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Abstract

The loss of momentum and stiffness due to ab-
lation may significantly influence the vibrations
of & solid propellant grain. This paper presents
an anslytical study of the axial shear vibrations
of a long hollow cylinder that is subjected to
time dependent body forces in the axial direction.
The outer surface of the cylinder is bonded to a
rigid case, and the inner radius increases mono-
tonically with time., An expression is determined
for the shear stress at the bond-interface. It is
shown that the frequency of the shear-bond stress
increases, and that its amplitude decreases
towards burnout time. The shear stress is studied
for various ablation rates. Conventional methods
of analysis, such as separation of variables and
Pourier-Bessel analysis, are not directly appli-
cable in this problem, since the boundary condi-
tions are prescribed on a time dependent surface.
A modified Fourier-Bessel mode is defined that
satisfies the boundary conditions. By substitut-
ing this mode into the equation of motion, a solu-
tion is obtained by asymptotic methods in the
vicinity of the bond-interface. The analysis is
extended to include the axial shear vibrations of
an ablating viscoelastic cylinder. Viscoelastic-
ity is introduced by means of the relaxation
function in shear.

List of Major Symbols

L s inner radius at t = 0
a(t),b = inner and outer radius
m,n = mode numbers
q-(G/p)ytflb = dimensionless burning time
r,9,z = polar coordinates
t = time
tf = burning time
ug = displacement component
An.b = constant Pourier-Bessel
8 coefficients
C;,C: = constants
D(T) e dimensionless creep function
'1(xj't) = body force per unit mass
G = ghear modulus
G(7)=Gg(7) = ghear relaxation function
n(T) = Heaviside unit function
Jo( ),Yo( ) = Bessel functions of order zero
N(T) = dimensionless body force

S (1), T (7)) = time dependent Fourier-Bessel
8 . coefficients
U(ﬂn.l) = mode of free vibration

Vn[xn(1).l] = gblation mode of free vibration

.Thlc vork was supported by the office of
Naval Research under Contract ONR Nonr. 1228(34)
vith Northwestern University.

W(R lacement
¥ requencies"
A
9
lj St 3 ensor
T dimensionless time
a (T = frequency function
er = dimensionless stress
G = e{genfrequency
[}
C = 1 -
n “n( 8)
subscript v - viscoelastic solution

*
superscript = quasi-static solution
superscript ~ = dynamic part of solution
superscript A, ablation solution

1. Introduction

The designing of solid propellant rocket
motors requires a consideration of the dynamic
response of a propellant-casing systea to time-
dependent body forces. The body forces may be
associated vwith spinning motions, axial accelera-
tions, etc. This paper focuses upon the axially-
symmetric dynamic response due to axial accelera-
tion, such as occurs in accelerated flight.
Special attention is devoted to the shear bond
stress at the propellant-casing interface.

The free and forced vibrations of encased
elastic cylinders have been c?n!lgered for various
types of surface constraints.*’'“’” The dynamics
of encanzd vigscoelastic cylinders have also been
studied.*5 These papery present results for
various values of the ratio of the internal and
external radii of the propellant cyiinder. 1In
this way one obtains quasi-static information on
the influence of an increasing inner radfus. It
vas only recently that the influence of continuous
ablation on the axially-symmetric plane strain
vibration vas studied for both an encased elastic®
and an encased viscoelastic cylinder.7 In the
present paper an attempt is made to anslyze the
influence of continuous ablation on the axial
response of & burning rocket. For simplicity we
consider a case-bonded grain of infinite length.

To simplify the analysis the presence of any
star points is neglected, and the propellant is
represented as a thick-walled cylinder. Any star
point material may be accounted for, however, by
taking the inner radius of the propellant cylinder
as the radius the cylinder would have if the star
point material were unilormly distributed around
the inner surface. It is assumed that the stiff-
ness of the propellant is so small compared to the




stiffness of the casing, that the latter may be
assumed as infinite, In a study of a related
free-vibration problem by Baltrukonisd it was
shown that for axially sysmetric shear deforma-
tions this sssumption is acceptable for the stiff-
ness tatios that are cosmonly encountered in solid
propellant motors.

The paper is primarily concerned with the in-
fluence of grain eblation on the shear bond
stress. It 1is shown that the loss of mass and
stiffoness of a burning grain significantly affects
the magnitude and the frequency of the shear bond
stress. Since most propellants are viscoelastic
in shear the influence of viscoelastic damping is
included in the third part of the paper,

The dynamic solutions that are presented in
this paper are discussed in relation to the solu-
tions of the analogous quasi-static problems. The
quasi-staetic solutions for the elastic cylinder
are simple. A quasi-static solution for the
ablating viscoelastic cylinder is presented by
Lindsey and Williams.

