbservable physical phenomenon that has a well-defined epoch and
whose rate of change is as invariant as possible, There are seven fundamental
time systems in existence: ephemeris timc (ET), atomic time (A.1), true
sidereal time, mean sidereal time, UT0, UT1 and UT2. The last three are
subdivisions of universal time. In additior, there are time systems emitted
as signals or several radio frequencies throughout the world: WWV, NBA
(United States), GBR (United Kingdom), etc.

B. EPLLEMERIS TIME

Ephemeris time is the uniform time of dynamical astronomy. Theoretically,
it is the independent time argument of the ephemerides of the Sun, Moon and
the planets. In practice, it is determined from the orbital motion ot the Moon
about the Earth, This involves the sclution of the equations of motion of the
Moon. Thus, the uniformity of the time argument will be dependent on the ac-
curacy of the representation of the system in which the Moon moves. Since it
also involves observations of the Moon, additional errors are introduced. The
errors are not significant, and the accuracy of the determined ET is believed
to be within a couple of seconds in a century.

Ephemeris time would be the proper time argument in the equations of mo-
tion of an Earth satellitc. However, its determination requires several years
of observations and it is not practical for observing events of relatively short
time intervals apart without an intermediary.

C. ATOMIC TIME

In 1955, a precise, cesium-133 atomic rescnator was introduced in Great
Britain. Since then, nine laboratories in five countries have been operaling




cesium resonators in a coorvdinated effort, It is estimated that the accuracy of
the cesium resonators is within 0,001 second in three years. Because of the
exceptional accuracy of this system (designated A, 1), the 12th General Con-
ference on Weights and Measures, in December 1964, changed the basis of the
definition of the sccond from eph:meris to atomic time scale. Thus, a uniform
time system has been made available which provides exceptional stability and
convenience,

The A.1 system is defined as follows (Ref. 2):

{1) A clock whieh keeps A.1 time advan-es one second in the interval
required for 9,192,631, 770 oscil.ations of cesium at zero field.

h _m_s

(2) At 0"0"¢® UT2 on 1 January 1958, the value of A.1 was 0" 070,

Because the atomic time system is uniform for all practical purposes and
readily available, it is the most suitable for use as the independent time argu-
ment in the satellite equations of motion,

The rapid progress in atomic timekeeyin, is indicated by the announcement,
even as this report was being written, that the U, S, Naval Research Labora-
tory has instalied twin atomic hydrogen masers to continuously reset thc master
clock at the U, S, Naval Observatory. The hydrogen masers will keep the clock
accurate to within one second in 300,000 years.

D. SIDEREAL TIME

Sidereal time is directly related to the rotation of the Earth. It is defined
as the hour angle of the vernal equinox. Thus, except for small motions of the
equinox itself, sidereal time is a direct measure of the diurnal rotation of the
Earth. Sidereal time measured with respect to the truc equinox is true or
apparent sidereal time. If measured with respect to the mean equinox of date,
it is called mean sidereal timc. If the meridian is that of Greenwich, it is
called Greenwich mean sidercal time, For any other meridian, it is the local
sidcreal time. Because sidereal time reflects the variable rotation of Earth,
there is no direct relationship between sidereal time and ephemeris time. In
orbit determination, the computation of sidereal time is required in order to
dctermine the position of the ohserving station.

E. UNIVERSAL TIME

Universal time is bascd oa the diurnal motion of the Sun and is the
hasis of all civil timekecping. It involves both the rotation of Earth and the
motion of Earth in its orbit about thc Sun. Universal time and sidereal time
are equivalent systems and are directly rclated to each other by means of a




numcrical formula. Universal time is defined as the Greenwich hour angle of
a point on the equator whose right ascension, measured from the mean cquinox
of date, is

LU o) B LS 5 2

ERSLEE TR a =T s

o 16 08 10.0800 + 8040103, 042 Tu - 0.0925 Tu (1)

t\ an
il
Time, T,, is given in Julian centurics of 36, 525 days of universal timc elapsed

since the epoch 1900 January 0, 12" UT. The practical determination of univer-
sal time is made through the intcrmediary of sidercal time by obscrving the
diurnal motions of the stars. The rclation between Greenwich mean sidereal
time and UT is given hy the equa.ion:

Greenwich mcan sidercal time = UT « R, - 12" @

The sidereal times are computed in advance for successive dates of 0" UT
fromnthe above equations and published in the American Ephemeris and Nautical
Almanac. Local mean sidereal time at any particular instant is obtained from
observations of the transit of stars of known positions. Greenwich mean side-
real time is obtained by adding the lor.gitudc west of Greenwich. Then the cor-
responding universal time is obtained by taking the difference in sidereal times

at the instant of the obsetrvation and the computed value at 0" UT and converting
it to UT by thec known rziationship. The universal time thus obtained is desig-
nated UT0. Due to the .novement of the Earth's axis of rotation, known as
polar motion, and variation in the rate of rotation of the Earth, UTO0 contains
irregularities. Although the polar nmotion is very small, it affects the time
measurements, which can be now performed with great accuracy. UTO cor-
rected for the polar motion to a mean Greenwich meridian is desigrated UT1,

The variations in the rate of rotation of the Earth are due to many causes.
Some of them are negligible; some of them are quite large but unpredictable.
The seasonal variation is a periodic variation of a maximum amplitude of ap-
proximately 0.03 second. It is a quite stable variation and can be predicted
with good accuracy. UT1 corrccted for the seasonal variations is designated
UT2. Corrections for the years 1956 to 1962 have been computed from the
formula (Ref. 1):

AT = +0.022 sin 277 - 0017 cos 277

(3)
- 05007 sin 477 + 0° 006 cos 477
Since 1962, the following formula has been used (Ref. 4):
AT = + 0,022 sin 277 - 0° 012 cos 217
(4)

- 0°006 sin 47T -+ 0° 007 cos 47T

where 7 is the fraction of the year and is zerc on January 1,

by}




1t is important to note that universal time is not a uniform time and therefore
cannot be properly used as the independent time argument in the equations of
motion, However, UT1 is of particular signlficance in accurate satellite orbit
determination. Since UT1 is obtained by observing the rotational position of
Earth with respect to stars, the reverse process is applied to determine the
position of Earth from UT1.

As noted before, only the ratio of sidereal time and univ:rsal time can be
esxpressed by a numerical formula. There are no rigorous snalytical relation-
ships for the other systems. The difference between ephemeris time and
universal time presently is about 35 seconds. The difference between A.1 and
UT2 was 2, 3385 seconds on January 0, 1963, increasing by about 0.5 second
per year.

F. RADIO TIME SIGNALS

Neither of the time systems discussed above is directly available to the user.
Instead, time signals are emitted by special radio stations (WWV, WWVH and
NBA in the United States) in accordance with international agreements. Prior
to 1959, station WWV emitted time signals at a constant frequency while making
phase adjustments of 9. 02 second when necessary to keep the signals close to
UT2. The signals now are emitted with a frequency maintained constant each
year but offset with rcference to the atomic time standard. The time pulses
are kept within approximately 0.1 second of UT2. In addition, phase adjust-
ments of the pulses can be made if necessary. There is no analytical relation-
ship between WWV and UT2. For this reason, the differences are given in
periodical Time Service Bulletins issued by the U. S. Naval Observatory.

The methods used in satellite observation and timing are continuously im-
proving. It is estimated (Ref. 5) that the position of a satellite can be meas-
ured with an accuracy of 20 meters. For practical reasons, the timing of a
satellite obscrvation is done hy the clock of a station which observes the satel-
lite. Although the received WWYV signals will be in error with respect to the
emitted signals because of uncertainty in propagation, it is estimated (Ref. 5)
that a worldwide tracking system can be synchronized to an accuracy of about
0.001 second. To fully utilize thc accuracy available in precision orbit determina-
tion, the proper corrections should be applied to the observation times to rrive
at the correct time systems required in the analysis. These corrections, how-
cver, are not immediately available and in such cases they must be either
extrapolated or the time recorded by the station clock used as an approxima-
tion. During the period in which there are no changes either in frequency
or phase of the WWV signals, the recorded iime will be essentially uniform,
if the station clocks are well synchronized with the WWV., Therefore, this
time could be used as the independent time argument in the satellite equations
of motion. An error is introduced by substituting this time for UT1 to compute
the station position. For example, the position of a station at 30° latitude can
be in error by as much as 50 meters. The numerical values for the masses of

6




Earth and other eelestial bodies are not sufficiently well known at the prescnt
time to be affected by the small differences in the time systems, but this may
change in the future.

The following procedure can be used to obtain systems A.1 and UT1 required
lor accurate orbit analysis:

(1) Time recorded by the station clock corrected to ohtain WWV c¢mitted
signal

(2) WWYV emitted signal corrected to obtain A. 1

(3) WWV or A.1 eorrected to obtain UT2

(4 UT2 correeted to obtain UT1.
Correction (1) ineludes eorreetions, if any, to the recorded time to obtain WWV
received. This time is then correeted for propagation effeets to obtain WWV

emitted. Corrections (2), (3) and (4) are published in the Time Service Bul-
letins. Correction (4) can be applied by means of Eqs. (3) and (4).

-1




1lI. SPACE REFERENCE SYSTEMS

A. SYSTEM REQUIREMENTS

There are several basic reference systems used in orbit determination.
The satellite motion itself must be ultimately considered in an inertial sy<-
tem. The position of the chserver must be referenced to a terrcstrial sys-
tem, and the observations are obtained in either a geodetic or a celestial
system. In the final analysis, the relationship between these systems must
be introduced.

B. BASIC REFERENCE SYSTEM

The satellite orbit could be referenced to a fixed geocentric celestial sys-
tem. However, such a system would not be very convenient for determining
the forces acting on the satellite because of the precession and nutation of the
Earth. The expressions for the forces could be much simplified if the motion
is considered in a moving axis system defined by the true equator and equinox.
In such a system, however, a supplementary or Coriolis acceleration is intro-
duced. Since the rate of precession and nutation is comparatively small, we
will utilize a system which is considered inertial frr a short period of time
and coincides with a mean position of the true equator and equinox during this
interval. The satellite orbit thus ic considered in a system which moves step-
wise with the rate of precession and nutation. The length of the interval can
be made as short as is necessary and practical. The oniy errors introduced
will be due to the small variation of the gravitationai field caused by preces-
sion and nutation during this interval. However, for all practical purposes,
these errors will be negligible. In addition to giving minimum errors, this
system is ideally suited to the point-to-point technique of the Minimum Vari-
ance Method and the integration method employed.

C. TERRESTRIAL REFERENCE SYSTEM

A terrestrial reference system will be defined as a rectangular right-hand
system with the origin at the Earth's center of gravity and the z-axis directed
toward the mean north pole as defined by the International Latitude Service.

The x-z plane will coincide with the mean meridian of Greenwich. This defini-
tion is purely theoretical, since the Earth's center of gravity is not precisely
known. For this reason, the positions given in this system will be in error and
thus affect the satellite observations. A method to improve observing station
positions from orbit analysis by the Minimum Variance Method will be presented
later in the report.

. . . 3 e m—————
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Generally, the coordinates of an observing station are given as polar
eoordinates in a gcodetie system. The coordinates are longitude, latitude
and altitude. Longitude will be eonsidered positive west for the station lo-
eations, Latitude is usually given as geodetie or geographic latitude. The
two differ due to local gravitv anomalics. Assuming that the given latitude
is geodetic, we must obtain the geocentric latitude as a first step toward
conversion to rectangular eoordinates. It is important to note that the given
polar evordinates are always associated with a speeifie ellipsoid, defined by
the mean equatorial radius of the Earth, R... and flattening, f. The values for

the adopted International Ellipsoid of Referenee are RF = 6,378,388 meters, and

f 1/297. More recent determinations have given RE = 6,378,156 meters and
f-1/295.3.

