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Introduction

This paper deals with a cethod of calculatr.6 thL i col .4 the

path of an orbiting body from a nominal or rcfer ncc tr tr. The

forn wn which the solution is cast was cotivated by p r71~Jlr

perturbation p.xoble-. Stanford University is dcvclopirg a '"drag-free",

or %:drag2-nakevp", scientific satellite which is designed to follow a

aprely gravitatjon2al orbit. The satellite consists actually of tWo

satellites: a inner sphere or proof mass, and an outer concentric

shell. Te relative =sition of the shell with respect to the in-ter

sphere is sensed vith a capacItive pickoff. The position signals

coand an 2ctive translation control system Thich -ires jets mounted on

the outer shell so that it chases the inner sphere witlhout ever touching

it. Thus the proof mass is shielded fro- gas drag a--n solar rdiation

pressure and, except for very snall disturbances caused by force

interactions with the outer shell, it fol11sCs a pUrely g-aVIt~ati0,l
I

orbit.

The problem which notivated tte present study w-as to dete.-=ire tme

Ieff'ect of these s=all disturbamces (abcut 10710 to 10 Qg) ver e

periods up to a year. Furtier=ore, the 2rswer was desired directly in

terns of the deviation of the satellite's path f£oc the path wbich wIld

be followed by an earth satellite acted upon by gravity only. Therefore,

the technique of perturbation of the coordinates was selected as the basis

of our approach.

The technique of coordinate perturbation, which began -with the

2 3
work of Encke and Hill in the last century, has found increasing

use in =odern tices for orbital theory. The linearized perturbation
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equat1'ras about a circuldar orbit (iwhich are rerely IR.i1 ' lun~ar equation!s3

without the r-utual gravitationaI" terms (see equations (1). (2).(3) with

e = 0) have been 2pplied ir. rz'ent years by Ubeeloni, 4Geylirg, 5. n

Glolkessy and Vk1tsbire 7to a n-, er of satellite perlturbation probls

Ba ttln 8 ad Dar-by S 01 give state trar-siltion =trices fer gereral conic

section~s wrhich also =ay be applied to satellite perturbatIon, ar-d guidarce

pr'oblem , a~d receatly Tschauner armd Rennel 19have a-pplied the li~earized

Hill's lu~ar ecuiatio-ns to the imiol=23 fu~el rezdezvcus problem.

I~Seie types of orbital pobeas (as in the mentioned exzaple of

determirafrg the eff'ect of lImternzal force errors on the Orbit of a drag-

free satellite), It Is eIzza-ble to cc.rte the pertamrtatiar-- of, the

coordlmates wfrern the satellite is subjected to wery -- all, distrbaces

for =a~y thrsarmds oft r-eolutia-s. In this case, the inearized Hill's

equiatiozs- are 'vtlonly for very very s)LIL eccentricities; variation

of parazeter techaniqzes do mot yield 2= 2=,swer directly In the desired

Iformi (i -e., as deviations of the coordi=ates); 2nd direct =erical

Iraegration proves both costly ard Ir-accurate, %tem carried ouit over

laozg time Imter--als. Her-ce a diftferCet 2-ric s15-gt.

-2-
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The Tschauner and Hempel Equations

Tschauner and Herpel13 have shown that if the nr-,r-- z - -rz- .

equations of aotvxn are linearized abW.1t a -z-a.k c!iipfl#xi . ir~1t Rn

a rotating reference frame (see Appendix A). the% assume th o #-.ry

simple form:

M" - 32-

-a--e :ose 1

2=' (- (2)

= r (3)

U2where =E" -" r

1 2 3- ~2 2" ¥

P1 P2 ,p are snjail perturbing accelerations alo=C the .

1 R 2R 3 1

u2 Y u 3 axes respectively,

E is the instantaneous radius of the moinal elliptical orbit ,

E is t-e true -rom-ly in the r dcal orbit,

e is the eccentricity of the nominal orbit,

= e. the tin rate of cha=ce of tr-e awn ly,

uI , U2 , u3 are relative coordiantes shown in Figure 1, and

the prime C) signifies d - d

In deriving these equations, terms of order 2- 2. and higher are

neglected. If the equatio=s of notion in cylindrical form are linearized

as shoim In Figure 2, with r = R" 5 = g, and as before, equaticns

(1) thrc- &! (3) are again obtained. Now, however, - Bay be arbitrarily

-3-
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lar whle er o orer 2 s2 r2
arg whle ters of order , , and higher are neglected.

Equation (3), of course, represents simple out-of-plane harmonic

motion and needs no discussion.

-4-



12v 'LINE OF APSIDES)

FIG. 1. ORBIT COORDINTE SYSTEM (Rectangular Coordinate
Interpretation).

SATElLITE

FIG. 2. ORBIT COORDINATE SYSTEX (Cylindr. Coordinate
Interpretation).
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Solution of the Tschauner-1empe1 ELquations

By introducing matrix notation and defining the system state matrix

x(e) to be

~(e)

x(9)I (9(4

equatk.,ons (1) and (2) May be combinqed ar4d writtezz

x' e)= (q) 49t) + D(4-) u(q) (5)

where

3 0 0 1 6

0 -2 0)

0 0

2

o 0

-6-
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and

ue) - ((8) )

It is t-ell known from the theory of Floquet1 4 (see Appendix B) that

a system governed by equation (5) where F(9) = F(e + 2n0, has a state

transition matrix, X(B, e ), which can be written as:

X(e, eo ) 0 R(, eo) eB( - eo)  (9)

where R(9, C0 ) = R(G + 21, e ) is a periodic 4 " 4 itrix, and

BAl
B- L n X(O + 2m, e ) is a constant 4 x 4 matrix

21r 0 0

whose cigenvalues deterLine the system stability.

The unforced part of equation (5) is said to be kinematically similar

to the constant system

wS = Bw . (10)

F(), R(9, e ) and B are related by

B = R-(e, eo )F(e)R(, eo ) -R7!(9, eo)R'(9 , ) 0

and equations (10) and (II) are known as the Lyapunov reduction of

equation (5). By an appropriate linear constant transformation

z = Qw (12)
th

*Formally, the state transition matrix of an n -order linear system of

differential equations in first-order matrix form is an n x n matrix whose
columns are n linearly independent solutions of the free equation, such
that X' (9, eo) = F(9)X(9, e o ) and X( 0 , o = U, the unit or identity
matrix (see Appendix B).

