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ABSTRACT

Like any other complex dynamic system the human body responds in a complex

way to acceleration inputs which vary rapidly with time. The need to avoid stresses

large enough to cause injury to the body usually imposes limits on the permissible
input acceleration.

The restraint system interposed between a vehicle and its occupant can modify the
physiological effects of a vehicle's acceleration - time history. This modification
should be made as favorable as possible by minimizing the stresses generated in
the vehicle's occupant. To determine optimum dynamic characteristics for the re-
straint system, its important characteristic,3, and those of the human body, need to
be represented in terms of a mathematical or "dynamic" model. Through suitable
analysis, either mathematical or by xrieans of a computer, those dynamic charac-
teristics of the restraint system can be determined which will minimize the peak

stresses developed in its human occupant.

In this report a general theory of suitable dynamic models is developed for th's
type of problem. Closed form solutions for a number of simple cases are pre-
sented also. In addition a method is shown which permits development of simple
dynamic models for the human body atilizing existing experimental data.

Most test data has limitations. This seems particularly true when the subject is
as complex and variable as the human body. The limitations associated with the

application of physiological data to dynamic models of the human body can be min-
imized,however, if the test program is designed with this application in mind.
Accordingly, the reader will find discussed in some detail, the necessary re-
quirements for short period acceleration testing with live human subjects as well
as some suggested requirements for dynamic characteristics of test rigs.
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of Y versus At
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60
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nondimensional time,
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mass ratio,- Mr
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B condition in whic' bottoming occurs in a restraint
system

C input value

CAt? critical value

Ar~x maximum value

0 initial value

refers to system " , or some element thereof, in
a multidegree of freedom dynamic model

r" total

Note: Dots rljove a symbol indicate differentiation with respect to time.



SECTION I

INTRODUCTION

This investigation is concerned generally with the stresses developed in the body
of a human occupant of an aerospace vehicle which is subjected to short-period
acceleration. More specifically, its objective is to ensure that the characteristics
of the "restraint system," .interposed between the occupant's body and the vehicle,
will minimize body stresses.

To accomplish this, a means has been devised of calculating the response of the
body and associated restraint system to the applied acceleration. A mathematical
model has been developed which represents those characteristics of the body and
restraint system which are significant in the study of the problem. Such a model
necessarily involves simplification and represents only the major system consid-
erations. Nevertheless, it has considerable value in predicting limiting stresses;
indeed, the variability of humar bodies and restraint system materials, may not
justify the use of a more complex model.

The most elementary dynamic system in the field of restrained body dynamics,
illustrated in figure 1, is mathematically quite sophisticated. Although partially
closed form solutions can be obtained for a great many cases, their derivation is
often so lengthy, and the resulting equations so long, that the effort involved is
hardly worthwhile in an applied research program where rapid results are required.

i I
HUMAN

BODY
S Y S T E M (2 ) O

J• CUSHIOt OR

SYSTEM (1) RESRI SYSTEM

Figure 1. Elementary dynamic model in series
with a restraint system.

For this reason, the influencL of a particular restraint system is usually investi-
gated with the aid of a digital or analog computer. Despite these aids of modern
technology, it is still necessary te organize the basic equations of motion if we are
to devise digital or analog logic of maximum economy. It is also necessary to de-

l



ye closed form- Soutiol5s for limit cases in order that the results of compter
runs can be checked during the "1de-bugging" process, and to provide general de-
sign "guide-lines" as to the most promising type of system.

The basic dynamic equations involved in the problem were identified. From these
equations, closed form solutions for certain limit cases were derived to permit
checking ot computer solutions. Concurrently, the 3e test solutions give an insight
into the basic physical behavior of the system.

No attempt is made here to explain the physical implications of the theory to the
nonmathematician, since this has been done effectively elsewhere.

Simple solutions have been obtained for the influence of slack or preloading in a
restraint system. These results are summarized in figures 11 and 13.

By definition, a restraint system degree pf freedom consists of a mass, together
with a single spring element and a single damping element. Both of these zaiy be
discontinuous and nonlinear. They are in series with a dynamic model which rep-
resents the human body. The dynamic model may have any number of degrees of
freedom, both in parallel and in series. For the purposes of this report, only the
series case has been considered in detail because it is the only one so far used in
practice.

From the point of view of pure mathematics, there are two types of restraint
systems, represented by continuous and discontinuous functic as respectively.
When the function is continuous and differentiable, one set of differential equations
governs the entire motion. When it is discontinuous, two different sets of equations
govern the motion each side of the discontinuity, and in addition, the change from
one set to the other involves generating a series of initial conditions for the new
equations.

In the work which follows, we shall first investigate the dynamic problem in a
very general way, imposing only the requirement that the restraint functions
shall be real and single-valued. Next we shall consider the special case of
linear systems, and solve a number of simple cases, involving both linear re-
straint with discontinuities (bottoming systems) and continuous nonlinear restraint.

While it is fairly easy to determine the dynamic characteristics of a restraint sys-
tem by physical measurement, the human body presents obvious difficulties. In

9. L. & I " inLL - p.. roble. and sLLw how apprj9 ma - solutions
can be obtained from the available test data. Test rig criteria for future experi-
mental programs are also developed from theoretical considerations, together with
the theory of bounce testing, which is suggested as a new experimental technique.
It is felt that bounce testing offers hope of measuring bio-dynamic characteristics
which are not easily obtained from currently employed experimental techniques.

2



SECTION II

DYNAMIC THEORY

1. GENERAL THEORY OF RESTRAINT DYNAMICS

a. Generalized equations for a multidegree of freedom system in series.

In body dynamics we are almost always concerned with dynamic systems in series, rather
than in parallel. The springs and dampers can be either linear or nonlinear. Such a sys-
tem has a number of characteristics which are independent of the characteristics of the
springs and dampers. We shall deal with these before proceeding to specific relationships
between force, deflection and velocity.

For the system in figure 2, let

M4, = value of the mass 4"

S. = deflection of spring -?'

4r = velocity of spring Jf

S- 4 (54 = force in spring-

OW.-fei)force in damper

the mass ratio.

