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Introduction

This paper deals w=ith a method of calculating the <eiriiion ot the
psth of an orbiting body from a rominal or referzzce tragectors. The
ferm in which the solution is cast ®as rotivated by « L. rixcular
gerturkation problez. Stanford University is developing 2 "drag-free”,
or “drag-makeup”, scleatific satellite which :s desigred to follow a
purely gravitatioazl orbit.l Tae satelliite consists actually of two
s2tellites: 2n inner sphere or proof rass, a2rd a2n oidter conceatric
shell. The relztive position of the shkell with respecit to the irzer
sphere is sensed sith a eczpacitive pickoff. The positioz signals
command an zctive translaticn: control system zhich fires jets mounted cn
the outer shell s0 that it chases the inner sphere without ever touchicg
it. 'Thus the proof mass is skielded frox g=s drag 2od sociar rz2diziion
pressure and, except for very sxza:xl disturbzzces czzsed by force
interactions with the outer shell, it follcss a2 puzely gravitatiszal
orbit.

The problem zhich motivated tle present study #2s tc determine tie

effect of these small disturbances (abcit 10_10

o 10--9 gé} over itime
periods up to a yeax. Furtierzmore, the zuswer w2s desired directliy in
terss of the deviation of the satellite®s path frox the pati which would
be folliozed by a2n earth satellite acted upon by gravity only. 7Zherefore,
the technique of perturbation of the coordinates was selected as the basis
of our za2pproach.

The technique of coordinate perturbation, which began sith tke

2 3
work of Encke and Hill in the last century, has found increasing

use in codern tices for orbital theory. 7The linearized perturbation
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equatisxs about a circular orbit (which are merely E.il's lunar equationss
withcut the rutual gravitzationzl terms (see eguaticans (1), (2),(3) =ith

= 0) have been applied in recsnt years by Wbeelon, Ceylic 3,5’6 and
Clokessy 2nd ﬁ'!.ltshire? t0 a puxber of satellite pexrIurbation problexs.
Batf:ins and Danbyg"lg'n give state transition m=irices for gezeral cozic
sections shick z2ls0o may be appiled 20 satellite perturbaticon ard guidarce
problens, acd receatly Tsckaurner and Ee&zpellz have applied the lirearized
Biil's Zunar eguzticns to tre smivimn fuel rexdezvcus problem.

Iz soze types of ordbital prodisus (as in tke menticzed exznple of
dztemining the effect of izmtercal force errors ¢z the orbit of =2 drag-
free sztcllite), it is desizshle fo compute the perturbations of the
cooztinztes when the cate?lise is subjected to very >mz2ll distorbances
for many thousznds of revolutiozns. In this case, tke 1irearized Hill's
ecizations are nsciul only for very very sumall ecceniricities; wvariztion
of parameter tecknigues do rot yield 2¢ zrswer directly in tke desired
form (i.e., as deviatic=s cf ike coordinates); and direct ccmerical
Iintegration proves both costly 20d icaccurate, when carried oct over

lozg itime intervals, Eexzce 2 diffexext z2pprozck is sought.




The Tschauner and Herpel Equations

13 .
Tschaurer arnd Herpel  have shown that if the maalaze¥ r.oit
equaticns of moti~n are lirearized akout a2 ominal elliiptieal --roat :n
a rotating referecce frare (see Appendix A), tkes assuze the .ory

simple form:

o 3 e _
s I +e 2058 §-27=¢ @
2" 3 -.E =% 2)
0 =7 )
u o u
- 1 2 2
vmere £=-p» 3= g+ L=7fF »
el sz 3
- 2 » - » - 2
s R CSZR o R
Pl’ P2, P3 are sx2l}l perturbicg acceleratiosns aloxng ke ul.
uz. n3 axes respectively,

R is the instartarecas razdins of tke moxiral elliptical ordbit ,
& is tze irue zrnonzaly in tke nominal ordic,

e is the eccentricity of tke rominal orbic,

L= é, tke time rate of charzge of true aromaly,

u ., , . 2re relative coordiantes shoxn in Figure 1, and

1" 2" 3
. d_1d
tke prime (") signifies &S Sat -

2 2
In cderiving tkhese equations, terms of order £ , . ;2 and higter are

-l

reglected. If the equaztions of motion in cylindrical form are linearized

r
as skhose in Figare 2, with £ = B AT % and € as before, equaticns

(1) through (3) are again obtained. Now, however, = may be arbitrarily




s

2
large xhile terms of order 52, <. ';2, and higher are neglected.

Equation (3), of course, represents sieple out-of-plane harmonic

motion and needs no discussion.




FIG. 1. ORBIT COORDINATE SYSTEM (Rectangular Ccordinate
Interpretation).

MOMINAL
ELLIFSE ~

FIG., 2. ORBIT COORDINATE SYSTEM (Cylindr. Coordinate
Interpretation).
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Solution of the Tschauner-dempel Exuations

By introducing matrix notation and defining the system state matrix

x{8) to be

Y
£'@)
x(@) =
n@)
n’ )
equations {1) and (2) may be combined ard written
x*'(8) = F{g} x{s} + B@) u(®)
where
r O 1 (13 0\
£ = | 3 0 0 2
1+ ¢ cos6
0 0 ¢ 1
) -2 Q 4
\ /
/ \
D 4]
2 G
u!?’P.
3(9) = »
¢ 0
1
¢ ="
WK
\ /
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and

Pl(e)
u@) = . (8)
P, ()

It is well known from the theory of I-‘loqt.tetl4 (see Appendix B) that
a system governed by =quation (5) where F(3) = F(¢ + 2x), has a state

X
transition matrix, X@g, eo), which can be written as:

BG - ¢,)

X(9, eo) = R@a, eo) € )

i

where kg, 90) R + 2, 90) is a periodic 4 -4 trix, and

np

B L £n X{eo + 2%, 90) is a constant 4 x 4 matrix

2%

whose eigenvalues determine the system stability.
The unforced part of equation ($§) is said to be kinematically similar

to the constant systenm
w' = Bw . (10)
F{@), R@, eo) and B are related by
B=FK "G, 6 )FOIRG, 6) ~ R (0, 6)R' G, 6_) , 1)

and equctions (10) and (11) are known as the Lyapunov reduction of

equation (5). By an appropriate linear constant tramsformation

z = Qw (12}

xFormally, the state transition matrix of an nth—order linear system of
differential equations in first-order matrix form is an n x p mairix whose
columns are n linearly independent sclutions of the free equation, such
that X', 6o) = F(B)IX(@, 8,) and X(,, 65) = U, the unit or identity
matrix (see Appendix B).
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(where Q is a constant 4 x 4 matrix)

equation (10) may be transformed into its Jordan normal form:
z' = Az (13)

where

-1

A = GBQ Q4)

The eigenvalues of A, together with the structure of the Jordan blocks
determine the stability of the free solution (u(g) = 0) of egquation (5),

and it is possible to give the state transition matrix, X, @ o) .

directly in terms of A:

A -8 ) 1
€

X(9, 90) = P(g) o'P (90) 152

where x(B) = P(8)z(8). (See Appendix B).