-7-



(where Q is a constant 4 x 4 matrix)

equation (10) may be transformed into its Jordan normal form:

zi = Az (13)

where

A =Q (14)

The eigenvalues of A, together with the structure of the Jordan blocks

determine the stability of the free solution (u(9) = 0) of equation (5),

and it is possible to give the state transition matrix, X(9, 8o),

directly in terms of A:

Me, oo ) 0 p(9)e) A(- e o)p-l o )  (

where x(O) = P(9)z(9). (See Appendix B).

1he periodic part of the state transition matrix, RO9, e o ) is given by

R(9, e) P(9)P (eo), (16)

and furthermore

Q 1 (17)
0

It has been shown by Tschauner and Hempel13 (who have obtained the

matrix P-l(9) in closed form), and also by the present authors, that

equation (10) is kinematically similar to equations (1) and (2) with the

Jordan canonical form of B given by

-8-



0 1 0 0

0 0 0 0
A- = (18)

0 0 0 1

0 0 -1 011

It is rather interesting to note that * may be obtained by finding

the Jordan canonical form of Bo, where 3 is the matrix F(9) givenO

by equation (6) with e = 0.

0 1 0 0

3 0 0 2
B = (19)

0 0 0 1

0 -2 0 0

In fact, equation (5) may be factored into the form

x' Q) = [B + e G(9)]x e) + D(9)u(9) (20)0

where G(9) = G(e + 20,

0 0 0 0

G(9) Cs 0 0 0 (21)

1 + e cos 6

0 0 0 0

0 0 0 0

*The normal form (equation (13) with A given by equation (18)) corresponds

to two decoupled second-order systems: a pure inertia or I/s2 plant and
SI armonic oscillator with a natural period equal to the orbit period. The

14 2 plant may be interpreted physically as motion in a similar coplanar,
coaxial ellipse with higher or lower total energy. The har--onic oscillator
corresponds to motion in a coplanar ellipse with the sane period, but
with different eccentricity and/or orientation.

**This remarkable property is not usually possessed by even the simplest

of periodic systems. Compare, for example, Mathieu's Equation,
+ u 2 (l - e cos 2 wt) e = o.

-
-- 9 -



The m~trix P71(9) is given by Tschauner and Hempel:

1

cI P 2 3 -q 2

-2qI + e - 0 -q(22)

-I e sin e -(i + e cos G) le cose 0

-(3 + e cos 9) 0 -1 e sin 9 -(2 + e cose)

where:

1 + 2e 2)-e' sin e -(2 - 3e cos e e2 )sin-I, (23)
1 eL (3

23/2
P2 -(1 + 3e-) L (1-e) e cos a

2e f-2 - l]cos 2 e - e k. sl-h - (24)
+2 (e + e -l-e

2 = I (2 e e24iI2 - 2sin (I + 2e2)4_e

2~ -1

+ e(1 ecos e)2sin-1 , (25)

q= (1+ a cos 9) 2 , (26)

= sin e(1 + e cos e), (27)

sin 6 fe + (1 -4 2 )cos e(28)
1 + e cos 9

If e is chosen to be zero, then

- 10 -



(e 1) (-1+(1-e)" .1-e- 1 0
0 3e 3

(1 -e) (2 +e) 0 0 -(1l+ )2

P (0)%29)
o0 0hl +-e) e0

-J(3 +e) 0 0 -(2--e)

2 +e 0 2(1 -- e)

0 0

3e -0 -2 0

(I e 2 3/2 (1 ) (I -3(30

P(0) 
(0

3__ __ _ 0 -2i IL- I-e 0

(-)e (-e)2f:2

3 +e 0 -2 (2 +e)
0~ 1 +e

From equations (14) and (17)

B(e) =P(0)A P710) (31)

so that

H 1



and also B = B(0).
0

It may be seen by direct differentiation that the solution to

equation (5) is

x( ) = 09e 9)x(0) + X(q, eo) J Z-1 (T, e.,)D(T)u(T)d-. (33)

e
0

where x(0 ) is the initial value of the system state =atrix and

X(e, ) = R(9, o)B -eo)= PG)e" 0ol-(9 0) . (34)

(This solution may also be obtained by variation of paraieters. See

Appendix B) If one attempts to use equation (33) directly to determine

the effect of small perturbing accelerations over many revolutions,

serious numerical difficulties are encountered which result both in loss

of accuracy 2nd in excessive computation time.

- 13 -
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Solution for Constant, Periodic, and Akost-Periodic Pert'rbing

Accel1rations

As in the case of computing perturbations for a drag-free satellite,

it often happens that perturbing acceleratio-s are constant or periodic.

It is thtsn possible to co .rpte their effect at any future tine imerely

by co=np'ing their effect over o=e orbit revolution. If the disturbing

acceleration has the forn

u(q) = u(9 +2r) (35)

it c~n be shen (see Appen=dix C) that t2he solution to equation (5)

[that is, equ2tion (33)] can be written

x~z) = U9 -2;cN, e )g, x16) + X( - 2:rN. 3
k=1

2-3W

+ X(- - 2 X, e0O) 0-I(, Go)D( )a(-r)d (36)

0

where N is the 1argest a-zber of car'iete revolutions in (9 - eo),

0o  0

L1 = o x , 0 )1D(i)u(r)dz. (37)

The solution as even by equations (36) 2d (3?) reqzires integration

over a =2xii=- of o=e orbit revolution, regardless of the 2ctmal =-m-ber

of orbit revoluticns cont3ined in the range of interest (9 - e 0 -

the difficulties ientio=ed In the appitcaton of the solution in the fcrn

given by eqruaton (33) are overccue. Tlhe restriction of the disturtacce

- 14 -
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to costant or periodic in e case can be relayc- -1 .:- . 1±

u(9) =u(.: + -:.36) (38)

where M is an integer, It can be shown (see A:endix C) tVit the

solution [eq-ation (33)] can be written

x(9) = X( -2:;, o)C x()C X(9- 2= N. e.() 39) 12
k=0

eo

were X is the largest z=nber of coaplee revolutios in ( 0 -eo).

r is the largest integer < IX,

C = US 0 2r, 8)- 2d

o -1

"2 J X (,, eo)D(T)u(8)d(c
9

in tis c2se t e solution over 2:y Interma: (9 - e o) requires integation

over a m z=a of X revolutioms. Thus tle comstant r defi=ed above

is a fi xre-of-=erit for the solution in this fo . The larer r, the

more relat ve Ta1ce e- ation (39) has over eqation (33).