The transformation from gcodetic, ?, to geocentric latitude, ¢, ean be
obtained by considering the geometry.

Fig. 1. Station Coordinates

Designating fr =( - f)2 we edn write:

t . (' + h) sin %
B h ecos b + pl €0s cbl (%)

where P p' and h are cxpressed in units of Rh. Introdueing an auxiliary

funetion, C, defined by:

p, cos ©, Ceos?

10




Cc - L —
cos ¢ (1 + fE: tem‘e m) /:

and since P, = fEC, we can express ¢ as function of #:

h+f.C
tang= [T ¢ tang (6)

Then the gecocentric radius of the observing station is:

p = sz(h+c)%g-§% Q)

The station coordinates in the Earth fixed terrestrial system are

X; = P €os ¢ cos (-2) (8a)
Y. = p cos ¢ sin (-} (Sb)
z's' = p sin ¢ (8c)

where A is the station longitude {positive west),

These coordinates are in the terrestrial system as previously defined.
The actual Earth's axis of rotation, however, does not coincide with the mean
axis as defined by the International Latitude Service. It is moving about the
mean pole in what is known as the polar motion. This motion has the effect
of a small variation in latitude and meridian and must be considered in ac-
curate calculations. The variations are regularly published by the Interna-
tional Latitude Servica. The transformation of the station coordinates from
the mean to the instantaneous system is accomptished by a simple transforma-

tion:
{x's 1 1 0 -x i X
lys [=]0 1 ¥ Ye )
| ;
L Zs x -y 1 | 25 _

where x and y are the angular coordinates of the instantaneous pole, in radians.
D. STATION POSITION IN THE BASIC SYSTEM

So far the obtained position of the observing station is in a rotating Earth
fixed-axes system. To relate it to the previously defined basic reference

11
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systen:, which for all practical purposes is a true sidcreal system, one more
transformation must be performed,

The Earth fixed system 2nd the basie system have the same z-axis (axis of
rotation), The position of the observing station in the basic system, therefore,
can be obtained hy utilizing the true sidereal time, whieh is a function of the
universal time (UT1). This will give the Greenwich hour angle of the vernal
equinox as computed from tb 1 llowing equation:

A= 1. TA6647719 + 6.30038509863056 d + 0.5064 x 101 d"+ AX (10)

where A and AXare in radians and d in Julian days from the epoch 1950
January 1, 0" UT. As discussed in Chapter II, d must be expressed in UT1.

The above cquation is based on Newcomb's expression and corresponds to
values for sidereal times published in the Ameriean Ephemeris and Nautical
Almanac from 1960 on. The terms due to nutaticn are expressed by AM,
AN = -0.76700 x 10" sin (0.211408 - 0.00092422 d)

+0.929 x 10" sin (0. 422816 - 0, 00184844 d)

- 0.907 x 107" sin (2,247127 + 0.45994300 d) (11)

- 0,5662 x 10'5 sin (9.776679 + 0,03440558 d)

+ 0,560 x 10" sin (6.248291 + 0,01720197 d)

The station coordinates in the basic system are then:
1 T o]

X cosAqp - sinde 0] | X,
Yo [=1 sinAgg  cosAqp 0| | yi (12)
] z, J 0 0 1 L z;

E. PRECESSION AND NUTA 'ION

The basic system, as defined previously, is essentially a true sidereal sys-
tem. As such, it follows the precessional and nutational motions of the Earth,
The eoordinate transformation frrom the reference mean equinox of 1950

Januarv 1, 0" UT to the mean cquinox of date is accomplished by the following
matrix:

X, Y, 2z,
P =X, Y 2 (13)
x(’ YJ z.’.
pu




where:

~12

2 -20 g
1-0.2226036 x 10 " d ~0.267x10 d

X, =
Y, - -X, - - 0.61190636 x 10° d - 0.5067 x 10 d +0.453 x 10" d’
Z. - -X, = -0.26602997 x10°d+0.1552x 10 d + 0,197 x 10 d’
Y, - 1-0.1872156 x 10" %d* - 0.308 x 10~ d’
Y, - Z, = -0.813972x10% d®-0.61x107%'
Z, = 1-0.353878 x 1073 @ + 0,41 x 107 ¢°

and d are Julian days since 1950 January 1, 0h UT. To account for the nutation,
a transformation from the mean equinox of date to the true equinox of date is
accomplished by the following matrix:

1 ~Ap ~Av
N = | Ap 1 -A€ (14)
Av A€ 1

where Ap, Av and A€ are the terms due to nutation in right ascension, declina-
tion and obliquity, respectively. They can be computed with sufficient accuracy
from the following expressions

Ap = (-76,700 sir. a; + 0,929 sina, - 0.907 sina, - 5.662 sina,
+0.560 sin a) x 10°°
Av = (-33.009 sin a, + 0.400 sin a, - 0.390 sina; - 2.437 sina,
+0.241 sin ) x 107
A€ = (+44.654 cos o - 0.438 cosa, + 0,428 cos @, + 2.676 cos @,) X 10°°
where
@ = 0.211408 - 0.00092422 d
@, = 0,422816 - 0.00184844 d
@, = 2,247127 + 0.45994300d
@, =.9.776679 + 0,03440558 d
a = 6.248291 + 0.01720197 d
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Only the most significant nutation tcrms arc considercd, l!lowever, they will
give an accuracy of better than four meters on the Earth's surface,

The transformation of the rectangular coordinates between two basic or
tirue sidercal systems of arbitrary dates can be accomplished by the following
mateix multiplicaticn:

. T g7
x, - N B P N x (15)
2 - 1
where .
X X
X, ¢ | ¥ or y i=1, 2

o]
| S——
e

[i. tl..

and T means thc transpose of a matrix,

In a continuous, point-to-point transformation, only three multiplications must

be performed at every transformation, since the transpose of the previous N, P,
. T T .

matrix is the new P, N, matrix.

It is convenicnt te consider the precession and nutation matrices as sums
of a unit matrix and a mairix with small elements.

Designating
P' - P -1
and
N N-1

wherc 1 is a unit matrix.
NP = (N'+D)(P'+]) = N'P'+P'+ N'"+1

Matrices N'P', P' and N' contain only small clements. Consequently, fewer
significant figures need to be carried. The number of significant figures will
increase for thc diagonal elements only in the addition to the unit matrix. In
some cases, it might be possible to neglect the second order term N'P' and
thus the matrix multiplication could be avoided completely, Since the preces-
sional and nutational motion is of the order of approximately 0''3 pcr day, the
transformation need not be performed very often.
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F. OBSERVATION REFERENCE SYSTEMS

Two types of observations will be considered: (1) observations referenced
to a geodetic system and (2) observations referenced to a celestial system,
Both types are necessarily topocentric systems, Types of observations refer-
enced to a geodetic system will, generally, include elevation, azimuth, cleva-
tion and azimuth rate, range, range rate and range acceleration. Observa-
tions referenced to a celestial system are right ascension and declination.
To perform the orbit analysis, the observations corresponding to the estimated
orbit must be compared with the actual observations in a common refercnce
system. The estimated observations from the given coordinates x, y, z, X, y, 2
are obtained as follows:

The satellite coordinates in a topocentric system where the x-axis points east,
y-axis north and the z-axis completes a right-handed system, are:

“x,r X - X
yr | =081 | v-v, (16)
,__ZT_ L_Z-Zs
and
X x+was
)}-r- = [S] i"wg Xg (17)
2 z
[ T L .

where x, ¥, Z, are the station coordinates, and w, is the rate of rotation of the

Eartli, The matrix S is either

S

EM
or
S =M
depending on whether the transformation is performed to a geodetic or a geocen-
tric system.

The transformation matrix, M, is:

- sin (Agr = M) cos (A, - A) 0
M = |-cos (A g -A)sind  -sin(A,; - A)sind cos ¢ (13)
€08 (g - A) cos ¢ sin (AGR - A)cos ¢ sin ¢
- -
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where ,\,“H. A and ¢ arc as defined previously.

The transformation from the geocentric to the geodetic system is periormed
by the matrix ¥

1o 0
E |0 1 N (19)
0 AD 1
L J

where 3¢ . *- 6 and is a small angle,

The obtuined coordinates Xpo Yoo 2 )'c.r, jr.r and :"r of the satellite in the topocen-

tric system allow us to compute the observations corresponding to the estimated
orhit.

Observations of right ascension and declination are usually referred to a
specific celestial system (see also Section VII B) defined by tie equinox and
equator at the beginning of a Besselian year. This will be discussed in more
detail in Chapters IV and VII, At the present, we are concerned about the
transformation of the satellite position from the basie system to a particular
celestial system, This can be done by utilizing the previously given precession
and nutation matrices. The coordinates of the satellite, as well as the observing
station in the particular celestial system, will be:

X [ x ‘I
y 1 = [Psr] [p]'r [N]T y (20)

Z Z
- 0

where N is the transformation matrix due to nutatior, P is the transformation

matrix [rom the mean equinox of date to that of 1950 January 1, 0" UT and Per
is the transformation matrix to the mean equinox and eguator of the celestial
reference system, The elapsed days from 1950 January 1, 0" UT to a standard
cpoch of a specific Besselian year can be obtained from the following formula:

d  -0.0677 + 365.2422 (BY - 1950, 0) en

where BY is the Besselian year; 1950, 0 is a standard designation {or the beginning
of the Besselian year 1950.
If the celestial reference system is that of 1950.0, the matrix Ps"r nced not

tie included in most cases, since the epoch 1950 January 1, 0" UT is ve ry close
to the standard epoch 1950.0.




Another method is to ebtain the right ascension and declination of tne satel-
lite in the basic system and then to make the proper corrections for nutation
and precession o obtain the right ascension and declination in the particular
refevence svstem of a standard epoch,




IV. SATELLITE OBSERVATIONS

A. CLASSIFICATION OF OBSERVATIONS

Satellite observations ean be obtained generally by electronic or optical
means. The clectronic systems include pulse and Doppler radar and inter-
ferometer-type systems. Optical systems include visual and photographic
obscrvations. Recently, promising results have been obtained by laser sys-
tcms which provide angular and range information,

The present discussion will be concerned with scme pertinent aspects of
clectronie and optical systems provising obscirvations in the form of elevation,
azimuth, range, range rate, and right ascension and declination. In addition,
observations of elevation and azimuth rates, and range acce eration will be
eonsidered,

B, ELECTRONIC OBSERVATIONS

From the analyst's point of view, the most imnportant aspeet of satellite
observation is aeeuraey. Errors in elcctronic observations arise from
several sourees: errors in the eleetronic and meehanical system; errors due
to refraction and aberration; and errors in the physieal eonstants of the station
loeation, Errors in the electronic system are due to eauses sueh as frequeney
drifts, time delays, insufficient resolution, etc. Other errors are due to elec-
tromechanical systems. These errors can be eonsiderable. Some error sourees
eould be eliminated to a large extent if, instead of azimuth and elevation, their
rates were measured, Thus, the precise knowledge of the true meridian and the
geodetie vertieal is not critieal. The bias errors in the rate measurements
should be smaller than in angle measurements,

Range, range rate, and range aceceleration measurements rely entirely
on the eleetronic system. Thus, a source of some highly unpredietable errors
is eliminated, Moreover, the knowledge of the true north and vertieal is not
required. Consequently, these measurements can be muech more aceurate than
the angle measurements.

One of the ehief sourees of error in electronic measurements is refraction.
It is generally distinguished between tropospheric and ionospheric refraetion,
It has been shown (Ref. 6) that using frequencies in the kilomegacyele range,
the ionospheric refraction is practicalily negligible and the tropospher.~ refrae-
tion ean be ealeulated with fairly good aceuraey, particularly if the local at-
mospherie eonditions are taken into aceount.