The veriodic part of the state transition matrix, R(@, eo) is given by
-1
R{g, 90) = P(@)P (60), (16)

and further=ore
-1
Q=P (90) . 7)

It has been slioxn by Tschauner and Hez::pell3 (sho have obtained the
matrix P-l(e) in closed form), and 21lso by the present autkors,; that
equation (10) is kinematically similar to equations (1) and (2) with the

Jordan cawvonical form of B given by




(o 1 ) o)
() ) 0 )
A= (18)
) 0 o 1
) o -1 o
\ /

1t is rather interesting to note that . nay be obtained by finding

the Jordan canonical form of Bo, where 3o is the rpatrix F(g) given

*x
by equation (6) with e = O.
/ A
0 l 0 0
3 0 0 2
Bo = (19)
0 0 0 1
0 -2 0 0
\ /

In fact, equation (5) may be factored into the form

x'@) = [B_ + e GB)Ix(@) + DOuG) (z0)
where G@B) = G  2%),
, \
0 0 0 0
~2cos @
G() = 15 e cos & 0 0 0 . 21)
0 o
\ 0 0/

*The normal form {equation (13) with A given by equaticn (18)) corresponds
to two decoupled second-order systems: a pure inertia or 1/s2 plant and

¢ larmonic oscillator with a natural period equal to the orbit period. The
1, 2 plant may be interpreted physically as motion in a similar coplanar,
coaxial ellipse with higher or lower total energy. The nazconic osciilator
corresponds to motion in a coplanar ellipse with the sace period, but

with different eccentricity and/or orientation.

n

**+This remarkable property is not usually possessed by even the simplest
of periodic systems. Coapare, for example, Mathieu's Equation,
8 + Qoz(l -~ ecos 2 wt) g = 0.

-0 -
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The matrix P-l(g) is given by Tschauner and Hempel:

/

) \
1 P2 3 "2
-2q, + eu' e o -q
i 1 (22)
-3 e sin g -3(1 + ecos 8) %ecosg 0
<3(3 + e cos 8) 0 -3 e sin @ -3(2 + e cos 9)
\ /
winere:
€1

= —e-i'_l - Q + 2e2)vll-e ising - (2 +3e cos g + ez)sin_ 2, (23)

3/2

Jcos G

-i-% [ = 2ez){1-e2 - 1Jcos 2 8 - ey sin

__2: - _l_F - - 2
p2-6(1+31e) 3ell Q-e)

1., 29)
_1 N 2 _ 2 s 1 2 _ 1%
9, =35 (2 =+ ¢ )41 e 2’sin g 5 i + 2¢ )1-e" -1’sin2a

+ (1 =

e cos e)zsin-l;., (25)
2 cos e)z,

(26)
e cos 8),

sin g fe +
k:

27)
+ (1 - l-ez)cos ol (28)
1l +ecossg
If @ 1is chosen to be zero, then
- 10 —
 a




p 1) =

P(0) =

so that

-1 +e)(2 =+ e)

-3(3 + e)

(1-e) (1—e2) 3/2

(0-e) \{l-e

\ 0

From equations (14) arcd (17)

2 2
(es1) [-2+(1-e)r1~e" ] 1
3e 3
0 1)
-2(1 £ e) e
0 0
2 +e
B 1 + e 0
0 -2
(1-e) (1-eH) 3/ Z
M 2 21
e(;l.—e)zéjl-e2
3:e 0
1 5+

B(e) = P(O)A P L(0}

-+ )2

-3(2 =+ e) )

200 = e)

—2(2 + e)

(31)

{29)

(35)




and also Bb = B(0).
It m=ay be seen by direct differertiation that the solution to

eguation {5) is
e
>~ —1 — — - -

80

where x(so) is the initial value of the system state catrix and

X@, e) = 2@, 6 )= pe)c e ) . 34)

(This solution may also be obtained by variation of paraceters. See
Appendix B) If one attempts to use equation (32) directly to determine
the effect of sma2ll perturbing accelerations over many revolutions,
serious numerical difficulties are encountered which result both in loss

of accuracy and ir excessive computation time,

- 13 -




B(e)

~ 0 A« ovu
L g 0
A~|:Vﬁpucuvc\w

mmwvcnocwneav:Amnuc;cs;cmwwﬂnmw 0

cAﬂcovu 1=02

0 =(140) (240)

=a(l + Q)

-0 (2 + @)

2=20u00 2mB0d

NG oS i ™ 8™
[}

(1=0) (1=02) 372

Aw:uouaaanuouvuﬁmsuoacuu _neu

L (i B

e (1=0) %102

(32)

o




Solution for Constant, Periocdic, and Alrmost-Periodic Perturbing

Accelcrations

As in the case of coxzputing perturdaticans for a drag-free satellite,
it ofter happens that perturbircg accelerations are coastant or periedic.
It is tkzn possible to compute their effect at any future time merely

by compating their eifect over oze orbit revolution. If ike @disturdbirg

accelerztion kas the form

ug) = u(s + 2= €35)

it c2n be zkown {sSee Appexdix C) tkzt the solution o eguation (5)

[that is, eguation (33)] can be writtea

x(3) = X(g -2x X, eo)c'\-‘ x(9°) + X(3 - 2x X, eo)(Z Ck) E

1
k=2
27X
+XG-225, ) X'z, g )Btxa()ac (5)
eo
wbere XN is tke largest cunder of complete revoiuiéiozs in (8 - 90),
CEXk =2z, eo), ard
=2
8 o--:_E
11 = f X “(z, eo)D('.«:)u('f)dT«:. G7
eo

ite soluticn as givena by eguatioas (36) 2od (37) reguires integration
over 2 maximm of oze orbit ravolution, regardiess of thke a2cital nunber

of orbit revoluticas ceatained in the razge of interest (€ - eo). TEus

tke difficulties mentioczed in the application of tke solution in tke form

givea by eguatioz (33) are overccme. The restrictiocn of the distursarce

28

- 14 ~




to coxstant or periodic ir 5 case can be relaxed =s=e.>o*, It

u@) = uls = 2= %) (38)

where ¥ is an integer, il can be skhomn (sece Arpendix C€) tkat tke

solutica [equatioz (33} ] can be written

r~1

) - S Nk
x©) = X 2z K, 6 )C x(5) = XG- 23 X, g,) ( Z c ) L
k=9
m=2rrM
- —
+ Xfg -2x N, ec)c =¥ X 1(1, e-o)D(':)u('s')dr (39)
%

xhere N is tke largest cunder cf complete revolutions in (6 - eo),
r is tke largest integer < N/X,

C = x@o + 27, eo), ard

+2:5€
R |
Iz = X (=, QO)B(r)u(-:)dt («2)
90
In this case tke solution over zny intervzl (8 — eo) reguires integration
over 2 m2ximmm of M revolutions, TEus tEe coostznt r defirced zbove

is a figure-of-merit for tke soluticn in this form. TEke larger r, tke
more relztive vaiue eguztica (32) Eas over eguation (33).
Oze furtker geceralization of tke form of tke perturbing acceleratica

can be macde. if irstead of egquatiomos (33) or (38) we kave

u@) = uvis + € s1)

wkere 8 £2x X for X=9, 1, 2, ...., tke soluticz may te apsroximazed

(2gain sce Appexdix C) as closely as desired by selecticg an integer X

- 15 -




such that

K&€=2z M (42)

for soze integer M. 7Then the solution to equation (5) is again
equaticn (39), with X, C, and 12 as defined, but with r an integer

such that
rE€<2zN<((r+1 K¢ (23)

In this finz) case integration is required over a maximunm of M
revelotions., Of ecurse, the larger the selected value of M, the
greater the a2ccuracy odiaired in the approximation of eguation (£2).