0-e further ge=elraliatlon of the for= of the perturblng acceleration

can be made. If Instead of eq=toms (35) or ( ) e have

u( ) = u (9 + C)(41)

where 84 2x X for M = 0, 1, 2, t.h., .be solution =y be a2roximaed

(again see Az-dix C) 2s closely as desired by selectir.- an i-ger X

- 15 -



such that

K 2-Z H (42)

for soce integer M. Then the solution to equation (5) is again

equation (39), with N, C, and 12 as defined, but with r an integer

such that

r K E < 2r., N"< (r :- 1) K 6 (43)

In this final casc intezrtion is required over a naxi=iu of M

revoutiens., Of course, the larger the selected value of X, the

greater the acczracy odtz2ed in the approximation of equation (42).

The usefulless of the solution, in this case, is dependent upon the

n.ature of the actual problem.

- 16-



Restriction of Initial True Anoraly to Zero

If the initial value of the true anomaly is takrrn t, . r -

no real restriction of the general problem is inpi-td. ihi i--.'

stipulation of 9o = 0 sicply requires a compensaz:,ry adjust-A-na in the

initial value of the system state atrix x(! ). Then tb.7 %.-lut in for0

perturbing accelerations of the form

u(6) = u(6 + 2-) (35)

can be written in 2 canner especially adapted for rapid, accurate evalu-

ation. If 6 = 0 and x(G ) = x , equations (36) and (37) become
0 0 o

X(6) = X(X,0)N'(2,0)x + X(O) (2-,)'I
X(,O( 2 0)

0 1-

+ x(0,0) (-,.O)D(-.u(:}d- (44)

0

where N is the l2rgest nu ber of complete revolutions in 9,

-=2:7N,- . (45)

1= f0X-.0)D(I)u(;)d (46)
0

1 0 0 0

-6:7e (2+e) -6-e (le)

x(2 -o) = (47)

-6:7(2+e) (l-e) 0 1 -6-(1 "e)2

(1L-el 2NI[ 2  (I--e) 2 jj 2

0 0 0

- 17 -



(1, 1) (1,2) (1,3) (1,41

(2,1) (2,2) (2,3) (2.4)

X- 1 (0,o)= (48)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

where

(1,1) 4 + e - 3cos a (49)
( I i =1 + e (4 9

-s n a (I + e cos ) ,50
(1,2) = + e (50)

(1,3) = (2,3) = (4,3) = 0 , (51)

(1,4) = 2 + e - cos a( 2 + e cos a) (52)
1 +e

3e(2+3e cos .j + e 2 )(a-sin - 1 ).) - (3+6e2)T1--e2 sin a (53)(2,1 =(1-e(-

(I e)(I -23/2

"2,) =3e 2 sin q(l+e cos !s)(,j-sin-kX)- _l:--2 [2e+e 3-(l-e 2)cos a-(e+2e3 )Cos 2a]

(1 - e)(1 - e2 ) 3 / 2 (54)

'2f4 - 3e(l+e cos a) (a-sin-l)- -)e) (2+e 2 ) sin a+(e+2e 3)sin a cos ,17 ,

(1 - e) (1 - e2 ) 3 / 2 (55)

(3,1) =3(2+3e cos ,e 2 ) (-sin - ] ), ) - ( 6 +3 e ) l- 2 sinl , (56)

(1 - e)4 e 2

(3,2) 3e sin n(l+e cos j)(3-sin-1x)-Il-e212+e2-(2-2e)cos -(2e+e2)cos 2]

(1 - e) e27 (57)

(3,3) = 1 , (58)

- 18 -



( 3(1+e -os a) 2(a-in-)) - f (4-e)sin T+(2e-e)sln
(1 - e) 2 j1 - e2

U e) e2(59)

(4 .) = 6(cos j - 1) (60)

(4,2) 2 s n rj(1 + e cos (61)
1 + e

(4,4) -0-(3 + e) + 2cos a(2 + e Cos 7) (62)
.1 + e

and --- 2
sin af.e + 2 - Cos 

(63)" ~ ~ + e + Cos .

If J is the Jordan canonical form of X(2-T,O) (given by equation (47)),

then J is 3-vent by

1 21, 0 0

0 I 0 0

J = (64)

0 0 i 0

0 0 0 1

and (see Appendix B)

X(2,,,0) = P(G)JP- (0) (65)
-1

where P(O) and P (0) are given by equations (29) and (30). Noting

then that

xN(2,,0) = P(0)JP-I(0) , (66)

- 19 -
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and defining

N

s = jk (67)

k=l

equation (44) can be written in a form which is convenient for calculating

x(e) when N i.i large:

x(e) = x(UO)P(O)JNPl(O) + X(,o)P(O)SPl(o)1

+ MO) aX - 1 (r,0)D()u((r)d- (70)

where N is the largest number of c~mplete revolutions in q,

X- (T,O) is obtained from equations (48) through (63),

D(T) is given by equation (7),

u(T) is given by equation (35),

1 2rN 0 0

0 1 0 0

im =(71)

0 0 1 0

0 0 0 1

N N (N+I) - - 0 01

0 N 0 0

S =(72)

0 0 N 0

0 0 0 N

- 20 -
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Sampled-Data Solution

If in the general solution (equation (70)) : i. re-tritt d to

zero, an expression is obtained which represents sarplcd vjluc.- of

the perturbed motion taken at intervals of 2.t:

x(2n N) = P(0)JN P-l(0)x + P(O) S p-I(0)1 (73)

where, from equations (29), (30), (71) and (72) we obtain

1 0 0 0

6en(2+e)N 1 6e, (lze)N
(l-e) 2-e) 2 I

P(O)JliP- l (0) -(74)

6z.(l+e) (2+e)N 6rr(l+e) 2 N

(l-e) 2 Ie2 O7e 2 41 e '

0 0 0

and

N 0 0 N

3e-r(2+e) (X+i)N N 0 3cg(l+e) (N+ )X

P(0)SP-l(o) = , (75)

3,-~le)(2+) N+)N 0 N -3sz(1+e) 2 N I)N

e22
3ir(i+e) (2+e) (N~l)N 0 * -3(l)(KlN

(1-e)2 (1-e)2,1e

0 0 0 N

- 21 =



and where I is defined by equation (46),

x o 
= x(O) the initial value of the system state matrix.

