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ABSTRACT

Like any other complex dynamic system the human body responds in a complex

way to acceleration inputs which vary rapidly with time. The need to 2void stresses
large enough to cause injury to the body usually imposes limits on the permissible
input acceleration.

The restraint system interposed between a vehicle and its occupant can modify the
physiological effects of a vehicle's acceleration - time history. This modification
should be made as favorable as possible by minimizing thc stresses generated in
the vehicle's occupant, To determine optimum dynamic characteristics for the re-
straint system, its important characteristics, and those of the human body, need to
be represented in terms of a mathematical or "dynamic' model. Through suitable
analysis, either mathematical or by means of a computer, those dynamic charac-
teristics of the restraint system can be determined which will minimize the peak
stresses developed in its human occupant,

In this report a general theory of suitable dynamic models is developed for th's
type of problem. Closed form solutions for a number of simple cases are pre-
sented also. In addition a method is shown which permits development of simple
dynamic models for the human body utilizing existing experimental data,

Most test data has limitations. This seems particularly true when the subject is
as complex and variable as the human body. The limitations associated with the
application of physiological data to dynamic models of the human hody can be min-
imized however, if the test program is designed with this application in mind,
Accordingly, the reader will find discussed in some detail, the necessary re-
quirements for short period acceleration testing with live human subjects as well
as some suggested requirements for dynamic characteristics of test rigs.
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SECTION I

INTRODUCTION

This investigation is concerned generally with the stresses developed in the body
of a human occupant of an aerospace vehicle which is subjected to short-period
acceleration. More specifically, its objective is to ensure that the characteristics
of the "restraint system," -interposed between the occupant's body and the vehicle,
will minimize body stresses,

To accomplish this, a means bhas been devised of calculating the response of the
body and associated restraint sysiem to the applied acceleration. A mathematical
model has been developed which represents those characteristics of the body and
restraint system which are significant in the study of the problem. Such a model
necessarily involves siraplification and represents only the major system consid-
erations. Nevertheless, it has considerable value in predicting limiting stresses;
indeed, the variability of bumar: bodies and restraint system materials, may not
justify the use of a more complcx model,

The most elementary dynamic system in the field of restrained body dynamics,
illustrated in figure 1,is mathematically quite sophisticated. Although partiaily
closed form solutions can be obtained for a great many cases, their derivation is
often so lengthy, and the resulting equations so long, that the effort involved is
hardly worthwhile in an applied research program where rapid results are required.

—T

HUMAN
BODY
SYSTEM (2) l
CUSHIOJ OR
SYSTEM (1) RESTRAII\iT SYSTEM
Figure 1, Elementary dynamic model in series

with a restraint system.

For this reason, the influence of a particular restraint system is usually investi-
gated with the aid of a digital or analog computer. Despite these aids of modern
technelogy, it is still necessary te organize the basic equations of motion if we are
to devise digital or analog logic of maximum economy. It is also necessary to de~-

IR



rive closed form solutions for limit cases in order that the results of computer
runs can be checked during the ""de-bugging' process, and to provide general de-
sign '"guide~lines" as to the most promising type of system.

The basic dynamic equations involved in the problem were identified. From these
equations, closed form solutions for certain limit cases were derived to permit
checking ot computer solutions. Concurrently, the se test solutions give an insight
into the basic physical behavior of the system,

No attempt is made here to explain the physical implications of the theory to the
nonmathematician, since this has been done effectively elsewhere.

Simple solutions have been obtained for the influence of slack or preloading in a
restraint system. These results are summarized in figures 11 and 13,

By definiticn, a restraint system degree of freedom consists of a mass, together

with a single spring element and a single damping element. Both of these may be

discontinuous and nonlinear. They are in series with a dynamic model which rep-
resents the human body. The dynamic model may have any number of degrees of

freedom, both in parallel and in series. For the purposes of this report, only the
series case has been considered in detail because it is the only one so far used in
practice.

From the point of view of pure mathematics, there are two types of restraint
systems, represented by continucus and discontinuous functic as respectively.
When the function is continuous and differentiable, one set of differential equatioas
governs the entire motion. When it is discontinuous, two different sets of equations
govern the motion each side of the discontinuity, and in addition, the change from
one set to the other involves generating a series of initial conditions for the new
equations.

In the work which follows, we shall first investigate the dynamic problem in a
very general way, imposing only the requirement that the restraint functions

shall be real and single-valued. Next we shall consider the special case of

linear systems, and solve a number of simple cases, involving both linear re-
straint with discontinuities (bottoming systems) and continuous nonlinear restraint.

While it is fairly easy to determine the dynamic characterisiics of a restraint sys-
tem by physical measurement, the human body presents obvious difficulties. In

% . A3 +h3 1 A ol ) -rd s Tewd3
Part I of this report we discuss this problem and show how approximate solutions

can be obtained from the available test data. Test rig criteria for future experi-
mental programs are also developed from theoretical considerations, together with
the theory of bounce testing, which is suggested as a new experimental technique.
It is felt that bounce testing offers hope of measuring bio-dynamic characteristics
which are not easily obtained from currently employed experimental techniques.

2



SECTION II
DYNAMIC THEORY
1. GENERAL THEORY OF RESTRAINT DYNAMICS

a, Generalized equations for a multidegree of freedom system in series.

In body dynamics we are almost always concerned with dynamic systems in series, rather
than in parallel. The springs and dampers can be either linear ornonlinear. Such a sys-
tem has a number of characteristics which are independent of the characteristics of the
springs and dampers. We shall deal with these before proceeding to specific relationships
between force, deflection and velocity.

For the system in figure 2, let

X
D)

value of the mass 4

on
+
It

deflection of spring 4*

?’o

velocity of spring 4

~y -F% (84») = force in spring 4
Mgy 1‘; ( Sr) = force in damper
¢ = ;‘:'f_" the mass ratio.

dx g

(3)

Ye
w12

Y,

Ye

Figure 2. Series dynamic system.




The functions -P’ and 7€ may be any continuous, single-valued real functions, and there
need be no relationship between the functions for different springs and dampers. In other
words, we are dealing with a generic system.

If we now write the equations of motion for each system, the following set of coupled equa-
tions is obtained:

4 = £0) + £08) - 4 [£GY + (5]

—— - — - - — - - ——
-— -—

G = £0) +4305) = e (6050 +£,(5,.)) o

Also
5, = )u--(yf—;’m) (@)
where )w is the unstretched spring length. Differentiating equation 2 twice with respect

to time,

.S:_ = ;7}_, - 6/1' therefore y, = :7;._' -8, (3)
and finally i
. . ‘8‘
Jn = & ,Z ’ @

Substituting for }; in equation 1,
o

5+ [£6) +460) = B [£6,,)+56,.)) +5 —Z 5 ®

o G =08 = LEGY G- (LS4 56.0]1



g Ieur
e o .
$,+F',=7¢+¢,Fz F,
!
o F'

.S;+(l+¢,)F,.= F+ @ F ——

> Py F

. 83+(l+¢,) = F +¢3F; .
X
S

~ 2
(_.. §,4(1+8;) = F+dF =
|

Figure 3. Flow chart for multidegree of
freedom system,

e



On the left of equation 5 is a conventional differential expression representing one degree
of freedom. On the right, we have the force in the system immediately above it (weighted
by the mass ratio ¢, ), and an acceleration forcing term equal to the input &, , less the
accelerations of the springs between the point of application of ‘l/‘ and the system under
consideration.

For convenience we can write

'6-(5;) +1‘;o/&) (7

so that equation 5 becomes
-1

S +Er = by * G '54‘ (8)

We can rearrange these equations by substituting into the right side from the previous
equation, so that we express the motion of a particular system in terms only of the two
systems on each side of it.

Thus,

- - T T (9)

S.+(1¢4 ) = F ¢ F

The relationships siven in equation 9 are of particular importance in analog hookups,
where we wish to minimize circuit complexity. The basic flew chart is shown in figure
3-

b. The effect of parallel elements.

If some elements occur in parallel, the generalized equations become coupled in the fol-
lowing manner, using the notation of figure 4.

P’- g Pod

$3 93
EIT R
I d

Figure 4. A branched system.

e

k




Below the branch

.S.f-i * (I+¢f-z)f;‘-l - FJ‘.z + %J‘E'

. (10)

Sp +(1+fr) b = E, 8 Fa t 4
Abovz the branch, in the _P system
‘S.P' +FP, =j;- +¢}, Ff:

gfa *(’*ﬁ){:}’t = b ¢ ¢th’:

(11)

The equations are the same in the ¢ branch, ¢ being substituted for /b .

C. General equations for a series degree of freedom without mass.

A "restraint system" can often be reprosented as a dynamic system in series with a
dynamic model. The mass of the restraint system is considered negligible.

If the restraint system mass is finite, it can be regarded simply as system (1) in figures
2 or 3. To study this case, consider the first expression of equation 5;:

5+ £06) 1h(5) = B [RGI+£6s)] +

by making the substitution Mg /H, = f,
men 48, + [ £G) +F(8]] = #fL(5) (8] + G ao
Now by definition,

Force in damper (1) = 4, ‘f; (s,) < D,

and force in spring (1)) = ",f’ ( 5) =S,



[ ]
(It should be noted that »e and -F., are actually functions of f,/ﬂ, and S/ &1, respectively,
sothat D, and S, are independent of #, .) '

S K (3) = B fm,
-@(S,) = S:/M,

Substituting into (12), we have
»«,5, + P +S, = D +5, *“"lﬁc

Now putting M, =o0gives D+ S, = Dy +S,
te F, = Fq

We can approximate this condition on an analog by making f, large compared to unity;
of the order cf 100 say. Then the frequency

#
L . ko)

A linear restraint system can "bottom' however, and subsequent to this the acceleration
input 9: is fed directly to the dynamic model, together with an impulsive velocity
change which is equal to the velocity at which the restraint spring bottomed. This latter
requirement involves separation and the differenciation of velocity signals, and it is found
that for analog work, more conventional methods of programming are preferred.