The usefulress of tke solution, in this case, is dependent ugen the

cature of tke a2ctuzl prodlem:,

- 16 ~




Restriction of lnitial True Anoraly to Zero

If the initizl value of the true anormaly is taken
no real restriction of the general problem is irpo-ed.
stipulation of 90 = 0 sicply requires a cocpensaiory
initial value of the system state matrix x('::o) - Then

perturbing accelerations of the form

u(® = u(6 + 29

\ AT O o " - ‘2,'
Thi~ 1~ =~ couse

azdjust~ent 1n the

tke slutien for

(35)

can be written in a ranner especizlly adapted for rapid, accurate evalu-

ation. If 60 = 0 and x(Go) é‘xo, equations (36) and (37) become

x(6)

G
+X(c.0)_[ X—l(t.O)D(-:)u(:)df

0o

X \

X k
x(,0% 27,0, + X@,0[ > X 5,01
~B

wxhere XN 1is tke largest number of comxplete revolutions in &,

=6 - 23X »

I = f X (2,00 D(Dul)az
i)
/ 1 o )
-65e(2+e) 1 o
(l—e)zil--e2
X(27,0) =
-67(2+e) (1 3e) o 2
(1-e)2\'1-e2
\ 0 o o
-17 -
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(46)
0 )
-67e{lize)
(1-e)2f1-e2
«7)

-67(1:e)2
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’21,1) 1,2) 1,3) (1,4;\
(2,1) 2,2) (2,3) (2.4)
X Yee,0 = , (48)
(3,1) (3,2) (2,3 3,9
4,1 4,2 4,3 4,4
\5 ) 4,2) {4,3) ( )/
where
a,1) = 4 + e1~*?:os a , (49)
a,2 =:sin c (1 + e cos @) s (50)
l +e
1,3) = (2,3) = (4,3) =0 , (51)
_ 2 +e ~cos g(2 + e cos g)
(1,4) = 1 + e , (52)
(2.1) = 3e(2+3e cos g + e2) (g-sin ~1)) - (3+6e2)41-e2 sin g s (53)
Q-ea- e2)3/2
(2.2) = 392 sin s(l+e cos c)(G-Sin—lx)—ll—ez[2e+e3—(1~e2}cos o-(e+2e3)coszc]
T 1 -ea - eH/?
(54)
2.4) = 3e(l+c cos 0)2(a-sin—1x)—4l-e {(2+e2)sin a+(e+2e3}sin g cos 3}

2.3/2
1-e)(1 -¢e) (55)

(3,1) = 3(2+3e cos 0+e2)(g~sin—]1)-(6+3e)41-e2 sin 5 , (56)

2
A~ e)V1 - e2

- j 2
(3.2) = 3e sin a(l+e cos g3) (3—sin lk)- 1-e [2+e2~(2-2e)cos g-(2e+e2)coszgl
a -1 - e2

(57

(3,3 =1 ’ (58)

- 18 -




3{1+e zos a)z(o-sin-l)—dl—ez[(4-e)sin +(2ese ) s1n - co- .

(3.,4) = 2 >
(Q-e)yl-e (59)
_ 6{eos a1~ 1)
4,1 = 1l +e ’ o
_ 2sir 5(1 + e cos 3}
4,2) = - , (61)
t4,4) = -{3 + e) + 2;:05 5{(2 + e ¢cos v) , (62)
1 +e
and —
~ . Y - !E —- =

1 +2 cos o

If J is the Jordan canonical forms of X(Z3,7) (given by equation (47) ),

then J 1s zivern by

,’1 2x a Q \
e 1l 0 0
5= (69)
0 0 i 0
0 0 0 1
\ /
and {see Appendix B)
-1
X(2x,0) = P(G}JP " (C) (65)

where P(0) and P-l(O) are given by equations (28) and (30). Noting

then that

D 2x,0 = p@IP Ty (66)

- 19 -
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and defining

N
S=2Jk , 67

k=1

equation (44} can be written in a form which is convenient for calculating

»x(g) when XN i large:

x(@) = X(g,0)P©@) 3P 1(0) + X(5,0)PLO)SP 1(0)I
93
-!-X(o,O)f X "(1,0)D(Yu(ndx (70)
0

where N 1is the largest number of c.mplete revolutions in 4,
X—l(r,O) is obtained from equations (48) through (63},
D{t) is given by equation (7),

u{1) is given by equation (35),

¢ 1 2N 0 0 \
o 1 0 o
oo , (71
0 0 1 0
\0 0 0 1
( N N(N+1) ~ 0 o\
o N i} o
S = . (72)
) o 0 N 0
0 o
\ 0 .
| - 20 -
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Sampled-Bata Solution

If in the general solution (equation (70)) =

1= re-tricted to

zero, an expression is obtained which represents sarpled value- of

the perturbed motion taken at intervals of 2x:

x(21 N) = P(0)I™ p’l(o)xo + P©) s P L)1 (73)
where, from equations (29), (30), (71) and (72) we obtain
1 0 0 0 \
6ex(2+e)N 6exx(1ze)N
- 2 1 0 2
(-e)“Vi-e2 (-e)“Y1-¢2
p(o)JNb71(o) = (74)
_ 6r{lie) (2+e)N 0 0 6::(1+e)2 N
(1-e)241—e2 (1-e)%y1-¢

and

P(0)SP 1(0) =

_ 3ex(2+e) (N+1)N

_ 3ex(ite) {N+1)X

(1-e)?J1-¢2

_ 3x(1+e) (2+e) (N+1)N

(1-e)2J1-e2

, (75)
o x - 3x(l+e)2(h'+1)x
(1-e)2J1-¢2 a-e)2J1-e2
0 0 (1] N
/
- 2] -
- - S A, ¢ e T

=




F]
and where I is defined by equation (46),
f X, = x(0) the initial value of the system state matrii.