The refraction error can he reduced to negligible proportions if a principle
used in the Transit System (Ref. 7) is utilize<. By simultaneously employing
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two coherent frequencies, the actual refraction can be computed to a Hrst ovder
accuracy and the measurement corrected. In the present state of art, the
thcoretical accuracies obtainable for range and range rate measurements should
be of the order of 5 m and 0.2 m/sec. However, the actual accuracies depend
heavily on stringent calibration, maintenance and operation procedures, and, of
course, the type of equipment,

C. OPTICAL OBSERVATIONS

Some of the most accurate satellite observations are obtained by optical
techniques, Specificaily, a network established and operated by the Smith-
sonian Astrophysical Observatory (Ref. 8) can provide ubservations with an
accuracy of about 2 seconds of arc,

Essentially, the precision method consists of photographing satellites
against a star background. Since the star positions can be determiued with high
accuracy from star catalogs, the satellite right ascension and declination can
be obtained with a comparable accuracy. The final accuracy of optical meas-
urements, however, is dependent on the reduction method and may vary by
orders of magnitude. Among the disadvantages of this mcthod is that the pre-
cise reduction requires elaborate procedures and, thereforc, the precise data
are not immediately available. Another disadvantage is that the satellite
can be photographed only at certain times when it is in sunlight and the observey
in darkness. This can he minimized, if the satellite carries its own light source
or by laser techniques. One of the chief advantages of this method is the elimi-
nation of many sourccs of error. The chief on-site requirement is the precise
timing of the cxposure. The actual computation ot the micasuremcnts can be
donc under more exacting conditions,

D. OBSERVATION CORRECTIONS

The radar as well as optical observations must be corrected for aberration
and refraction. Because of the relatively high velocities of satellites, the aber-
ration effect will be significant in high precision measurements. This correc-
tion may amount to a few seconds of arc in angular measurements and several
meters in range measurements. The correction is donc on the hasis of the
satellite velocity vector and the speed of light.

A much morce significant correction is required for refraction eifects. In
high precision measurements of right ascension and declination, obtaincd by
the photographic method, the major part of the refraction is corrected indirectly.
The remaining uncorrected part is the parallactic refraction which arises from
the fact that the satellite is at a finite distance. whilc the stars are practically
at infinity. Reference 8 gives the following expression for parallactic refyac-
tion correction:

N 03RS T cas s
AR --43570 B2 (1 - e : ) 22)

I‘,T COS5 Z
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where 7 is the zenith distance and T the range.
The refraction correction for elevation, range and range ratc in radar

measurements can be computed by the following method (Refs. 9, 10, 11),

The troposphere is livided into m ineremental tayers and the change of the
indcx of refraction in a layer is assumed linear.

Fig. 2. Refraction Configuration

The average index of refraction as proposed by the NBS Central Radio
Propagation Laboratory is given by the following expression

n, = 1+0,000313 exp (-0.14386 h)) (23)
where h, is the altitude in km.
Designating

N =n -1

n

the total bending through the troposphere divided into m incremental layers is

n=m
2(N, - N,

v z tanE - tan E,_ (rad) (24)
n=0
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The elevation angle error is then

: 2
YtanE - (N, - N )+ 7 /2

. - . g
a Y+tanE - tan E, (rad) (29)

and the range crror is

nm
Z (N + Nn'l) (hn_l- h))

sinE, + sin E, ,,

Ar (26)

n=0
The Doppler velocity can be corrected to a first order approximation by

m‘-,r = VAo, sind (27)

where ¢ is the angle between the line of sight and the velocity vector, V.
Ao is the angle between the line of sight and the velocity component in the

direction of the ray path at the target. It can be dctermined from the expres-
sion

R, i Rﬂ
"'\QT = are cos R cos (EO - AE)| - arc cos TR cos Eo 28)

m mT'm

The above expressions are valid for cases where the frequency is in the
kilomegacycle range and the ionospheric refraction effccts can be neglected.




V. APPLICATION OF THE MINIMUM
VARIANCE METHOD

A. FORMULATION OF THE PROBLEM

The knowledge of an orbit implies the knowledge of the mathematicatl model
of the dynamical system and certain constants associated with this system,
The mathematical model can he developed by theory, hnt the constants must
be dctermined by experiment. They are not observed directly. but can be de-
termined knowing the mathematical relationships hetween the observed param-
cters and the constants. In our analysis, @ part of the constants is reprcsented
by the so-called state variables, whieh in our ease arc the instantancous orbital
clements. The other part eonsists of the various physicitl constants of the
dynamical and the ohservation system.  Together they represent a generalized
state vcetor.

The insftantaneous orbital elements themselves are not eonstants. However,
they are rigorously related to another set of orbifal elements at some other
time ehoscn at an epoch. The relationship between the two sets is dcfined by
the mathematieal model. Thus, the cpoehal set of the orbital elements, which
are constants for the given system, eompletely determine the instantaneous
orbital elements at any other time.

An approximate orbit can be obtained by assuming a simple inverse-square
central force field. Various methods can be used for this purpose depending
on the type of observations., With this starting orbit, an improved estimate of
the orbital elements and/or the various physieal eonstants can be obtained by
more sophisticated methods. The applieation of the Minimum Variance Method
for this purpose is the subjeet ol this chapter.

There are three sources of errors associated with the orbit estimation
process: incomplete represcntation of the dynamieal system, errors in the
generalized state vector and errors in the observations. The improvement of
the dynamical model by statistical methods is beyond the scope of this report.
Statistieal knowledge about the errors in the gencralized state vector and the
observations, however, ean be utilized in orbit improvement from observed
data. The process, which is called statistical filtering, is applied to obtain a
best estimate of the generalized state vector on the basis of the deviations of
the actual observations {rom the estimated orbit., Once a good estimate of the
orbit is obtained, past or future instantaneous orbital elements can be found by
predietion and smoothing methods,

Orbit determination has always been a major problem in dynamieal as-
tronomy. Methods, notably, thc Least Squares, have bcen in use for approxi-
mately a century. With the advent of the artificial Earth satellite, these methods
were adapted for thc new application, However, problcms encountered in
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practical space engineering applications olten present quite different situa-
tions, A major [actor is the electronic computer.

In dynamical astronomy, relatively few observations are obtained over an
extended period of time., In many engineering applications, a large amount of
observations are obtained within a comparatively short time period, The elec-
tronic computer otfers immense possibilities, notably, its computing speed
and storage capacity, However, new approaches may be necessary to take full
advantage of these capabilities and also to comply with some of the numerical
problems arising from the large amount of data, It is believed that the Mini-
mum Variance Method offers great possibilities in many space engiheering ap-
plications,

3., SOME PRACTICAL ASPECTS

The basic differenee between the Minimum Variance Method and the Least
Squares Method is that, in the M:inimum Variance Mcthod, the orbit is continu-
ously updated on the basis of each new observation or set of observations. In
the Least Squares Method, a single sofution is ubtained for all the observations
sirnultaneously. Ineach case, an inversion of a certain order matrix is in-
volved. The order ol the matrix, in the least squares case, is determined by
the number of the parameters being estimated. On the other hand, the order
o! the matrix to be inveried in the minimum variance case corresponds to the
namber of simultaneous observations., As a matter of fact, all the simultaneous
observaticns need not be processed simultaneously, and, if desired, each can
be handled separately. Thus the inversion becomes trivial. Since the inversion
of high order matrices is not a simple matter. the advantages of the Minimum
Variance Method are obvious,

Since the orbit is updated on each new set of observations, in many applica-
tions, the observations necd not he stored in the computer, thus saving consider-
able storage space. The updating process is systematic for any number of ob-
scrvations, either too few or too many to obtain a deterministic solution for
the generalized state vector. Also, the process can be interrupted at any time
for any reason giving the optimum estimate at this point, and resumed at a
later time, The Minimum Variance Method allows considerable flexibility in
the method of application to suit the particular requirements,

In addition to the important practical aspects, the method is able to consider
correlated measurement errors from one observation time to another.

C. LINEAR CONCEI'TS

The theoretical development of the linear filtering theory used in this appli-
cation is given by Kalman in Ref. 12 (see also Ref. 13). An application of the
method is presented in Refs. 14 and 15, The following presentation will deal
with the special case of satellite orbit determination and analysis,




The mathematical model of the dynamical system is represcnted by second-
order differcential equations of the form

iu):fiunxuﬂ (29)

wherc

asy
X 2| X,
X3
are the three position coordinates.

The individual terms of the right-hand side will be considered in a subse-
quent chapter. For the time being, it is sufficient to know that the equations
are nonlincar. To enable the application of the linear filtering theory, the
equations must be linearized and a solution obtained. The linearization can be
accomplished by expanding the equations in a Taylor series about a reference
trajectory and retaining only the first order terms. Thus

X(t) = f{x (1), x,(t)] + F(t) dx(t) (30)
where
af| af, af,
ax ® oo ® -5 ©
of, :
F(t) = 5{7 () » oo 00 .

and

Ax(t)=|""3
AX
ol
sz
..AXS.

The differential equations for the reference trajectory are

Koty = 1[ %0, x (0] (31)
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If wu subtract these from the perturbed equations, we obtain the linearized
ot perturbation equation

AX(t) = F{t Ax(t) (32)

The three second-order equations can be redueed to six first-order equations
by writing them in a standard form,

The fundamental solution to the obtained homogeneous equations is called
the state transition matrix and designated ». The solution ¢can be written in the
form

AX(t) = Mt. 1) Ax{t,) (33)

We now have obtained an algebraic matrix equation where the state transition
matrix * relates linearly the vector Ax at time t_ to the vector Ax at time t.

In a general case, a vector Ax*¥ will consist of all the parameters to be deter-
mined, and the matrix #* will be of a corresponding order,

The #* mairix possesses some important properties, which are summa-
rized as follows:

*(t. t) = I = unit matrix (34)
UL, 1) (L) (36)

In practice, the matrix ? for the six orbital elements can be obtained by
several methods, In our case, it will be obtained on the assumption of an
unperturbed orbit in an inverse-square central force field. Experience has
shown that this is a good approximation for orbits where the atmospheric
and gravitational perturbations are not significant. For very low altitude
orbits, the approximation may be insufficient and corrections for atmospheric
effects are necessary or the matrix must be obtained by other methods.

The equations that relate the observations to the instantaneous orbital
elements and eonstants, in general, are also nonlinear. They can be linearized
by a similar Taylor series expansion about a reference trajectory, and the
cquations can be written in the standard matrix form

Ay(t) = H*(t) Ax*(t) 37

where Ay is the deviation of the actual cbservations from the observations
associated with the reference trajectory. H* is the matrix of partial delriva-
tives of the observations with respect to the instantaneous orbital elements and
constants. The partial derivatives comprising the H* matrix can be obtained
and evaluated at the observation times in a straightforward manner,
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The third important matrix used in the filtering equations is the eovariance
matrix. At any point in the filicring proeess, we have only an estimate of the
instanta.aeous orbital elcments and the eonstants. We can consider them as
random sealars or eomponents of a random veetor, Thus the errors in the
random variables, whieh arc deviations from an expeeted or mean value, will
also be random variables and as sueh will have a zero mean.

€ -:A.‘i* = () (3,))

The estimate of the individual random sealars is not known with the same
aeeuracy. However, it ean be deseribed by the so-ealled varianee which is
defined as

~

[axr - ean]’} (39)

where € Ax* is the expected value of the deviations, and is zero in our ease.
The standard deviation is defired as the square roct of the varianece.

The individual eomponents of a random vector can be affeeted by the other
eomponents whieh is ealled eorrelation. Thus. instead of a single variance

assoeiated with a random sealar, a random veetor has, in general, variances
and eovarianees, The eovarianee matrix, P*, is defined as

T
p* = cov{Ax*, Ax*} = E{Ax* AX* } (40)

where Ax* means the transpose of Ax*.