The I-matrix has been evaluated (primarily by contour integration)

for the case of accelerations constant in the rotating reference frame;

that is, for accelerations of the forn-

u(e) = ((a, a constant) (76)

The result of this evaluation is contained in Appendix D. Using this

result one obtains for accelerations described by equation (76):

(4-e) )
3/2a(1-e) (l-e 2 ) 3 / £

222
3e(e 2e+2)r-V 6e2 N a

(l-e) 2) 5 / 2  (l-e -e 22

P(O)SP - (0)1 = 2 (77)[2

k/p 22.
(e_+l~e+4).-X______

(l-e) 2 (1_e2 ) 3 / 2  aR - (I-e)2 (le 2 ) 2r,

3 (e2-2e-2) .N
(l-e2)/2 a

where k is the gravitational field constant

p is the semilatisrectu= of the nominal ellipse

A closed-form of the 1-matrix has also been obtained for

- 22 -
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accelerations of the form

jK I

U (0) = 2K2r (78)

where K and K are integers,1 2

cIand c2  are arbitrary complex constantse

This result is also presented in Appendix D. It is possible then,

using the two forms of the I-rcatrix (for constant an~d for periodic

accelerations), to derive an appropriate 1-matrix for any disturbance

which can be expanded in a Fourier series in true anOMaly.
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App-lication to the Drag-Free Satcllite

As mentioned in the Introduction, the p f-.- .r irn- s-

portion of the drag-free satellite follows a pure gravit% :rsxc -cpt

for very s=all perturbation, caused by force interactit in. bereen the

inner and outer satellites. The rajority of these force interacticns

are essentially iixed within the satellite. %hen the satellite is r-ain-

tained in a locally-level orientation these forces are then fixed in the

rotating reference fratie and can be described by equation (76), i.e.,

= (a t a constant) (76)

Plots of typical perturbed ntions, assjun g zero initial conditions, re-

sulting from accelerations of this type (for selected values of nominal

orbit eccentricity) are presented in Figures .3) through (6). It is in-

teresting to conpare these plots with Figures (4-5) through (4-8) of

Peference 15, which represent the solutions for zero eccentricity. As

would be expected, the results for e = .01 are alMOst identical to those

for e = 0, but do exhibit the trend or distortion shown amplified in

the plots for e = .1. The effect of the secular terns of the solution

are most easily obtained through the sanpled-data solution of equation (73).

Again ignoring initial condition effects, and selecting for example

e = .01, then, using equation (77), one has

- 24-
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- 4WN 6- 2

rJ(Z-N) 2 - 9 (80)
k/p k'p-

If a = a 1 0 Ws , p- 100 miles, plus the radius of the Earth,

N 6000rev C- I .ear), and using the basic relationships x = tR, y = R,

it is seen thas

x(l year) 6 ; - 20 feet (81)

5 -
y(1 year) = -10 n = -60 iles (82)

These results verify those of page (126) of Reference 15.

The drag-free satellite =y also be oiented so that it naintains

its orientation with respect to inertial space. Then the perturbing ac-

celeration would be essentially fjed in inertial space- If it is resolved

into a component a90 lying aloag the line of apsides of the nomnal

orbit and positiv cutvard (away fron the focus) and a coMponenr 2a

perpendicul-r to 2 P in the plane of the noninal orbit, and positive

In the direction of motion, then the acceleration vector becomes

2 COSe6-f-a 2 Sine

u(s) = (83)

s2n e + a cose

where a and a are constant. Examples of typical notion are pre-

sented In Figures (7) through (10). Again it is interesting to compare

these results with those for zero eccentricity cGntained in Reference 15

As was noted previously, out of plane cotion is simple, decoupled,

harnonic ootion, reqjiring no discussicn.
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as Figures (4-9) and (4-10).
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Application to the Problem of Solar Radiation With Shadowing

As an example of how periodic disturbances might arise with an or-

dinary satellite, consider an appzrximate solution of the solar radiation

pressure problem where the sun is assumed to remain fixed with respect to

the orbit plane. If this perturbation is desired over a relatively few

orbit periods, then it is reasonable to regard the disturbing acceleration

as essentially fixed in inertial space. The reference orbi" would, of

course, be perturbed by the earth's oblateness, but over a few orbit

periods this will not result in very great relative motion of the sun.

If e i is the true anomaly when the satellite enters the shadow,

and e. the corresponding exit value (see Figure (11)), then

a o cos e + a o sin e (0 e < ej)

u(o) =ej, (84)

a sine+a cosel (e < e < 2,r)a- o sin 0 N)

u(e) = 0 , < e < 0  (85)

where the acceleration vector a has been resol..ed as was done previously

for accelerations fixed in inertial space.
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FIG. 11. SOIAR RADIATION WITH SHADOWING.
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To determine

u(e) = .0. 2- (86)

it is possible to expand u(q) as a Fourier series. I! this is done then

e {a (sin 9n - sin ec) - a (cos s - cosc

1 ( sin 29, - sin 290 cos 2., -cos 2 )

0 2 0 o

+ (2- : + e - q0 -a- sin 2 2 so-- 2 e

1 -a in (n-L)e i  sin (ni)0- sin (n-2)0- sin (n-1) o 0

Cos (n*1)e. sn (n+1)9o sn (n-i)6.. sn (-
(1 -- 3o ie

1n10 
I. ((n-(I-))

/co Cos~e -nlG co (i1ecos (n 1)8. -cos (n-I)e, \s~-Ie

o(n +) (n-i) + 1"(

(sin (n+fle.i - sin (n+'1)eo sin (n-i)e. sin (n-i)e)}+ a 1)+ (n-ii)n

(87)
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j1
la (i sin -4 + a, Cos.