The paper consists of three parts vhich are
concerned with the axial shear vibrations of (1)
an encased elastic cylinder of constant inner
radius o , (2) an encased elastic cylinder of

monotonically increasing radius a(t) , and (3) an
encased viscoelastic cylinder of monotonically
increasing radius a(t) . Conventional methods of
analysis, such as separation of variables and
Fourier-Bessel analysis, are not directly appli-
cable in the last two problems, since the boundary
conditions are prescribed on 3 time dependent sur-
face. A modified Fourier-Bessel mode is defined
that satisfies the boundary conditions. By sub-
stituting this mode into the equation of motion, a
solution is obteined by asymptotic methods in the
vicinity of the bond-interface. The method thus
allows us to determine the shear-bond stress.

I1. The Equations of Motion

In a solid body the stress tensor G“ satis-
fies the equation of motion
cv“h1 + Pli(xj,t) - Py, (1)

vhere !1(xj.t) is a body force per unit mass. A

uniform body-force distribution is assumed, with a
component in gz-direction only. Since solutions of
Eq. (1) are sought for a circular-cylindrical body
subjected to axially symmetric loading and bound-
ary conditions Eq. (1) reduces to
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The analysis is restricted to an infinitely long
hollow cylinder that is rigidly encased at the
outer surface and stress free at the time depend-
ent inner surface. The boundary conditioms for
this configuration are

r = g(t) or -a" 0 (3a)

r=b “r'“z'u (3b)
The cylinder is infinitely long end the system {8
anti-symmetric relative to any plane perpendicular
to the z-axis. The stress component O". vhich s

s symmetric quantity, must then venish. The
remaining stress and displacement components are
independent of z, and equations (2) reduce to tvwo
uncoupled equations of motion. The equation of
motion in radial direction, subject to the bound-
ary conditions (3) and quiescent initial con-
ditions, yields only the triviel solutions

o" LY ® 0, The only remaining equation con-

stitutes the governing equation of the present
problem,

%g-r' (xop,) + PP (€) = Pl s

The solution of Bq. (4) is subject to the boundary
conditions

at r = a(t) o__ =0 (5e)

at T = b u =0 (5b)

Assuming an initially undisturbed cylinder the
initial conditions are expressed as

uz(r,t) - &z(r,t) =0 for t<0 (6)

We shall determine solutions for an elastic
cylinder as well as for a viscoelastic cylinder.
By eliminating the stress from Bq. (4), the
equation for the axial displacement u'(r.t) of the

elastic cylinder is obtained as

du
%g;(r $T) + PP (t) = 9% ¢

If the cylinder is linearly viscoelastic the rela-
tion between shear stress and shear strain is ex-
pressed in the form

t
o, - I-c(t-.)d(Bullbr) (8)
[ ]

vhere G(t) is the relaxation function in shear.
The equation of motion for a viscoelastic cylinder
is obtained by substitution of Bq. (8) into Kq.

(4).

For convenience the following dimensionless
quantities are introduced

Ue u‘/b T= :/tf (9a)

Rec/d N(T) = :f’r:m/b (9b)

a= (60t /b B aafb (9¢)
In Bq. (1) tt {s the total burning time. Ve also
define

a(t) = 8 0(7) , vhere 1 S a(r) < (b/a)) (94)

The governing equation for the elastic cylinder,



Zq. (7), cun now be revritten as

VEL DB D °w
q 'a?'*igi/*ﬂ(')'b—:; (10)

The governing equation for the viscoelastic cylin-

der {»
2 § aa
d W
iL N [l I.‘(T-l)d(a\l/al)] + N(T) = FT Q1)

[o]

where the following substitution for the relax-
ation function wvas made

G(T) = Gg(7) (12)

The initial conditions on the dimensionless dis-
placement are

W(R,0) = W(R,0) = 0 (13)

In terme of the dimensionless displacement the
boundary conditions are expressed as
OW/3R = 0

at R=Ba(7) (14a)

at Ret Weo (14b)

I11. Blastic Grain of Constant Inner Radius

For a cylinder of constent inner radius the
boundary conditions simplify to
W/R = 0

at R =28 (15a)

at R =1 We o (15b)

If a suddenly spplied uniform body-force distribu-
tion is considered N(T) = NH (7). The forced
vibration problem is defined by the governing
equation (10) and the initfal (13) and boundary
conditions (15). The solution to this problem is
sought in the form of a Fourier-Bessel expansion
in terms of the corresponding free vibration
modes. The free vibration problem corresponding
to !qli (10) and (15) vas considered by Baltru-
konis.' The modes of free vibration are

iqQd_ 7
Vo= U, R)e n (16)

where

U@,R) = 3 @Y @) - 3 @)Y @R 1D

The eigenfrequencies On are the positive roots of

the frequency equation

a mns)yo(nn) - "o(nn“‘ (ﬂnB) =0 (18)

It is not difficult to show that the functione
U(ﬂn.l) form an orthogonal system on [B,1], with

weight R.