The diagonal elemenis of this matrix are the variances and the off-diagonal

elements are the eovarianees. If the eomponents of the random vector are

uncorrelated, the off-diagonal elements will be zero. If the eovarianee matrix,
P* (t). is given at time, t,, the eovariance matrix, P* (t). at time, t, can be

oktained by use of the state transition matrix &*
T
Pr() - coviaxr), axtn) - {axrm ax’

= o%(t, t) PH(L) ¢* (¢, t) (41)

Similar eonsiderations apply to the covarianee matrix of the observation
arrors, Q.

D, FILTERING EQUATIONS

The statistieal filtering theory is based on the assumption of a linear multi-
dimensional dynamie system, whieh ean be represented by the following model:
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ALY ML) NE(L) (42)

y{ty - HXG) axt) vt (43)

where x*(1) is an n-vector aad represcits the generalized state veetor, y(t) is

a4 vector representing p independent measurements, and ut) is a p-vector
represeating an sdependent gaussian random process or noise. The $* and

H* matiie2s are o X i, and p x n matrices, respectively, which have been
uiscussed before. Since the actuai system is nonlinear, the above equations
represent the linearized or perturbation equations. For the sake of simplicity,
the perturbations are represented by x anc y instead of Ax, Ay.

These perturbations are refcrred to the estimated orbit. Assuming that
at time, tm, an estimate of the state veetor is known based on the previous

k observations, a better cstimate can be obtaincd which includes the k + 1
observation, Under the linear assumptions, this ean be expressed as

RE(E ) ettt RME)

- Kkxe [y ) - BRE ) e 1) R ) (44)

where X designates the estimate of X, The first term on the right-hand side
is simply the transfer of the state vector ﬁ*(tk) at time ., to time t, , by the »*

matrix. Thus it represents the estimate of X* at tk+lbased on the first k

observations, The sccond term represents the contribution of the new obser-
vation at time t, . The quantity in the brackets is the difference between the

i th obscrvation and the observation based on the estimated orbit. The matrix
K*(t l) is a weighting matrix, sometimes ealled the optimum gains matrix,

stnce it is obtained by optimizing a loss funetion.

As reprcesented in the above equation, the assumed model of the dynamieal
system is linear. However, in orbital analysis, it is advantageous to usc the
actual dynamical system rcepresenied by the nonlinear differential equations
of motion to propagate the cstimated state vector from one observation to the
next. Also, the cxaet cquations can be used to obtain the observations associ-
ated with the estimated orbit. With these modifications, the equation reduces
to

XAt ) KA [y - 7' )] (45)

t

where y' is the actual observation and §' is the observation based on the
cstimzted orbit. Thus the linearized cquations are used ouly to compt.te the
weighting matrix and the covariance matrix. The advantages of this approach
are that the process is less sensitive to crrors in the initial ceaditlons. The
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nominal orbit, being continuously updated, does not devia.e excessively from
the truc orbit. Conscquently, the chance of violating the linearity assumptions
is minimized.

Kalman Ref, 12) obtains an optimal weighting matrix K* for an independent
gaussian random proccss utilizing the Schmidt orthogonalization procedure in
a multidimensional space. Thc optimal filter or weighting matrix is obtained
utilizing the first and second-order statistics: the expectation of the state vec -
tor and the covariance matrix.

-ye -1
K*(t, ) = Pt ) B () [ ) Pre it )] (49)

where P* is the covariancc matrix of the state vector anu H* is a matrix of
thc partial derivatives of the observations with rcspect to the components of
the statc vector. The matrix P*(t, ) is obtained transferring the P*'(tk) nuatrix

by means of the state transition matrix #* and adding the ¢rror matrix Q*

PRt ) = Pt t) PR 2, 1) R () (47)

Knowing the weighting matrix K=* (tk-x)’ a new covariance matrix at time t Y

which includes the statistics of the ncw observation, can be obtained by the
recursion equation

P(t, ) = PXE ) - K(t, ) HX(t, ) PX(t, ) (48)

Since the state vector, generally, can be composed of many parameters, the
matrices will be of a large order, affecting the numerical operations.

In Ref. 14, it is shown that a simplification of the matrix equations can be
achieve if the errors in the observations are uncorrelated from one observa-
tion time to another. It is likely that for the samc station, the observations will
be correlated in this sense because of imperfect calibration, etc. In most
cases, it will be sufficient to represent such errors by an algebraic function.
Then the constants in this function can be regarded as bias errors, included
in the state vector, and ihus estimated along with the other constants. The
remainder of the errors then can be considered as a Gaussian random vector
and thus uncorrelated between two observation times. With this assumption,
the equations reduce to

&(t,.) = Kit,) [y - (¢, (49)
-1
Kt ) = P(t, ) H (¢, ) [Hit, ) Pt ) H ¢,) + Qt, )] (50)

Pt ) = ot . t) P'(t) ’T(tkq- t) (51)
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where all the matrices, eacept the Q mat 'x, pertain to the systew state veetor
ounly . The Q matrix represents the covarunce matrix of the observations.

H the siate veetor consisis of the six orbital elements, the muatrices will never
boe larger tin 6 x 6, The mntreix to be ioveried will bo of an order equil to

the numbor of the simultancous observations.

The toversion of the muatrix is an important wperiion and deserves further
by sis. I the observitions are licearly independent, i, ¢., if none ot the
observed scular random variables is a linear combination »f the others, the
matrix will be invertible whenever Pand Q are posilive definile, By virture
of definition, the covariance matrices P and @ arc positive delinite, and thus
the combination is invertible, The practical aspects of inverting a matrix,
however, are quite different from thosce of pure theoretical considerations,

It has been pointed out in Ref, 16 thit the differentinl correetion matrvis tends
to become singutlar as the time are of the filtering provess inerveases, The
singulitrity is apparently alsv aflected by the choice of the orbital clements,

In the Least Sgquares Method, this widl prevent a solution.  In the Minimum
Variaince Method, the situation is somewhat different.  First, as pointed out
carlier, the order of the madris to be mverted is equig to vhe sumber of
simultiiicosus observations and, if desirved, all the observations at w particular
time 1roed not be considered simultanecovsly.  The inversion thus can be mmade
trivial. Secoudly, in mo<t neoctieal eases, the observations can Lie, indeed,
considereDindependent oL vveowrcated foons one abhaerv Gan tiaee o another,
The Q rodeis thus will be o doagenmid mate,x. vepr.sentiag Cie vaenaces of the
phser s, As the filteeiag progresses, the orbit woll becone haown with
picher accuracy.  In other words, the etements of matrix P will assume smaller
e e 1 s cdues, Conscouentiy, the domivance of the Q vewriy will becoine
more j.ocasineed, and sivee it i~ 2 diigoniad matrix, no dnvession problem will
e eneonstered, Thus the chotee of the ovbital elemsants 19 ot critical andd
nte be nuude on the basis ob olner considerations, i the present case, the
arbital clements are the position und veloeity coovdinates. It a program
proeseoidyvoander development . no waversion dilficulties have been encountered,

E. iEIJECTION OF OBSERVATIONS

The N aennm Variases Metaod is applicable to normally disveibuted random
oo - GUas dnevitable e, i the observation data, theee wili be obsarvations
el b e redason ot cotier Wit be greatly i crror, As cven they should
il be o inded in the estimation, and some Kind ol eriteroon shoehi Le cinployed.

i

Flugs oo he done as follows,
At oy tie during the filtering, an obscrvation with a standard error muyst

pakb withn a cegion represented by the sum of the covoriauce mutrices of the
estimuted orbit and the olservations.
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R ) Pty H' (t) + Q(t) (53)

This covariance matrix represents an error ellipsoid of the observations

(Ref. 17). Because of the covariance elements, the principal axcs of this
ellipsoid do not coincide with the axes system in which the obscrvations are
represcented.  Since the matrix is real and symmetric, it can be diagonalized
by a similarity transformation. The diagonal elements thus would represent
the excursions of the observations in the dircction of the principal axes. How-
cver, the identity of the eriginal observations would he lost.

Leaving the R niatrix intact, we can partition it to a single clement, and
consider only the diagonal elements. These arc called marginal deviations,
and represent a case where the deviation of an individual observation is con-
sidered under the assumption that all the othcr deviations can be infinity. In a
general case, instead of a hyperellipsoid, this will give a rectangular hyper-
parallclopiped. The square roots of the diagonal elements of matrix R thus
will represent the standard deviations, ¢, under these assumptions., Now, aiy
actual observation which exceeds no, referred to the estimated orbit, can he
rejected. In the case of a good representation of the mathematical model and
knowledge of the ohservation errors, n could be 3 (30). It must be emaphasized
that the covariance matrices do not represent absolute numbers and, therefore,
should be t:eated accordingly.

F. DETERMINATION OF CONSTANTS, TYPE 1

The previously given matrix equations can involve operations with large
order matrieces, in case constants are estimated simultaneously with the six
orbital elements. However, recognizing the nature of the constants, certain
simplifications can be introduced and the order of the matrices reduced.

Therc is a certain class of constants which are not functions of certain
observations. In this case, the partial derivatives of the obscrvations with
respect to the constants are all zero. Constants of this type include the coef-
ficients of the zonal harmonics, exosphcric temperature of the atmosphere,
Earth's mass, etc., in combination with observations of right ascension,
declination, azimuth, elevation, range, rangc rate, azimuth rate and elevation
rate.

Returning to the previously derived equations for X*, K*, and P*, we see
that no difficuity is encountered writing X* in a partitioned form

& K |.
B =12 |= | K|y - 9 (®4)
n K,
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where X, ¢, n, now denote estincites nf perturbaiion vectors representing the
six orbital elements, constant= and mersurements, respectively, Thus the
veetors can be estimatoed nohosendently, It remains to investipgate the K* and
P* matrices, We can write

P‘(lh.i) "‘(t.«..‘.' l:; {7 k .t \1“ . ]F.} : u*uh'l) (55)
where l"'(lk) is in a partitioned form
!iP\' propy
Pit) B, PP, (56)

! l
1. t
I' p' p! I
l.\ll Pvn [l\ '
and P!, P', P'are the covariance matrices of the orbital elements, constants
N 4 n ’ y

and observations, respectively, The submatrices with double subseripts
designate the covariances hefween the three groups. Since a eovarianee matrix
must be symmetric, the ofl- diional submatrieos must bhe transposes of cach
other, The state transiticn inatrix M 1) can he expressed as

¢ Tl )

oy oy
L. A

Pt t)

o= A
ENENUE
|

where the * matrix is the state transition submuatrix of the orbital elements.
The state transition submatri. ot the constants is a unit matrix 1. 3, is a sub-

matrix relating the state of the elements at time tm’ as affected by the state
of the constants at te ‘The other submatrices are zero beecause: (1) there is
no eorrelation between the ohservation errors at time t, which are assumed
Gaussian random crror-. and the orbitai elements or constants at time tep

(2) the constants are not atfeeted by errors in the orbital elements; and (3) the

observation errors arce uncorrvelated from onc abservation time to another.

The covariun ¢ atre. @7 1 <L

To 0 o |
; .

QL. ) 0 a0 | (58)
r.+ I , |l
P00 Qo

and represents the observation errors,




Now, performing the required operations we obtain

B m
(o2 0,80 a7 + @B a2 el [amice oR] 0
PX(t, )= [p ¢~ + P @T] P! 0
C xC L
0 0 3
1 @l
P, P 0
i T —
-PTPR 0 (59)
0o 0 Q

Thus the transfer of the covariance matrix P*'(tk) can be aecomplished in

parts
P =8P+ P (60)
P, = (B 4B &+ B A (61)
P. =P (62)

Note that P;r = P..