P2 (e)- L a (Sin +a . - cos9)

( 2sin 2e. - sin *G cos 2,3 - cos 2%+ o(2- + e, so ) + a 4---- 3 Co e gg . .

2- 2. g .. 9 o
+ I -ato(2, + e, - s0) + a9- sn 2_ cos 23 - cos 20

o2 to 2

/ /sin (nj1)9i - sin (n4l1)eo  sin (n-l) si - n (n-)o

+ ~2 6o (n+1) -) -
n=

+ / o (n+l),a - cos (n+l)GO Cos (n-1)Gi - Cos (n-i) Cs c
go (n + 1) (n-i )

cs (n+ 1)S o (~)e o (n-i)Co (n-1)e)

n=2

sin (nl)i-- sin (n1), - sin (n-i)i s- "n sn (n-i) 9

Figure (12) is a plot of perturbed D0tion over 4 orbit periods under

the following conditions:

.ba = -a (the sun lies along the line of apsides)

e = 0.01

S = 1350

eo  = 9-25o

In the numeric integration the Fourier expansion was carried out to the

19th term (n = 19). It should be noted that the parameters selected

- 38 -
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were chosen merely to provide an idea of the nature of the s.tut , rn,

ratber than to describe sme actual orbit condition. The prtbien of

calculating actual shadow-entry and exit angles is discussed in the lit-

erature (cf. Reference 16) and is not within the scope of this paper.
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Application to Inertial Guidance

The basic relationship of inertial guidaace is that geometric

acceleration is equal to the output from an ideal accelerometer plus

gravitational cass attraction. That is

r = f g (89)

-3.
where r is the position vector of the vehicle,

f is the output of an ideal accelerometer on board the vehicle,

g Is the gravitatiorai mass attraction vector, and

overscript (z) signifies d/dt in an inertial fra2e.

An inertial guidance systec coaputer is mechanized such that It obtains

the solution to eqruation (89) by solving the Ideal Mechanization Equations,

(90) and (91).

v =f g - jX (90)

C

r = v - W x r (91)

jz
where v= r

c~wis the angular velocity of the cocputer fr--e with respect to

inertial space, z.d

overscript (C) signifies d/dt in the computer fra=e.

20
It has been shown elsewhere that fron these three basic equations, by

perturbation analysis, one obtains the Platform Misalign=ent Error

Equation (92) and the Position and Velocity Error Equation (93) for an

Inertial Navigation System in elliptical orbit

- 41 -
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K (92)

2 r a -- - - 4

g

-Z -? --) -9

5r + ct r - - X f + K + b + 71- 25wX vs s 2 g
r (93)

+ K• v + - 5x
v d t

where V is the vector approximating the small angle iich rotates

computer into platform axes,

is the diad representing stabilization gyro scale factor error,g
-9
-4
e is the stabilization gyro drift va%'e or bias error vector,

--4 -4

br is the first order approximatioa to the error in r,

w=(k/r 3) is the Shuler frequency corresponding to r,

k is the universal gravitational field constant,
--4
b represents accelerometer bias,

-
il represents random accelerometer errors,

5w, is the difference between computer angular rate and platform

angular rate (to first order),
-

K p is the diad representing first integrator scale factor error,V
'-4K is the diad representing second xntegrator scale factor error,

P

and

s- signifies differentiation in an inertial frame.

Comparison of eguatioh (93) with equation (AlO) of Appendix A reveals

the interesting fact that the homogeneous form of the Position and

Velocity Error Equtticn of an Inertial Navigation System in ellipti"al

orbit is identical to the tar ogeneous form of u Basic Perturbation

Equatton linearized about an elliptical orbit. It follows then that

-42-
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equation (93) can be t16ransformed to the Tschauner-Henipol Equations.

if

58x

LBZJ

coordinatized in a locally-level reference frame, and

bx r 5; by r b1j; bz r b; (95)

then equation (93) becomes equations (96) through (98):

~ + e Cose b-a(6

2bg' + =q(7

tW1 +8 =7 (98)

where e is the eccentricity of the elliptical orb.t in which the

guidance system is operating,

9is the true anomaly of the vehicle,

a 21 P2 P3
W r w r to r

P1I P 2 , and P 3 are the coordinates of the error sources,

W e, the time rate of change of true aniomaly, and

prine (') si gnif ies d I d~

If, for example, the accelerometers of the Inertial Navigation

System are maintained in a local-level orientation, then accelerometer

bias corresponds to a constant input to the equations of motion.

- 43-



Figures (3) through (6) then may be interpreted as plots showing the

propagation of system errors in nondimensional altitude and cross-track

due to accelerometer bias, when

b (99)

The sampled-data solution discussed previously is of course valid too.

Hence, if a = 10-4ge, a n 10 -4 ge, r = 100 miles plus Earth radius,

e = 0.01, using equations (79) and (80) one obtains for N = 1 orbit,

5x = r 5c - 4 miles (100)

5y = r 81 = -10 miles (101)

- 44 -



APPENDIX A. DERIVATION OF THE TSCHAUNER-HEPEL EQUATIONS

In this appendix the standard derivation of elliptical relotive

motion is reviewed for completeness and to establish notation. A

derivation of the Tschauner-Hempel equations J also given.

Consider the relative motion between a reference ohject in an

elliptical orbit, described by position vector R, and a nearby object

in a slightly different orbit, described by position vector r. (See

Figure 13). The relative position of the second object with respect

to the first is designated by the vector p so that

-)I - -31
R+p =r (Al)

Sa.e!llitce - ,.t~,..,

Figure 13. Coordinate System for Perturbation Equation

For simplicity assume both objects start together in space and

time as shown. Considering that which makes the two orbits different

to be a perturbing acceleration a, the equations of motion can be

written:

-, kRR = (unperturbed body) (A2)

-45-
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'kr

r = + a (perturbed body) (A3)

where k is the gravitational field constant, and superscript (I)

signifies differeatation with respect to time in an inertial frame.