(3)

(2)

Figure 2. Series dynamic system.

3



The functions -4 and 7 may be any continuous, single-valued real functions, and there
need be no relationship between the functions for different springs and dampers. In other
words, we are dealing with a generic system.

If we now write the equations of motion for each system, the following set of coupled equa-
tions is obtained:

de 4+ 4s) - it + Sr rt)

Also

where X4. is the unstretched spring length. Differentiating equation 2 twice with respect
to time,

S i r therefore - -- (3)

and finally

1 (4)

Substituting for in equation 1,

4F,

or c 4 ai + e~)] S4. (6)



"so INPUT

Fa

[.e

" + F+

S-ETC -----

Figure 3. Flow chart for multid•greu of
freedomo ,;ystem.



On the left of equation 5 is a conventional differential expression representing one degree

of freedom. On the right, we have the force in the system immediately above it (weighted
by the mass ratio 0. ), and an acceleration forcing term equal to the input y. , less the
accelerations of the springs between the point of application of and the system under
consideration.

For convenience we can write

F Ir5it)- (7)

so that equation 5 becomes

+ F,. + (8)-

We can rearrange these equations by substituting into the right side from the previous
equation, so that we express the motion of a particular system in terms only of the two
systems on each side of it.

Thus,

- -- - - (9)

The relationships given in equation 9 are of particular importance in analog hookups,
where we wish to minimize circuit complexity. The basic flQw chart is shown in figure
3.

b. The effect of Paralel elements.

If some elements occur in parallel, the generalized equations become coupled in the fol-
lowing manner, using the notation of figure 4.

F.L Is
Figure 4. A branched system.



Below the branch

F..F

- (10)

•. +( , )F, = F,, +¢zF,, +

Abo. .3 the branch, in the system

A.0

•.. •+,,Fog, = fA, + ,Fp,,

The equations are the same in the J branch, , being substituted for

c. General equations for a series degree of freedom without mass.

A "restraint system" can often be represented as a dynamic system in series with a
dynamic model. The mass of the restraint system is considered negligible.

If the restraint system mass is finite, it can be regarded simply as system (1) in figures
2 or 3. To study this case, consider the first expression of equation 5:

ewYe

by making the substitution AIvg =

Then off$ e ~f~(~)1# $) 2(~ #(aJ4(2

Now by definition,

Force in damp'r 0) Aft ) d -P,

and force in spring (j) = , (S) -W S



(tshould benotedthat ad are actually functions of , and ,respectively,

so that P, and S, are independent of P1  .)

Substituting into (12), we have

'pa1,"t r, f ' •s,= , +, '"I ÷ ,Y,

Now putting Al = 0 gives " ' + SX

i e,F

We can approximate this condition on an analog by making A, large compared to unity;
of the order ef 100 say. Then the frequency

A linear restraint system can "bottom" however, and subsequent to this the acceleration
input is fed directly to the dynamic model, together with an impulsive velocity
change which is equal to the velocity at which the restraint spring bottomed. This latter
requirement involves separation and the differendation of velocity signals, and it is found
that for analog work, more conventional methods of programming are preferred.

For nonlinear restraint systems, however, this system can be used very effectively since
there is no discontinuity in the equations of motion.

When the mass of the restraint system can be neglected, the dynamic model is as shown
in figure 5. Equation 8 still applies to this system, except that the terms for - ',4 1
are replaced by the simple force equality

tc (13)

Thus the equations become

, ,(14)



,ýG

S, is an unknown which must be determined from the first equation. Substituting equation
7 for F, and FI.

By differentiating this equation with respect to time it is often possible to obtain a solution
for 6, in terms of $ •

Figure 5. Zero mass restraint system in series
with a dynamic model.

From the foregoing it is clear that we may express the influence of zero mass restraint
system in the following theorem.

"The only influence of a zero mass restraint system on
the equations of a dynamic model is to replace the forcing

term with the term (•, - t )' wherever it appears.' t



2. T INEAR SYSTEMS

For a linear system, let

2k,, damper force , c5t)

spring force ,.,-

Then equation 5 becomes

ye- S (16)

Equation 9 becomes

(17)

4 - f.#( + '4 .fS 4

When the excitation ( ) is sinusoidal, or can be resolved into a Fourier series,
equation 17 can be solved using conventional impedance techniques. Alternatively,
we can use Laplace and Fourier transformations, which convert the differential
equations into algebraic equations. For example the Laplace transformation of
equation 16 is

2I

I -c f
+ initial conditions. (18)

10



This set of simultaneous equations can be solved for/ ( ). An analytical expression
for/ (S) can be inverted to 5 - (t) by means of tables of Laplace transforms, or
the integral

where / denotes integration about a closed contour.

11



3. CLOSED FORM SOLUTIONS FOR SPECIAL LINEAR CASES

a. VWholly viscous restraint.

In this section we consider the idealized case of a restraint system whose mass and spring
characteristics are negligible compared with its damping characteristics, as indicated in
figure 6.

Figure 6. Wholly viscous restraint system.

Equation 16 then simplifies to

2, i'.(19)

Differentiating the restraint equation

(20)

Substituting for £ in the first of equation 19, the equation of motion becomes
- • -o0.

S_ act S t. - ( (o (21)

We have thus reduced a two degree of freedom problem to a single degree of freedom
equation in & . We know that

if 2 e 2, (22)

the motion will be subcritically damped.

29|



0.25 2 K,

SUBC tITICALLY

0.20 DAMPED
MMOTION

0.15 SUPERCPJTICALLY
0 DAMPED
[.. MOTION

a 0.10

Fr-

0.05
rj•

0 0.2 0.4 0.6 0.8 1.0

D YN A...MIC. M O D E .,_ ,A M T.-T. nA TI O ,

Figure 7. Restraint system (tamping required to give
"Dead-Beat" motion of linear dynamic model.
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Insofar as dynamic overshoot of the human body is a problem, at least for short period,
short rise time pulses, a "deadbeat" restraint system is of considerable interest. From
equation 22 this could be achieved if

*z 0 2.25 .6.5

where C ,'~

el,, (23)

Equation 23 is plotted in figure 7, and a table of values is given below.