<
In the expression for K*(t,, ), the quantity in brackets is
H* D* HY [HHH-l PO [HT

X X

Pl P O ||H!
0o o0 Q||H'
In our ecase H_= 0, and performing the matrix multiplication
T _ T T _
H* P*H* =H P, H_ +HQH =R

Thus the weighting matrix is

T
| e e
K*=pP*H* R =| PTH
LQ'H" i
7k, - H R (63)
K.=P_ Hl R (64)
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Performing the operations in the recursion equation we obtain

pP*' = p* - K» H* P* =

P, b o} PHR' | [i, o un] jl
T
x
T
X

P. P 0 |-} P ! R

Xt S X \

T
o o Q| gHR'

P, PO | |(P,H. R'HP) (P H R'H P ) (P H, R'HQ)

p' P o [-|(®IH, R'HP) (P H,R'H,B) (B, R H Q)
. T -1

0 0 @ [(QH R'HP) (Q'H,R H B) QH B'HQ)

Now the updating of the P* matrix can be done by parts. Thus the covariance
matrix of the orbital elements is

'

T -1
P =P -P H R HP =P -K H P (65)

The updating of the covariancc matrix of the constants is accomplished by
the equation

P =P -P"H R'HP =P -KHP (66)
IS C X¢ X X aC L c X XC

It should be noted that the second term on the right-hand side is strongly
dcpendent on the correlation between the constants and the orbital elements.
If the correlation is weak, the updating will be very ineffective, as will be the
estimation of the constants.

Similarly, the covariance submatrix ch will be updated as follows

) T
P =P -P H R'1H_P =P ~-~-K H P {67)
xc X X .3 XC XC X ® Xt

AL
The other submatrices Pxn and B need not be updated because they will

vanish in the transformation.

G. DETERMINATION OF CONSTANTS, TYPE 2

A similar simplification of the filtering equations can be accomplished if
the constants to be estimated are not related to the orbital elements, i.e.,
they are not included in the equations of motion. Constants of this type include
the coordinates of ohserving stations and bias errcrs in the observations.
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Again we can write the covariance matrix in a partitioned form:

joX p P! 7
X X xn
T
pr! (tk) o px'c PC‘ pc‘n (6%)

oo
Po Bn Bl

L xn

where the submatrices are defined previously.,

The state transition matrix now will be

3, 0 0
ot (t t)=[0 1T 0 (69)
0 0 0

Regarding the correlation from one observation time to another we have
made the same assumptions as in the previnus case with the following modifi-
cation. The observation errors now are assumed correlated and represented
by an error function. The constants in this function are represented in the
covariance matrix P. and estimated together with the other constants of this

type. The uncompensated observation errors arc considered Gaussian random
errors and as such uncorrelated from one observation time to another.
The transition submatrix don will be zero because the constants do not enter

into the equations of motion. The eovariance matrix Q* is the same as pre-
viously.

Performing the required operations we obtain

aPe’ P 0 P P 0
X X X X XC X XC
_ Tal ' _ T
P*(tk*l) = | B2, P, 0(=|P. P 0O (70)
0 0 Q' 0 0 Q

and the transfer of the covariance matrix can be done in parts

P =8P 4 @
p);(‘ = ?x p!:\‘.‘ (72)
P =p (73)

The weighting matrix K* can be obtained, first, considering thc expression in
the brackets.
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T u- i . .
H* PYH* < (H, P, + HP,[ H + (H, P, ~ H.P, H, +H,Q'H' =R

The weighting matrix is then

" -1
[Px H! <P H ] [R]

- T -1 _ T T
K* -P*H* R =|PTH] + P H,

Q' H,
or
=(P, HI +P__H! R (74)
K.= (P, HL +P_ H] )R (75)

The recursion equation then can be obtained as follows:

pP*' =P+ -K¥H*P*=|P, P 0 K,[[HHH] |P, PO
PP, 0 |-|K, PT P, 0
0 0 Q K, 0 0 q

Which gives after performing the required operations

T
P;c =P, - K (HyP, +HP, ) (76)
P:cc - ch_' Kx(Hx ch+ Hcpc ) 77
Pl =P -K(H,P, +HP. ) (78)

Thus the order of the matrices is reduced, and, for the diagonal submatrices,

it will be equal to the number of the orbital elements or constants, respectively.

For the covariancc matrix P*, the submatrices forming the rows and columns
are simply transposes of each other. The submatrices !’ and P and their

transposes in P*' need not be computed since they will vanish in the transfor-
mation. In either case, the maximum order of matrix R, which must be in-
veried, is equal to the number of simultaneous observations.

The equations as derived in this and the previous section are for a simul-
taneous estimation of the orbital elements and constaits. Obviously, the whole
process can be separated in two parts. First, the constants may be assumed
known and a best fitting orbit determined as in a normal orbit determination

T



routine. The residuals then can be attribuced to the constants and the filtering
repeated considering only the equations pertaining to the constants. The corre-
lation between the orbital elements and the constants thus will be ignored but
the estimation process will be simplified.
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VI. STATE TRANSITION MATRIX

A, FORMULATION OF THE PROBLEM

One of the matrices in the filtering equations is the state transition matrix
of the six orbital elements. This matrix can he ohbtained for the exact mathe-
matical model by the so-called secant technique. i.e., perturbing the elements
one at a time and ohtaining a solution by integration. For ohservations close
together. and using the Minimum Variance Method in a point-to-point modc as
outlined previously. this can be a very efficient method. 1If the ohservations
are far apart, the method is very time consuming.

The matrices used in the filtering cquations are not arrays of absolute num-
bers, and so do not require ahsolute precision. Therefore, a good approxi-
mation of the actual dynamical system is permissible. Experience has shown
that such good approximation is a simple inverse-square central force field.
The resulting crbits are a circle, ellipse, parabola or hyperbola, depending
on the eccentricity. Even with this appreoximation, the analytical solution has
presented considerable challenge. As a result, many analytical methods have
been developed and published. A pure, closed form analytical solution, how-
ever, is not always the most satisfactory for the electronic computer. The
computer is most efficient for repeated solutions of simple arithmetic equa-
tions, which save storage space and computatiou time. The method that
follows has been developed with these considerations in mind.

The problem can be stated as follows. Given the six orbital elements in
the form of rectangular coordinates x,. y,. z,, X,, ¥,, Z,, at time t, find
a state transition matrix which is defined as one relating small perturbations
of the state at time t, to the resulting perturbations at time t,. A fundamental
solution will be obtained, first, for an elliptic orbit, and then extended to
circular, parabolic and hyperbolic orbits. Since orbits in a central force
field are planar, the solution can he obtained in three steps: (1) in-plane
perturbations; {2) out-of-plane perturbations: (3) transformation to the

original axes system.

B. ELLIPTIC CRBITS

The direction cosines of an axes system in which the x_-axis is directed
toward the point on the orbit at time tl’ y_-axis is in the orbital plane such

that jrw> 0, and z_-axis completes a right hand system are, first for the x -
axis

X y A

1 1 =
=~ 5 == . - 79, b, ¢
r 1 f]‘” ( )

g =
! 1 1 t
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The direction cosines for the z -axis are obtained by taking the vector product

rX v Then

£, WT___ (80a)

1
n, = XXz (30b)

d,
¢ LY oNx (30¢)

3
d,
where

1/2
. . 2 . « 2 . . 2
d, =[(y17‘1'7‘1y1) (2 X)X, 2) +(xlyl-y1xl)]

Similarly, the direction cosines of the yu-axis are obtained from the

vector product of the unit vectors in the direction of z -and x -axes,

£,=n% - ¢, n (81a)
M= 58§ 8, (81b)
A
¢, = £, - N, & (8.Y
The velocity components in the new planar axes system arc
-, - S
X & ™ G| x| (82)
- |
!
CARURIRY
also  y. =2 - z =0 (83)

We can now compute a set of orbital elements which define the planar orbit
(sce Appendix).
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A=1- l (84)
x“‘l x‘l y‘“l .
B = —Tp——,-—'* (35)
XY
C = i (36)
A and B give eccentricity
1/2
e = (A" +B) (87)

Rotating the planar axes system so that the x-axis points toward the peri-
center, the direction cosines of the new system are
A B
e

€&,="% o M= - (88a, b)

and the normalized coordinates of the initial point in this axes system are

X, = = ., %" o M (89a, b)

We can now find the complementary angle

e+(1-é)x,
8 = arctan (90)
1 1/2 —
(1 - e2)/ ¥,
The eccentric anomaly is
T q -
E, = o - 9, ify >0 (91a)
E =27 -8 ify< 0
) = 3 -9 if y < (91b})

The mean anomaly for the initial point is from Kepler's equation

M, =E - esin E (92)

1
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Now the eecentric anomaly for the {inal point can be obtained by an iteration
method,  For a first approximation

F, M, - - (93)

where

1/2

Cli

K. = | e and At = t,-t,
(l e

and the solution ean he obtained to the desired degree of aecuracy by sueeess-
ively computing

M, = E, -esinkE, (94)

at, = K (M, - M) (93)
AL - At

E, = E, - (96)

2 24 K. (1 -ecos E, )

0
where the subseript o designates the previous estimate.

The position and velocity of the final point in the planar axes system
ean he obtained hy solving the following set of equations

_ cosE, - ¢
X, = ——————— (O7a)

y, = 7 (97h)

x - - & : (932)




( % zna ! V 5 )C (95h)

- £
5 5 \1/2

e o _\:) (99)
c ERRS 1/2

¢ : M (100a)

x‘ ___'—_"r —_— C

2 2

A I'2 "R /2

L (_P_) (100h)

-9 r2 C

This process must be repeated either four or eight times, perturbing
successively x_ , yhl, xt_l, 3}*1 , and starting with Eq. (84). Since the
1

perturbation of y  means the reorientation of the axes system, the perturbed
"1
velocities x_  and 31 must be transformed in the new axes system, before

1 !
solving for the elements A, B, C, by the matrix

F N
r “1
X X
! “1

AY r

_ 1 ] {101)
X X

B L«l t-,l _l

where Av is the perturbation and
1
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After obtaining the final values L A x_ .y, for this case, they must
2 2 2
be transformed into the original system by multiplying by the transpose of this
matrix.

Each perturbation will give the partials of x_ , y_ ’.‘h ., ¥ with respect

2 2 2 T2

to the particulav perturbation. Thus

. .
11 Ax AX . ete,

where x is the nominal value of xuz.
“2n

A state transition matrix for a planar orbit in the x_-y_ - z_ axes

system can be written as

— —

|
¢11 ¢l'.‘ 0 t‘bl«l ‘blﬁ 0

i: . 36 (102)

0 0 ®,0 0 o,

p—

The first, seccond, fourth, and fifth columns of the matrix have been obtained
by the perturbation technique. The indicated elements in these columns n st be
zero because, for a planar orbit, the in~plane perturbations cannot cause out-
of-plane deviations. Tt remains to determine the third and the slxth column
which is duc to the cut-of-plane oi Az_and Ai@ perturbations. The main

effect of these perturhations is to tilt the resulting orbit with respect to the
original orhital plane. For small perturbations of z_, and z_, the tilting

angle and the increment in total velocity is small. To a first order approxi-
mation, assuming that the cosine of small angles is equal to one, they will
have no effect on the x_ and y_ coordinates. Thus the indicated elements

in columns three and six are assumed zero.
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Considering a ncw axes system with the E‘_—uxis displaced by Az and
' -1
the new orbital plane determined by the new velocity vector v -A%
"1 IR
we can obtain the direction cosines of the new Z_-uxis neglecting higher

order tcrms

Az
z !
£=- X
“1
X Az
-, =
| 1
€ =1

Because of orthogonality, a projection of coordinates in the new system
on the original z_-axis will be

/A3 %

- [ ] FA
~ X “ y.. X_ ¥ 2 e

We previously established that, because of the small angles, 5{“2 =x_ and

2

}; =y toafirst ordzr approximation. Now if z 2 = 0 ({(for a planar orbit)
2 2 I
X Xy Y
az =\ = -2 Az +> Ai
2 X X Y “I Y 1

bz X_ Xy

_ 2 - 2 _ 1 2 (103)
3 Az ') X v
and 1 1 R
Az Y
2 2

. _ (104
?’36 AZ y. )
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By & similar process we obtain

A?..«.. 'x\... i&- .w
IR i Yt e 3 (109
sy AZ X X_ ¥

Az ¥

2 T2
w XT3 (LOG)

Thus all the elements in matrix ¢ are known. Forming a matrix X from the
previously computed direction cosines

§ 88000
n,n,n,000
£, 6, 8000
00 0§ E&
0 0 0nmn,n,
(00 0888

(107

We can now obtain the state transition matrix in the original rectangular coordi-
nate system

p=XoxF (108)

The general procedure is valid for all eccentricities with exception of the
particular computations as outlined next.