1
J. R U(Qn,l)U(O-,l)dl =B 5_ (19)
B

where Om is the Kronecker delts, and

.
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2 1
t 3 'rT' (20)
1

The solution of the forced vibration problem s
written in the form of a Fourier-Bessel expansion
as

~1s

W(R,T) = rn(1)U(0n.R) (21)

0

n

where the sum is taken over the positive roots of
the frequency equation (17). In Eq. (21) 'l'n(V)

are time dependent Fourier-Bessel coefficients
which are, as yet, unknown functions of time. The
forcing function N(T) 1is also expanded in terms of
U(Qn,l). For the suddenly applied uniform body-

force distribution the Fourier-Bessel coefficients
An of NH(T) are obtained as

s =munt@dy/ [(nP@®-3t@] @

By substituting the Pourier-Bessel expansions of
W(R,T) and NH(T) {nto the governing equation
(10), and by assuming that term by term differen-
tiation i{s allowable, it is found that ‘rn(7)

satisfies the ordinary differentisl equation
8~ 8
T, +q0 -4 =0 (23)

The solution of Eq. (23) that satisfies the
initial conditions (13) 1s

T (1) = - (A /02 )eos(Q qr) + A /00 (26)

By substituting Eq. (24) and Eq. (17) into Eq.
(21) the displacement solution of the probles at
hand is obtained as

]
T (R, -

C 3°@ B)eon@ a3 (A RIY () -3 @)Y O )]

n=0 Qn. [Jx . ©@8)-J o. (nn))
A J‘a(nna)['!o(nnl) Yo () - JO(Q.)!O(Q.I)]

(23)
n=0 Qn' [J‘ ’ .9 - Jo' (Ou)]

We also consider the static solution of the
present problem. The static solution W (R) satis-
fies the equation

ﬁ’wz*%%":?“"’ (26)

The solution of Eq. (26) thst satisfies the bound-
ary conditions (15) is easily obtained as

we(R) = (N/2¢°)(B%a(r) - (1/72)(X- 1)Im(T) (27)

It can now be shown that the second expansica in




8q. (25) 10 the Fourier-Bessel series with respect

to the eystem (17) of (q"/™W) times tie static
solution W*(R). 1In the usuel fashion the solution
of the dynamic prodlems, Eq. (23), thus consiste of
s vibration about the stetic equilibrium position,
Ve write

W(R,T) = We(R) + W(R,7) (28)

Of particular interest in the present prodlea

1o the dynamic overstress st the cyltndor-cutng
rs

taterface. Let the dimsnsionless shear etress
be detlined as

2" - a"/ﬂ.b (29)

The dynamic overetress can then be written as

% T
L, (€/m/n 30)

By employing Bq. (23) the shear-bond overstress at
R =1 {s determnined as

) %" @ 8)cos(n qr)
= o [nten-1 0]

In Bq. (31) the following identity from the theory
of Bessel functions was ueedlO

J;(:)!o(l) - Jo(l)!;(l) - 2/ (32)

:l’l.z

31

IV, The Ablating Blastic Grain

In the previcus section it is showm that for
the non-ablatiag cylinder the displacement W(R,T)
can be expressed as the sum of the static solution
W*(R) and a periodic function W(R,T). It is now
assumed that for the ablating cylinder the dis-

placement W*(R,7) can aleso be expressed in the
form
vAa,n « e, + Pe,n (33)

In Bq. (33) VA*(R,7) 1o the solutioa of the quast-
static problem, i.e. the solutiom of Bq. (26) that
satisfies the boundary conditions (14). 1If the
body-force system is suddenly applied, we casily
obtain

.1 = (2¢) (8% (1 )ta(n) -
- (1/72)("- 1)) N (T) (34)

By substitution of Bq. (33) for WA(R,*) 1a Bq.
(10) it {s found that for T > 0 the unknown

function W (R,7) satisfies the equation
\J
AFaF-FsE o

The iunitial conditions on i‘(l.?) at T = o" are
obtained from Bqs. (33) and (34) as

™ (1,0") = - (w2@)(B'2a(m) - (1/2)(X-1)] (36a)
™ 0" - - o/2¢°)[28° a(o*) Lta(r)) (36b)

The function ?(l,?) must also satisfy the bound-
ary coanditions (14).