.0 .25 .6 .156

.05 .238 .7 .147

. 1 .228 .8 .139

.2 .208 .9 .132

.3 .192 .95 .128

.4 .179 1.0 .125

.5 .167

Closed form solutions to the complete problem cannot be obtained because it is impossible
to obtain a closed form solution to the equation for time to bottom-out the restraint system.
Thbs point is best illustrated by considering the even simpler system of figure 8, where the
damping of the human body dynamic model is assumed to be zero.

This simplification permits the auxiliary (restraint) equation to be written as

k. V. i,(24)

Figure 8. Dynamic system for a zero damping model.



Defining w t xkR/ira I e = < /.,

(25)

ot

The basic equations of motion of the system are then

+ "" > (27)

where t4 is the time at which the restraint system bottoms out
In terms of a nondimensional time A 1 &"

The equations of motion become

fe t

(28)

and from equation 26

9 2. (29)



From figure 7 we see that if

C - 1/4, the damping is subcritical.
> 1/4, the damping is supercritical.

(1) Response to an impulsive velocity change d-.
e

When the forcirg function is zero, and the initial velocity ( 6 ) -= r" , equation 28

has the solutiot. /

4,, (30)

Se(31)

where S• Z $ in the second quadrant.

07 = //-- /t,""

Also, from equations 29 and 30

- t a. r p j(32)
464

We obtain the maximum value of $, by differentiating equation 32 with respect to 't'

+ '- (33)

where $+.d 9 = 4"

i + or A. (

is a maximim. when "'7 1~+ IV-

9z"47 e(34)



It i3 therefore possible to plot curves of 3 IA.()- as a function of F , and also
curves of A-:Sew.4 /A.,r . From these we can determine the variation of
wvith allowable bottoming depth '

ie - . e / "

(35)

-• (36)

(2) Response to a zero rise time acceleration Ye

For this case the right side of equation 28 becomes

y 
y

The solutions are

y, • (37)

where - $

fox *4A.- e (38)

The restraint deflection is

and after some manipulation this becomes

-- (39)

17



In this case there is no true maximum deflection since So continually increases, and
it is therefore logical to define the critical bottoming depth as the value of when S
reaches its maximum.

That is, when

le +o

where - - -

---c "(40)

_ (41)

Substituting equation 40 for ' in equation 39

;took(42)

Note than whenC > 1.0 -7--P 1.0

S_•N'"A' -AP '

b. Linear Spring Restraint.

The corollary to the idealization of Section a. is the system illustrated in figure 9.
For this case equation 16 becomes

• f'az • -

(43)

18



(2)

C,)

Figure 9. Linear spring restraint.

Differentiating the restraint equation

-zA) (44)

The presence of the third derivative makes any solution difficult, so we will once again
use the zero-damping model, by writing Cz 0.

2.•Defining (A' =j-

sz -+• (45)

and (, (46)

(1) Solution for short period ( > dt, acceleration with zero rise time.

We assume that the acceleration innut rises instantly from zero to Yc Then from
equation I. 3 in Appendix I

& %. 1. it},-

"C. ' *7 Lt - /- ',.'l
SN (48)

19
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let

Now '-

S-[ J • -(49)

and of course, from equation 46

so that

C (50)

Therefore the total (initial condition) spring velocity after bottoming will be

_.s, ,,-"( , + ?
17'41 (51)

Substituting these initial conditions into equation 1. 6, in Appendix I, the motion after
bottoming is described by the equation

(52)

where -(53)

20



Obviously the maximum value of 7.7-- is

_I.°-C _____,____- •(

00 - 1 0 Tp'1 s - (54)Y,

An interesting limit is provided by the case 40f 0.

Here (55)

This checks with other zero-zero cushion solutions.

For convenience let

-C (56)

Then

S--v;'--. •- ( + (57)Y,

The critical value is

•Y',,f r r (58)

For P/ > / or equation 57 is not applicable, and the solution is merely

02.

The maximum value of equation 57 is found by differentiating with respect to and
equating to zero, holding W,% constant.

i e (t )

r (59)



Substituting into equation I. 2, Appendix I

Also, when the restraint stiffness is zero f -0 O and

(61)

This is the "slack harness" (or zero cushion stiffness) solution.

(2) Imnpulsive velocity change A 4J0 .

For an impulsive velocity change, we can regard the problem as a single degree of free-
dom. Prior to bottoming the effective spring stiffness is

.L t
4-

(62)

. .- . - . '- "-

We (63)

From Appei I,

I (64)

For equality of force in the springs,

22



itnd (66)

Thus, from equations 64 and 66

- 44-r- _f!_ 5;3j 14 (67)

1+?' 9'(68)

----- (69)

•4P £•" P'(2-.& (70)

After bottoming, the spring stiffness is it. and the velocity of the mass with respect to
the ground is •. . Thus, equation 64 becomes

S ' ' A (71)

r.-
but ,

~ (72)

.. -_ -•

:I
oq~x A~r(73)

Since t

22E

where the energy storage parameter, being the total energy
the resiliency can absorb at bottoming (ft. lb.)

M = mass of occupant (slugs)



The most favorable condition ( S. a minimum) is for the restraint system to just bottom
out under the influence of an impulsive acceleration. This occurs when

O"Z b'i6 _4

or

c. "Crushable foam" (Constant force) restraint.

This linear case may likewise be regarded as the simplest example of a nonlinear restraint
system, and an explicit solution obtained.

We divide the system's behavior into three distinct regimes:

(A) when the spring force ha f2<Fthe foam-is "rigid."

(B) when AL - F the foam deflects but the spring does not.

(C) when the foam bottoms out it becomes rigid again, and in
addition to the acceleration input Y , the dynamic model
has to accommodate an impulsive velocity change $,

0*

We now evaluate these regimes for a short period acceleratio i of magnitude Y, and zero
rise time.

k2.

Figure 10. Dynamic model for a constant force
restraint system.

24



(1) Short period acceleration solution.

Condition_ (A

For this regime

2.