C. CIRCULAR ORBITS

In the expressions for the direction cosines §, and 1., the eccentricity e

appears in the denominator. However, because e is obtained from (A2 + Bz)l/z,
no numerical difficulties will be encountered for small eccentricities as long as
a sufficient number of significant figures are carried. Obviously, circularity is
a relative matter. Thus at some point the orbit can be assumed circular.

Since a circular orbit has no pericenter, we can assume an orientation of the
x-axis to coincide with the initial point. Therefore, tie direction cosines are

£ =-1,1m=0 (109a, b}
and thc final eccentric anomaly is

At
E, =% (110)

(
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The rest of the solution is the same as for the elliptic casc.
D. PARABOLIC ORBITS

A parabolic orbit has an eccentricity, e = 1. The chances of a pure paraholic
or a pure circular orbit occurring in computations are low and, as pointed out
previously, in fact, is a relative matter. In the assumed rectangutar coordinate
systcm. the solution for a parabolic orbit can be obtained in a closed form.

First. the normalizcd area swept out by & radius vector from pericenter to the
initial point is (see Appcndix)

—
—

o>

1t
s |
o] <L
et
»i

+ 55 (111)

and the area swept out to the final point is

A, = A+ At (112)
K

C
where

3 1/2
] g_)
£ =& (u
from which the coordinates of the final point are

_ 5 2’3 2 yz |13
Y, = 6A, + (36Az 4 l) +|6A, -136A, + 1 (113a)

— -2
%, = 3 (1 - y2) (113b)

The rest of the solution is the same as for the elliptic case.
E. HYPERBOLIC ORBITS

Hyperbolic and elliptic orbits are the most important orhits. A hyperbolic
orbit is one with eccentricity, e > 1. The solution for a hyperbolic orbit must
be obtained by iteration. We can write the normalized area swept out by the
radius vector from pericenter to the initial point

A =€y In B, (114)

(ez—l)lhZ




where

) N y 12 _
Bl = e - (e"-1) xl-(e ~1) ¥,

For a first estimate of the final point we assume a parabolic orbit. The esti-
mate of the swept-out area to the final point is

¢
A=A —~—f‘—»———— (115)
2(e*- 1)K,

3
K - L (.c_)
¢ M

02—1

wherc

1/2

The estimated _f,:., and §2 are obtained from Egs. (113a), (113b) and an improved
A, obtained from

— 1
A, =ey,~ T In B, (116}
(e"-1)
where
. 2 1\= 2 M2 =
B, =e-(e —l)xg -{e-1) "y,

The time corresponding to the estimated final point is
At, - K, (A2 —Al) (117)

The iteration is done on 5?2 successively solving Eqs. (116), (117), (118}, and
(119) until the desired degree of accuracy is reached.

B,, [(ez-l) %, - ] (At - At)

v, =g, +

° K, }(Bzoe-1) [(92-1)?{2 -e] - (& -1)” i%% (118)
1f2
_e- [1 . (e® -1)y22]
X, = 5 (119)
e -1

The remaining solution is the same as for the elliptic case.

Experience has shown that the initial estimates of X, and ¥, in the hyperbolic

case are unimportant and even grossly inaccurate estimates will give rapid
convergenee using the above method. Therefore, the use of the parabolic
solution for the initial estimates is justified.
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ViI. EQUATIONS OF OBSERVATIONS

A. REQUIREMENTS FOR ANALYSIS

To obtain the residuals or differences between the observed and estimated
observations, it is necessary to compute the associated observations from the
estimated orbit. In addition, the filtering equations require the H-matrix which
has becn decfined as a matrix of the partial derivatives of the observations with
respect to the state variables, As shown previously, the F-matrix can be par-
titioned to simplify the matrix operations. It was also notcd that for a large
class of constants the H_-submatrix was either zero or a unit matrix. The

relationship between the observations and the orbital elements as well as the
associatced H_-matrix remains to be determincd.

B. ANALYTIC EXPRESSIONS

To obtain the expressions relating elevation and azimuth to the orbital ele-
ments, we will utilize the equations given in Section III-F, Knowing the satellite

coordinates Xpr Yoo Zop in the topoceniric axes system as defined previously,

elevation and azimuth can be expressed as

Z

E = arc ta —:—-—T—;—ﬁ (120)
(2 +52)
X
A = arc tan [y—'r—] (121)
LYt

and the partial derivatives with respect to the six orbital elements in the form
of position and velocity coordinates are

o] ﬁ_x .
ax T
3E Zr T
el o sl |y (122)
1'2 (I‘z - 22)
T T T
2 _ L2
3E T
_81 ] i Zoy i
0E _ 0E _9E _
ax ay o3 0 (123)
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and

dA
ax — -

g—‘é = = LB S5 Say -X (124)

oA
dz

BA _ BA _BA _

A% 8y ai (129)

where

1/2
o 5 [k +y2+zzh
T T T T

and the matrix S has been defined previcusly in Section IiI-F,

The cxprcssions for the estimated right ascension, @, and declination, 6,
must be obtained in the particular celestial system in which the ohservations
were obtained. It must be noted that, in practice, the observed right aseension
and declination arc obtained in an astrometric system, which is defined by the
coordinates given to a number of stars. Thus the diffcrence betwecn a celestial
and an astrometric syctem will be due to the errors in the astrometric system.
With this understanding, we will designate the celestil system as the reference
system.

Aftcer transformation of the satellite and station coordinates into the required
celestial system (see Section [II-F), the estimated right ascension and declina-
tion can be obtained from the following celationships.

o = arc tan == (126)

6 - arc tan |——— (127)




where the subscript, 0, indicates satellite eoordinates in the celestial system
and subscript s, indicates station coordinates in the celestial system.

) 5 1f2
(AR

The partial derivatives are obtained from the above cquations giving

e

oa = -
9x £, L, (yo yso
1
s |3 (129)
ay | X, L, %, (xo - xso)
and
da _Ba _2d0 _da _
9z ~9x 9y 982 0 (130)
26 | L \
ax r‘{0 (20 B Zso) (xo ) xso)
6 | L Tt - Lo - -
By > (1] r (z zso) (yo yso) (181)
| ¢
88 .
L 97 | L %o -
96 .38 _ 96 _
8.2 .20 (132)
where
£y &y 4

[L)=| %, £, &; |=P; P N

2y Ly Ly |

is the transformation matrix from the true equinox and equator of date to the
mean equinox and equator of the particular celcstial system (see Section III-F),
The radius




142

rp o= [rio (z0 - 250)2} (133)

L

The matrix L normally will be close to a unit matrix, and in many cases,
the multiplication of the partizal derivatives by this matrix may not be necessary.

The elevation and azimuth rates can be obtained by differentiation of the ex-
pressions for E and A with respect to time.

T, r
B - ] T X7 (134)

R S A
T T T (135)
2+ 2
Xp* ¥

and the partial derivatives of the elevation rate with respect to the orhital ele-
ments are

I . T 4 o _d -ﬂ

ok A Lkt -t x)|-—-2x_E
I A Xp Ty = Typ X9 ry 1 Xr

.@E :--].‘..[S]T -Z ¥ _i(j r -7 y.) _l...._,z ];:‘. (136)
3y r; _T T Ty T XTOXTTr o Y1 ‘
BE.: . L

9z L' (rp * 22, E)
L - -
B l-1 B T
ok _XTZT

X P

- y z
8E :-1—-(s]T T (137)
9y r? T

T
9z XT

Similarly, the partial derivatives of the azimuth rate with respect to the
orhital elements are




(k- 24 y) (138)

- X (139)

and the matrix S has been defined previously (see Section III-F),

Next we will consider the expressions for range, range rate, and range
acceleration, which are, respectively

1f2
v = (x-zr * Y+ Z?r) (140)
. _ 1 T . ® E w03
T T (Xp Xp * 3 Yp * 27 29)
1 . ' . .

= -q [(x ~X) (X twp ¥) (Y -y (V-wpx)+(z- zs)z] (141)
Y =L[().{2'W2 y2)+(x_x)('x°_m2x)+
T I‘T E S 13 E 'S-
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2 22 TR
Y -wn, XY (Y -y (F el ¥)
. ) . 2
tzv+(z-z)z - re (142)
Where W, is the rate of Earth's rotation, wp = 0.000072921150 radians per mean

solar second., The subscript s indicates station coordinates.

The partial derivatives of rarnge with respect to the orbital elements are

o
X s
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=10

T
} 143
5y Y- Y (143)
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and the corresponding derivatives of the range rate
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Finally, the derivatives of the range acceleration are:
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VIII. EQUATIONS OF MOTION

A. ASPECTS OF THE MATHEMATICAL MODEL

The mathematical model of the dynamicai system is expressed by the
equations of motion with terms representing the various forces acting o~ the
satellite. The main fcrees acting on a close Earth satellite are due to Earth's
gravitational field, atmosphcric drag, Sun's and Moon's gravitational fields and
solar radiation pressure. The effect of these forces can vary considerably,
depending on the particular orbit. For example, a circular orbit of an Earth
satellite at 800 km altitude will be perturbed by a maximum of about 1.5 km
due to the second harmonic in the Eartli's gravitational potential, while the
maximum perturbation due to the combined gravitational attraction of Moon and
Sun will be less than ¢ meter. The perturbations duc to atmospheric drag
and solar radiation pressure may be of the same order of magnitude at this
altitude, while at low w:ititudes, the effect of drag will provide the principal
force. Therefore, for a close Earth satellite, the perturbations due to the
gravitational attractior o1l the Moon and the Sun, and the perturbations due to
the solar radiation pressure may be computed considering only first-order
effects.

The equations of motion tor a close satellite are written in the previously
defined basic axes system.

X = XG + Xl) +XG+X¢ + XSR (149a)
y =Y +Y +¥ Y+ Yoo (149b)
z =7 Y2 +Z2,+Z, + 2 (149¢)

The terms with subscripts G,D, o, ¢ and SR represent the components of
acceleration due to Earth's gravitational field, atmospheric drag, Sun's
attraction, Moon's attraction and solar radiation pressure, respectively. For
accurate computations, the independent time argument in the equations of
motion must be in a uniform time scale, such as the atomic time (see Chapter
II).

We will now develop the terms in a form convenient for integration in rec-
tangular coordinates.

B. EARTH'S GRAVITATIONAL FIELD

The mathematical representation of the Earth's gravitational field is ex-
pressed by means of the gravitational potential function which can be written

57

L e e it . .




o n R ‘ noo . . (150)
= [1 +Z _E) P_(sind) (C , cos mA+ S sinm])
r
0

where u =G MEB

J ,C

n ? nml
the Earth, r the distance of the satellite from the center of the Earth, ¢ the
latitude, and P;“ the associated Legendre polynomial

and 5., are numerical coefficients, R_ the mean equatorial radius of

P B 9 mf2 " P (X
n (%) = (1-x7) ——— (151)
dx

where P is the Legendre polynominal. The longitude X is to be counted posi-
tive to the east in this application.

The harmonics represented in the gravitational potential function are called
spherical harmonics (Ref. 18). If 0 < m < n they are called tesseral harmonics
as a special case of the spherical harmonics. I m = 0, they are called zonal
harmonics, and if m = n, they are called sectorial harmonies. The gravitational
potential for bodies with spherical symmetry can be expressed by the zonal har-
monics only, i.e., the potential is a function of latiiude and independent of longi-
tude. For bodies of arbitrary shape, the potential must include the tesseral
harmonics, which are dependent on both latitude and longitude.