The I-patrix has been evaluated (primarily by coantour integration)
for the case of accelerations constant in the rotating reference frane;
that is, for accelerations of the form

a
3
u(@) = (ag, a_ constant) (762
i
aw
i
The result of this evaluation is contained in Arppendix D, ¥sing this
resuit one obtains for accelerations described by equation (76):
(4-e)=N a
(1-e) -2
_ 3e(e2+2e+2)zx a _ Gez?N? a
2 1
(1-e) -2 8 (-e) -2)% 1
P(0)SP 1 (0)1 = —}—3 (77)
k/p
(e2+10e+4)xx a _ SEZKZ 2
-
(l-e)z(i-ez):v2 § (l—e)‘(l-ez) fi
2 \4
3(e"-2e-2)=X a
(1—e2)5/2 7]
where k 1is the gravitational fieid constant
p 1is the senilatisrectun of the noaminal ellipse
A closed-form of thne I-matrix has aiso been obtained for
- 22 -
|
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accelerations of the form

uio) (78)

i

where Ki and Ké are integers,

c1 and c2 are arbitrary coaplex constants.
This result is also presented in Appendix D. Xt is possible then,
using the two forms of the I-matrix {for censtant and for periodic

accelerations), to derive an appropriate I-matrix for any disturbance

which can be expanded in a Fourier series in true anomaly.
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Application tuv the Drag—Free Satcllite

As mentioned in the Introeduction, the prooi—uass or ro- v =72 ¢
portion of the drag-free satellite follocs a pure graviis —roil oxoept
for very sm=all perturbations caused by force interactions between the
inner and outer satellites. The rmajority of these force interacticns
are essentially iixed within the satellite. ¥hen the satellite is rain-
taired in a locally-level orientation these forces are then fixed in the
rotating reference frare and can be described by equation (76), i.e.,

/%

ulg) = I (2_. a_ constant) (76)
S [
a
\ T

Plots of typiczl perturbed rmotions, assuming zero initizl conditions, re-
sulting from accelerations of this tyvpe (for selected values of nominal
orbit eccentricity) are presenied in Figures i3} through (6). It is in-
teresting to compare these plots with Figures (£-5) through (4-8) of
Reference 15, which represent the solutiomns for zero eccentricity. As
would be expected, the results for e = .01 2re 2lmost identical to tkose
for e = 0, but do exhibit tke trernd or distortion shown amplified in

the piots for e = .1. The effect of the seculszr terms of the solution

are most easily obtained through the sampled-data solution of equation (73).
Again igroring initizl condition effects, and selecting for exaxple

e = .01, then, using equation (77), one has

z2w T P 79)
kip
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R

. 2
;-‘(2:-5) = - f-d-:—-a - 9—-—“5—*.’! (80)

If a = aq = 10—10 w'secz. p =~ 100 miles, plus tke radius of the Earth,

3
N = 6000rev (= 1 year), ané using the basic relationships x = ER, y = 1R,

it is seen that

xf1 year) = 6m = 20 feet (81)
5 — - "
¥(1L year) = -10 = = -60 miles (823

These resultis verify those of page (126) of Reference 15.

The drog-free satellite ey zisc be ariented so that It -aintains
its oricptation with respect to irertial space. Then the perturbing ac-—
celeration would be essentizlly fixec in inertial space. If it is resolved
into 2 comporent aga lying alogg the line of apsides of the poxminol

orbit and positive cutward (away from the focus) and 2 cozZponent a

b 4
perpendicular to 2_, in tke plape of the neminal orbit, znd positive
S

in tke direction of motion, then the zcceleraticen vecror becomes

a cos £+ 2 sin
s e -0 e

u(c) = (83)
to sin g + aro cos &£

-

wkere a,o acd =2 ° ars constant. Exazples of typical motion 2re pre-

-,

S i
senteé fin Figures (7) through (10). Agair it is interesting to coxpare

these results with tkose for zero eccentricity contaired in Reference 15

*x
As was noted previously, cut of piare ootion is sicple, decoupled,

haracnic motien, requiring o discussien.
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as Figures (4-9) and (4-10).
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Application to the Problem of Solar Radiation With Shadowing

As an exanmple of how periodic disturbances might arise with an or-

dinary satellite, consider an approximate solution of the solar radiation

pressure problem where the sun is assumed to remain fixed with respect to

the orbit plane. If this perturbation is desired over a relatively few

orbit periods, then it is reasonable to regard the disturbing acceleration

as essentially fixed in inertial space.

The reference orbi’ would, of

course, be perturbed by the earth's oblateness, but over a few orbit

periods this will not result in very great relative motioan of the sun.

If ei is the true anomaly when the satellite enters the shadow,

and 8, the corresponding exit value (see Figure (11)), then

po

a

”~

13
u(g) =

u(e) = 0 ,

coSs + a sin
2] o (2]

sin g + a cos 8§
10

.

e<e<eg)
(84)

(o, <6 < 20

(85)

—
where the acceleration vector a has been resoi.ed as was done previously

for accelerations fixed in inertjal space.
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SOLAR RADIATIGN WITH SHADOWING.
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To deternine

u(g) =

. 0O
B, (5) /

it is possible to expand u(3) as a Fourier series.

(8€)

If this is done then

1 o
Pl (g) = 2= {ago(sin ei - sin eo) aﬁo(cos gi cos éo)f
sin 23 -~ sin 25 cos 25 - c9s 2%
+l—a 2=z +9. ~-5) +a = 2 _a = °cose
2z } go i o go 2 "0 2
sin 26_ - sin 25 cos 28 - cos 29
X i o i (]
+ 3 {a’_‘o(Z_; £ 6; g - a‘;o > - ago > }sin 8
o -
oL sin (nfl)f_;i - sin (n+1)9° . sin (n 1)9i sin (o l)eo
T 2z %t0 (m + 1) n - 1)
n=2
cos (n+l)g. - cos (asl)eg cos (n-1)g5. - cos (n-l)g
_ 4 o _ i ol s ng
aqo (n + 1) (n -1)
[ -] - - - -
1 2 ) cos (n+1)¢,i - cos (nel)eo N cos (o ZI.)ei cos(n 1)9o
T 2% go (n +1) (n - 1)
n=2
sin (n+1)g. - sin (n+l)g sin (n-1)g9. - sin (n-1)g
i o _ i e\ oin rg
* aqo n +1) {(n -1} "
87
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1
P = = - -
2(8) o {a'_io(sin ei sin so) + aéo(cos 8, = cos 8)
+1_. @ tp -0 +a sznZQi-sanQG‘a cos%i—coszco cos o
27 )} 70 i o o) 2 T to 2
r 4
+-]:_-.a <o -9 +a 51nzai—s:.n29°—a cosZgi—COSZQO sin
27 ) %o i Yo zo 2 ) 2
- = u g -— i -
1 ] /ﬂn (nél)ei - sin (n{u)eo sin (u Il)ai sin (n l)ao
* 2z =0 G+ 1) 4 -1
n=2
cos (n«l-].)e)'L - cos (n&l)eo cos (n-l)ei - cos (ﬂ-l)ao
+ = - : COS ES
go (a +1) (n -1)
[_-J
1 z . cos (n+}.)ei - cos (nfl)eo . cos (n-l)ei - cos (n—l)eo
2z L (n +1) ) (a-1)
n=2
sin (n-.=1)9i - sin (nJ.Ll)a‘= sin (n.-l)ei - sin (@-1l)g
~ %o @ + 1) B (- 1) sin B¢
(88)
Figure (12) is a plot of perturbed motion over 4 orbit periods under
the followirg conditions:
=2 = -a,, (the sun lies along the line of apsides)
5
e = 0.01
= 50
gi 13
= 225°
6, S
In the numeric integration the Fourier expansion was carried out to the
19th term (n = 19). It should be noted that the paraceters selected
- 38 ~
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were chosen serely to provide an idea of the pature of the solution,
rather than to describe scme actuzl orbit condition. The prubien of
calculating actual shadow-entry and exit angles is discussed in the lit-

erature (cf. Reference 16) and is not within the scope of this paper.
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Application to Inertial Guidance

ike basic relatioxnship of inertial guicdauce is that geometric
acceleraticn is equal to the output from an ideal acceleroxmeter plus

gravitational mass attraction. That is

B = S
r=fzxg (89)
-3
where r 1is the position vector of the vehicle,
—
f is the ocuiput of an iceal zcceleroseter on board the vehicle,
-3
g 1is the gravitational rass attracfion vector, and

overscript () signifies d/dt ir zn inertial frame,
An inertial guidarnce systex computer is mechanized such that it cbizias
the solution to equaticn (82) by solving the Idezl Mechanization Eguaticns,

(90) =z2rnd (91).