4- (76)

If the initial spring deflection is zero, the solution to this equation is

""0-- (77)

Obviously, the end of this regime is defined by

W&__l W45 tCA,

or (78)

The spring velocity •2e at this time is given by

I CA e Al'(79)

Condition_)

The spring has now reached its critical deflection and remains at this value.

Now (?(ýY

(80

But F/AlM and =0

V. 2, 5 

/^-

25



0* (81)

L tpK eA(82)

Bottoming out occurs when Sa

Se, f - w -

-L -t (83)

Substituting equation 79 for and defining meY,

t COC(84)

Note that from equation 78

(85)

Fiot h f (86)

From equation 81 the foam will bottom out with a velocity

-94( !V/7 -) (87)



Condition (C)

In condition (C) the equation of motion returns to the form of equation 76. The initial
conditions are no longer zero, and the solution becomes

('I-

y (88)

Obviously,

(89)

Now 2 = 0 prior to bottoming, and the velocity change 819 has been acquired im-
pulsively by the spring at the instant of bottoming, thus substituting equation 86 into 88,
and remembering that

Ye (90)

2 (91)

where is given by equation 86.

If we define f4 /f - /6- F)

(92)

gt f 27 (93)

27



Thas, thc only variables are and -
YC/

Some limit cases are of interest. For example, as • * 1.0,

a ye

Similarly for "- 0

which is the same as equation 55.

(2) Impulsive velocity changed 4

In this case the energy to be absorbed by the total system is i 47. Before the foam
starts to crush, the model will absorb 2

2.

~ (94)

If F is the crushing force, and $, the bottoming depth, the energy absorbed in the
foam will be F ,is . Thus, the remaining energy to be absorbed by the spring will be

z

Dividing throughout by M ,

(96)
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Naturally, if the initial energy M $4 SM is insufficient to bottom the foam, then

Also, if

2~ Ste) (98)

The result will be

~~ ~ AJ2 ~y
")2 OVA's(99)

A convenient parameter is therefore

4 A 4" (100)

The optimum crushing force for a given velocity change is the one which results in the
lowest value of Jz•" * Sqr for a given bottoming depth 8,6 .

This condition obviously occurs when the foam bottoms at the same instant that all the
initial kinetic energy is absorbed. In other words, from equation 95

-u zkZ!, ),(101)£
t

But Aift (102)

SFl^ý (103)

and from equations 101 and 102

(104)
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and Dynamic Response Index (DRI)

DRi with optimum restraint - -

DRI with no restraint (105)

d. The influence of slack in the restraint system.

When there is slack in a restraint system, or the occupant is separated from it, as in
ejection from an aircraft subject to negative g, an initial velocity

(106)

is built up prior to contact with the restraint system (which occurs at time t = te).
Thus, the equations already developed are still valid, but the initial velocity condition
also appears in the solution, increasing (most usually) the physiological effect of the
applied acceleration.

The "slack distance" Ss is related to the input acceleration by the equation

S(107)

In analog work SS can be deterr .ned as a function of to for any input acceleration-
tire history. The value of £6lt$ appropriate to the problem likewise can be determined
and fed into the computer as an initial condition.

It is clear that if the acceleration input is an impulsive velocity change, restraint system
slack will have no influence.

(1) The effect of slack when the restraint system is rigid.

For a rectangular (zero rise time) acceleration pulse ( Y, ) in the short period regime,

the velocity built up before contacting the rigid restraint system will be

J;I~ ~(108)

and the travel

(109)
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Thus (110)

and 44Yes> (111)

Substituting this initial condition in equation I. 7, Appendix I

Y'€ (112)

S~7

where

7 - r Z (114)

We now have to find the solution for the maximum value of equation 113 which can be
done using the techniques of section I. 3 in Appendix I. A much simpler solution can
be obtained for zero damping, of course, since equations 113 and 114 then become

'Y (115)

Obviously kcMS (116)

is a limit solution and has been obtained elsewhere in this report. Equation 116 is
plotted in figure 11. It is interesting to note that a slack of only half an inch ( Sj . 04167)
in the spinal mode ( .. = 251. 0 rads/sec) would increase the DRI of a 20 g acceleration
pulse (with zero rise time) by as much as 100%.

(2) The effect of slack in a linear spring restraint system.

The equation of motion for this case is given in Section 3. b. When damping in the dynamic
model is neglected equation 45 gives the solution

S 

7

X All f 
(117
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HARNESS SLACK PARAMETER -S,

Figure 11. Increase in D. R.I. due to slack when the
restraint system is rigid, for a zero rise
time pulse. (Zero damping dynamic model).
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=~~~ tSOS,,,j
- - I (1 P

where 4M,Y,

After the spring has bottomed we have, from equation 51

I= old~ ) (1 19)

ye

From equation 117

and since

= ~-'~(120)

Ye

where .

From equation 118

2 (121)

Obviously 1(= ., but the different signs in equations 120 and 121 prevent us from

substituting for(6 *&i.4/A/4 7 -"f)in equation 120. Thus, a single explicit relationship
cannot be obtained.

By substituting eauation 120 into 119 we have

,IQ



7 "'(122)

where

and -t"$ is given by equation 121.

e. The influý,.c3 of preloading in a restraint system.

The effects of preloading can be examined effectively with an analog computer, where
preloading can bc. simulated as an initial condition acceleration input Yee

For the simple case of a rigid restraint system, however, subjected to a zero rise time
acceleratior we can obtain a solution from the work in Appendix I. From equation 1. 7,

G=0, so tilat t =rV . Thus, equation 1. 14 becomes

= i-te (, (123)

Dn figure 12 the dynamic overshoot for zero preload is plotted, and in figure 13 the in-
fluence of preload is included. It was found in the last section that the parameter in-
fluencing the physiological effect of a zero-rise time acceleration was

where bS is the slack distance. For preloading the parameter is

• preload force in lb, re-olved along the appropriate axis
weight of occupant in lb x acceleration in g's

A3 an example, corsider the spinal mode which is of importance in aircraft ejection seat
work and for whica F" = 0.224. The maximum tolerable preload, even with a powered
inertia ree?, is probably about 1 g, resolved along the spinal axis, so that