Since the boundary conditions on i‘(l.!), kq.
(14), are prescribed on a time dependent boundary,
the coanventionsl msethods of sepsration of vari.
ables and Pourier snalysis break down. In this
paper it ie proposed to seek & solution of Bq.
(3%) in terwms of erosive free vidbration modes that
are defined as

1, [0a] -3, [ay0om] 1, [1,m)
3, o)y, [en] o

Eq. (37) represents the modes of free vibration
of the constant-radius problem, Bq. (17), if the
time dependent functioms X n(f) are replaced by

the constants nn. It is noted that Bq. (37)
sutomatically satisfies

v, [xn(v).n] -0 for R (38)

We now require
an [xn(‘l’),l]/ M=0 for R =fa(r) (39)
The condition (39) yields an equation for xn(“’)

5 [rmmm] v [1m] -

- 3, [3 ] n [x ] = 0 (40)

Equation (40) has the appearance of a frequency
equation, but the "frequencies" are time dependent
functions xn(‘r). On a constant boundary R = B the

frequency equation (40) reduces, of course, tr Eq.
(18). The frequency equation (18) of the corstant
inner radius problem was considered by Baltru-
konil.l wvho tabulated the eigenfrequencies

ﬁn = Q (1-8) for various values of B, For the

first three modes the tabulated ﬁn are shown as
functions of B in Pig. '. It can be noted that On
increases for increasing B, where Qn approaches

infinity as B approaches unity. The curves of
FPig. | are used to determine the solutions of Eq.
(40). Por a certain time ¥ = Ty the eolution

X (71) is obtained as (1-80(r V]! times the

ordinate which corresponds ne abscissus
Bar(Ty). In fact, since the __.cves in Fig. | are
almost straight lines we are justifind in employ-
ing 8 linear approximation. More specifically, we
can write for B 2 0.333

% (1) = [2,0956 - .5380(7)] / [1-B(7)]  (41a)

Xe (1) = [4.9577- .24880(7)] / [1-Po(T)] (41b)
X (1) = (8.0033- ,1518r(7)] / [1-B(1)] (a1c)
The expressions (41) are valid for Bo(T) < 0.99,

i.e. the present considerations are pertinant till
just before burnout.

A solution of Eq. (35) is now attempted in the
form

cumdi) o I



- Ay
A,y - L SalVo(R) (42)

It {s noticed that the terms of ﬁ‘(l.") are not
classical separation of variables solutions, since
both s“('r) and Vn(l.T) are functions of the dimen-

sioniess time 7, Nevertheless EBq. (42) {s substi-
tuted {n Eq. (35). By assuming that the nth term
of the expsnsion satisfies Eq. (35), the substitu-
tion results in

- @' X (TIS_(TIV_(R,T) =

a -g; [Sn(T)Vn(l,‘l’)] + Q(i)DnU(On,l) (43)

The last term in Eq. (43) ualuldcd by the
Fourier-Bessel expansion of wA*27* {n terms of
the modes of free vibration, Eq. (17), of the
cylinder of constant inner radius. The function
Q(T) and the Pourier-Bessel coefficient Dn are
derived as

(1) = (N8*/q")[a(m)® + a(ryi(1)] , (4b)

and
Dn ="/ QnB)Jo(nn)J‘ (nn') / [ini (nna)",o' (nn)] (43)

In an attempt to eliminate R from Eq. (43) we
divide through by Vn(lﬂ). As vas expected

Vn(l,‘l’) does not simply cancel out, and an exact

solution of the type (42) is apparently not pos-
eible. We shall now, however, restrict the an-
alysis to the vicinity of R =1, Using
L'Hospital's rule it can be shown that

1t [, /v,) = 0 (460)
:_.u‘- [‘\in/vn] -0 (46b)
1is [U(Qn.l)lvn] - (46¢c)

1

In view of the above limits we may write in the
vicinity of R « 1, that is, near the bond inter-
face,

$.(T) + Q"X (1)8 (T) = - Q7D (47)

The function xn('r) is defined by Rq. (41) for the

first three modes. It {s apparent that in general
Bq. (47) cannot be solved exactly for arbitrary
a(t). But an advantageous feature of Eq. (47) is
that the real parameter q is large. An approxi-
mate method for solving Eq. (47) for large q is
svailable,

We shall first consider the homogeneous
equation. An ssymptotic solution of the ho.o;ont-
ous equation can be determined by Horn's method. 1
The solution which is obtained by Horn's method 1is
in the form of a series of descending powers of q,
vhich are asymptotic to exact solutioms of the
differential equation. By using Horn's method the
tvo independent complementary solutions of Eq.
(47) are obtained asll

T S
5, =[x ] e [1a ] x ()as + 0 70) ade)