5 2 5 - =
v=f +g-OGXv¥ (s0)
c
e e T
r=v-wXxr (21)
a5
where vgr,
Y

& is tke angular velocity of the cocputer froxe with respect to
inertial space, a=d
overscript (&) signifies d/dt in the computer frace.
It has been shoan elsea'herezo that from these three basic equations, by
perturbation an2lysis, one obtains the Platform Misalignzent Erxor
Eguation (92) and tke Position anrd Velccity Error Equation (93) for an

Irertial Xavigation Systez in elliptical orbit

- 41 -




L 3 5 o5
)‘:‘:_K * W~ ¢ (92)
g
13} 2 = ;?-5;)-—; - - :; - = = - -
5r+w;5r-3ws-—-2 r=-\;/xf+Kg-f.+b+n-25wXV
r (93)

where vy is the vector zpproximating the small angie 1ich rotates
computer into platform axes,

is the diad representing stabilization gyro scale factor error,

)

is the stabilization gyrc drift rate or bias error vector,
- -
5r 1is the first order spproximation ic the error in r,

w-s=(k/rd)é is the Shuler frequency correspording to |r],

k is the universal gravitaticnal field constant,
—-}
b  represents accelercmeter bias,
._)
T} represents random accelerometer errors,
-
5w is the difference between computer angular rate and platform
angular rate (te first order),
=2
i; ig the diad representing first integrator scale factor error,
--}
->
Xp is the diad representing second integrator scale factor error,
and
dZ
o signifies differentiation in an inertial frame.

Comparison of eguation (93) with equation (Al0) of Appendix A reveals
the intexesting fact that the homogeneous form of the Position and
Velocity Error Eguxticen of an Inertial Navigation System in ellipti-al
orbit is identical to the Lirogeneous form of t Basic Perturbation

Equation linearized about an elliptical orbit. It follows then that
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e o
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Gt 2,

equation (93) can be transformed to the Tschauner-Hempel Equations.

If

-

5x
8? é By ’ (94)
5z

coordinatized in a locally-level reference frame, and

T3

r 81; 5z = r &%; (95>

then equation (93) becomes equations (96) through (98):

141 3 T
5¢ -1+ec0568§-25q =a (6)
258" + 51" =8 (97)
58" + 8¢ =7 (98)

where e 1is the eccentricity of the elliptical orbit in which the
guidance system is opberating,

8 1is the true anomaly of the vehicle,

P
Pl PZ _ 3
C=m s B=m V=5
wr wr wr
Pl’ 92, and P3 are the coordinates of the error sources,
w =g, the time rate of change of true aromaly, and
d 1d
4 —— T aw m—
pramae (') signifies @ - 6at -

If, for example, the accelerometers of the Inertial Navigation
System are maintained in a local~level orientation, then accelerometer

bias corresponds to a constant input to the equations of motion.

\]
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Figures (3) through (6) then may be interpreted as plots showirg the
propagation of system errors in nondimensional altitude and cross-track

due to accelerometer bias, when

o
e
v

. (99)
"]

The sampled-data solution discussed previously is of course valid too.

Hence, if a 4

3
e = 0,01, using equations (79) and (80) one obtains for N = 1 orbit,

~ 10‘4ge, a) =107°g,, r = 100 miles plus Earth radius,

5x = r 55 =~ 4 miles (100)
5y = r 51 =~ -10 miles (101)
- 44 -

N Y TR = o LI e e RNy
j=2= 7 kR ams - : =T

=t e




APPENDIX A. DERIVATION OF THE TSCHAUNER-HEMPEL EQUATIONS

In this appendix the standard derivation of elliptical relative
motion is reviewed for completeness and to establish notation. A
derivation of the Tschauner-Hempel equations i also given.

Consider the relative motion between a reference ohject in an
elliptical orbit, described by position vector I—l’, and a nearby object
in a slightly different orbit, described by position vector ?. (See
Figure 13). The relative position of the second object with respect

to the first is designated by the vector § so that

- - =
R+p=r

(A1)

Satellcte —_

~

Sflrfbxy Point

/
{
—
\

”

\

N
/)< =
Refererce Ell('f:c Te——=

Figure 13. Coordinate System for Perturbation Egquation

For simplicity assume both obiects start together in space and
time as shown. Considering that which makes the two orbits different

to be a perturbing acceleration _a’, the equations of aotion can be

written:
II -
R =- ia = (unperturbed body) (Az2)
®[”
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-
T=- If:; +a (perturbed body) (a3)
i

where k 1is the gravitational field constant, and superscript (I)
signifies aiffersitis n with respect to time in an inertial frame.

Equations (A1} zrd (A3) combine to form

-
+ a

o G+ -k(§’+")g
B p "

EP- —’13

(a4)

By taking the square root of the dot product of (-l_{)-i- 5)) with itself

it is readily verified that

-2 . [o]
IR+pl” = [RPa + 222 :29) (As5)
2 2
R R
If terms of order (%) “ are neglected as small compared with terms
of orderi } s
- e - ~).-—) - 3/2
‘R_‘_-al 3:33 (1+2R P
2
R
- =
ad — r 3 2 ']
SE31-32¢ ©) + higher order zern
2 22
-~
* = "'3 ~ 3 3-0 . Y
S ReplTERT (- 2R (A7)
22
¥ith equation (A7), equation {A4) beccmez
~ -3
II -, . -
T B x®+p(-Feey .7 {A%)
R o) 92
- 48 ~
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Subtract (A2) from (A8) to obtain

: N (a9)

Neglect the third term on the right-hand side as small compared with the

first two, and the basic perturbation equation results

IX

-—0 14 -3 — o — —

o) =-—p+3—k(R-p)R+a (A10)
3 P3

)

L

-3 -
If p is the time derivative of p taken in the rotating reference

.—)
frame and wL/I is the angular velocity vector of the rotating reference

frame with respect to inertial space, then

-:5 i - -
and
L
11 LL L -2 -2 - = -
;=;+?’I‘/pr72wUIXp.&L/Ix(%/Ix;) (A12)
In the rotating reference frame, if we define
N x Ay Az
§"§1 qu’ g“'ﬁ) (ﬂ3)
f g
-)
p = = R n . (A14)
¢
Alsoc in the rotating frame we have
R P ]
\- 1
. -3 - -
, R = (1] : a= Pz Y 0 . (A15)
3 4] 3 P3 Y m,’ 73
3;- i.,'z .
1
.k - 47 ~ H ;
: i%
P
:
i 1
mﬁ = — T - ———— e T S e - SR
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Combining equations (A9) and (Al12), resolved in the rotating frame, one

obtains the scalar equations

) X - (wz + 2—;)): - 2upy - 2y = Pl (Al16)
L 4] 2 k - -
-l\m ‘-—3)y+2wx+wc=P2 (A17)
R
. k
z + —3 zZ = P3 (A18)
R

where (") signifies differentiation with respect to time.