----- z

1 1 g say.- .0667

Thus, tht :ittenuation factor, from figure 13, is about 0. 98, or a 2% reduction in DRI.
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Figure 12, Dynamic overshoot in response to a zero rise
time acceleration Xe for a damped linear system,
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Figure 13. Influence of preloading restraint system on
(Damped linear system subjected to a zero rise
time acceleration inputt ')
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It is obvious from the foregoing that preloading the restraint system has little value,
from a physiological point of view. Since it is of extreme importance to avoid slack,
however, as shown in the preceeding section, some preloading should always be in-
troduced in the process of cinching down the restraint system to make sure that no
slack exists.
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4. SOME SIMPLE NONLINEAR RESTRAINT CASES INVOLVING CONTINUOUS
FUNCTIONS

The simplest type of nonlinear restraint problem consists of a zero-damping rnodel of
the human body in series with an undamped, nonlinear spring. Thus, the problem may
be regarded as a nonlinear extension of the work in Section II. 3. b., page 18.

From equation 14 the appropriate equations of motion will be

(124)

or, more specifically

g (5 (125)

where 4 ($, ) is some continuousofunction. By differentiating the 4 (j,) equation
we can obtain an expression for C which in some (very few) cases enables a general
solution to be obtained.

Retaining the generality of equation 125

"(126)

(127)

Thus, •(128)Thus aj)]

Substituting for • , from equation 1.26 and denoting differentiation with respect to

5, ,by a prime;

(129)
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Aq

Figure 14. Simple model of a nonlinear restraint system.

Substituting intc equation 1,25

-2 T r);r (130)

Even though we have succeeded in reducing the problem to a single degree of freedom,
this equation is difficult to solve, whatever the nonlinear function •$ ( S, ) may be.
The only cases which can be solved this way are of little value in practical work.

As an alternative approach, we can consider the two springs in figure 14 as being one
spring with a rather more complex force-deflection relationship. This approach is
more promising because the solution for a single nonlinear spring-mass problem can
be fairly simple.

Retaining our generality, and defining the total deflection of the two springs as

F /k
* (131)

If this can be solved for in terms of Sr , then the resulting equation describes
the equivalent single nonlinear spring.

For thu general nonlinear restraint spring examined in the next section, equation 131
takes the following form

(132)

9 (133)
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and ~

"_____ (134)

In order to evolve an explicit expression, we must solve this polynominal in
which is easy to do for I =- 1 or 2. For *t = 3 or 4 the solutions becompe increasingly
complicated, and higher powers become impractical.

A closed form solution is possible for the simplest polynominal nonlinearity, which is

S, ,,(135)

Since 9-r

(136)

and the solution for ( F/oi ) is found to be

- ]x % Or (137)

The sa ne type of solution could also be obtained for the cubic nonlinearity

F +(138)

but with added cormplexity.

Another type of nonlinearity considered in the next section is the tangent relationship

r :2 •(139)

4 &0jf (140)
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Obviously no explicit expression for (F/ 1. 4 ) can be obtained in this case.

From the foregoing it is evident that, even for the simplest possible zero damping
cases, it is generally not possible to achieve closed form solutions for the effects of
a nonlinear restraint system, except for the quadratic case. Consequently, the only
practical method of treatment is to employ an analog or digital computer.

a. Generalized power law nonlinearity.

When the spring force-deflection curve is described by the equation

F -(141)

the equation of motion of a simple system becomes

(1) Solution for an impulsive velocity change A4.

The potential energy stored in the spring at a deflection &Ar is

~ ~ ( ')'~(143)

Ok l4 -0 f (144)

DI

Equating 144 to the initial kinetic energy A t 4'w before impact,

I Acr

g05 € + (145)

For zero initial conditions, the DRI is

I I / (146)
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00

(2) Solution for constant short-period acceleration Ye

Let = P in equation 142

Ye) *j*A (( ;MIA (147)

For zero initial conditions

and the DRI is

(148)

b. Generalized cubic non-linearity.

In this section we are concerned with an undamped model whose spring force-deflection
curve is described by the equation

-F A)2SeA §S5

O (149)

sc that the equation of motion becomes

00

Yr (150)

(1) Solution for an impulsive velocity change e

The potential energy stored in the spring at a deflection •,M• is

(151)
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Equating 152 to the initial kinetic energy #M4At before impact

%• - I #•: - #.' ÷ ( ,-:) ,
-dV + ~A~~-)(153)

_ /

For zero initial conditions

AA4~ (154)

1.

- A (155)

The DRI is obtained by substituting for gm# in equation 149.

(2) Solution for constant short-period acceleration Y4

Let • in equation 150

Then 5-0-A5C

. S.

For zero initial conditions- - (157)P -

is given by the solution to this cubic.

vAgue

C. Generalized tangent law nonlinearity.

Fo thi cae we,+1 ar concrmme n0,-mttnFO* LU "W •t.-.. .. .... .. ..... ,.iL ,,.t • .". A nac~ L.c c11 Sa

defined in figure 15.
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Figure 15. Tangent spring force deflection curve.

i 2k.jg e" (158)

Writing (159)

the equation of motion is

" (160)

or writing A.) I

(1) Solution for an impulsive velocity change ,4.

The potential energy stored in the spring at a deflection is

• ",
S IS

Equating 162 to the initial kinetic energy s A a14 before impact

/,, =, (163)
4. f

I I I I 44



for zero initial conditions

2,42

(164)

and the DRI is

t. 4  A VSMA (165)
P"

Now "

f• t i g / e - r(166)

(2) Solution for constant short period acceleration

Let S in equation 161

Then ~ d(IS)

*t,/- g,/{~ •fs9,?-4•I) = (167)

For zero initial conditions

Ojl (169)

There is no explicit solution for the DRI in this case.
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SECTION III

THE DERIVATION OF DYNAMIC MODELS OF THE HUMAN BODY

1. GENERAL OBSERVATIONS

The basic aim in Body Dy iamics is to doxive a system of differential equations which
are in harmony with the observed behavior of the human body when it is subjected to
acceleration. Since there is always, or .early always, a physical analog to a differ-
ential equation, it is frequently easier to discuss the analog rather than the equations
it illustrates because our thinking is typAcally better adapted to considering physical
objects than to reasoning in terms (Af riathematical abstractions.