The Legen're polynomials are computed from the general expression:

-2

p 135 (2n-1) f(;_)" n(n-l)(z)"'

r

n 1-2-3---n r/ 2(@2n-1)
nin-1)(n-2(n-3 (z\ |
+ z - (152)
2.4.(2n-1){2n-3) \r {
The components of acceleration due to the gravitational potential are
. _au
=2 153
X = 5% (153a)
. au
Y, =5 (153b)
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7o 3 (153¢)
Z

Before we differentiate the potential function, we will write U in the followirg

form

(154)

where 1/r represents the potential of the total mass concentrated at the center

of the body. The potential functions representing the zonal and tesseral har-
monics are U, and U,, respectively. By differcntiating p,/r

B (B _ _ux
e (r) === (155a)
r
DBy .y
ay(r) i (155b)
8 (HY_ _uz .
3z (r)‘ 3 (155¢)
r
where

and

ar _y ar _z
r’ r

Now, computing the Legendre polynomials and substituting into the potential
function,we obtain for the first nine zonal harmonics
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J_ (R Y7 ( 5 3

7 E z z Z Z
6 (—r—) [429(;) - 693 (;) N 315(;) - 35 r]

o I—‘Ed 6435(2Y" - 12,012 (2 + 6930 (2Y - 1260(2Y + 35
"8\ 5(r) - (r) (r) (r)

9 (Rr:)9 z\? zY zY 2)3
*3Ra\ T 36, 465 (;) - 77, 220(;) + 54,054 (T) - 13’860(;'

+ 945 %1 ( (156)

A

The partial differentials of the above function with respect to x, y, z can be
written in the form

aUZ . E)UZ ar (157a)
ax ~ \ dr . ax
a_UZ_ = a_lfé. ar (157h)
oy ar /, 9y
au au aU
Z z| ar z
s _ (NELEN) Ol S 157
9z (ar)z az * (az)r (157c)
BUZ
where B designates the partial derivative of UZ with respect to r when z
au

is kept constant, and a_zz' the derivative with respect to z when r is kept con-
stant. r

By performing the differentiations we obtain
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Comparing the two derivatives and designating

+

z
f1=-3;
22
f2=-7.5(;) +1.5
3
£ =-17.5(§) +7.52
r I

3 '\ 2
f = -39.375 (%) + 26,25 (%) - 1.875

]
[}

3
-86. 625 (5)5 +78.75 (%) - 13.125%
T Ty T
6 4 2
£ = -137.6375(5) + 216.5625 (5) - 59.0625 (5\ +2.1875
r r r)
7 ¢ 5 3
£ =-402. 1375(-?;) + 563. 0625 (5) - 216. 5625 (%) + 19.6875%

z\B Z\6 z '\
f = -854.648437 (;) . 1407.65625(;) - 703.828125 (;)

2
. 108.28125(%) - 2.4609375

3]

9 7 5
f = -1804.25781( ) + 3418. 59375 (-) - 2111. 48437 (%)

=

A z
+ 469.21875 -I: - 27.0703125 T

we can write

au R_\? R R)g
z) __ M E ey f,d +--+[_E) f J
(ar)_‘ Tz [( r) fz J2+(r) 33 (r o (158)
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and, designating the two functions in the brackets as Fl and F2 , respectively,
we cun cxpress the accelerations due to the zonal har_aonics as

8U7 ux

% "X, =5 F (1602)
r

3U, 5
r

au

B = . -
5z %2 ¢ 2 (r F Fz) (260c)

We will now develop the tesseral harmonics considering the gravitational
potential up to the fourth order harmonices.

n=4 n n
RN Re =
o=t ) 2 (Z2) 27 st0 60 Gy cos ma + 5, simmn [ a6t
n"_'z mz]

For integration in rectangular coordinates, it is convenient to express the
trigonometric functions in terms of x™", y", z', which are the satellite coordinates
in an Earth fixed terrestrial sysiem. The integration itself is done in the basic
system defined in Section III-B. The required coordinatce transformations are
given in Section III. To facilitate writing we wiil adapt ihe notation

X = x"
y=y"
z=z"

With this notation, the trigonometric functions can be expressed as

sin ¢ =—f;
. 2\ 1/2
2 2

cos & JL*.LL

r
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where

r2=x%+y?+z?

The associated Legendre polynomials then are

. 2 2
p> -g¥ *Y
2 r2
1/2
Pi _E(S 22 - r2)(x2 +y2)/
3 2 3

r

2 2
p° - 152X *¥) *3'

r

3f2
15 G2yt )” /

3
F, = i
‘ 1/2
1 _5zi7z2-3r2)(x2+y2)
P, =3 4

r

p? 15 (12" - ) (x*+¥%)

4 2 r4
3/2
Lf.2 .2
P3 =105 JX ty )
4 4
r
2 2}2
1?: _:105(1‘._:)’_)_
r

Similarly, we can express the longitude dependent functions in terms of the
rectangular coordinates.

Then we can write

U'T = “(fzz * f‘3] * f32 v f33 * f41 * f42 * f43 * f44) (162)
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(e} 15 2 gl 2 _ 2
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R
[ e} 105 4 ) 4 1 2 2
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Performing the differentiations we obtain

2
au I R
s =" = " 2 ¢ _ 2 2 2
Xr®%x ° 7 {szx[zr -5 (x 'Y)]+S,2,_, 2y (r -5x)}
3+LR5
TR 111[5" (r' - 72') + (57" -r)r]+s 5xy(r-7z)}
2r
154R. z
—E 2 22 2 )
+ rg {032X[2r -7 (x "Y)]+Sn 2y (r —7x)}
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33
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154 R’
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) rllE IC” [r2 (- y°) -3 & - 3Y2)] *5, XY[2I‘ -3 (3x" - Yz)]}

1054 R
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2 2 9 9
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The accelerations due to the gravitational potential then can be written

x,:-t‘-_‘-’hx’ + X (166a)
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Y - - El CY v Y (LG6D)

z =~“—§+z +Z (166c)
r

C. ATMOSPHERIC DRAG

The acceleration due to drag on a satellite is a function of atmospheric
density, p, relative velocity of the satellite with respect to the atmosphere,
v, satellite mass, m, drag coefficient, Cp, and reference area, A.

The atmospheric density can vary considerably and is rather diffi:ult to
evaluate with an accuracy necessary for precise orbit determination, particularly
at lower altitudes where its effect is large. It is a function of altitude, exospheric
temperature (e. g. Ref. 19), and the relative position of the Sun.

If the density is given, the expression for the acceleration is
2

pv: C_A
r.._n (167)

a:
D 2 m

The relative velocity, v, can be obtained on the assumption that the atmos-

phere rotates with the same angular velocity as the Earth. The relative velocity
components in the basic axes system then are

v, =XKtwy (168a)
V=Y -w X (168b)
v, =2 (168c)

Where «_ is the angular velocity of the Earth's rotation.

Then

1/2
v = (vf +v: o+ v2) {169)

and the components of the accelerations in the basic axes system are
CD A

170
T (170a)

XD= - PV Vv,
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%, AV, 5= ( )
CD A

Z,, " -pv. v, o (170¢)

D. SUN'S GRAVITATIONAL ATTRACTION

The perturbing action of the Sun on a elose satellite orbit can be expressed
by the so called disturbing function. If the ratio of the satellite distance from
the center of Earth to the Sun's distanee is sufficiently small, the disturbing
function can be expanded in power series whieh converge rapidly. The disturbing
function is given in a generai form as

| XX, tyy. tzz
R.z“._:(—" et (171)

Ja) r3

where
m.o=GM,

and x, y, zand x , y , z are the satellite and Sun's coordinates, respeetively.
Ais the distance between the satellite and the Sun,

N - (x-x)ry-y)-(-z) (172)

The listurbing function can be expanded in powers of r/r | (Ref. 20) giving

Bl Y (3 s 1\ frN (5 5 3 )
R,\)-;-[(;-) (—ieos e-§)+(-z-_-0) 5 €08 0——2-c030 oo (173)

where the functions in the brackets are the Legendre polynomials which were
treated in Chapter VIII, Section B.

0 is the angle between the direetions to the satellite and the Sun.

Consequently,

XX +tyy + zz_

_ 174
cos 0 ) (174)
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and we can write the disturbing func..on neglecting all higher order terms as

B, 3 2 1 .
RC=-3[ 2 (xx0+yyo+zzo) —E(x2+y3+zz)j| (175}

[

r, 2r )

The accelerations duc to the Sun's attraction then are obtained by differentiation,

OR ]
X A '5?- - 'r_3' [31‘ gc(ggf) i3 ng*’ Cc'_";)' X (1745a)
dR_ K, ]
Ys=gy = ey [31‘ N, (EE+ N+ LX)~ y (176b)
¢
aR _ o I" B!
2,5 = 37 o B8 M 8- 2| a6c,
O

where £, n, ¢, and EO, n. ¢, are the direction cosines of the satellite and the
Sun's radius vector, respectively.

The direction cosines of the Sun can be obtained with sufficient accuracy
from the following equations.

§,=cos Vg (177a)
N, = sin v co8 € (177Db)
= sin v_sin € (177c)

where the Sun's longitude, Vo from the mean equinox of date is

v, = 4,8883394 + 0.017202791 d
+ 0, 03345 sin (6. 2482906 + 0. 0172019697 d) (178)
and the mean obliquity of the ecliptic, €, is obtained from

€ = 0,40920619 - 0, 6218433 x 10" d (179)
The Sun's distance from the center of Earth can be obtained in kilometers from

r, = 1,496 10° [1 - 0.016725 cos (6.2482906 + 0, 0172019697 d)] (180)
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These expressions are based on the fundamental ephemerides as given in Ref, 1.
h

The angles arc in radians and d is in ephemeris days from 1950 January 1, 0 E.T.

E. MOON'S GRAVITATIONAL ATTRACTION

Since the Moon s much closer to the Earth than the Sun, the convergence
of the series in the disturbing function will be slower. Therefore, for higher
altitude satellites and accurate orbit computations it may be necessary to con-
sider more terms. To a first order accuracy, we can write the accelerations
as obtained in the previous section,

oR. u. T 7
= e = B - 1
Xo= "o & (5 n_+ €8 & (181a)
(L
aR. . [ T
Yooy oo o (e e v et
aR_ W i _
Z . T em——— |_3r g,(: (EEC+ m’!{ gtk{) Z] (ISIC)
~ 9y r3

Where £, n, ¢ arc defined in the previous section, and Er’ N.» g, are the

direction cosines of the Moon's radius vector from the center of the Earth.
They can be computed from the following expressions

.= cos A cos - 0.99596 sin A.sinG (182a)
-= cos € (cos )\T sin 2 + 0. 99596 sin A cos Q)
- 0.08976 sin € sin Ap (182b)
{.=sin€ (cos A sin @ + 0. 99596 sin A cos Q)
+ 0,08976 cos € sin )\T (132¢)
where € is the mean obliquity of the ecliptic given by Eq. (179).

A_is the angular position of the Moon measured in the Moon's orbital

plane from the ascending node on the ecliptic, and is obtained from the ex-
pression
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A= 0.91215551 + 0,23089572 d + 0.10980098 sin (3, 7617316
+0,22802714 d) (183)

{1is the longitude of the ascending node of the lunar orbit on the ecliptic,
measured from the mean equinox of date.

2= 0.21140807 - 0,0009242193 d (184)
The lunar distance can be computed from
T = 384400 [1 - 0, 054900489 cos (3.7617316 + 0, 22802714 d)] (185)
In the above equations, the angles are given in radians, r. isin kilometers,
and d is defined in Section VIII-D. The higher order terms have been omitted
but the equations are sufficiently accurate for our purposes.