Equations (A-) and (QA) combine to form

-41 -4
+ -- pi3 +a (A4)

By taking the square root of the dot product of (R + p with itself

it is readily verified that

-- - 2 -3/2
R2 2R22

If terms of order ( ) are neglected as small compared with terms

of order (!) ,

i~~i3 z~-,-" )-3/2
RI P1 * -3 P- 3 C. 2 P

R-3 [1" " + higher order te-rs i
2 R2

(A6)

li 1-3 R3 (. (A-)

With equati6n (AT), equation (A4) becosex

it +ik = k-3(I 3A + 9: (A,)
4p 2



Subtract (A2) from (A8) to obtain

II - -4..
-Y 3k R o - k -, 3kr. - (A9)

R R R R R

Neglect the third tern on the right-hand side as small compared %ith the

first two, and the basic perturbation equation results

II
-f %c - 3k -"

R3 p ?-- (R. p) R + a (AO)R R3

L
If p is the time derivative of p taken in the rotating reference

frame and 'L/I is the angular velocity vector of the rotating reference

frame with respect to inertial space, then

1 4
+ x (All)

and
L

II LL, L 4 L--* L*- x p +2c/I x p * iL/x(/I x p) (A12)

P =P + LWi

In the rotating reference frame, if we define

x"= ;q=R g (A13)

p ( = R &(AU4)

Also in the rotating frame we have

t 10 a= po W L/ 1 (A1)
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Combining equations (A9) and (A12), resolved in the rotating frame, one

obtains the scalar equations

- ( : x - 2WY - ,y = P, (A16)

- 2 _Y 3 y + 2 + 6% = P2 (A17)

+ k+3 z = P3 (Af8)

where () signifies differentiation with respect to time.

The following identities can be obtained by differentiation:

ew sin eR = e cose (A19)

2 2N

where (') signifies d I d

Expressions identical in form hold for ' and . Conbining these

equations with equations (A16) througil (A18), and noting that

22,j e sin t A1

1 + e cos

yields 2 R" - - 2 = (A22)

2 ~. 2
.2 R -" + 21: R0 ' = P2 (A23)

z 2R " w 2 = P3 (A24)
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Noting that

2
k _ a2R (A2)
R'2 = 1 + e cos -

the Tschauner-Hempel equations are obtained:

-2-' - P (A26)+ e cos. 2
,' R

+ 2g' P (A27)
2 2

f+ -I P (A28)
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APPENDIX B. REVIEW OF FLOQUET THEORY

In this appendix the standard rebults of the theory of linear differential

equationsh17 ,18 19 are retiewed for completeness and to establish the

notation.

Theorem: The n th-order linear inhomogeneous system

x'(0) , F(6)x(8) + D(e)u() ; x(9) = x (Bl)

has the general solution

X(G) = X(e, 0 )x 0 X(C, 8) C X-1 (1, 0 )D(-r)i(-)dr (B2)
00 0 0

e
0

where X(8, 0 ), the n x n State transition matrix, is the solutic'n

Of

x'(e. e ) = F(e)i(3, e ) o X(, 9 ) = U (the unit -atrix) (83)
S0 0 0

Proof 1: Substitute B2 into Bl.

Proof 2: Assume th-i solution x(9) to be made up of the co=plentary

solution x (e) and a particular solution x (9):C p

x(e) = x (e) + x (9)c p

th
The n -ordered hocogeneous form of equation (Bl) has n special linearly

independent solutions which can be arranged as colu-ns of an n x n catrix

X(G, 6 0 which satisfies equation (B3). X(, 0 ) was chosen aF thC

*X(6, 8 ) is known as the natrizant, fundamental catrix, state transition

0atrix, or catrix of partials.
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unit matrix so that an arbitrary complementary solution a; o ..

x (0) = X(0, )x (3)

In order to obtain the particlar solution assure the conztjnt-, x o , of

the homogeneous solution are now functions of e, and call these

functions c(O).

x (6) = X(0, e )c(&) (B6)
p o

This apparently arbitrary assumption was first made by Lagrange and

was motivated by a desire to represent the effects of planetary

perturbations in the solar systeM as variation of the orbit elements.

This assu=ption, it turns out, gives the exact solution for the special

-ase of linear equations. When (B6) is substituted into (Bi) we obtain

X2c + Xc" = F.Xc + W (B7)

or

x-l
c"= Da (8)

since X -1 = FX. Equation (BS) may be integrated ic ediately to obtain

c(e) = f - )D(r)u(-r)dT (B9)

0

proving equation (B2).

If F in equation (B1) is a constant matrix then it can be seen

that

X(O e f-F(G 0 9)5 o (B0)1 o



where for an arbitrary n x n catrix A,

A -,,R (811)

R=O

Le =a: If in the system (Bl), F(S) = F(e + 2:), then for any integer R,

X(e+2.R, 6) =x(e, e)X (9 +2:, 6) (B12)

Proof: x'(, 0 ) F0)X(O, 0 ) ; X(o, t9) = U (the unit r-atrix)

(B3). Since this rust hold for all e,

x'( + 2;, e ) = F(6 + 2)X(O + 2, e o

= F(e)x(e + 2z, e0 ) (B13)
O

since F(W) = F(O + 2;). The coluans of X(e + 2;, e ) are n linearly
0

independent solutions of the hc=ogeneous part of (Bl), and therefore,

each of these coluns, R(I < R -- n), is given by ' R = X(9, eo)cR

where for each R, CR is an n x I coluzn rztrix of constants. Let C

be an n x n -atrix whose coluzns are the cR. Then

x(e + 2z, e ) :x(e, eo)C (B14)

Since the colurns of X(O + 2,%, 0 ) are i-4ependent, C -I exists.

Equation (B14) must hold for all 8. Specifically it must hold for

e=o

e~ =2,8=Xe,)

X90 + 2g, 8) = X(90, e0)C (B1)

Since X(, 0o ) = u. C is knOWn and

x(9 + 2z, 80) = X(9, e )X(e + 2z, 9) (816)
- 0 0 0
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Equation (B16) must also hold for all 9. Specificl1% it :zJt ki.di for

8 =60 + 2x:

x6+4x, o) X +2, )X( +2., )

, 0 0 0

By induction,

X(G + 2 R, X) (G, G ).XR (6 + 2x, 6) (12)
00 0

For the balance of the discussion it will be assumed that

F(G) = F7G + 2).