The following identities can be obtained by differentiation:

,pet — o _ ewsin € A
wRT = x 1 +e cos @ (a19)
” 2\
«2R: =3’c+(5—-w)x (A20)
> 3
R
, ) siemifies & o L4
where (') signifies az = Sac -
Expressions identical in fern hold for - and ¢. Corbining these
equations with equations (A16) througi: (Al18), and noting that
2 2e sin ¢
D=y et SR (a21)
l +e cos =
yields 2 3K
wRE" - = = - 2,;;2&',' = P, (A22)
R _—
2 1
Ry # 2,;3,2R§' = P2 (A23)
2 . 2
wR{" + w RE = P, (A24)
— 48 -




Noting that

2
k___ luR
271 + e cos -

R

the Tschauner-Hempel equations are obtained:

o 3§ , 1
5 1 +e cos - 2y =3 P1
R
1
" -y
"1 +2;=—P
sz 2
1l
1
v b=5-7
w R
- 49 -
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APPENDIX B, REVIEW OF FLOQUET THEORY

In this appendix the standard results of the theory of linear differential

17,18,19
equations »18, are reriewed for coampleteness and to establish the

notation.

Theorem: The nth-order linear inhomogeneous systea

x'(6) -~ F(O)x(8) + D(B)Iu(v) ; x(eo) =% (B1)

kas the general solution

g
x(6) = x(6, Go)xo + X(8, 90) f X-l(-r, BO)D('r)u(T)dr (B2)

8
o

where X(6, 90), the n x n state transition matrix, is the soluticw

of

X'(6, ) =F(BIX(®, 8); X(€, 89) =0 (the unit matrix) (B3)
o [¢ ] o) [ o]

Proof 1: Sabstituze B2 into Bl.
Procof 2: Assume ths solution x(&)

solution xc(e) and a particulzr solution xp(e):

x(@) = xc(é) =+ xp(e) (B1)

The nth-ordered hozogeneous form of equation (81) has n special linearly

independent solutioas which can be arramged as coluzns of an n x n eatrix

x
X(, 80) which satisfies equatica (B3). x(eo, 80) was chosen as tke

=X(8, Soi is known as the eatrizant, fundazental catrix, state transition
matrix, or matrix of partials.

to be ade up of the comple=entary

wTE e




T,

unit matrix so that an arbitrary complementary selution aula o . .x o4

xc(G) = X(6, &o)x0 (33)

In order to obtain the particlar solution assume the constunts, xo, of

the hozogeneous solution are now functions of 6, anrd cail these

functions c(98).

x (6) = X(6, € )c(6) (86)
p e

This apparently arbitrary assucpt.on was first made by Lagrarnge and
was motivated hy 2 desire to represent the effects of planetary
perturbatioas in the solar systea as variation of the orbit ziements.
This assuzption, it turns out, gives the exact solution for the special

—-ase of linear equations. ¥hen (B6) is substituted into (Bl) we obtain

X’c + Xc' = FXc + D (B7)
or

c'=X"Dh (88)

since Xfl =

)
iy

Equation (B8) may be integrated im=ediately to cbtain
e

c(®) = f X-l(‘f. SO)D(‘:)u(T)dT (B9)

C)
o

proving egquation (B2).

If F in equation (Bl) is 2 constant matrix then it can be seen

that

(810)
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where for an arbitrary n x n matrix A,

A
€

ng.

-]
E -&,— AR (B11)
R=0

Lezza: If in the systea (81), F(6) = F(6 + 2z), then for any integer R,

R _
XA = = X h <
X( 27R, 90) x<e, 90)\ (90 2x, bfo) {B12)

4

Proof: X'(6, 60) r(68)x(8, 80) ; X(Go, 90) = U (the unit matrix)

(83). Since this rcust hold for all €6,

X'"(6 + 2%, eo) F(6 + 2x)X(8 + 2x, 90)

= F(8)X(8 + 2z, 90) (B13)

since P(8) = F(@ + 2x). The colucns of X(6 + 2z, 60) are n linearly
independent solutions of the hcmogeneous part of {Bl), and therefore,
each of these coiu=rs, v.R(I < R<n); is given by xp = x(s, Go)cR

where for each R, € is an n x 1 colu=n =2trix of constants. Let C

e an n x n matrix whose colucns are the cR. Then

(@ +2x, €) =
X(0 + 2=, 6 ) = X(6, €)C (814)

Since the colu=ns of X(6 + 2z, 60) are i--ependent, (!'-1 exists.
Equation (B14) must hold for all 8. Specifically it must kold for

€=86 :
C

X(Go + 2R, 80) = X(eo, eo)c (B15)

Since X(G“, 90) 2 U, C is knosn and
X(@ + 2x:, 90) = X(8, GO)X(QO + 2%, 90, (B16)
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Equation (B16) must also hold for all &. Specificually 2t mu-t kald for

8 =6 + 2n:

X(6 + 4x, € ) = X(6 + 2%, € )X(6_ + 2=z, ¥ )
o [o] o] [+)

=X(8, 6)2(6 + 2z, 6§) (817)
o ] )
By induction,
X(6 + 2R, 6 ) = X(8, 6 )X(6_+2x, 6) 812)
o o o o
For the balance of the discussion it will be assumed that
Define a matrix R(5, Go) by
xe, 0 2 xe, ¢ )PEE) ®18)
where B is a constant n x n matrix not yet specified. Thea
63(6-90) »19)

o o

(note the similarity with equation (Bl10)). Then using (B12):

R(6 + 2x, 90)63(6121-80) = R(6, Oo)e'(e.eo) I(Oo + 2x, Go)eu‘ (x20)

Now define B to be

s& -zl‘ £ X(@_ + 2x, 6) a21)

then from (B19) and (B21):
X0, + 2%, 0) = &% = R(0_ + 2%, 03 22)
s23)

. . lt(eo + 2x, 90) = U (the unit matrix)




When (B23) is substituted into (B20) we obtain R(6 + 2nx, 90) = R(O, 90),

so that RO, 90) is a periodic mat *ix. Now let

wé ea(e-eo)_o', = BW (B24)

Then X' = FX implies

R'W + RW' = FRW (B25)
R'W + RB¥ = FRW (B26)
.« R' =FR - RB (B27)
-1 -1
and B=R FR-R'R' (B28)

This result, whare F snd R are pericdic and B 1is constant, is
called the Lyapunovy reduction of equation (Bl).

Let A be the Jordan canonical form of B; i.e.