Y 1

s (')'[X (7)? exp -iq
na n | .6

Xn(s)ds + 0('/q) (48D)

It {e easy to check that the Wronskian of sn and
Sn' is =-21iq .
approximate solution of Eq. (47) is obtained as

By using a wvell known theoremll the

C 4

Sn(T) - [Xn(‘f)]-s{c; sin [q Jh xn(l)dl] +
(o]

R
+ € cos [q ;j, xn(.)d.] } +P(T) (49s)
vhere
I
rn - i35 | (886 -8 mn @ Jatree @)

A simplification of Eq. (49b) is achieved by
introducing the new variable

4
ve 'c[ X (s)ds (50)
Bq. (49b) can then be rewritten as

KT)=- 13 [xn(‘r)].&n' {‘1%.["'(\')0'“'“ (51a)
(-]

in vhich
s
“we I xn(l)dl (51b)
o
and
-3/
t(v) =X [!(v)] Q [Q(V)] (51c)

In evaluating the integral in Bq. (51la) we
again take advantage of the fact that the exponen-
tial exp(-iqv) contains the very large resl
paramster q. Integrals comtaining such an ex-
ponential are suited for evaluatiom ty the method
of stationary phase.ll The method of statiomary
phase entasils the replacement of the real
integral by a contour integral aloang the lines
ve ojw and v o vy -iw. Since q is & large real
paramster the exponential exp(~qv) dies out very
rapidly and the msin contributions to the
integral come from near v=0 and v o vy, The
spproximete evaluation of Bq. (51a) yields

T
21 = +q7x (07 (01" "o(0*)con[q [ x_(e)as] -
[}

- 47X (M) + o(1/q) (52)

The constants c:l and c‘n in Bq. (49a) are




determined from the initiasl conditions on ln(i).
It 1o seen from Bq. (49b) that P(0) = P(0) ® O .
The initiel value of W (R,*), Bq. (36), 1o then

-
Pa,0) -Z @ [x o] v_(8,0) (53a)

Also, by neglecting terms of order 0(1/q), we
derive

ok

*(2,0) -Z ¢ q [xu(o) v.(2,0) (53b)

The initial comditions on 7‘(!,7) are prescribed
by Eq. (36). The expressions in Eqe. (36a) and
(36b) sre in terms of R, and they can be expanded
in Pourier-Bessel series of U(O R). 1t vae

observed before that U(Q ) = V (l.O) , and the
constante ¢' and c‘ cen bo obtuud by equating

Eqs. (5)a) ud (”b) to the Fourier-Bessel expan-
sions of Bqe. (36a) and_(36b) respectively. In
this way the coastant c‘: fe obtained as

IRTOX) 0
1Yo

n

;) ﬁ' Irm ) -
The constant C, 1s also easily obtaimed. It turas
out that C 1s of order O(!/q) as compared to ‘% ,
and c: is therefore meglected. Iaspection of Eqs.
(52), (44) and (54) shows that P(T) is of order
0(1/q") as compared to C: » thus K(T) 1s also
neglected. Ia the vicinity of R = | the fumction
HA(I,‘I') may then be written as

7
i-lA(l,'r)- --:l-';-' Z C(T)Vu(l,‘r)coo[q I xn(o)dl] (55)
n=0 o
vhere
x ()" K@8)
¢ = =7 2 2 (36)
Qn 5 (Que) *Js (Qn)

The dynamic overstress at the shear-bond
interface R = 1 i3 finally obtained as

2,1 = (¢ /mF*/a

- 2 ZC(T)coo [q Jﬁxn(o)d-] (57)
ne0 )

Bq. (57) properly reduces to Eq. (31) for a nomn-
ablating cylinder when Xn(‘r) - !n(O) - ﬂn.

V. The Ableting Viecoelastic Grain

The equation that governs the dynamic reeponse
of a viscoelastic core is derived in Section 1I,
see Eq. (11). By removing the discontinuity at
T = 0, and by integrating by parte Bq. (11) te

revritten as

-
' ] '3 ' e
y u['ﬁw*%ﬁ[”“("')ﬁ“]*

o

v

+ NH(T) == (58)

The dimensionless parameter q {s defined by Eq.
(9¢), vhere G now denotes the glassy shear modulus
of the viscoslastic material. It is noted that
the body-force distribution is uniform and sudden-
ly applied.

A linesr viscoelastic material can in genera:
be characterized by s discrete spectrum of relax-
ation times 71. The relaxation function G(7) may

then be expressed as

L

G(T) = Gy + ) G, axp (~1/1,) (59)
{=l

In Bq. (39) G. denotes the rubbery shear modulus.