Define a matrix t(&, Go ) by

A

(9 o = , a )) -=(9o) (x18)

ubere 3 is a constant n x n matrix not yet specified. Th

1(9, 6 ) = 1(f, 3 )(9)) ml.)
0 0

(note the similarity with equation O10)). Tem. using 012):

3(G.2x-6) 3(S-9) 9
R(G + 2jr, k 0 =1(8,6 0 )a1(6 + 2a, )c (50)

0 0 0 0

Now define B to be

s=-I X(o + 2x, 6) Gal)

then from (B19) and (521):

X(8 +2, ) =1 ( + 2x, 0o0) m)c

'. ( °  2x, 0) =U (tke unit matrix) (823)
0 0
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When (B23) is substituted into (B20) we obtain R(O + 2n, e ) = R(8, 90),

so that R(e, 9 ) is a periodic mat-ix. Now let0

~A B(e-e °

W= )- o W' = BW (B24)

Then V = FX implies

R'W + RW' = FRW (B25)

R'W + RBW = FRW (B26)

R . ' = FR R (B27)

and B = R- 1 FR- R -R' (B28)

This result, wh#4re F and R are periodic and B is constant, is

called .he Lyapunov reduction of equation (B1).

Let A be the Jordan canonical form of B; i.e.

Au Q (329)

then

A (0-00)Wu, o - 0 Q 0Q

and

X(9, 8 ) =(G, 0)QQ1CA(9'eo0Q (B31)0 0

If the transforsation P(O) is introduced so that

z(9) -= P-l(Q)x() (B32)
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where

z'() = Az(e) ; z(O ) = P-1 (. )x (B s,3)0 0 0

then

z(A) ="(e*-eo) A(e-e ) p-10 z(6o)E = 0 P (O)x 1B34i

Combining (B32) and (B34):

A(e-e)p-
x(e) = P(e)E o p-(o )x (B.15?

From (P335) it follows that

A(e-e ~-x(e, e) = P()(o (e) (B36)0 o

If we take

Q P-(e ) (B37)0

then it folluws from (B31) that

R(e, e ) = P(e)Q
0

= P(9)P1 l e ) (B38)

Equation (B36) is the form of the state transition matrix used in the

basic text.
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APPEbIDI.~ C. DESVM711 0 G A SPMCiM. FORM 0?r rhE

SOLUt rICA 7r LiFTAR EAUT4-.TCS WITS _-cmODhIC COEFFICIE ,TS

The iz,]uti~r to

has )-er L,1=owr. io b-: (s- E-oon~l: EO

.0

(ArI

Lems: If F(e) =F(. + T) then

x(e, ) = X(e ° + a, e8)'9(qo + T, 9 o) (C4)

Proof: In Appendix B it was established (for T = 2r, no restriction)

that

x(e + h-r, e o ) = x(e, e0)Xh(9° + T, eo ) "C5)

Let

e = e + r (06)
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fl f

From (M3)

" ) :" , T, (CFo o o

,= _. ( -T, &

-20 0 .

0

Leam: I D() = D(6 + 1) and u(B) u(8 + T) the solution (C9) can

be written

N

x(e) = meO + a, e)C N xo + Wa9 + a, 8 0  1: Ck) I

0 0
k=l

+ X(9 0 + , e) 0 XI(z, a 0 )D()u(l)dT (Clo)

e
0

where C =X( + T, 0o) (ClI)

(-r e 0 p-(, oD(-c)u(T)d-. (C12)

oo0
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8 +T

+roof: x-(. ))(-u(-) -- "-u

00

e

+. fL jX (0 ) J'(t)u C )d

0

By simple ch~anges of variable In each integral obtain

5 i, )D(t)u(,)d 1- 501 -,e )tur) +

f f - ...

9 80

00

(see page 59)
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8+T

j
e e

C 0

2T

i. + f f1 (r, d)()d

e +NTr
0

By simple changes of variable In each integral obtain

8 9o+T

ef X (T, )D(T)u(T)d- = f O'-~, ) ( u +

0 a

(see page 59)
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+ ,S DT(:d

+f 1( +T 0Diu-)L-

00

+ **+ f 0 X1(-, + (N - 1)T, 6 )D(T)u(-e)d-

f 0

0

Use X(r + NT, 9) 0 X(9, 0 )XN(o + T, eo)shown above to obtain

k-1( -N., eo) = + T, ed)x'(x, 90)

00 0.

+ 0 ( + T,9 -1 08 )D(,r),u (-r)d-T +

0

0

S+c
+Xi-(e 0+ T, 0 f i( e 0 T)( d
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I

Introduce this last relationship into equation (C9) and simplify

to obtain expressions (CIO) through (C12). Thus are proven expressions

(36) and (37) of the basic text.

Lesna: If D(8) = D(9 + T) and u() = u(9 + MT) where M is an

integer the solution (equation (C9)) can be written

r-1

x(g)=(e +a.9)C 1 x 0+x( +ae CkM) 12
k=0

19-rMT

+ x9 +a )C; r  jX r f -I e )D(r)u(r)d-r (C13)

8
0

where C =X + T, ) (C14)o o

e +UT

12 . (r, 80)D(r)u(-r)dr (C15)

0

r is .-& in eger such that rN < N < (r + l)M (C16)

a & 4-Er

nof0 " I(T, e )CD)D(T)ud()d- X , )D(I)u(-.)dT .

0 0

e +rJS-e
• .+ X-'L(-., 6o)D(-.)U(-.,)d- + (-1 eo)D(-,)U(-,)d -,

,9,,+(r - )W e O +rXT
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where r is described by equation (C16) and N it- -" i !".

largest number of integer values of T in t . Agair, u-,L :l--iple

variable changes in the integrals to obtain

19 0 +WT
,Y1- , ° If °u(rd- -  -r(- - -r - ..... o

f 0 )D()U()d = X l(, e0 )1)u()d.
0 J

+ f X + .r - 0), o)D()u(-r)d- 4

e
0

e-rltr

f +- Off )D(r )u(- )d
80

o%

Again X-(- + NT, ) -(e +T, 0)X- (-, 0), so that0 0 0 0

f ,e 0 )D(r)u(t)d- f 60 )D(-)u(r)d 4

6 e
0 0

+ (9 o T, f f (i )D(r,)u(i)d +

60

+ (.9 + f 0o *7 6) 1 X )D(Tu(tjd +
00 0 0

e
0

(s ee page 62)
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e-r Lr
-rM o - 1((e+ T, eo) f X - r , DDru-)

e
0

Substitution into equation (C9) and simplification yields relations

(C13) through (C15). Thus equations (39) and (40) of the basic

text are proven.