A= @t (B29)

then
v - 80660 @haae-e) 1 A% (B30)

and
x(8, 8) = r(8, 6)Q7 Mg (831)

If the transformation P(6) is introduced so that

2(6) = P 1(6)x(6) (832)
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where

2°(6) = Az(8) ; z(6 ) = P 1(5 )x
[o] (9] C

then

€./\.(9--90) €/’\.(9--90) p-l

z(8) = z(8 ) =

o

Combining (B32) and (B34):

A(6-€ )
€ o

x(8) = P(6) P (6 )x
[o] (o]

From (235) it follows that

%0, 6> = r(e) %>

-1
b (80)
If we take
Q2 )
o

then it folluws from (B31) that

P(6)Q

R(6, 6 )
o

PP (6 )
(o}

(8 )x
o o

IBsi)

(B3

(B36)

(B37)

{B38)

Equation (B36) is the form of the state transition matrix used in the

basic text,
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SOLUTICH 70 LINEAR EQUATICQNS WITH SERIODIC CORFFICIERYS

s

The 20lutian to

has 22sa v:

Lemas

that

O

PR

2 = FBd12) » DB x(éo} = & {C1)

R Y0 b (se2 Jrognzix B)

0
. . -1 .
o) e ¥ 3 )z S&. &, ) )
{2 ) s, 3c3 o T RE- & , X “(x, QOJD( Su(tddr (225
Q‘
&
Z-i°E Imer
cSe-N-g (c3)
g
/—J\
y . l \_ y - A P

: If FGB) =FGB +

Proof:

X@, 80)

In Appendix

I;;@Hh’ Qe uT i Q¢ (v
6

T) then
N
= x(eo + G, ec)x‘ @o + T, 90) (c4)

B it was established (for T = 2x, pno restriction)

X@@ + NT, 6) = XG, eo)x“cao + T, 8) :28)
8 =8 + NT (C8)
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4‘:(5 e :’ = )\ ':: == A"f. . )‘.‘\ (' - r 3 (“- ;
o ~ (4] 0
Froz {C3;
G, S} =X+, 835 L+ T, 8) (cE?
-4, 4 - - N - -7 ~ -
Yo 2 A o 3 59 o § o 4

X
.3 = £ir s .8 3K+ T, £ 02
2 < T e ¢
Gd
ol -
"1 ~)
- e - m gl X {7, T_rHxsiodAe £T83)
] -
v
o

Lemma: Ii 0@3)

DG + 1) and wu() = u(@ + T) the solution (£9) can
be written

N

~ TN
x(¢) = X(So + o, eo)C‘zo + X(eo + G, 60) ( E Ck) 11
k=1
6 +0
°  a
+ )((9O + a, ec) f X “(x, 90,)0(1)“(1')dr {C10)
eﬁ
where C=X(@©@ +7T, 62 {(C11)
[o] o
90*'1'-1
I1 = f X (x, eo)D(t)u(r)d: {C12)
%
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nah 4 T VR e A, T R TL TS AT B W WFTRE, € e T TR T T TN g TR TR TR W T e

g +7T
-1 £° 4 -
Prooi: i ¥ T 5 20(nuladdr - } X “ (1, 50.’-'(1)12(1)(11’
2
G

"e

Ty

8
$ fx’l(f, GO)D(T)U(T)GT .
€ +NT
o

By simple changes of variable in each integral obtain

8 9°+T

f x.l(r, ’::O)D(T)U(‘t)d’- = ] X.l(z. ac)D(t)u(r)dr +
8 6

o 0

(see page 59;
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Proos:

8°+T
-1 £ - N
i X (. ap)D(r)u('-.)df. = J X 1(1, 50.'. ‘(1iuis)dr
2
(&)

1
X “(x. t’ro)l)(*:)u (<idx
l

8
+ f X.l(':, GO)D(T)u(t)df .
90+m‘

By simple ckanges of variable in eack integral obtain

8 9°+T

[ e s p@uc- - | IESGCARICROMRE
8 8

o o

(see page 59)

- 38 -




8 +T
°
+ J X "(t+ 71, so)D(x)u(:)d: +

60

6°+T
+ ceee * f X-l(r + (N - 1)T, GO)D(r)u(t)d:

e
o

§-NT
+ f Xz s w1, 8_)D()u(x)dz

6
o

N
Use X(1 + NT, 90} = X(g, eo).\ (30 + T, 60) shown above to obtain

-N -1
e T sla = X (] X
X "(z + NT, 90) X ("o + T, 90) (<, 90)

& 8 +7T
-1 R |
fx (=, GO}D(T)R(T}C!T = ] X (<, GG)D(r)n(t)d-:
8

@

o S

-}

+

-1 Po -1
+ X6 +T,0) f X "(z, 6 )D(xa(z)dt +
o] 2] [»]
60

8 +T

o (o]
boeee + X c"'l)(ao +T,6) f X!z, 6_)D(xhu (x)dx
&

(s}
8 +c
-N ° -1
+ X" +T,6) f Y. "(z, 6 )B(z)ulx)d=z
(o] G 7 [s)
80
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Introduce this last relationship into equation (C9) and simplify
to obtain expressions (CiQ) through (Cl2). Thus are proven expressions
(36) and (37) of the basic text.
lesma: If D) =D@ + T) and u(g) = u(s + MI) where M is an

integer the solution (equation (C9)) can be written

r-1
x&) = X@ +0.9)CNx + X(9 %o,e)(z Ch'u)l
o o o o) o 2
k=0
8-rMT
N -
+ X(‘io + G, 90)6 ™ f X 1(1, GO)D(‘r)n{‘r)dr (€13)
]
o
wshere C=X( + T, 6 ) (C14)
o o
6 +MT
RS |
12 = [ X (=, 80)3(1)0(1)d1 (C1s5)
o
r 1s & ia eger such that rM < N< (r + 1)NM (c16)
8 6 +MT
-1 (¢ -
rroots [ 3 M(x, 6 )D(M (D) = | RS RLO U C TS
-
E:‘o 50
8 +r¥7 &
¢ - ( 1
ces + X (s, GO)D(T)u(r)dt + J X (s, eo)D(r)u(f)dt .
5‘_‘+(r-1 )XT Goérﬂ'




1 ~t1iil T

where r 1is described by equation (Cl6} and N

largest number of integer values of T in & . Agaln use s1mple

variable changes in the integrals to obtain

8 9°+&!l'
Jx-l('«., eo)D(t)u(r)dr = f 1(_1(1, ao)f"(f)u(:)dz + eesee
8 8
o o
g +MT
R |
cones + f X (¢ + r ~ 1)M1, BO)D(T)U(T)dl’ +
8
o
8-rNT
¥ J x'l(r + MT, 6 )D()u(z)éx
s o
o

Again x'l(r + NT, eo) = X.h(eo + T, eo)xol('s, 90), so that

6 QGM
IK-I(T, GO)D(T)H(T)GT = f x.l(T, GO)D(T)u(r)d: +
60 eo
& +MI
+X (8 +T,8) f X “(z, 8 )D(u(z)dxs +
o o o
g
o
6 +MT
+ x-(r—l)l(e +12,6) > ‘(.1(' 6 ID(ulz)dt + s
eooee o . 2 o . (¥} o [$ FY ¥
e
O