For nonlinear restraint systems, however, this system can be used very effectively since
there is no discontinuity in the equations of motion.

When the mass of the restraint system can be neglected, the dynamic model is as shown
in figure 5. Equation 8 still applies to this system, except that the terms for4 » 1
are replaced by the simple force equality

F, =F, (13)
Thus the equations become

f = Fa

$2 +F = Fs "'[Jc"sl) (14)

o~

.s; +(l+¢J-I)Ff - Ff-f + Ing‘f



n®

S, is an unknown which must be determined from the first equation. Substituting equation
7for F, and £, ,

(5) *-f“) (S)‘fﬂc(&) (15)

By differentiating this equation with respect to time it is often possible to obtain a solution

for S, intermsof §, .

Figure 5. Zero mass restraint system in series
with a dynamic model.

From the foregoing it is clear that we may express the influence of zero mass restraint
system in the following theorem,

"The only influence of a zero mass restraint system on
the equatxon's of a dynamlc model is to replace the forcing
term J with the term ( y‘ - 8 ), wherever it appears."



2, T INEAR SYSTEMS

For a linear system, let

ZKh = dam(p;r)force , Cr - :ff _ {‘;(—S:r)
- (5+)

k- cwingforee ot ke felsy)
" (30) e (50

Then equation 5 becomes

. > . t
S,. + 26‘4-5,- ‘f"": Sr = ¢4‘{2‘}w Srw t “ry 5,,,}

=l

oo < ' e
td - Z 5 (16)

{

Equation 9 becomes

%; + ((4- ?!;-.,)5205; —(-w: S;} = S‘ZC,_, é,_, +asﬁ_'$a,?

1n
+ %Ifch-n Sfm -+ w:u SJ‘"]

When the excitation ( 9; ) is sinusoidal, or can be resolved into a Fourier series,
equation 17 can he solved using conventional impedance techniques. Alternatively,
we can use Laplace and Fourier transformations, which convert the ditferential
equations into algebraic equations. For example the Laplace transformation of
equation 16 is

L) p etep +2 1 =5 ) 5260 p + )

e Al g5 drs) + L5 +4(5.)
P‘?‘I , c { 17 e ’

<4 initial conditions. (18)

10



This set of simultaneous equations can be solved for / (§ ). An analytical expression
for '{ (§) can be inverted to § = £ (¢) by means of tables of Laplace transforms, or

the integral
( 42
S$= ji PF P #

where f denotes integration about a closed contour.

11




3. CLOS%D FORM SOLUTIONS FOR SPECIAL LINEAR CASES

a.  Wholly viscous restraint.

In this section we consgider the idealized case of a restraint system whose mass and spring
characteristics are negligible compared with its damping characteristics, as indicated in
figure 6.

My
G
2K, k,
¥
I:rc 2K,
e
Figure 6. Wholly viscous restraint system.

Equation 16 then simplifies to

5+ 2,5, +wx b ,_‘2/"—5'} (< t)
é

. . : (19)
2¢,$, +@r% = Z¢ S
Differentiating the restraint equation
L,
*® c‘ 14 + f—l s 20
& = ¢ 82 2¢, % 9

Substituting for 5’ in the first of equation 19, the equation of motion becomes

2

- —

. $
52 + 7 +Q/C;) 2 (/_‘,(’/{;) z (/*(5/6) [t<f‘) (21)

e

[ X - (]

We have thus reduced a two degree of freedom problem to a single degree of freedom
equation in 3, . We know that

. 26, =*
f —_ 4 22
' w3 2¢. { 2o (2

A/IT— /¢,

the motion will be subcritically damped.




0.25

0.15

0.10

RESTRAINT SYSTEM DAMPING RATIO & = G /o,

G, = 1-& k 2
“ear PrrTy '“?%K‘

SUBCRITICALLY
\ DAMPED

MOTION

SUPERCPITICALLY
DAMPED .

MOTION \

0.2 0.4 0.6 0.8 1.0
DYNAMIC MODEL DAMPING RATIO E& = t“ ’“j!
Figure 7. Restraint system damping required to give

"Dead-Beat" motion of linear dynamic model.
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Insofar as dynamic overshoot of the human body is a problem, at least for short period,
short rise time pulses, a "deadbeat' restraint system is of considerable interest. From

equation 22 this could be achieved if
‘ - %
¢4 —=< # / /7 < )

4’ Elz + 2 4 .EI

01

where E‘: ol C/“’z p Ty = C2fewn

/— 2

' 2- -
carr 40— &) (23)

Equation 23 is plotted in figure 7, and a table of values is given below.

L d

El qﬂ!ﬂ' Cz C" L {ad
.0 .25 .6 . 156
.05 .238 .7 . 147
.1 .228 .8 .139
.2 .208 .9 .132
.3 . 192 .95 .128
.4 .179 1.0 .125
.5 . 167

Closed form selutions to the complete problem cannot be obtained because it is impossible
to obtain a closed form solution to the equation for time to bottom-out the restraint system.
Th*s point is best illustrated by considering the even simpler system of figure 8, where the
damping of the human body dynamic model is assumed to be zero.

This simplification permits the auxiliary (restraint) equation fo be written as

"y _— ,73
=

A,
7
2,
Je
Figure 8. Dynamic system for a zero damping model.

*



(29)
¢
X
or 5 = 2z / 5; 4 (26)
[ 4
The basic equations of motion of the system are then
gz 1 i:,gz’*“’zs‘z:éc (t<t6)
Sz + w‘S, = g‘ (t>t6) (27)
where f‘ is the time at which the restraint system bottoms out ( 5, = 5,, )
In terms of a nondimensional time ¥ = T
A b 2% . wrdS
«£f AT ALt oY
The equations of motion become
A5, , L o = 4% v,
72“ + 7 AT + "g ;z ( l)
16 _ A (28)
Z7 * S2 ATt
df ticn 26
and from equation o r
s AY
T Z 52 (29)



From figure 7 we see that if

¢ & 1/4, the damping is subcritical.
€ » 1/4, the damping is supercritical.

(1) Response to an impulsive velocity change A,

When the forcirg function is zero, and the inifial velocity S )‘= A4 | equation 28
has the solutiot.

7/ %3
__S_Z- = 4 S ten r
Av 7 7 (30)
Y/ 7
fé_""’ = e e 31)
AT~

where f = Sha ‘7 in the second quadrant.

“ = /— ///&

Also, from equations 29 and 30

713
s e
A:i’?- = 2'- ‘= = ’“’“(”"r'*f)] (32)

We obtain the maximum value of S, by differentiating equation 32 with respect to “Z”

o5 e
“-"" ‘¢ = S “ &
27 (qv 274 sis (4% + ¢ +0) (33)

where 5‘;6‘9’4“‘1
N R

: - . . -
d, is 2 maximam when ’7[‘.‘ +7J = T — F

S T = 20/
s L e“%?‘z]

3
-

B

e



It i3 therefore possible fo plot curves of & $zm, / Ao as a function of € , and also
curves of 495@,3. ,/ A4r | From these we can determine the variation of Sz )

. Y
with allowable bottoming depth S,MM‘

- -P/eT
ie a)"éz”“’ = & 4
w Av- (35)

iy L[, & e

sy = [ -
c
PRY.LL 2 (36)

(2) Response to a zero rise time acceleration j:

For this case the righ? side of equaticn 28 becomes
an— _ l
X o= X/

The solutions are

- )
®e £ s / T+
= = /- Fou (7 i 37
7 v (37)
D
where f Sén "?
c 4z
e I - (38)
VA
The restraint deflection is - _r AE'
/ & .
> . 2‘3/[!- 3 si (g% + )] 4%
A °
and after some manipulation this becomes
5 T
I AL - L £ o 39
2. L i) *+ ., siw (4T + ) (39)
A

17




In this case there is no true maximum deflection since S, continually increases, and
it is therefore logical to define the critical bottoming depth as the value of S, when 84
reaches its maximum.

That is, when
- Y /4€
< s (qV. P +8) =e

where &= —S&-"" = "f

g T
- ) (40)
&< €
S, /e )
oo === are (41)
pA
Substituting equation 40 for '2:4 in equation 39
T/
5 / g
(e _’( xr_ -+ 42
(4
Nete than when € »» 1.0 4 —> 1.0
EHM — 2:0
) A
$ranr —y ( (t i;: )
Y
L. Linear Spring Restrainf.
The corollary to the idealization of Section a. is the system illustrated in figure 9.
For this case equation 16 becomes
.s . ige o _s
Sz + 2(:8‘2 4+ wy, sl = 7¢ 0,
2¢, &, + wi & = wr S
C2 2 92 e <
(43)

18




(2)

¢
Figure 9. Linear spring restraint.

Differentiating the restraint equation

L .o 2( e
S 2a g
§ = 5, + - 2

o (44)

The presence of the third derivative makes any solution difficult, so we will once again
use the zero-damping model, by writing €3 = 0.

2
Defining @ = ( “a /‘“’:)

§ 4 w2 o5 = L
: e Iy )
and S = Péa (46)

(1)  Solution for short period (A (4 D at, _) acceleration with zero rise time.

We assume that the acceleration inmut rises instantly from zero to ff} = t Then from
equation I, 3 in Appendix I

3 X 2
wrbe, (+P . Wil @ _ L 220
I+!¢’ < <

o Vit+ @ ¥ 48)




Now .
(ozt &y - L2 e “2 3 = “z / ) — s’ w; T
N g Airp e
<
W, o928 { 2
—_— = e, 25 —~ (49)
¥ ANty # f ¢-1

and of course, from equation 46
= J

so that

“’1546 = -é_—__ 22 - ¢°¢

gu———

¥ - /‘//‘f'f’ (50)

Therefore the total (initial condition) spring velocity after bottoming will be

wz %8 o W - = /285 #?
Lr m ZF(5y + 5,) "’//+7 ‘-t (51)
pA e
Substituting these initial conditions into equation I. 6, in Appendix I, the motion after
bottoming is described by the equation
2 —
wbe _ _Jir pE[2-£] siifw;t + D)
¥ (52)
<

—[1- & .
where Seus ) = [/ 2///+f{[2" {z (53)
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©
Obviously the maximum value of =—— is

F §
ldf’?in‘y - ) A /+70 Z[Z—‘- fl (H4)
>

An interesting limit is provided by the case &2, =® ),

Y
Here “wig Sﬂmﬂa / + [ + 203 8,4 (55)
Y Ye

This checks with other zero-zero cushion solutions.