A typical "dynamic model" is illustrated in figure 16. This analog has two degrees
of freedom because the masses can move in an arbitrary manner with respect to each
other.

INPUT ACCELERATION

Figure 16. Dynamic analog or model for a two
degree of freedom problem.

The model usedin figure 16 is a "lumped parameter" model. That is, the mass, spring
and damping characteristics are all considered as separate and discrete elements. Such
treatmert is not always possible. Dynamic models of the head, developed to predict head
or brain injury, are based on the assumption that mass, damping and stiffness are distrib-
ated uniformly throughout the skull. As might be expected, the equat ons for this case are
rather more complicated than for an equivalent lumped parameter model, but tl.--re is al-
ways a lumped parameter equivalent of such a system.

Dynamic models of the human body are based mainly upon experimental measurements of
its response to various types of acceleration inputs as well as the sub.-Jective reactions of
the individuals to the tests. Experiments with cadavers are also of value, although to a
lsser extent since substantial changes occur in some of the body's dynamic characteristics
after death.



Perhaps the most cogent reasor. for the u:;3 ,, dynamic models is tb- ý-.y -.-v:.r'vide ar-
essentially unifying theory ! -.il physical s;-"'ations of human respoul,-: -.i acceler,_'.
thereby, permitting impact :JatL, 1iA:,!aft e.j-',-on seat firings, sled tests, •hipboard n--
juries, and a host of other observations to 'm reduced to a common ,'..o;. tor, kflx'W

as the "Dynamic Response Index" (DRI). A theory xic•h. enbles all experimental C
vations to be reduced in terms of a single parameter can also be used ir' reverse, o0
course, to determine the probable results of an experiment which has yet to be carri,.,,
out; or, putting it another way, to determine whether the experiment is worth carrying
out at all.

In the present context, we are concerned with determining the numerical constants of
lumped parameter dynamic models which will best represent the human body. We use
as the basis of our effort the available experimental data.

Experimental data can be divided into three classes;

(a) Experiments in which the acceleration input pulE-e is of
a type which enables the data to be used directly in de-
termining the dynamic model parameters. The best
example in this class is an impulsive or "Impact" velocity
change.

(b) Cases in which the data must be reduced by means of a
dynamic model before it can be used. An irregular
ejection seat acceleration-time history is an example
of this second class.

(c) Cases for which some or all of the acceleration records
n-r- \, .hbless. but for whic' -r. nppropriate idealization
of the acceleration input can be c1educed indirectly.

In general, it is easiest to use type (a) daota in the generation of a dynamic model, and
then to use this model to improve probability of injury estimates with type (b) and (c)
data.

There are four different types of information which are of value in deterrining the values
of a dynamic model for any particular direction.

From acceleration experiments we can determine:

(a) the critical impact velocity change tid.,

(b) the critical short period acceleration Y , and

(c) the "free oscillation" frequency 6i)p (if the subject
is unrestrained in rebound).



From impedance measurements we can determine:

(d) the "snmall amplitude" resonant frequency W-a
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2. METHODS OF DETERMINING LUMPED PARAMETER MODELS FROM THE
AVAILABLE DATA.

a. Analysis of acceleration tolerance data alone.

Experiments in which an approximatcly rectangular acceleration pulse (figure 17) is
imposed on a live human subject should result in iujur: (ur more precisely, probability
of injury) curves of the type shown in figure 18.

PULSE PROBABILITY OF
DURATION INJURY 50%

* ~ AREA OF PULSE
-VELOCITY

Z CHANGE
PU1LSE 1 %i-H ~MAGNITUDE 0

.01%

V~~ ~ ~ Er L. OnCr T

o° VELOCITY--.

CHANGE IS ACCELERATION LEVEL
CRITICAL iS CRITICAL

TIME A t

Figure 17. Definition of rectangular Figure 18. Typical injury curves for
acceleration pulse. rectangular acceleration

pulse.

The "corner duration" (At,) marks the boundary between two dynamic regimes. For
it<At, we are in the impact or impulsive v.! -city c"bnnge. rogime. The p,,lso shape has
no influence upon the behavior of the system, but only the pulse area, which is equal to
the velocity change imposed. In practical terms, the pulse duration in this regime is so
small that it is over before the body has started to respoiid. Thus, the body sees it merely
as a change in velocity.

For At>,tt. the pulse shape is of major importance and, for a rectangular pulse, the
peak forces generated in the body are a function only of the pulse magnitude ( ye ), ir-
respective of pulse length.

(1) Linear model with damping.

So far the discussion has been confined to modes in which thie human body behaves as a
"single degree of freedom" dynamic system, of the type shown in figure 19. In practice,
this happens to be a good approximation of the human body's response.
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In the case of a sitting subject experiencing a positive spinal (eyeballs down) acceleration,
for example, we might give physical reality to figure 19 by the following identifications.

The mass corresponds to the mass of the head and
upper torso.

The spring corresponds to the subject's spine.

The damper corresponds to the distributed damping
in the spine and associated tissues.

In Reference 10 Stech showed that, if the effective spring rate ( ) was obtained from
Cadaver data, this postulate could be used to calculate the frequency of a dynamic model
representing the human body. I he result agreed with other measurements made with live
human subjects. However, it is important to realize that such identifications cannot always

be made (the transverse case for example) and that, strictly speaking, they are not necessary
to our purpose.

M

Figure 19. Single degree of freedom, linear dynamic
system.

We shall now consider the mathematics of a single degree of freedom system in order to
determine the lumped parameter coefficients for particular tolerance curves of the type
shown in figure 18, when the dynamic model is linear. The assumption of linearity is

made for two reasons. First, because the resulting equations are very much easier to use

use and secondly, because available experimental data is not precise enough to permit
identification of nonlinear effects.

We define the following linear coefficients:

Frecluency 
(d/6= 

to
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Damping

The peak force in the spring is A'•wo. Dividing by the mass we have A which is
the "Dynamic Response Index."

Note that

peak force
effective mass.