By comparison with Bq. (12) the function g(T) is
obtained as

8(1) = (6,/0) + Z(c /6) exp (-7/7,)  (60)
=l

In this paper we shall consider viscoelastic
materials vhose relaxation functions in shear show
a rapid decrease for very short times, and then a
gradual decresse to the rubbery shear modulus. In
terme of the relaxation spectrum this means that
the discrete relaxation spectrum consists of a
number of very small relaxation times (! < { < £,)
and a number of larger relaxation times

£y <1512), More specifically we assume that
the viscoelastic material can be characterized by
8 discrete relaxation spectrum 'I’1 such that

Q /11) >» qfy for 1518, (61a)

and

Q /1") <«< q for 4 <t <14 (61db)

In Eqs. (61a) and (61b) Q) is the first natural
frequency nf an elastic core vith the glassy
modulus s shear modulus. The function g(7), Rq.
(60), 1s nov rewritten as

8(1) = (6/6) + m(T) + ta(7) (62)

In Bq. (62) g (*) 1s the summation of exponentials
over the very short relaxation times, Bq. (6la),
and gy (7) covers the relaxation times defined by
Bq. (61b). The expression (62) {s ,differentisted
and subsequently substituted for g (1-.) ia Rq.
(58). 1In viev of the ottpulluoa (61a) the
utunl containing .(7-0) can bo simplified.

Yc /6 (63)

) N
Te d -
I*a( 0) 33 do &

-“P‘“" =



Eq. (58) can theun be rewritten as

1

C 3 ™ e e lfe M )
ﬁ':i["ai]*%si_'uﬁ(*")si“_*
(o)
3w
+ NH(T) = =5 (64)
where
P ed [t - Z(c 6)) (65)
{1

We shall again seek a displacement solution in
the form of an oscillation sbout the quasi-static

displacement v (R,T).

Wy(r,7) = Wit (m,7) + w7 (66)

By substitution of Eq. (66) for W(R,T) in REq. (64)
the governing equation for HA(I T) 1is obtained as

T
5l k[ Lo )

[+]
iy Pt
= = S

The initial conditions on ?v(l.'r) follov from the

values of the quasi-static displacement and its

time derivative at T = 0%, The quasi-static
viscoelastic displacement is discussed next.

The stress %5 for the quasi-static probles 1o

governed by Eq. (4) 1f the right-hand side of that
equation is zero. The dimensionless quasi-static
stress that also satisfies the boundary conditions
(14) is easily obtained as

L ) = (1/2) [FaPrym - n) By (68)

It is noted that Eq. (68) does not contain an
elastic constant and the stress solution is thus
independent of the materisl behavior. It follows
that Eq. (68) is also the quasi-static stress for
a viscoelastic grain. It was pointed out else-
vhere that the quasi-static viscoelastic strain fs
then formally obtained by means of the creep
func:ion as

'
awc'/aa - J' D(T-0)dL (R,s) (69)
o

In Eq. (69) D(T) 1is the dimensionless creep fumc-
tion. Integration with respect to R yields the

quasi-static displacement "(l,v ).

el ’[.o(f..)a[e'a'(.) to(m)- 51 )] (70

o

y——— —

The viscoelastic matecial can also be charace
terized by s discrete spectrum of retardation
times. This characterization implies that the
creep function may be written a

k
Dy =gy e - TH o
§=

1/ -

In Eq. (71) dt

are retardation times. The assumption that the
relaxation spectrum consists of a number of very
snal]l relaxation times and a number of larger
relaxation times implies a similar distribution of
retardetion times in the retardation spectrum,
Let Dy (T) cover the exponentiasls with retardation
times much larger than the period associated with
the first natural frequency of shzar vibrations.
Following the same procedure wvhich yielded Eq.
(67), the quasi-static viscoelastic solution can
be rewritten as

are dimensionless constants and 7)

. .z% (o) taqy - S0Py ]m(r) +

+ | Dyer-aME a0 (72)
°+
vhere
i
MeW+ ) d (73)
J=!