For convenience let

? 2
p = G- H5) - gt

(3 (56)

Then z= ’%/f
“iftmr = + A1+ ¥ L2- Vel

(57)

NG

The critical value is
= 2
,)b('efﬂ f (58)

For ’7‘ v /Il’t'éc‘f equation 57 is not applicable, and the solution is merely

L2
et ]

Bedr - 20

Ye

The maximum value of equation 57 is found by differentiating with respect to 4/ and
equating to zero, holding (o," constant,

. 2 /n)
ie l “_";_&mx) - (-/—i- T/ = o
w7y S+ pL2-4/pd

smu (59



Substituting into equation I. 2, Appendix I

ol = (+dT+p 1

2 Ay

cam—

o ﬂi+m J

MAR

Also, when the restraint stiffness is zero f ~» o0 and

2
PRV Y f—
z‘ inA37 —_— [ A / + zﬁ,/o

'3 (u“eo

This is the "slack harness' (or zero cushion stiffness) solution.

(2) Impulsive velocity change AV |

(61)

For an impulsive velocity change, we can regard the problem as a single degree of free-

dom, Prior to bottoming the effective spring stiffness is

p
l_,. - .-“‘- * —,—
Ay A, Re
/
O A T
s o _ﬂ% wf wl

From Appel 1,

S‘ = ;é.f-rg.;,,,.ﬁ.'t'
T BrA

For equality of force in the springs,

Rz
& " R, §1

Pat 5('}51 = by = (i%?) s

22
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(63)

(64)



S
5 ~ ’2’_1 (66)

and l+f

Thus, from equations 64 and 66

i8

n i+ (67)
. du. sills . Su
526 a i+ @ (68)
- s 1
526 = 2V s (69)
/! ~+ ?
5‘7'5 = Ad é")_(zfs (70)

After bottomin%, the spring stiffness is kg and the velocity of the mass with respect to
the ground is r Thus, equation 64 becomes

‘ﬂ“ s “-‘:_f i A‘Pmﬂ‘th . sun wy T

f?

igt
but .Qf4 [— ﬁ‘

-/ -c%é‘f('—;:f)‘

1
wy 8y (71)

(72)
S; , - ""'""’
. @ MAx (73)
2
T
@D
Since -7—" = &
1
20, = Li$, = _Q;_E_.‘
and @ 04 - ~
2E,
o p /% P Ad.! (.— .. “iz
2 “Zpx alaad {74}

where E. e = the energy storage parameter, being the total energy
the resiliency can absorb at hottoming (ft. 1b.)
M = mass of occupant (slugs)

2 e



The most favorable condition ( 61 a minimum) is for the restraint system to just bottom
out under the influence of an impulsive acceleration. This occurs when

“3_2_?(6 = '_L
A AUt P

or

Sa) " 4o
p - 8(%3) {1 alig)

(75)

c. "Crushable foam'' (Constant force) restraint,

This linear case may likewise be regarded as the simplest example of a nonlinear restraint
system, and an explicit solution obtained.

We divide the system's behavior into three distinct regimes:
(A) when the spring force Az §,< £ the foam-is "rigid. "
(B) when l,_ § 2 = F the foam deflects but the spring does not.

(C) when the foam bottoms out it becomes rigid again, and in
addition to the acceleration input Y. the dynamic medel
has to accommodate an impulsive velocity change S,, .
We now evaluate these regimes for a short period acceleratic., of magnitude Y; and zero
rise time,

»y Y

b,

¥
F Ye

Figure 10. Dynamic model for a constant force
restraint system,
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(1) Short period acceleration solution.

Condition (A)

For this regime

§z +“’:$z"7:-

[ )

(76)
If the initial spring deflection is zero, the solution to this equation is
3
“.’_2...5‘ = (- asayl :
X (77)
v
Obviously, the end of this regime is defined by
2
wf' s}?el %= f_:/_.'_“ | — o5 g f‘.‘
A A
F/om
or s welpy = I— g (78)

o
The spring velocity 52 P at this time is given by

L4

5

R

Condition (B)

= _}_:.S&wzf“:'_g _F.:L::\' 2"’-%
P w Yo A Ve (79)

The spring has now reached its critical deflection Sg ¢z 3nd remains at this value.

Now S =
!

S

=A2.'”(?& ",’;i)

A - (al "'yc)

(80)

and z=0

S = +3:= 'f/“*
G~ = G F fua




5 = ;i T - (Fm)T + 52‘n(

(81)

[ b t-
§,= Let[ X~ Ful + Sz )

T A 2580 ¢, - 258

§ Sy ..
.'-fa’?-“z"“"’ g_,fA//t—:—"[x—%] (83)

Substituting equation 79 for Sz,  and defining -L— ]

¥
el f_,, ie22f - 2)
S

“’fé * -F % SO (84)

Note that from equation 78

(85)
oty s /{/2-—5){“’ 41w w258 20~ &) o
=rs X &Ga-9)

From equation 81 the foam will bottom out with a velocity

f:’__r& VB(2-8) §/+ wede 2(/~4)

Y VN B(2-8) (87)




Condition (C)

In condition (C) the equation of motion returns to the form of equation 76. The initial
conditions are no longer zero, and the solutinn bhecomes

Tl (- s Sra Yoy gt + Wi i €

)'f )’3 5{' (88)
Obviously,
Wy S, = W28,
2 ©28 2 %A (89)

Now 53 = 0 prior to bottoming, and the velocity change 313 has been acquired im-
pulsively by the spring at the instant of bottoming, thus substituting equation 86 into 88,
and remembering that

0t _ - (@) et t [~ sty t/B(2-F) siic xt ]

VA (90)

. 57z -g)et.
2] - 20-9) (1+$%%) + 2—%{%—;) ”({(;)i) (91)

where 02‘3 is given by equation 86.

If we define P ** A 5(2—'@/{//— {)
?_:_;;_S, = /+( —f)ﬁ* (wy +{’)z (92)

¢ | mAx

a)‘f" f[’/ +/ m‘&l _f?_z ]

(93)
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?
Thus, thc only variables are f and —‘54‘;‘

X

Some limit cases are of interest. For example, as é. =g —> 1.0,
(3
Y
PX)
) "(z %) 22ty 20
8 4
&
Similarly for [ ~» 0
k]
g Stecar ) ; 4 ;22 Su
) A

which is the same as equation 55.

(2) Impulsive velocity changeA J°

)
In this case the energy to be absorbed by the total system is 4 44~ . Before the foam
starts to crush, the model will absorb 2

2

k S(‘l)

N~

4 QI)

(94)

U F is the crushing force, and 5;5 the bottoming depth, the energy absorbed in the
foam will be £ 5,5 . Thus, the remaining energy to be absorbed by the spring will be

z
AL, = 3maw'-FS4 -4k S,

(95)
Dividing throughout by a«
2 2
wg Suax = Av ~ Z(F/“) Si8 o6
2 —
Wy SZM! A (wzdd) 2 “’t Sie (F/u) (97)




z .
/
Naturally, if the initial energy 5 M d4’ is insufficient to bottom the foam, then

1 —-—
“Wa Szkdx - F/M
Also, if

wy 8, < Ffon

(98)

The result will be

2 = AJ\
“2 OaAn 2 (99)

A convenient parameter is therefore

2 (Ffa) 8
?—t—fz"‘” =/; z %'s (100)

w A

The optimum crushing force for a given velocity change is the one which results in the
lowest value of h’g’“ [A ~ax for a given bottoming depth S“ .

This condition obviously occurs when the foam bottoms at the same instant that all the
initial kinetic energy is absorbed. In other words, from equation 95

e
‘f““ﬂ"ri’ FSIB - %kzau

(101)
2
L P 3
But 2 ke & 2 %y (102)
. “J:' 5(,) = F/"* (103)
and from equations 101 and 102
2 2o \° t
F/m? = ~— & s.g 1 ("’z S'.s) + /sz)
I Ta4
(104)



and Dynamic Response Index (DRI)

1
DRI with optimum restraini . - ‘_‘2__8;‘3 4 ,‘/(’ g S‘,—s) + 1
DRI with no restraint AV i) (105)
d. The influence of slack in the restraint system.

When there is slack in a restraint system, or the occupant is separated from it, as in
ejection from an aircraft subject to negative g, an initial velocity

To
Ao, = [ § AF (106)
[ e

is built up prior to contact with the restraint system (which occurs at time =t ).
Thus, the equations already developed are still valid, but the initial velocity condition
also appears in the solution, increasing (most usually) the physiclogical effect of the
applied acceleration.

The "slack distance" 5; is related to the input acceleration by the equation
% e,
S '/Ad"df '/// Je A L. (107)
o (-]

In analog work S, can be deterr .ined as a function of Zo for any input acceleration-
time history. The value of A«f‘; appropriate to the problem likewise can be determined
and fed into the computer as an initial condition.

It is clear that if the acceleration input is an impulsive velocity change, restraint system
slack will have no influence.

(1) The effect of slack when the restraint system is rigid.