We assume that the size of the structure (such as the spine) in which the force is reacted
is proportional to the mass of the system and therefore to the weight of the subject. Thus,

40 is proportional to peak force

structural area

0 2 90 is proportional to peak stress.

We therefore assume that the Dynamic Response Index (DRI) is a measure of the maximum
stress generated in the body. Thus, the DRI is the most logical parameter against which
to correlate injury and other stress-induced physiological effects.

For zero initial conditions "'•,€jis given by the following equations:

Impulsive velocity change

S4-4r (170)

Short period acceleration YC

~ (171)

Now we have assumed that any line in a tolerance graph is defined by A •= constant.
Thus, we can equate equation 170 and 171 for any particular tolerance line, with values

•t•_Y and respectively.
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The "corner duration" ut in figure 18 can also be obtained from equation 172, since

S= Y-' r (i73

atthspoint. Substituting for uA.e,,. in equation17

so that (172

This equation is plotted in figure 20.

We see that for a conventional tolerance graph, one parameter, the "corner duration"
44, defines th~e frequency of the model if the damping ratio is known. However, it is

impossible to deduce the damping ratio from tolerance data. This must be obtained

from other classes of experiment.

b. The use of impedance data to define damping and nonlinearity.

Probably the simplest -- and the most accurate -- experiments which can be performed
on the human bud:" :• re thos• hi, which sinusoidal vibration~ is jinposcd upon a live subject
and measurements are made of the "Mechanical Impedance" defined as

Mechanical Impedance ] ' Force input to system
Velocity of input point

A se'cond common experimental method involves determining Amplitude Transmissability
by measuring the amplitude of oscillation of various parts of the test subject's body and
dividing these readings by the amplitude of the vibration input. This is much less accurate
than impedance measurements because we have to assume that transducers mounted on a
subject give an accurate transcription of the- moti'n of that÷ part' of• theod to, which they
are attached. In practice this is usually impossible for frequencies in excess of 50 c. p. s.,
as shown by the work of von Gierke (Reference 4, p. 155). Significant errors may occur
at much lower frequencies if the transducer attachments are not carefully designed. Never-
theless, amplitude ratio measurements are qualitatively useful because they yield a much
clearer physical picture of the body's 2 odes of oscillation and thus aid in a clearerunder-
standing of the mechanism involved.

onth hmn it i e hsoiv hih iusidl iraioi i inosd pn lv sbjc
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Figure 20. Variation of nondimension.il corner duration &'C
with damping ratio for a rect,,ngo1hLr acceleration
pulse.
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As variants of amplitude transmissability, some experimenters have used acceleration
ratio. Velocity ratio is also a possibility. Both of these ratios are proportional to am-
plitude ratio, so long as the motion is sinusoidal. In nonlinear systems however, there
may be marked differences between them, so that it is important to define the actual ratio
being employed.

\ ••]., ÷4E"

z

P.,

/.o EXCITATION FREQ.fl-

Figure 21. Mechanical impedance of a linear, single degree
of freedom dynamic system excited at the spring
base.

The mechanical impedance of a linear dynamic system is sketched in figure 21, and the
peak value ofI ZI occurs at a frequency .- , ,given by

/1 , = I ,,Z/ 4 -,_ * (175)
90 -rW -s

and the peak value of/Z is approximately

(176)



These relationships are derived in Appendix II.

Since it is not necessary to instrument the test subject in o(rder t(o ohtain me(chanieal im-
pedance readings, this test procedure is the most precise and at the same time the most
satisfying from a scientific point of view. It should be noted, however, that resonant
frequencies can,,ot be obtained directly from impedance data. If there is appreciable
damping in the Fy.tern, the frequencies at which maximum impedance occurs are con-
siderably higher than the resonant frequency. The relationship between them is v!iven
in figure 22. The maxinaun impedance for a linear system is plotted in figures 2;1 and
24.

An impedance curve can tell us the damping in a system. From figure 21 it is obvious
that we knowvIZ/ # and J2o , the frequency at whichIZI ,4. occurs. Thus, from
figure 24 we can determine the damping ratio F , if we know the effective mass.

It should be noted that we are almost always concerned with the parameter IZ//M, not
/ZI alone. It is strongly recommended therefore that future impedance measurements--

be reported in the form of '/M , rather than 1=1 . The former is a more fundamental
parameter and should reduce scatter by eliminating the effect of weight variation hetween
subjects. Moreover, the variability of lzl/e,- can be statistically analyzed, whereas a
knowledge of the /Z/ distribution is meaningless because it may reflect nothing more
than a variation in the weights of the subject tested.

Once the damping factor is known, the undamped natural frequency can be obtained from
figure 22.

If amplitude transmission measurements are made, the relationship between the resonant
frequency AIRqg and the peak impedance frequency ti. will also enable the damping
ratio to be read from figure 22.

Impedance measurements with the human body reported by Coermann in Reference 5
enable preliminary estimates of the damping coefficient F to be made for relatively
small amplitude oscillations, at frequencies up to 20 cps. The values derived by
Coermann are not as accurate as they could be, however, because he has used an approxi-
mate equation for maximum impedance. In addition, he used only the peak impedance to
determine -C , whereas the ratio of the resonant frequency to the maximum impedance
frequency can also be used to obtain a second reading.

For one subject (code R. C.) Coermann's data can be summarized as follows, taking the
subject mass as 185/32.2 - 5. 75 slugs.
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Sitting Erect Sitting SLanding
(Coermann) (Latham) Relaxed Erect

Resonant frequency 5.2 5.5 4.65 5.05
(cp "-

Frequency for 6.3 5.3 5.9

l7-l1f.4 (cps)

7' calculated 0. 285 0. 325 0.37
by Coermann

Iz/ .,, 6.65 5.08 5.2
(dyne x sec/cm x 106)

1 ZI (lb sec/ft) 465 348 356

S2.005 1.82 1.672

"F based on IZI,* 0.281 0. 317 0.352

-4 /P-AO 1.21 1.14 1.168

" based on AA.1 0.352 0.305 0. 325

Mean value for F 0.306 0.316 0.349

Natural frequency 6.1 5.14 5.67
'm3/gtr (cps)

For practical purposes we may neglect the variation betw',•n sitting erect and relaxed.
Thus, the final figures become

Damping factor in sitting position, C = 0. 31
Damping factor standing stiff-legged, C 0. 35

c. The application of rebound data to determine dynamic constants.