The initial conditions on i-l") are nov determined

from Bqe. (66) and (72). It is noted that by this
procedure the influence of tlhie very short retarda-
tion times is expressed in the initial conditions

on ?V rather than in the forcing term d° HQ./B‘Y' on

the right-hand side of Iq. (67). As in the
elastic problem (section IV) the particular solu-
tion ‘u to the forcing function is of order
o(1 /7 q ) as compared to the solution due to the

uuun conditions. Since the remaining part of

the creep function Dy(T) contains only retardation
times much larger than the period of vibration we
may completely neglect the influence of the forc-
ing function. Eq. (67) can thus be simplified to

&k

3- [n 3-.1] 3; [l I ge (T-0) w d-]

i
- — (74)

a'l

Guided by the solution of the snalogous elas-
tic problem, Bqe. (42) and (49a), Norn's method is
extended and & solution of Bq. (74) 1s sought 1a
the form

[#) - [eo], a0

vhere Vn(l.f) is defined by Rq. (37), and




(8,0 = {a(r) cos Lquer)] +
n

+ [p(r)/a) stn [@(M}f(r,0) (T60)

In Eq. (76a)

fo) =1+ ) 1 (e (76b)

3=t
As in the elastic problem all terms which contain

q in the denominator are neglected in first
approximation,

(%] ==t con Lol v )

The postulated solutfion Eq. (77) is substituted
into the integrodifferential equation Eq. (74).
For the nth term this results in the equation

- PX(T) u(7) cos [@()] v (x,1) -

v
= Q‘ I l.'(‘?--) t;(o) m(e) cos [qw(l)] Vn(l,.)“ -
+
[+
a'i“;
" (78)

In evaluating the integral in Eq. (78) we take ad-
vantage of the stipulation that gg(T) covers the
part of the relaxation spectrum that consists of
larger relaxation times, Bq. (610). By integra-
tion by parts, and by invoking the stipulation Eq.
(61b) the integral is evaluated as

.
J” g (T-8) X*(s) m(s) cos [qu(s)] V (R,8)ds =
+ s a
o

(1) X (7) 5(0)
= stn [@(m)] v (R,7)  (79)

TS

The right-hand side of Eq. (78) 1is obtained by
strajghtforvard differentiation of Eq. (75). As
in solving the elastic problem Eq. (78) is then
divided through by Vn(l,?), and the domain of

interest is narrowed to the vicinity of R = | ,
In view of the limits (46a) nng (46b) the terms
containing 3V (R,7)/3T and ¥ vn(n,n/a-r" drop

out,
In the vicinity of R = 1 Eq. (78) reduces to

s p'x:(‘r) u(7) cos (qu(T)] -

q n(T) X} (T)ga(0) sin [qu(r)] / &(7) =

#(7) cos [qu(r)]-2 q i(r) &(T) otnlquw(r)] -
q o(7) i(T) otn [qu(m)] -

Q" u(1) &(1)" cos [qu(1)] (80)

Polloving the general procedure of I?m'o method!l
the coefficiente of terms of order ¢ and q are

taken to vanish separately. This rusults in

b(r) = p X (1)/q , (812)
and in the ordinary differential equation
2id:+-tﬁ-g,'(0)mx:/1'-o (81b)
Eq. (81b) is satisfied by
r ’
a) = x, e [Fu@Un' | [xbey @)

where ‘n is a constant. By substitutfon of Eqs.
(81a) and (82) into Eq. (77) we obtain

[ii:]n = a(7) cos [p fxn(.)d. v.RT)  (83)

It is noted that in first spproximation the
deamping is primsrily determined by the larger
relaxation times. The very short relaxation times
igfluence the frequency of the vibratfion. For
82(0) = 0 and p = q the solution reduces to the
elastic solution,

The complete solution v:(l,‘r) consists of a

summation over n modes of the type (83). The

constants ln are determined from the initial con-
dition on the displacement. For the viscoelastic

problem the displacement at T = o"' is obtained
from Bq. (72). It 4s noticed that this initial
value differs by a multiplicative constant N/M
from the displacement at T = 0% of the previously
considered elastic problem. It follows that the
viscoelastic displacemsnt may be written as

;
N
= - B ke v mneels [x o] 60

vhere
K(T) = C(7) exp [ ai(0)7/5" ) (85)

and C(T) is defined by Eq. (56). Similarly the
bond-stress at R = 1 {s obtained as

-
z:n ,T) = 2(Mp® /NG®) Z K(T)cos [p Jf xn(-)d.] (86)
[ [+

VI. Discussion of the Results

The axial shsar vibrations of an encased
elastic cylinder of constant inner redius 8, and

of elastic and viscoelastic cylinders of mono-
tonically incressing inner radii a(t) were studied
in this paper. The solutions of these three prob-
lems involved the assumption that the uniform
body-force distribution is suddenly applied. The
Heaviside unit function N(T) is used because the
dynamic effects are illustrated most effectively
by a suddenly applied load. For many practical
problems the load may, however, have a finite rise
time. Por such problems the solutions 1. this
paper present upper limits on the intensity of the
dynamic effects that may be expected.