For a rectangular (zero rise time) acceleration pulse ( )4 ) in the short period regime,
the velocity built up before contacting the rigid restraint system will be

to..
A«JZ“/: Y, oAt = X T, (108)

and the travel

e &
L
s,= 1%

(109)
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Thus t, = "‘ZS’/)Z (110)

and Aoz, = ,/ZS', Y (111)

Substituting this initial condition in equation I. 7, Appendix I

1"’ “—)—.f‘r‘d; [Sg/)}

A
w?§ e 2 £
—_ = [ - 3;_/ FP+T2 Sunfw + X)
- 7

(112)

(113)

where

S T = V/;- 25 +¥ 3 (114)

We now have to find the sclution for the maximum value of equation 113 which can be
done using the techniques of section 1. 3 in Appendix I. A much simpler solution can
be obtained for zero damping, of course, since equations 113 and 114 then become

L ~ (- ‘//-f-z;:'_.& S‘u[&d‘t 1,_?[2
Sen X = L/t + ?__;::_z& 5 (115)

. k8
Obviously W Oaar _ / . 2«3"9, (116)
¥

«:‘l

<

is a limit solution and has been obtained elsewhere in this report. Equation 116 is

plotted in figure 11, It is interesting to note that a slack of only half an inch ( S, =,04167)
in the spinal mode { @ = 251, 0 rads/sec) would increase the DRI of a 20 g acceleration
pulse (with zero rise time) by as much as 100%.

(2) The effect of slack in a linear spring restraint system,

The equation of motion for this case is given in Section 3.b. When damping in the dynamic
model is neglected equation 45 gives the sclution

fi_{:g [ - § @l 25 o wy T %
jf &/(+f repd ) ,/"’",*f'

(117)




3.0

2 /}
/'I | é(e_‘s? /
&
EQUATION (97)
2.0
-
@) [

3
Ol
315 /
“3o 1.5
|
=B /
5|5 f
=1
) o
Al

1.0

0.5

0 2 4 6 R 10
HARNESS SLACK PARAMETER @&
Ye

Figure 11, Increase in D, R.1. due to slack when the
restraint system is rigid, for a zerorise
time pulse. (Zero damping dynamic model).
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o $2 /~,¢/ff+?)*” !gg’ Z,,/:f_ * ]

where  €0? b = /[lff%f) + u‘t'—fr}:g’

After the spring has bottomed we have, from equation 51
% : ; ) bt
o @
2..(5)8 - 3’7 ( Sz‘ <+ 8")
): (4
1 3
ey S [ — [,._f)mwzt*

[

P
—
—
x

s’

(119)
wﬁg)‘ Sua “Jzt
€

From equation 117

wy Sy - D2 s “als 285 Lo,

T AP My FI}/? Wiz

7

and since

. t 7% - . o, f‘
wo(§h - w,ﬁﬂ*% 7 ““[/—“’ﬁp 7 ‘Q‘Y (120)

From equation 118

[- 57

wrls o= (121)
| = S T o 28
AT SOr@) + “# 7

Obviously 9, = 91_, but the different signs in equations 120 and 121 prevent us from

substituting for (# +a)¢t‘/,4/l+ }in equation 120. Thus, a single explicit relationship
cannot be obtained.

By substituting equation 120 into 119 we have

Q9



L x n ;’..ZS .2 Z‘
‘;’_'_._c-w,., /+4///+2) 1‘“’://’*1’)*” ')'."’]“‘/;’:%—7;’ *—q (122)

NG

where Al +P
o+

&Y 9 = wt 28,
3 4/(1 + f) 2 —
A
and T ¢ 13 given by equation 121,
e. The influ.uce of preloading in a restraint system.

The effects of preloading can be examined effectively with an analog computer, where
preloading can be simulated as an initial condition acceleration input )éo .

For the simple case of a rigid restraint system, however, subjected to a zero rise time
acceleratior we can obtain a solution from the work in Appendix I. From equation 1.7,
? =0, 80 that )rtm. =ofr . Thus, equation I.14 becomes

we & = «®$
A = eﬁ(’ -y ) (123)
f¢

In figure 12 the dynamic overshoot for zerc preload is plotted, and in figure 13 the in-
flucace of preload is included. I was found in the last section that the parameter in-

fluencing the physiological eifect of a zero-rise time acceleration Y, was

'-"-’:-;{ 52, . preload force in 1b, resolved along the appropriate axis
:’;} weight of occupant in lb x acceleration in g's
<

A3 un example, corgider the spinal mode which is of importance in aircraft ejection seat
work anc for which € = 0.224, The maximum tolerable preload, even with a powered
inert1a ree!, is probably about 1 g, resolved along the spinal axis, so that

. !;‘* ):
<
- zs‘
& 2o
Foo :{ =15 g say, =5~ = . 0687

[

Thus, the ittenuation facvor, from figure 13, is about 0.98, or a 2% reduction in DRI
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Fipure 12, Dynamic overshoot"in responsc to a zero risc

time acceleration ¥, for a damped linear system,
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D,R.L. WITH PRE-LOADING
D.R,1I. WITHOUT PRE-LOADING
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0
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— ‘i-_m e / +ﬁ - “1’3(5!)¢> e ™
2 kA
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. RESTRAINT PRE-LOAD PARAMETER =
wy (§,), _ PRE-LOAD FORCE (LB)
A WT. OF OCCUPANT (LB) X ACCELERATION (g's)

Figure 13. Influence of preloading restraint system on wi&“&
{Damped linear system subjected to a zero rise
time acceleration input i ).
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It is obvious from the foregoing that preloading the restraint system has little value,
from a physiological point of view. Since it is of extreme importance to avcid slack,
however, as shown in the preceeding section, some preloading should always be in-
troduced in the process of cinching down the restraint system to make sure that no
slack exists.
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4. SOME SIMPLE NONLINEAR RESTRAINT CASES INVOLVING CONTINUOUS
FUNCTIONS

The simplest type of nonlinear restraint problem consists of a zero-damping model of
the human hody in series with an undamped, nonlinear spring. Thus, the problem may
be regarded as a nonlinear extension of the work in Section L. 3.b., page 18.

From equation 14 the appropriate equations of motion wili be

§Z+F;=i¢~.s.l

(124)
£ - f
or, more specifically
o® ‘ _ P _ .e
{z 4 @y Sﬂ = 7@ 8"
(125)

wz‘ $2 = 1‘:, (S,)

where ff ( §; ) is some continuous function. By differentiating the 'f, ( & ) equation
we can outain an expression for S', which in some (very few) cases enables a general
solution to be obtained.

Retaining the generality of equation 125

« & = L1665

¢ ©f / (126)

o5 < 2 IhGDE + (5 (£,0)

)

(127)

Thus é‘n = df-‘-:g’ (5) ,{; [ f;(s.ﬂ
| &E,[ﬁ(?:)] o8, [ fs (501

(128)

[
Substituting for 5! , from equation 126 and denoiing differentiation with respeci to
5' , by a prime;

.g wrbe . Gl wz’(’&)

s

' Ew T TaeT oz
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g ' (2)
i)
Figure 14. Simple model of a nonlinear restraint system.

Substituting intc equation 125

; ‘;{‘)wa + w Sz = e .
%/ fs(‘J] m»(:.)} () + = / —

Even though we have succeeded in reducing the problem to a single degree of freedom,
this equation is difficult to solve, whatever the nonlinear function f ( 8, ) may be.
The only cases which can be solved this way are of liitle value in practlcal work,

As an alternative approach, we can consider the two springs in figure 14 as being one
spring with a rather more complex force-deflection relationship. This approach is
more promising because the solution for a single nonlinear spring-mass problem can
be fairly simple.

Retaining our generality, and defining the total deflection of the two springs as
F E. L
l} { ;) tow wr (131)

If this can be solved for F/M in terms of Sr , then the resulting equation describes
the equivalent single nonlinear spring.

For the general nonlinear restraint spring examined in the next section, equation 131
takes the following form

= £,05) = = )

(132)
{ 7 F é
_,_;':_. by’ /——
Sr (E)u; * g/ ‘“) (135)
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wi £ 2[5 E)E f)/f) s,
#(u-i)(h-2 1)/u (_E) & . } (134)

In order to evolve an explicit expression, we must solve this polynominal in ( F/m ),
which is easy to do for Mt =1 or 2. For # = 3 or 4 the soluticns become increasingly
complicated, and higner powers become impractical,

A closed form solution is possible for the simplest polynominal nordinearity, which is

£ e 2 2
il 4“;/5,) w?$ + o,

(135)

sice 8, = Sr— 82
2
(3 -
5 o @ 5y 's'-) + & ($r-5) (136)
and the solution for ( F/m ) is found to be

¢ T S
o [( +E)+22Y) )T EEr,? a2
4

The same type of solution could also be obtained for the cubic nonlinearity

3
< .
£ = wts +‘;S; (138)

but with added complexity.

Another type of nonlinearity considered in the next section is the tangent relationship

;:.E = 2% S G2 T2 25‘
8 (139)

- 2‘0"" {’1 'ZC. - —F:.. )
- 25:4(57 oy (140)
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Obviously no explicit expression for (F/u) can be obtained in this case.

From the foregoing it is evident that, even for the simplest possible zero damping
cases, it is generally not possible to achieve closed form sclutions for the effects of
a nonlinear restraint system, except for the quadratic case., Consequently, the only
practical method of treatment is to employ an analog or digital computer.

a, Generalized power law nonlinearity.

When the spring force-deflection curve is described by the equation

ﬁ S‘ “ (141)

the equation of motion of a simple system becomes

§e8.5%= 4 =

(1)  Solution for an impulsive velocity change Ad

The potentizl energy stored in Lhe spring at a deflection S“Ax is

E = "'/ (Ffu) 45 w4

S ax Yy
S VPP ST

) (144)
[
/ 2
Equating 144 to the initial kinetic energy 7 s« AJ™ before impact,
2 Zu [ nt/ ut )
A4/ S:lmr - §°
L.
41
S = [y &t WJ ) 145
wi A ° (145)
For zero initial conditions, the DRI is
"
S, “ ;‘,‘; AJ%"/ ,'.f/)n-n
f‘* adx f“ 2 (146)
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(2) Solution for constant short-period acceleration }‘/

Let § = Ib in equation 142
Then § = p 5—?

nz. /[y £.8°) 45 =o

ve a+! el )
-— —_ = o
X MAY ) n-ﬂ ;M' SO (147)
For zero initial conditions @
-® z“— S\

>{ = Nt/ A

and the DRI is

?’“S‘”:, - (utd X

(148)

b. Generalized cubic non-linearity.