LeIma: If D(e) = DO + T) and u(.9) = u(e + P) where P 4 Wr for

N = 0, 1, 2, ..... then define K such that KP Z Mr, where K

and X are both integers. Then x(e) may be approximated by:

x X)00(0 + a, e0)C'x 0+ X( 0- G +I0 C IM

k=O

&-rKP
+ X(&o + e o)CN-rN f i-1(T, l 0o)V()u(l)d: (el7)

e
0

where C =X( ° + T, 6 o)

KP = rIT, rKP < Nr < (r - )P (C19)

e +KP

1 3 = fo 0, 0 )D(t)u(;)dr (C20)

eo

62



Proof: The proof of relationships (C17) through (L21)' -

the proof for relationships (013) through~ (C16) directl%.
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I

APPENDIX D. THE I-MATRIX

Tht ;amnled-data solution defined by equation (73), that is

x(2N) = P(0)J NP -(0)x + P(O)SP -(0)1 (Di)
0

is (except for the I-matrix) composed of matrices whose closed forms are

given in the main body of the text. The I-matrix, representing the

integ-al (over 2,n) of the disturbance, is in analytic form

-n
1 = J X1 (-r,0)D(r)u(-r)dr. (I)

For the case of disturbances constant in the rotating reference frame,

that is disturbances of the form

u = (a (D3)

( a ,

E the I-matrix has been computed in closed form. The technique employed

in this calculation was primarily one of contour integration. The result

is:

n(4 - e)

(- e)(1 -2 3/2 a

3eI(e 2 + Se + 2) 6eir2

25/2 a + a
(I - (1 - e)25/ (1 Of- )

2 - (D4)
k/p2  n(e2 + l2e + 4) 6 2

(1 - e)2 (l _ e2 )3 / 2 at  (1 - e)2 (l -
2 ) a

3n(e - 2e - 2)

(1-e 2 )5/2 a
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where p is the semilatisrectum of the reference (nominal) ellipse,

k is the gravitational field constant, and

e is the eccentricity of the reference ellipse.

For disturbances of the form

jK e
c C

u(e) = (MJ)
:jK2I

(c2c

where KI  and K are integers,

c and c are complex constants,
I c2

the I-matrix becomes

(1 + e)fI  (2 + e)
I (1 + e) 2

I.2 3ef3 f 4

QI - e)( - e- 3 /2' 3 4

1 (D6)

k/p 1 e
2 f1 2

2(-e 1 2 P3e 3-[1-(1-e) 1 e] f41e(1 - e)2 I1 e2

(3 + e)(2 + e) f (1 + e) f2

where p, k, and e are as defined in the previous case, and

Ci 2_ _ 2 22 1 3 K 2 -48

f 1(1-ez5/2 j32c (-e .e cZ- [e(4-)z

+ 4 (K2-- K)Z 2e(7K -2)Z. 4(K2 +91 -12)Z 5  2e( -20)Z4  i)I
2 21 2 2 22 1 ~ 2

4 - 9 , _, 12_),Z3 + ,.(72(7 2  + ,q+,,z A 0(0, Y, )]I

2( 2 1 2 2
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I~ 1 -i {CKZ1 c2Z.2}

2t 42 K -2 K K-2
24 -c Iij 2ec (K Z-4Z-K+ jc2KZ 2 11 l KZ

+4(-) 3  2 2 2 (9
+ e(2-)Z,+ 4(1-2e) A -4e(K 2+1)Z 1- eKX

f 2 1 11+ 2nl 1+K-r K2(~I -I) ~ ~ fl- I~ IJ7 {cZ1 iI lI~i I c1K1S1 + c2Zl2a IIi

212

- SCZ1L ( (8e+4e 3 ) 1-2 [(K 2-312)Z
2 25/2 [1 11 1

I 48eF (1e

- 2K-)Z "-(K2-+3K +2)Z-] + [2 2 e(1-e )

2 (K+9K -12) 5 
- (K2-9K1 -_12)Z3 + (K2+ 1 Z] BO

+ Ce -(e-2e) 41-e -,x.,K)Zl - (14K I-4)Z6 I (2 2 -40)Zl

+ (14K 44)Z2 + (K-K + [24e(1-e 2)]K1 -)

1 12)Z Z2~ .c 2 )K 2  1(4+2 2) J1-e2

- 4] [e(K2 -1)Z 1  e(K2 +1)Z1 ] + [(1+2e e -1 L~ 2 1

+(4-8eB _Z _ e K])

1 2]
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= (r-k)!k!(r-k) IZ 1 (- 1  - N-YZ -

k=O
(DlI)

k r-k r I- r21
+ Zi(-z2) +ZI 2 Z

(20! 2kLe) x
S2 (KI) ~ 2 2k W)2 (2k+) 2

k=O (k)(k)

, (Z_.1)k+IZ,,Z_27K 
-2k+1

dZ2k1 e7~ 2k+ 2 ( -2)2k+ 114

d_____ d I ( Z - ) 2k (ZZ -2Z Z I(D12

I 2k..1 I 2+2k+2 1
1 2k

dZ (eZ +-e

1 (1 e72 (D13)
e

Z2 e

The infinite series S2 In the f3 tern above arises In the evalua-

tion of

1 : S,2 -1K
(K) n ]L CJKd- (D15)

2 4x J 1 +e cog~

wher )Le sin -T (I- Zj Cos T) D6

-67-



An approxtmation to this integral can be made by observi?,1b that

=e sin- [I- (Zl+e) cosT + e(Z+e) cos2 e2(Z +)cosT+ . (D17)

and

-1 1 3 (2k) 2k+.
sin + 22k ) 2 2k+l) + (D)

I Since Z1 and e are of the same order of magnitude, X may be

I approximated to whatever accuracy desired by cutting off the series and

discarding similar powers of e in ),. 3 , etc. Term by term integration

can then be accomplished on the unit circle.

[
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