. o map—,
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The influence of a finite rise time can also
be studied directly by modifying the present solu-
tions, For the dynamic response of the elastic
cylinder of constant inner radius LR this can be

done very easily by s~lving Eq. (23) for arbitrary
time dependence of An(T). It is easily shown thst

the amplitudes of the vibrations decrease with
incressing rise time of the load. Inclusion of a
finite rise time of the load, for the eclastic
cylinder with ablating inner surface is somewhat
more troublesome, since it is then less obvious
what terms can be ignored in Eq. (49a). Dynamic
effects are, of course, less pronounced for an
increasing rise time. More care must slso be
exercised in considering s gradually applied load
in the viscoelastic cylinder. If the load is
suddenly applied the influence of the short relax-
ation times may be included in the initial con-
ditions, Eq. (72). In this way the damping influ-
ence on the dynamic solution of the very small
relaxation times is ignored. 1If the load is
gradually applied the influence of the short
relaxation times further diminishes. A complica-
tion arises, however, when, depending on the rise
time, more terms are needed in Eq. (76a).

For the elastic grain of constant inner radius
R = B the shear-bond overstress at the propellant
casing interface, Eq., (31), is computed for
B=04,8=0,6and B =0.8. The eigenfrequen-
cles On, Eq. (18), corresponding to the different

values of 8, can conceivably be obtained from Fig.
1. The difference of Bessel functions in Eq. (31)
is, hovever, very sensitive to small deviations in

G, and more accurate values of inz are therefore

used to compute the Bessel functions in Bq. (31)
and in Eq. (56)._ It is found that the amplitudes
of the modes of trz decrease rapidly and it 1is

sufficient to retain only the first three modes.
In Fig. 2 the sum of the first three modes and the
first mode of the shear-bond overstress are shown
for 8 = 0,4 . The sum of the first three modes of
the shear-bond overstress is shown in Fig. 3 for

® = 0,6 and 80,8, It is noted that for great-
er values of B the amplitudes are smaller and the
frequencies are greater. The relatively soft
material of the cylinder is defined by q = 5.10°,
Eq. (9¢).

The shear-bond overstress at R = 1 for the
ablating elastic grain is examined for various
ablation rates. The influence of the ablation
function o(T) is shown by considering the func-
tione

a(t) = 1+ , where XA = (1/8) - 1 (87a)

and

a(t) = (1-wr)'k » Where »n = 1.8° (87b)
For B = 0.4 the ablation functions (87a) and
(87b) are shown in Pig. 4.

Prom the expression for EA(R,T), Bq. (57), 1t
is noted that the amplitudes of the modes
decrease and the frequencies increase towards
burnout. We define the frequency function

T
*ni - l ln(l)dl (88)

™ - = - :

s (ne1,2,3)
(is' More

The subscr.pts of ¢ refor to the

ni
and the ablation funct

lpecifically, i =% 1ndicate .Lu»rdln'
to Eq. (87a), § = ¢ ablat ‘ i to Eq.
(87b) and { = 3 indicat: a 1on 1(1) 1.,
According to Eq., (41) the tunctions X"(1) may be
expressed as

X (1) = (e =d 3n(z) /1150 (1) (89)

where the constants 4 2.3 and d1 2.3 are showm {n
* ’ » ’

Eqs. (4la,b,c). By substiturion of Eqs. (87s),

(87b) and (89) into Eq. (88) the frequency funce

tions are evaluated as

.m -=dT- [(cn.dn)/u-a)] Ln (1-1) (90a)

Vo o= Le JO0-E)I0axT)¥ + 8F 4+ ¢ (148)/(1-8) +

+24 BL(tnn)* - 1)/(1-8°) - (90b)

- (28 (e -4 )/(1-8)] tn {LC1-n1)¥ - 8)/(1-8)}

‘n3 ® QnT

(90¢c)
The equations (90a) and (90b) indicate that the
frequencies increase rapidly towards burnout as T
approaches unity, From Eq. (56) it is noted, how-
ever, that the amplitudes approach seroc as 7
approaches unity,

The frequency functions 01‘ for the first mode

are shown {n Fig. 5. The frequency functions are
determined uvp to T = 0.95. It is noticed that
linear ablation according to Eq. (87a) results in
a much more rapid increase of the frequencies.
The frequency functions ¢ { for higher modes are
shown in Pig. 6. =

The observations on amplitudes and frequencies
are further illustrated by Pigures 7, 8, 9 and 10.
The figures 7 and 9 show the first wode of Eq.
(57), respectively near T = 0.5 and T = 0,9 . The
sum of the first three modes of the shear-bond
stress, Eq. (57), is shown for T = 0.5 and T = 0.9
in Pig. 8 and Fig. 10 respectively.

The results presented in this paper show that
the frequencies of axial shear vibrations increoase
significantly during ablation. This effect may
influence the structural integrity of the
propellant-casing system.
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