In this seotion we are concerned with an undamped model whose spring force-deflection
curve is described by the equation

m o Wept

(149)

sc that the equation of motion becomes

(R

5 +wis +p87 =% @50

(1) Solution for an impulsive velocity change AU,

The potential energy stored in the spring at a deflection 5’,,," is
Sydl 5‘“’
s [ () A5 = m [ (s +457) 45 ,.
’o ; (151)
(]

;E;- = é'[wt(&:w - Soz) + é/’ (gjﬂx -50“)] (152)
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. 1L L 2
Equating 152 to the initial kinetic energy Z A before impact

(15

2 ¢
A"rt = wt/gg.e; — S:) * é//i [S‘m’ - S: ) (153)

For zero initial conditions

T \2 X z
2;3 [S‘Amx) + ot &fd!) - A =0 (154)
O /2Ty s
AKX — £ / (155)

The DRI is obtained by substituting for S,..,.x in equation 149.

(2)  Solution for constant short-period acceleration Ye

Let 5 = P in equation 150

Then g‘ i f ;dﬁ S«Ar
/;4 . 4[;;'_ w?s 457145

Z [5:-4.0:- - 50) - ,‘i’.z(/s“:" - S:) - % (ga:nr "'So,) =0 o

(156)

For zero initial conditions

3
(] /
Y - 7 Suax = Z/S""" = 0o (157)

S is given by the solution te this cubic.
MAx

C. Generalized tangent law nonlinearity.

A e AR Ty e o .mrey & svva Nl ith 2 . 3 : . 2
Tor this ¢casc, wé Gré COnCernet witd X Spring whose nonlinear characteristic is as

defined in figure 15.
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Figure 15. Tangent spring force deflection curve.
ie F= 40208 Yow (158)
ar 2 S‘ a
Writi { = Tz 159
Titin =
g 2 8, (159)
the equation of motion is
e k = o®
S + = Tau { 5 ?t (160)
o1
- 4 2
or writing ;’ = ),
o e oo

s 4 ?oﬁ“ £5 = 4 (161)

(1) Solution for an impulsive velocity change AL,

The potential energy stored in the spring at a deflection S:m & 18

Suar
LE = Fe A5
. o tam
7 4 fgz

- -, z¢ [ los € Sunr | (162)

-??' /mfio

Equating 162 to the initial kinetic energy { ' AAJ‘ before impact

At =~ Zw° 4} / :?iﬁﬂ (163)

“




for zero initial conditions

g [ £ 5] = -1 2

-i((d-d')
= &
s § Suinr (164)
and the DRI is
2
f“_{f” - Yo fgumr (165)
m 4
Now L X = /S'c—c—:;_-_—f
% A
Fwr _ @ f (55)
P $ V€ — (166)

(2) Solution for constant short period acceleration Xr

Let S = P in equation 161

oo 4,
N R S

/Pd/, _ / [zY @[{5‘)7 A(E5) (167)

B 15 25) # 5 [Bglentin] ~Lplenthl] =0 am
: wAY
For zero initial conditions
v - ? Sa *57/4»2' buar | (169)

There is no explicit solution for the DRI in this case.
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SECTION III
THE DERIVATION OF DYNAMIC MODELS OF THE HUMAN BODY
1. GENERAL OBSERVATIONS

The basic aim in Body Dy @amics is to devive a system of differential equations which
are in harmony with the ohserved behavior of the human body when it is subjected to
acceleration, Since there is always, or uearly always, a physical analog to a differ-
ential equation, it is frequently easier o discuss the analog rather than the equations
it illustrates because our thinking is tviically better adapted to considering physical
objects than to reasoning in terms of mathematical abstractions.

A typical "dynamic model" is illustrated in figure 16. This analog has two degrees
of freedom because the masses can move in an arbitrary manner with respect to each

y 3

INPUT ACCELERATION

Figure 16. Dynamic analog or model for a two
degree of freedom problem.

The model usedin figure 16 is a "lumped parameter' model. That is, the mass, spring
and damping characteristics are all considered as separate and discrete elements. Such
treatmert is not always possible. Dynamic models of the head, developed to predict head
or brain injury, are based on the assumption that mass, damping and stiffhess are distrib-~
ated uniformliy throughcut the skull. As might be expected, the equal ons for this case are
rather more complicated than for an equivalent lumped parameter model, but tlLore is al-
ways a lumped parameter equivalent of such a system.

Dynamic models of the human body are based mainly upon experimental measurements of
its response to various types of acceleration inputs as well as the sithiective reactions of
the individuals to the tests. Experiments with cadavers are also of value, although to a
kesser extent since substantial changes occur in some of the body's dynamic characteristics
after death,




Perhaps the most cogent reasci. for the use L dynamic models is thor thov oravide ax

essentially unifying theory iv il physical vhacrvations of human responcy iv acceleriiing .
thereby, permitting impact Jat::, sivcraft ejocrion seat firings, sled tests, shipboard -
juries, and a host of other observatinns to e reduced to a common de .o nivator, knnwn

as the "Dynamic Response Index' (DRI). A theory wiich encbles all experimertal ¢ Lo -
vations to be reduced in terms of a single parameter can also be used in roverse, of
course, to determine the probable results of an experiment which has yei to ve carriad
out; or, putting it another way, to determine whether the experiment is worth carrying
out at all.

In the present context, we are concerned with determining the numerical constants of
lumped parameter dynamic models which will best represent the human body. We use
as the basis of our effort the available experimental data,

Experimental data can be divided into three classes;

(a) Experiments in which the acceleration input pulse is of
a type which enables the data to be used directly in de-
termining the dynamic model paramecters. The best
example in this class is an impulsive or "Impact' velocity
change.

(b) Cases in which the data must be reduced by means of a
dynamic model before it can be used. An irregular
ejection seat acceleration-time history is an example
of this second class.

(c) Cases for which some or all of the acceleration records
ar~ . .thless. but for whic* ar. 2ppropriate idealization
of the acceleration input can te deduced indirectly.

In general, it is easiest to use type (a) data in the generation of a dynamic model, and
then to use this model to improve probability of injury estimates with type (b) and (c)
data.

There are four different types of information which are of value in deterriining the values
of a dynamic model for any particular direction.

From acceleration experiments we can determine:
(a) the critical impact velocity change A+ ,

(b) the critical short period acceleration ): , and

(c) the "free oscillation' frequency &g (if the subject
is unrestrained in rebound).
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From impedance measurements we can determine:

(d) the "small amplitude" resonan; frequency edgq
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2, METHODS OF DETERMINING LUMPED PARAMETER MODELS FROM THE
AVAILABLE DATA.

a, Analysis of acceleration tolerance data alone.

Experiments in which an approximately reciangular acceleration pulse (figure 17) is
imposed on a live human subject should result in iujur; {or morc precisely, probability
of injury) curves of the type shown in figure 18,

? fe— PULSE _ * PROBABILITY OF
DURATION INJURY = 50%
3 |
N AREA OF PULSE Yy
= VELOCITY
Z CHANGE
g /? f PULSE ')\U l%
3 ¢ 8t = 40) MAGRITUDE ekt £ £ bttt
*, :‘
- (% \?w . 01%
i N WA AR 2 A
S VELOCITY ™ R
< CHANGE IS ACCELERATION LEVEL
CRITICAL . iS CRITICAL
+ —
TIME T A, ,ie); at
Figure 17. Definition of rectangular Figure 18, Typical injury curves for
acceleration pulse, rectangular acceleration

pulse.

The "corner duration" (Af; ) marks the boundary between two dynamic regimes. For
At A& we are in the impact or impulsive v! seity chonge regime. The pnlse shape has

no influence upon the behavior of the system, but only the pulse area, which is equal to

the velocity change imposed. In practical terms, the pulse duration in this regime is so
small that it is over before the body has started to respoud. Thus, the body sees it merely
as a change in velocity.

For Ai‘)dt‘, the pulse shape is of major importance and, for a rectangular pu-l_se, the
peak forces generated in the body are a function only of the pulse magnitude ( Y, ), ir-

respective of pulsc length.

(1) Linear model with damping,

So far the discussion has been confined to modes in which tii» human body behaves as a
"single degree of freedom' dynamic system, of the type shown in figure 19. In practice,
this happens to be a good approximation of the human body's response,
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In the case of a sitting subject experiencing a positive spinal (eyeballs down) acceleration,
for example, we might give physical reality to figure 19 by the following identifications.

The mass corresponds to the mass of the head and
upper torso.

The spring corresponds to the subject's spine.

The damper corresponds to the distributed damping
in the spine and associated tissues.

In Reference 10 Stech showed that, if the effective spring rate ( k ) was obtained from
Cadaver data, this postulate could be used to calculate the frequency of a dynamic model
representing the human body. The result agreed with other measurements made with live
human subjects. However, it is important to realize that such identifications cannot always
be made (the transverse case for example) and that, strictly speaking, they are not necessary
to our purpose.

mM
& 2K
Figure 19, Single degree of freedom, linear dynamic

system.

We shall now consider the mathematics of a single degree of freedom system in order to
determine the lumped parameter coefficients for particular tolerance curves of the type
shown in figure 18, when the dynamic model is linear. The assumption of linearity is
made for two reasons. First, because the resulting equations are very much easier to use
use and sccondly, because available experimental data is not precise enough to permit
identification of nonlinear effects.

We define the following linear coefficients:
Frequency
Wt = b

N wtocte W= EF) =Wy
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Damping C = %

¢ = <w
Y =HM1~-C*

2
The peak force in the spring is kfm;. Dividing by the mass we have &/ :ma; which is
the "Dynamic Response Index,

Note that

.4
w6 = X Suar

peak force
effective mass.

We assume that the size of the structure (such as the spine) in which the force is recacted
is proportional to the mass of the system and therefore to the weight of the subject. Thus,

wz adx 18 proportional to peak force
structural area

L w" acAX is proportional to peak stress.

We therefore assume that the Dynamic Response Index (DRI) is a measure of the maximum
stress generated in the body. Thus, the DRI is the most logical parameter against which
to correlate injury and other stress-induced physiological effects.