F. SOLAQLR RADIATION PRESSURE

The energy of solar radiation which is imparted to a celestial body per one
square meter of surface area per one second of time is (Ref. 21)

2

r n

$ = 1350 (—“—) oules (186)
m2 sec

Where r, is the mean distance of Earth from Sun, and r is the distance of the
body from Sun,

The force on the body generated by this energy can be expressed as

_S(1+R) 2 [newtons
FSR c cos™ —mz— (187)

where R is the reflection coefficient, R = 0 for an absolute black body, and
R = 1 for a specular surface, c is the velocity of light, and « is the angle of
incidence with the surface.

For a sphere, this equation reduces to

F = 2 8(1 + R) [newtons] (188)
SR c 2
m
The acceleration produced by this force will be
A m
a_=F_= (189)
SE "SR m [sec2 ]

71

B | LB AN i S gl " A o S i e




*

where A is the reference arca, and m the mass of the body.

The direction of the acceleration is away from the Sun, and thus it opposes
the Sun's gravitationa! attraction. The components of the acceleration are
found by muiltiplying «,, by the direction cosines £.01 C}

SR

X, == A, § (190a)
sk~ A" (390b)

Zgy = - asnf : (190c)

It must bc noted that the direction cosines €, N ¢ are definirg the

direction Earth-Sun. Howcver, for close satellites, the error introduced by
using them for satellite-Sun direction is negligible.

The radiation pressure is experienced by the satellite only at times when
it is in the sunlight. The angle o between the two vectors in the directions to
satellitc and Sunis found from

cos 8 = £§ + nn - C¥ (191)

The satellite is always in sunlight

when

r sing > RF

If r singé < R, the satcllite is in sunlight only when simultaneously cos 68 > 0.

G. INTEGRATION OF THE EQUATIONS OF MOTION

Integration methods can be, generally, placed in three groups: (1) self-
starting techniques, (2) difference techniques, and (3) predictor-corrector tech-
niques. Although all three techniques have been used in orbit integration, the
self-starting methods have a distinct advantage in orbit determination programs.
The advantage stcms from the fact that the integration must be done between
two arbitrary observation times, but the last two techniques, normally, employ
a constant integration interval. Morcover, the differential equations for a close
Earth satellite are of second orvder in which the {irst derivatives are Included.
Most of the standard methods of the second and third type used in astronomical
orbit integration have been developed for the special case in which the first
derivatives are absent (Ref 22). The disadvantage of the self-starting methods
lies, mainly, in the computing time required for the integration. However,
this can be compensated to a large extent by incorporating methods which vary
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the intcgration step size and/or estimatc and adjust the error according to somc
criterion,

Errors in numerical integration are due to two causes: truncation and round-
off. Truncation errors are caused by the replacement of the actual differential
equations by ordinary difference equations and omission of higner order tcrms.
The round-off errors are due to the finite number of digits c:rried in the com-
putations. Not much can be done about the round-off errors besides increasing
the number of digits. The truncation errors, however, can be controlled to
a certain extent by varying the integration interval. Two ty,;es of techiques
generally are used for this purpose. One technique cstimat:s the truncation
error and adjusts the integration interval and error aftcr an initial integration
step has been computed. This involves additional computations and thus, in
part, cancels the benefits.

In cases wherc the nature of the differential equations is known, the eriterion
can be determined in advance and each step size determined automatically.
Thus, considerable savings in time can be gained. A technique of this kind is
used in the present application, The rule for the step size is

Ah=Lr (192)

where Ah is the integration interval, r is the distancc from the center of the
Earth, and k is a constant for the orbit, determined as follows.

At perigee

r A® =V ___ Ah

per

and

_AD -
Ah-v r=kr

per

thus
12
A8 (C
k= 5o (‘E) (193)

Where A9 is dependent on the integration method. It was found that optimum
values of AB are obtained from the following empirical expression:

AB=c +c,exp (— c, e) (194)

Where e is eccentricity and c» €, cjare constants which depend on the in-

tegration method. The critericn gives approximately equal arc lengths for the
integration intervals.
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The most popular of the sclf-starting techniques has been the fourth order
Runge-Kutta method. A similar method, which compares rather favorably
with the Runge-Kutta method, has been developed by Bowie (Ref. 23). This
method is based on the assumption that the second derivatives vary quadratieally
over the integration interval.

In the present offort, these mcthods are applied in a direct integration mode.
In a broader sense it could be classified as the Coweil's method, A different
principle is emploved in the Encke's method. In this method the eoordinates
are not obtained directly, but rather the integration is performed on the differ-
ctice between the actual coordinates and the coordinates of a conie seetion.
The conic seetion is obtained from the position and velocity components at a
particular instant, called the epoch of osculation. The departures from the
osculating orbit are called perturbations. If the perturbations are small, they
can be expressed by fewer significant figures, which permits larger intervals
than with the direct integration methods. Wnea the perturbations increase
to an intolcrablc size, a rcctification of the orbit is required. The position
and vetocity components are determined at a ncw epoch and the integration
restarted.

The applieation of the Encke's method in clesc satellite orbit determination
programs is impaired because of the irregular intervals between observations
which complicates the svlution of the two-body equations. In any case, a definite
superiority betwecen the Encke and Cowell type methods in modern computer
applieations has not becn cstablished.
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APPENDIX
A. EQUATIONS OF MOTION IN RECTANGULAR COORDINATES

Equations will be developed for motion in an inverse-square central force
field. According to Kepler's laws, the path of such motion is a conic section
with the central mass occupying one focus, We will first consider an elliptic
motion, An eliipse is formed if a point moves in such a manner that the sum 2a
of its distances r, and r, from two fixed points, the focuses, is a constant, i.e.,

r, -1, = 2a = const (A.])

where a is the semimajor axis. In a Cartesian axes system with the origin at
one focus

X"+y =5 =T (A.2)

and

2 2 2
(x-x) +(y-¥) =1 (A.3)
where X Y are the coordinates of the vacant focus.

Substituting Eqs (A.2) and (A.3) into Eq (A. 1) we obtain

2 2
X. ¥ Xo+y
BES F_FL _ o2 &7
2Ex42ay+( - )»(x +y2) (A.4)
In this axes system (Fig. A.1)
X, = 2€ cos @

Yp = 2€ sin @

where € is the linear eccentricity and @ is the angle between the major axis (posi-
tive direction toward apocenter) and x-axis. Hence

2 2
(2¢) = xp + yE.
and evaluating the third term in Eq (A.4) we obtain

2 2
a“-€
a (A.5)

Linear eccentricity can be also expressed as

€2 = a® - p? (A.6)
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where b is the semimiror axis., Substituting (A.6) into (A.5) we obtain

b'.!
B C (A7)

which is an expression for the semilatus rectum. Equation (A.4) can now be
written

ccoswx+esinwy +C =r

wherc ¢ is the numerical eccentricity (or simply eccentricity)

o
i
® i

Substituting A = e cos@, and B = . sin®& we obtain
Ax+By+C =1r (A.8)

which is the equation of an ellipse in rectangular coordinates. Differentiating
Eq (A. 8) with respect to time we obtain

(Ar-x)x+(Br-yy=0 (A.9)

For a motion in a central force field with the force varying inversely as the
square of the distance from the central mass, the following relationship holds
h° = uC

where h is the angular momentum about the center of force. Expressed in rec-
tangular coordinates, the angular momentum is

h=xy-yx
which gives
(xy-y* = 1C (A. 10}

Equations {(A.8), {A.9) and (A.1() completely define the motion. Identical equa-
tions can be obtained for a parabola and a hyperbola following the same procedure.

From the definition of A and B it follows that
o \1f2
e = (a° + B) (A.11)

For a case y = 0, the expressions reduce to

(1-A)x_=C (A.12)
(1-A)%x_= By, (A.13)
x_j_ = (nC) (A. 14)
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Solving for the planar crbital elements A, B, and C

X_ yf
A=1-— {A.15)
X X ¥
B - m (A, 16)
(x_3.
C=— (A.17)

Equations (A, 8), (A.9) and (A. 10) can be solved for the velocity components

Br- 1/2
% =g =t (E) (A.183)
T C
e -5 p\vz
y=7 == (E/ (A. 18Db)

where the upper signs are for a direct motion, and the lower signs are for a
retrograde motion. When y =0, x = x_ = r and the equstions reduce to

X =:B (E—)w (A.19)

C
1/2
) (A. 20)

QlF

a1 (

e
i

B. EQUATION OF TIME

We can write Eq (A.8) in a canonical system in which the x-axis points to-
ward the pericenter and the coordinates are normalized dividing by C. In this
system A =-e, B=0, andC =1.

172
2 2
—ci’+1=(x +y) (A.21)
This equation can be solved for ¥

1/2

y=:[@-nx-20%+1] (A.22)
or for X
-i/2
c_e-[1+@-ny" (A. 23)

e’ -1
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where only a negative sign before the radical applies in thc chosen axes system.
The relation between the coordinates X, y and x , y_is given by

CX - x_g,+y_n, (A.24a)
Cy -x_m-+V¥y g, (A.24b)

The normalized area swept out by a radius vector from the X-axis to a point

Il (X . }_L) is obtained by integration
', o= I
A - g_'_ydm =
.\':.\ik
and substituting ¥
Mp 1/2 X ¥
A__:S [(ef-l)'iz-ze‘fu] d% + = (A.25)
s,
Considering that
SR
¥ "1+e
The integral (A.25) can be obtained for three cases
] . - 2.
Ak . 1= ’f-arc sin [e +(1 - eh xk]-e(l -e2)1 ¥ i1fe< 1
2(1 - e2)3/a (A.26)
Ry, 2o ;e(ez 0”5 smfe--1"5 - (- fk}‘
s L3/2 E :
2(e” - 1)
ife >1 (A.27)
and
70 X ¥
k k’k . ‘
Ak"‘:}"‘ 5 ,ife =1 (A.28)
From Eq (A. 10) we can obtain the normalized, constant area rate
Ny m 172
QZE(CS) (A.29)
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and the solution for time from periccnter to P (fk. yk) is

Ay
b= g (A.30)

Returning to Eq (A.26), it can be shown, utilizing the geometry in Fig. A-2, that
sing, = e+ (s -e‘“))ik
and
2

2112 =
cos6 = (1-¢) 7!
Thus 6, is the complement of the eccentric anomaly E,
L __7_r- - sp
Ek =3 Bk ify =20
3
Ek = E

and we can write
osE =e+(1 e2 x
gO8E, = ( )X,

21/2_
1-¢) 7

sin Ek
which shows that Eqs (A. 26) and (A, 30) are another form of Kepler's equation

M, =E -esinE (A.31)

31/2 ¢
1-¢é k
Mk—[ﬂ-(c ):l .tk-i—(—c

Kepler's equation is transcendental in E and can be solved by successive approxi-
mations, utilizing the derivative

d Ek ) )
dt, K.(1 - e cos Ek)

(A.32)

Similar considerations apply to the hyperbolic case. Differentiating Eq (A.27)
we obtain
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ay B, [(e2 -1 Rk— e]

2N

d tk

(A.33)
K {(Bk e-1) [(eg -1 - e] - (e - e ?k}

where

. ! nw el 2 _
BH e ~ (e 'l)xk {e 1) yk

For a parabola, a closed form solution can be obtained. Given time tk from

pericenter to P (X, ¥ ), the corresponding normalized area is

t
K
_\k = *ﬁ: (A.34)
where
(03)1/2
K. =2\%
Ife = 1, Eq(A.21) gives
=2
oy
X .+ 5 (A.35)

Substituting Eq (A.35) into (A.28) we obtain a cubic in ?k
yk3~337k-12Ak= 0

The discriminant of this equation, A >0, and, therefore, it will always have one
real root

1/3 1/3
—_ 2 1/2 2 1/2
y, = [ﬁAk + (36AL + 1) ] + [6Ak- (364 + 1)/] (A.36)

and X_1is obtained from Eq (A.35).
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