W

(see page 62)
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8-rMNT
~-r¥ -1
+X (B +T,8) f X "(1, 8. J)p()u(z)dr .
o o o
2]
o

Substitution into equation (C9) and simplification yields relations
(C13) through (C15). Thus equations (39) and (40) of the bdasic

text are proven,
lemma: If D) =D(®B +T) and ufg) = u(® + P) where P £ MT for
X¥=0,1,2, ,...., then define K such that KP = MT, swhere K

and M are both integers. Ther x(8) may be approximated by:

r-1
x(B) = X(e +c,9)C’Nx + X5 +G,6)(E Ch-k!)l
o ¢ o o o 3
k=0
&6-rkP
- X6, +a, 8 )™ f X1 (r, 5_ID(Iulx)ex €11
8
o
shere C = x(eo + T, 60)
KP = MT, rKP < NT < (r - 1)KP 19)
8 +kP
°
13 = f X (5, GO)D(T)U(T)dT (C20)
o
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Proof: The prcof of relationsnips (C17) through ((2Z1) :

the proof for relationships (C13) tarougi: (C16) directl:,
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APPENDIX D. THE I-MATRIX

The samnled-data solution defined by equation (73), that is

« N~ -
x(@TN) = POIIP 1 (0)x, + P(O)SET (0)1 (D1)
is (except for the I-matrix) composed of matrices whose closed forms are

given in the main body of the text. The I-matrix, representing tbhe

integ-al (over 27) of the disturbance, is in analytic form
21

1 = x’l(T,O)D(r)u(1)dz.
)

()

For the case of disturbances constant in the rotating reference frame,

that is disturbances of the form

u(g) = (D3)

the I-matrix has been computed in closed form. The technique employed

in this calculation was primarily one of contour integration. The result

is:
\

r' 7(4 - e) a
Q- e - e2)3/2 1

2

3ez(e2 + %2¢ + 2) 6ex
Q-0a-H" ¢t G-aa-S2 D
1= _1_5 (D4)
k/p - n(e2 + 10e + 4) an a

2

a +
a - e)2(1 - e 3/2 ¢ Qa - e)2(1 - ez) K

)

3n(e2 - 2¢ - 2) a
2,5/2 )
(1 -c¢
\

‘ /
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where p is the semilatisrectum of the reference (nominal) eliipse,

k 1is the gravitational field constant, and

e 1s the eccentricity of the reference ellipse.

For disturbances of the form

jK
. eJ 19
1
u(@) =
K
c eJ 29
2
where Kl and 1(2 are integers,

c1 and c2 are complex constants,

the I-matrix becomes

(2 + e)
a + e)fl “Gre £2

1
a- e - )32 {pery - 2}

1

e(l ~e) 1~

(3 + e)
-~ )+ T L

N

where p, k, and e are as defined in the previous case, and

K K -4
1 2.2 1 3 2 8
tl 572 {j32c1(1-e ) xlzl -e czzl [e(K§+K2)Zl

16e (l-ez)

7 6 S 4
+ 4(1(;-1(2)21 - 2e(7K,-2)27 - 4(x:+9x2 12)z] - z.,(xi--zo)z1

3 2
- 4(K§-~91(2«-12)Zl + 2e(7l(2+2)22l + 4(x:+x2)zl + e(K:-Kz) ]}

5 = {3ef3-[1-(1-e)2h-e2]f4}

(D5)

(D6)

07)

-

¥
s
i
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DRI PP AVi 1 '
EiCaaa. had &"m e
. N

p { X Kz}
: f = e—=—— {jc.K 2.7 - ¢ 2 {D8)
E 2 (1.2 1711 271
< X -2 K,~2
> _ n 2 "1 4,2 ) 2 ¢ 2 .4
. f4 = 5372 {2e ch1 (xlzl 421 Kl) + jc.zxzzl [e Kzzl
' 4de(l-e’)
“ (D3)
3 2.2 2
+ 40(1(2-1)21 + 4{1-2¢ )Zl - 4e(l(2+l)zl - ek, ]}
5
i 2 X X
. = w ecoesma——— 1 7 -
i 1, T {clz1 (1+x1-n|zll+jx11) + ¢ K S +c,Z (jlnlzll 70)
c,c l-e
£ 21
: + chsz(xz)} * Toe {cl + 2Q1+e) [je,K S, (K)) czsz(xz)]}
F
K -4
f - 3 X 3573 { e3c1211 ([(8e+4e3) l-ez][( 1-3x1+z)z§
ey 48e (1-e ) \
g 3/ 7
® 4 2.3/2
- @2-8)z) + (43K 42)22] + [2 - 20-) 2 ][0~k 2]
£ 5 3
: - (Kiwxl-lz)zl - (xi—sxl-lz)zl + (xi-»xl)zl] + (D10)
+ [e - (e2e)V1-e2] [034x)2° - (ax -0)2° - @2KP-10)2*
17174 1 " 1 1
y + (14x1+4)z§ + (xi—xl)] + [24eQ1-€2) ] [(xl-z)z‘;

K -4
- (le-z)z‘; - xizi]) - j4c2(1-e2)l[2212 ( [(442¢%) Y1-€

- 4] [e(xz-l)zi - e(x2+1)zl] + [(1+2e2) \’1-e2 -1] [ezxzz:

+ (4-8e2)2§ - ezle)}

: - - 66 -




¥ r‘l
r! [,k r-k _ k r-k k., yr-k
= - - - - .‘-Z
Sl (r-k) ki (r-k) zl(1 zl) zl( zl) Zz( 2)
k=0
. (D11)
) Z.-1 zZ -1
] k r-k b g 1 r 2
: +zz(-zz) }+zlln(z ) zz(z )
: 1 2 !
XN
R . 2k+2 -
Sy = Z 2k &kz)’. (223) x
| §
-y 27 (k!) (2k+1)
K. -2k+l
1 2+ { @2-1)2%H (zlzz-zuzl)zk*lz 1 )
(D12) -
 §
(2k+1)! dz21:+1 \ e2k+z (z-2 )2k+2
2 z=z1 .
2k-K 2k+1 2 2k+1
. L O ((Zz-l) @,2* 2242) )
- L - ?
(2k xl). dzzx K, ( gz2+zz+e)2"*2
Klﬂk
Z === (1 -y1-¢&) |, (013)
1 e
1 2
zz"-e(1+1 e) o (D14)
The infinite series S2 in the fa term abcve arises in the evalua-
tion of
r2= -1
1 sin 3 JKt,
sz(‘) T 4x JO (0 +ecos 7) dz (D15)
where ) = e sin 7 G -~ Z] cos 7) . (D16)

l] +ecos <
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An approximation to this integrai can be mide by observing that

A = e sint [1 ~ (Zl+e) coST + e(Zl+e) c0521 - e2(21+a)c0331 + ceee) (D17)

and

- L4
sin 1)& = l + % )-3 F eeee + 2k (2k:'), - l2k+l + cast . (Dls)
27 (k)" (2k+1)

Since z1 and e are of the same order of magnitude, ) may be
approximated to whatever accuracy desired by cutting off the series and
discarding similar povers of e in 1?, 1?, etc. Term by term integration

can then be accomplished on the unit circle.
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