2
For zero initial conditions « Jwis given by the following equations:

Impulsive velocity change A4S

~£ (- s")
WS un = WAV € (170)

Short period acceleration )4

-ér
NI .:Z[,.,qa"’) (171

Car x

Now we have assumed that any line in a tolerance graph is defined by w'S'..m= constant.
Thus, we can equate equation 170 and 171 for any particular tolerance line, with values

A, pand %e, respectively.




":%/ﬂ"-— u;.’-e,) -

. e
ie, wA'Jtﬂlﬂ'e = c-t,r[’ fe“’)
.. ~Er
w )c/l(f [ +e 7
so that = [ — - . - 172
A‘&:r)e.%(w"ﬁ“ "l) ¢

The "corner duration" AZ‘; in figure 18 can also be obtained from equation 172, since

8 = Yo 4T (173)

at this point. Substituting for 134{-},,- in equation 172

-~ 2’%

| + €

SE(m- )

wdt, 47, (174)

This equation is plotted in figure 20,

We see that for a conventional tolerance graph, one parameter, the '"corner duration"
4C,, defines the frequency of the model if the damping ratio is known. However, it is
impossible to deduce the damping ratio from tolerance data. This must be obtained
from other classes of experiment.

b. The use of impedance data fo define damping and nonlinearity.

Probably the simplest -~ and the most accurate -- experiments which can be performed
on the human bodr ire thoge in which sinusoidal vibratiou is iimmposcd ugpon a live subject
and measurements are made of the "Mechanical Impedance' defined as

Mechanical Impedance / 2| = Force input to system
Velocity of input point

A se~ond common experiinental method involves determining Amplitude Transmissability
by measuring the amplitude of oscillation of various parts of the test subject's body and
dividing these readings by the amplitude of the vibration input. This is much less accurate
than impedance measurements because we have to assume that transducers mounted on a
subject give an accurate trangcription of the motion of that part of the body to which they
are attached. In practice this is usually impossible for frequencies in excess of 50 c.p. s.,
as shown by the work of von Gierke (Reference 4, p. 155). Significant errors may occur
at much lower frequencies if the transducer attachments are not carefully designed. Never-
theless, amplitude ratio measurements are qualitatively useful because they yield a much
clearer physical picture of the body's inodes of oscillation and thus aid in a clearerunder-
standing of the mechanism involved,
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As variants of amplitude transmissability, some experimenters have used acceleration
ratio. Velocity ratio is also a possibility. Both of these ratios are proportional to am-
plitude ratio, so long as the motion is sinusoidal. In nonlinear systems however, there
may be marked differences between them, so that it is important to define the actual ratio
being employed.
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Figure 21. Mechanical impedance of a linear, single degree
of freedom dynamic system excited at the spring

base.

The mechanical impedance of a linear dynamic system is sketched in figure 21, and the
peak value of | Z| occurs at a frequency e , given by

fNe /&‘c’z-& /1 + 8%
w A t- 4775 2) (175)

and the peak value of /2| is approximately

/2/ = a.)Md/‘f‘z?"Et.

ahix (176)

e —




These relationships are derived in Appendix 11.

Since it is not necessary to instrument the test subject in order to obtain mechanieal im-
pedance readings, this test procedure is the most precisce and at the same time the most
satisfying from a scientific point of view. It should he noted, however, that resonant
frequencies can.:ot be obtained directly from impedance data. If there is appreciable
damping in the cystem, the frequencies at which maximum impedance occurs are con-
siderably higher than the resonant frequency. The relationship hetween them is given

in figure 22. The maximum impedance for a linear system is plotted in {igures 2 and
24,

An impedance curve can tell us the damping in a system. From figure 21 it is obvious
that we know/ZI sux and 2o , the frequency at which}Zlﬂ‘. occurs. Thus, from
figure 24 we can determine the damping ratio € , if we know the cffective mass.

It should be noted that we are almost always concerned with the parameter {Z)/m not

| Z| alone. It is strongly recommended therefore that future impedance measurcments
be reported inthe form of /Zﬂu , rather than |2{ . The former is 2 more fundamental
parameter and should reduce scatter by eliminating the effect of weight variation hetween
subjects. Moreover, the variability of Izl /M can be statistically analyzed, whercas a
knowledge of the /Z/ distribution is meaningless because it may reflect nothing more
than a variation in the weights of the subject tested.

Once the damping factor is known, the undamped natural frequency can be obtained from
figure 22,

If amplitude transmission measurements are made, the relationship between the resonant
frequency —QR“ and the peak impedance frequency £, will also enable the damping
ratio to be read from figure 22,

Impedance measurements with the human body reported by Coermann in Reference 5
enable preliminary estimates of the damping coefficient € to be made for relatively
small amplitude oscillations, at frequencies up to 20 cps. The values derived by
Coermann are not as accuraie as they could be, however, because he has used an approxi-
mate equation for maximum impedance., In addition, he used only the peak impedance to
determine € , whereas the ratio of the resonant frequency to the maximum impedance
frequency can also be used to obtain a second reading.

For one subject (code R.C.) Coermann's data can be summarized as follows, taking the
subject mass as 185/32.2 = 5. 75 slugs.
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Sitting Erect Sitting Standing

(Coermann) (Latham) Relaxed Erect
Resonant frequency 5.2 5.5 4,65 5.05
(cp-?
Frequency for 6.3 5.3 5.9
| Z|,40, (PS)
€ caiculated 0.285 0.325 0. 37
by Coermann
1 2| onx 6.65 5. 08 5. 2
(dyne x sec/cm x 109)
4 Ib sec/ft 465 348 356
1 Z(, b sec/tt
1Zyun [Loo e 2.005 1.82 1.672
T based on [Z[uax 0. 281 0.317 0. 352
o /N s 1.21 1.14 1.168
T based on fLyeg 0.352 0.305 0. 325
Mean value for € 0. 306 0.316 0. 349
Natural frequency 6.1 5.14 5.67

e3/2m (cps)

For practical purposes we may neglect the variation betw+.n sitting erect and relaxed.
Thus, the final figures become

Damping factor in sitting pesition, -C_: = 0,31
Damping factor standing stiff-legged, € = 0.35
C. The application of rebound data to determine dynamic constants.

Impedance measurements enable us to estimate the damping in the humsn bedy if we are
able to excite the mode which is of importance., We cannot obtain the full deflection of the
body's structure that would be experienced in an impact test, for example. It is obvious
that the mean effective damping in an impact might be different from that n.easured in a
relatively low amplitude impedance test.
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system,
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ratio, in terms of the undamped natural frequency e
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Secondly, impedance measurements can b2 used to determine the degree of nonlinearity
only if a suitable centrifuge is available for use in the experiments,

Rebound testing appears to offer a means of circumventing both these limitations.

(1) Rebound of a linear system.

If a linear dynamic system is subjected ¢o an impulsive velocity change, such as hy the
drop test indicated in figure 25, it will rebound dway from the free surface on which it
impacted.

¥ﬁ lzw
TR

Figure 25, Impact case for a simple dynamic system.

The equation of motion is. of course,

‘5".;-2(8:-#&025""0

77
the initial condition being (é)o =44, and the solution
X1
$= 4}9 ej“’j«l '\t (178)
= §e s litep)

T cfw  mEA-TE Az 0y

where ? = s““-.l"]

"Take off'" occurs either when the total spring and damper force falls to zero, or when
the spring deflection is zero. For the first of these

2 4
o
2¢5 + w8 = (180)

at "take off",
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Substituting equation 178 and 179 for  and $ equation 180 gives the result

W — M\t = 5&—’2?47 = O (say)

Substituting 2", into equation 179, the take off velocity is
~-< -
re = 2 su fam-6 + f?
v "1

Equation 182 is plotted in figure 28, together with the velocity which exists when the

spring deflection is zero.
For the case & =0, Sa Al =0, so that

At=wmmr = %\1"

. -?‘t’“ﬂ.
5 . . -
(S)T. = € > s“&[“ﬁ"" St "1
v
-
° ..
28 <
Wigq 1,0
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Figure 26. Variation of rebound velocity with
damping in a linear system.
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Consequently, if we measure the rebound velocity of live human subjects, we can immedi-
ately determine the equivalent linear damping from figure 26 or equation 183, without ary
reference to the frequency of the system.

Once we know the damping, the time to take off ( 2‘, ) gives us the frequency of the systemn,
since from equation 181

an~_8
4% (184)

This relationship is plotted in figure 27.

Thus, we see that rebound measurements can give us a direct and precise indication of
both damping and frequency, under the type of loading history with which we are most
concerned in body dynamics. '“he theory given above is for true ""bounce testing' where
the subject is dropped onte a rigid surface, In Reference 12 Hirsck reports tests in which
take off is caused by vertically accelerating, and then decelerating, a platform on which
the subject is standing. This data is more difficult to analyze because the acceleration
time history occupies a finite time. Some of Hirsch's data is plotted in figure 28, as are
also boundaries for an undamped single degree of freedom system driven by rectangular
pulses. It seems obvious from the relatively small scatter in Hirsch's data that good
estimates of both damping and frequency could be made by using an analog to reduce

this data. Also, if such tests were carried out with a carefully regularized accelzration-
time profile, the damping and frequency of the subjects could be obtained by a simple
analysis of the type developed earlier in this section.

(2) Rebound of a nonlinear system.,

If the apparent frequency of the human body increases with impact velocity, during re-
bound testing of the type described in the previous section, we may feel reasonably con-
fident that this is due tc nonlinearities in the system, and most probably to a progressive
increase of spring rate with deflection.

It should be noted that this type of experimental work offers the hope of a major breakthrough
in the area of body dynamics. Consequently it is recommended that a suitable experimental

program be implemented with all possible priority.

d. Some examjles of the analysis of existing data.

At the time of writing this report, insufficient data are available to make a detailed
analysis of the dynamic models which best describe the dynamic behavior of the human
body. The process of collecting the available data is still far from complete. However,
it is of interest to construct some provisional models in order to illustrate the use of the
techniques described in the earlier sections.
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NONDIMENSIONAL TIME, AT = wl

3.0 j
3.4 //
TIME TO ZERO
2 9 SPRING DEFLECTION
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3.0 \
| TIME TO ZERO TOTAL FORCE
("TAKE OFF" TIME)
2.8 (t)  —
2.6 \\
2.4
0 0.1 0.2 0.3 0.4 0.5
DAMPING BATIO € = C/e
Figure 27, Effect of model damping on time to zero force

{72 ) and zero extension (fyg ) for an impulsive

input to a damped, linear system.
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,e  Undaimped dynamic
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pulse only.
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Reference 12 data p .ints
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Figure 28, Take off velocity as a function of pulse duration

for an undamped dynamic system, compared with
Hirsch's12 data for a standing man,
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(1)  Spinal model,

For the case of positive spinal acceleration, it has been found that the available data on
spinal injury support the hypothesis that a single degree of freedom nonlincar damped
system is a good representation of t" e human body. An estimate of the nonlinearity of
the system has been made in Refere: ce 10.

The mean age for U. S. Air Force aircrew personnel is 27.9 years. This age is used
as a basis for estimating tolerances to acceleration.

Using data from experiments with cadaver vertebrae, and a knowledge of the variation

of their strength characteristics with age (Reference 11), it can be shown that the steady-
state acceleration level corresponding to 50% probability of injury for a subject aged 27. 9
years is approximately 21. 3g.

From Table 1 of Reference 11, corresponding to these conditions we have

€ = 0.2245
e (185)
d - = 8,42
an byt cps
Figure 20 then shows that
AY, = 2. 27
Since 47, = wr At'; , the real time corner duration is therefore
¢t o= 22T ,
a¢, WU 0. 0428 secs. (186)
The dynamic overshoot of a system subjected to a zero rise time acceleration input
- and having a damping coefficient of € = 0.2245 is, from equation 171,
CF Sapr
£ 2 = 1,485 (187)
%
This means that the critical impulsive velocity change for 50% probability of injury is
Year 4%
Av = (lo;' SM’) - 21.3x32.2 . 4 498
5 1.485
Y.
= 19,75 ft/sec {188)
Using the values expressed in equations 186 through 188, we are able to deline the 50%
probability of injury curve for the case of a rectangular pulse acceleration input. This

is shown in figure?29.
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NOTE:

This injury curve is based upon dynamic models of the
human body using available experimental data, It is
subject to revision as additional data becomes available.

The only tolerance curves authorized by government
procurement agencies for the use as design limits are
those defined in HIAD or other applicable procurement
specifications.
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Figure 29. 50% »robability of injury curve for a rectangula
accnleration pulse in tle spinal directiou.
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Summarizing the model, we have

g = 52,9 rad/sec
€ = 0.2245
Corner duration Vil | = 0,428 secc

I

Critical velocity change &S 19,75 ft/sec (A€ < AT,)

Arr

Critical zero rise lime
acceleration

I

e 14.35 g (4t > at)

It should be noted, as pointed out in Reference 11, that head involvement occurs when
the duration of the acceleration pulse becomes very short. At the present time, insuf-
ficient data are available to determine the limitations associated with this degree of
freedom, however.

(2) Transverse model (soft head restraint).

There is a substantial amount of data to indicate that, for {n¢ positive transverse case
the 50% injury level is given by

]

A"&ﬂr

53.6 ft/sec

]

)';w 40.0 g

for rectangular acceleration pulses with zero rise time, and that a single degree of
freedom dynamic model represents an adequate description. These figures will probably
change somewhat as the process of data analysis continues, however.

From ecquation 173

At - éﬁ;"” _ 53.6 -
/ ¥ = 0.0x322 . 0416 secs,.
carr 40.90 x 32.

Thus, if we know the damping ratio € , we could obtain the frequency from figure 20.
For the probable range of values we have

C = 0 0.1 0.2 0.3 0.4
azr, = 2.0 2.6 3.45 4.72 6.83
w = 48.1 62.5 82.9 113.4 164.1 rads/sec

Until rebound tests have been carried out, the only socurce of information on damping in the
transverse mode is due to a single impedance curve presented by Coermann in Reference 8.
This gives a peak impedance of 432 1b sec/ft at a frequency !l,/eﬂ' = 7.6 cps. Assuming
that the weight of the subject was 152 lbs.,




.

L2004
and from figure 24.

€ - g.208

]

Since this result is for a ""semisupine'" position, and is a single data point, not much weight
can be attached to this result. It is extremely interesting to note that the peak impedance
frequency is 47.7 rads/sec., however, since this is comparable with the values deduced
from pulse tolerance data,
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3. DYNAMIC CONSIDERATIONS IN THE DESIGN OF EXPERIMENTS
WITH LIVE HUMAN SUBJECTS,

Dynamic models are of considerable value in the design of physiological experiments,
and can save a great deal of time and money. For very short acceleration durations,
where velocity change only is of importance, there is little point in using a sled or-
HYGE accelerator, since exactly the same results —an be achieved by drop testing,.

The size of test equipment is also an important factor. Cases have arisen in the past

where short period inputs have been attempted on equipment whose maximum working stroke
automatically limits it to "impact" or impulsive velocity change experiments. For unately,
the dynamic models so far established allow us to define test equipment parameters quite
precisely. The theoretical considerations involved are examined in the next section.

a. Test equipment requirements for determining the tolerance limit of a single
degree of ireedom dynamic model,

3.0

2.0 \

-0 /,,/2-2«11!1.‘ —
0.5 MIIIIIJIJJ/III
\

Y. /us® Sranx

0. 2 L° 0 3.0 A = WAt

Figure 30, Rectangular pulse tolerar e graph for a single
degree of freedom linear dynamic system with
zero damping,

Consider the nondimensional tolerance graph sketched in figure 30 for an undamped model.
The velocity change associated with the rectangular pulse input upon which this graph is
based will be

AU = -)de =w$‘w /.}_{'— )AT

WL dx (189)
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A suitable nondimensionalization for A4 is therefore
w 4 Y. ar
mm— = —

190
awt San wt Smﬂ' (190)

Equation 190 is skeiched in figure 31,
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NCONDIMENSIONAI. DURATION A7 = WAt

Figure 31, Nondimensional velocity change required in
testing with a rectangular pulse.

It should be noted that true impace velocity changes occur for durations of 47 < 1.0,
and true short period accelerations in the range of 8% ? 3.0. A velocity change of at
least’

w S

w‘fw = 8/2

is required in the short period range.

70




The associated stroke required over the acceleration period is given by

i - 4 ,“.’.’.41’ o gadr a4t
s: = 2‘1‘!‘6(— z w‘st)') )

so that a suitable nondimensionalization is

w?tS, o 44
- = A’Z‘
‘Jt acdx ‘J‘s‘ak>

This relationship is shown in figure 32.
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Figure 32. Variation of nondimensional accelerator streke

with acceleration duration,

Thus we can define the acceleration stroke required as follows:

2
Impact wtS & % ©'omar
Short-period w'S, D e
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We have seen that the parameter which most conveniently discriminates between impact
and short period acceleration is AT , the nondimensional acceleration duration,

For impact accelerations AT L1
(194)
For short-period accelerations 4% > 3
The stroke of an accelerator which produces a rectangular pulse is
L 3 1
S, = $AvAt. = 7 Y At (195)
/ < LAY\
2 ~ = 2 X‘ ( ) ) (196)
L 45
For impact experiments, 5, < 2 D (197)
For sh iod ' S, > 1% 1
or short period experiments , % ;,_ (198)

Equations 197 and 198 agree with equation 193, as we should expect. The actual test rig
stroke limitations involved are plotted in figures 33 and 34 for spinal acceleration, and
figures 35 and 36 for transverse, using the existing dynamic models (Reference 2). The
operating range of 8, in figures 33 through 36 is the range between the vertical cross-
latched lines, Limited sample testing at levels of less than 0. 1% probability of injury is
not considered worthwhile. On the other hand, testing at levels oi greater than 10% proba-
bility of injury is undcsirable, from safety considerations. We may summarize these re-
sults as in Table 1 below:

TABLE 1
Test Rig Stroke Limitations

Impact (impulsive velocity change) Testing

Stroke must be less than,... 1.29 in. for spinal (0.1% injury)
2. 24 in. for spinal (50% injury)
3.45 in, for transverse (0. 1% injury)
6.70 in. for transverse (50% injury)

Short-period Acceleration Testing

Stroke must be greater than . 3. 80 in. for spinal (0.1% injury)
6.61 in. for spinal (50% injury)
8.63 in. for transverse (0. 1% injury)
15. 02 in. for transverse (50% injury)
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These results are particularly significant, since they indicate much more stringent test

rig limitations than generally realized. In the spinal case, for example, the structure
supporting the test subject should be extremely rigid, and absolutely no cushioning ma-
terial can be used if the results are to accurately portray the response of the human hody
alone, * Also of interest is the observation that a very limited stroke device -- such as

a small diameter HYGE tester —- cannot be used for short-period experiments. Equally
evident is the fact that '"dirt drops, " such as those carried out by Holcomb with the B-58
capsule, and other tests involving some resilience in either the test rig or the surface upon
which it impacts, cannot be reduced to give useful data, unless the acceleration-time history
is accurate.y recorded. Usually it is not.

In the case of transverse experiments, the reverse is true. Almost any practical support
and restraint system may be used for impact testing, so long as the deflection under 40 g
static load does not exceed about two inches. Correspondingly, larger strokes are required
for short-period investigations and these can probably only be carried out on specialized
rocket sled and similar facilities.

Thus the type of test rigs needed may be roughly summarized as follows:

Impact Short-Period
Spinal Drop-Test (very HYGE Tester (very
stiff support) stiff support)
Transverse Drop-Test Rocket 8Sled, Daisy

Track, Ejection
Tower, Eic.

For practical purposes, the requirements in lateral testing will approximate those for
transverse,

b. The influence of the restraint system.

A restraint system is some form of resiliency between a human body and the structure of
the vehicle or vehicle subassembly with which it is associated. When the vehicle is sub-
jected to an acceleration, the existence of the restraint system means that the accelcration-
time history felt by the man is not the same as for the vehicle. This modification of the
vehicle's acceleration can be favorable or unfavorable, depending upon the dynamic char-
acteristics of the restraint system.

* It is reported that Swearingen9 used a hydraulic snubber in many of his "impact"
experiments, so that they camnot necessarily be regarded as "impact' experiments.
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A good restraint system will reduce the physiological effect of an acceleration because

(a) It increases the effective stroke through which the
man is accelerated to a given velocity change, and

(b) It increases the rise time of the acceleration, thus
reducing the dynamic overshoot of the man.

A bad restraint system will increase the physiological effect of an acceleration because

(a) It permits the man and the vehicle to develop relative
motion before it bottoms out, thus increasing the shock
effect 0o“ a given acceleration input.

The detailed effects of restraint systems, and the way in which they modify the physiological
effect of inpu’ accelerations have been discussed in Part I of this report and can, in principle,
at least, be « nsidered in the analysis of test data, However, their presence is a complicat-
ing factor., At the present time, it seems logical to say that absolutely no series resiliency
should be permitted in spinal tests, and that the maximum restraint deflection in lateral and
transverse tests should be limited as much as possible, preferably to less than one inch, and
certainly to less than two inches.

When the use of a restraint resiliency is unavoidable, its dynamic characteristics should be
recorded in as much detail as possible, so that its effects can be calculated and the basic
input pulse shape to the human body determined later by a device such as the Frost Restraint
Analyzer,
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APPENDIX I
SOLUTIONS OF THF SINGLE DCGREE OF FREEDOM LINEAR

DIFFERENTIAL EQUATION WITH CONSTANT ACCELERATION INPUT

The basic equation in linear dynamics is

S 4205 4 8 =9 =4V 1)

..
where yc is some function of time.

1.  The Complementary Function

When the damping is subcritical, that is to say, when € < &) the equation

an b4 )
S + 25 +w'é =0 @

has the solution

-'-'fng(sxwt » Lfwe(s) +w(8).] se e}

Wi = e 13
or, if ¢ = C/ro
-l 2 ‘< .
WS = o ful(s) m)t+Rfe) rl)snty

where ( 8), and ( S) » are initial conditions and
h 2 = w‘l - c'l

This solution is the Complementary Functien in the solution of Equation I(1).

2, The Particular Integral

The solution to Equation I(1) contains a Particular Integral determiaed by the function

£ (£). ,
This is given by 531-_ =(D*+ 2¢D *“’z) ’f({') I(5)

where D denotes the operator i%,
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3. Constant Acceleration Input % With Sub-Critical Damping,

In the special case when —F (t) = X'. = a constant,
s = ¥
P1I ot

because P { ¥ yanda D% ( ¥% ) =o. Sf: must be added to the complementary
tunctlon £ of Equation I(4) noting that the initial displacement in Equation I(4) is now
[ ,_ —(§) 3 instead of ( § ), . Equation I(4) now becomes

w, -
%}_‘ - e - {[I l(s).] At + _;3[2-(,-:.1;:(3).)_»_?{_5% Sw)t% 16)

-l

%), - .
[i- .};ﬁ‘) JJi-2zp+ g sa (Mt +8) .

e N Ve rreTy

P = “’(5)/[__ ‘(s)]

g s o i =
1t we wrie

R O
e
f (, t{$)o) _ “‘);,-{S)G? 1(8)

c

The displacement S has maximum and minimum values when the displacement velocity
8 = 0. These are given when

— O

e f{(zwA-B)\)m)‘t + (AN +:—'m8) Sean Atg
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That is, when

w A1 8% s (XNE+K) =0

TA - 8(Ne)
where S X = JAt + 82

Equation I(9) is satisfied when

)'t-r‘?(, = AT where 1 =0, 1, 2, 3....

ie, )Sfm‘, = "77""71

Now from Equation I{8),

5 =y
- . ¢ t .0 3 - 2
And A%+ 8" ;-z ‘:’g)] ‘:t “",2{5)] [%‘ ;"-l‘z
/Az.+s1 .-!:b a’%{fj‘} /\ﬁ- Z?f +?At
. Sur A, f"/ﬁ 289 +¢°
Now sé‘[)n"m, -fO] = S Nl a1 6 +m4\l‘;‘, Sec &

S Moy = S (amr=%,) = (-1) s %,

= (—-’—)“?7.'
MJi-2zp+p?
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s‘a..f)\,,,-f-az 1) —t) Pl <3 _P s
“ ,‘/Tzc?v-ff W Lzeprpt

- 4 . & %
m"? ’ ﬁ/ 1-2Tpept A 1-229+6p° 113

Substituting in Equation 1(7),

'f-;—‘-"" = [/ + & {’ }{‘/ :-2:»71*? +(-()4/l 1-22ptp } 1(14)

A
s - ‘1
where G, = 4T — Sa 2 . 1(15)
Ai-2¢ +¢p?

Note that, for zero initial values of & and ﬁ Equation I(7) becomes

2 -Cu

wf. )= C sifdtr§)

A b 1(16)

where Sea f =Y, cos # =

?
The maximum value of &« § add¥ is (hen

2 -Z—"‘
“f;f"" = [/ 4 e‘" I(17)

and occurs when f'” ar =X
A
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APPENDIX II
THEORY OF MECHANICAL IMPEDANCE FOR A SINGLE
DEGREE OF FREEDOM, LINEAR DYNAMIC SYSTEM

In this Appendix,we consider a damped, linear system, for which the equation of motion
is

§ + 208 + w8 = Asiat

II(1)
Writing equation II{1) in Laplacian form, and neglecting transients,
~ AR
Z —_ “_)l k— —
Go) [ p - 2ep + "] pran®
- ALt
ar: g {f ) = 2)
2, .2 (3 2 hy
Wt E)er S+ £
The inverse of *his is e—r’mt
. . ——3
S }LL%(‘Q{.*,ﬁ)f,w 7t 9&[&-’/’-—( 't 44"—)
—— = s
ALz N (w®a2) + 42 0ttt
Neglecting transients, this reduces to
$ _ Sur (£2¢ +K,)
A [l ) + 470} Ii(3)
where
7(, = Za.~! 2¢ L0
N -t I(4)
Now if A sin2C is the input acceleration, the input velocity is
A s 0t
N 1(5)
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The force in the system is
2Ca S + Mo g

From equation II(3)

(=) + &ttt

.
Py
2 =
A

From equations II(3) and ]I(5) the force in the system is given by
. Am {22 £, con (b +%) + si (2t +2,)}

W= 2%ist) + 4 20

= Am [ AETRU + 1
(1-2Y%s?) +ez2 oY

where

280 /e
“ P e aravor
(

S (RN vy 20
and . o ?, 26'.[?-

Now from II(5), we have that

?:ém,ﬂ;‘f’
(4

Dividing equation I(7) by II{(11) the mechanical impedance is

]

40t + 1 Sen (2T + X, +4,)
(1-0%?) + 47071 st

Z = Ll

" £ - 2= .
Writing P = 25 and ? 2& , the modulus is
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P2t 4!
Prat +0i-pt)°

[z = L2~

Obviously the phase angle is % - X, - ﬂ

Of interest is the value of / Z/ when L2 =¢2 | sothat P =

In general the equation for / ZI....n is of more value than the equation for /2 fo

/Z/u _ I+z
ol

since there is usually no way of knowing the correct value for w

From equation II( 13),

)zl

Pti’t + 1

= p prgt + (1— —p)"

Differentiating with respect to P ,

ptat + p*
pe +(3'-2)p* + 1

d iy . (230 ) +2p9% + 1
dP meo /‘/EP?¢2+,)(/,¢+“P1 +‘)1
where 0K = 11‘—2.

Equating to zero to find the value for / ZLM ,

(xg?=)(p)+ 29(pt) +

/{f = O

4% 4 A1 + 8
/"27 - { F ez 2)
121 4o 4c (47~
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Note that as € ~® 0, p-»1.0

as ¢ —» 0.77, P - o

Another limit of interest is ) Z’ nax 28 c —> 0.

From equation II(16), as P —

1ZI.,,, . /""

11(20)
From equation II(16) note that as r —» Oo°
El — 2¢
&) M
A damped system oscillates at a frequency
/, 4 2
-C
=A@ I(21)
Thus when a measurement of the frequency )\ is available, as well as an impedance
measurement, we may determine € from the ratio
:_.a—? - ﬁ . '—L e 'k‘
A i | I(22)
In many cases the frequency for maximum amplitude of the test subject (resonance) is
also determined.
sice = 5o (3, ~ife)
$—8= g -5
y Y (23
y' - 7‘ Y (23)

L/

The transmission factors (output/input) are therefore

0
Rk
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Di.spgtce;nent: 7; = (- S/;‘_
Velocity: Ty = I- 5/:, m(z4)
Acceleration:

e |
0
|
X

From equation 1I{3),

I3 A so. (02 ¢ 7‘1)
wt 7{1-,,‘)1. +stP&

1}

£ (’,_,&)'* 5 71(25)
¢ . ~pA (2t + 2)
A/Z:P‘)"—# st pt
Also 9.‘ _ A kﬂ,_ﬂ,‘t
3‘;¢ = - Zlé s 2T II(26)

7: = So"' }z&t“’ﬂt

Substituting equations I(25) and A(26) into II(24), the modulus of the transmission factor

becomes
[ 4
— <+
T =0F Sepytasp nzn)

that is, the transmission factor is the same for acceleration, velocity or displacement,
so long as the motion is sinusoidal.

We find the "resonant frequency" for which T

is a maximum by differentiating equation
II(27), equating to zerc, and solving for P

R L2 J
This givesus P, = s - ——
REs
w ALY e

In other words, the resonant frequency is higher than the undamped natural frequency e ,
although the free oscillation frequency A is lower,
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