Impedance measurements enable us to estimate thb damping in the humrn- body if we are
able to excite the mode which is of importance. We cannot obtain the full deflection of the
body's structure that would be experienced in an impact test, for example. It is obvious
that the mean effective damping in an impact might be different from that measured in a
relatively low amplitude impedance test.
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Figure 22. Variation of maJximum impedance frequencx,
ratio with dampinpg coefficient, for a linear
system.
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6 M_-= MECHANICAL IMPEDANCE

/ZI -UNDAMPED NATURfAL FREQUENCY
f -MASS

3
EXACT SOLUTION

2 _

0.1 0.2 0.3 0. 0.5

DAMPING COEFFICIENT ATIO W = c/w

Figure 23. Variation of maximum impedunce with damping
ratio, in terms of the undamped natural frequency W
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Figure 24. Variation of maximum inpedance with damping
ratio, in terms of frequency 2., for peak impedance.
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Secondly, impedance measurements can bo used to determine the degree of nonlinearity
only if a suitable centrifuge is available for use in the experiments.

Rebound testing appears to offer a means of circumventing both these limitations.

(1) Rebound of a linear system.

If a linear dynamic system is subjected to an impulsive velocity change, such as by the
drop test indicated in figure 25, it will rebound away from the free surface on which it
impacted.

Figure 25. Impact case for a simple dynamic system.

The equation of motion is. of course,

S (177)

the initial condition being Cs)0-s4P, and the solution

- M, t
(178)

(179)

w~or f,- •- •-,, e,..4/.,'-- -2r I-7"
where I&s el/co

"Take off" occurs either when the total spring and damper force falls to zero, or when
the spring deflection is zero. For the first of these

(180)

at "take off".
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Substituting equation 178 and 179 for • and • equation 180 gives the result

A(7T- >to = 9(say)(1)

Substituting '4 into equation 179, the take off velocity is

=, - 4 I7 (182)

Equation 182 is plotted in figure 26, together with the velocity which exists when the
spring deflection is zero.

For the case = 0, 54 " t-0, so that

At Oir
I).= e-s • fin , •-$3]

(183)

CUC

1,51

0 0.1 0 ",0.3 0. 1 .
T'%jrMT-ITINGT R A l 10, ",

Figure 26. Variation of rebound velocity with
damping in a linear system.
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Consequently, if we measure the rebound velocity of live human subjects, we can immedi-
ately determine the equivalent linear damping from figure 26 or equation 183, without arjr
reference to the frequency of the system.

Once we know the damping, the time to take off ( 4 ) gives us the frequency of the system,
since from equation 181

to (184)

This relationship is plotted in figure 27.

Thus, we see that rebound measurements can give us a direct and precise indication of
both damping and frequency, under the type of loading history with which we are most
concerned in body dynamics. "he theory given above is for true "bounce testing" where
the subject is dropped onto a rigid surface. In Reference 12 Hirsch reports tests in which
take off is caused by vertically accelerating, and then decelerating, a platform on which
the subject is standing. This data is more difficult to analyze because the acceleration
time history occupies a finite time. Some of Hirsch's data is plotted in figure 28, as are
also boundaries for an undamped single degree of freedom system driven by rectangular
pulses. It seems obvious from the relatively small scatter in Hirsch's data that good
estimates of both damping and frequency could be made by using an analog to reduce
this data. Also, if such tests were carried out with a carefully regularized acceleration-
time profile, the damping and frequency of the subjects could be obtained by a simple
analysis of the type developed earlier in this section.

(2) Rebound of a nonlinear system.

If the apparent frequency of the human body increases with impact velocity, during re-
bound testing of the type described in the previous section, we may feel reasonably con-
fident that this is due tG nonlinearities in the system, and most probably to a progressive
increase of spring rate with deflection.

It should be noted that this type of experimental work offers the hope of a major breakthrough
in the area of body dynamics. Consequently it is recommended that a suitable experimental
program be implemented with all possible priority.

d. Some examrles of the analysis of existing data.

At the time of writing this report, insufficient data are available to make a detailed
analysis of the dynamic models which best describe the dynamic behavior of the human
body. The process of collecting the available data is still far from complete. However,
it is of interest to construct some provisional models in order to illustrate the use of the
techniques described in the earlier sections.
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Figure 27. Effect of model damping on time to zero force
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input to a damped, linear system.
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Reference 12 data p Ants
for human subjects, with

Undamped dynamic .. arbitrary negative
system with positiv u pulse.
pulse only.

1'

2.0 6 . A

1. 0ob,

Undamped dynamic
system with infinite
deceleration after
pulse.

0.1

.01 0.1 1.0 10.0

DURATION OF POSITIVE ACCELERATION PULSE
UNDAMPED NATURAL PERIOD OF DYNAMIC MODEL

Figure 28. Take off velocity as a function of pulse duration
for an undamped dynamic system, compared with
Hirsch's 1 2 data for a standing man.
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(1) Spinal model.

For the case of positive spinal acceleration, it has been found that the available data on
spinal injury support the hypothesis that a single degree of freedom nonlinear damped
system is a good representation of t' e human body. An estimate of the nonlinearity of
the system has been made in Refere, ce 10.

The mean age for U. S. Air Force aircrew personnel is 27. 9 years. This age is used
as a basis for estimating tolerances to acceleration.

Using data from experiments with cadaver vertebrae, and a knowledge of the variation
of their strength characteristics with age (Reference 11), it can be shown that the steady-
state acceleration level corresponding to 50% probability of injury for a subject aged 27. 9
years is approximately 21. 3g.

From Table 1 of Reference 11, corresponding to these conditions we have

C 0. 2245

and 8.42 cps 
(185)

Figure 20 then shows that

AT, = 2.27

Since J12t = A)F 4 , the real time corner duration is therefore

8. 42 2.27 0.0428 secs. (186)

The dynamic overshoot of a system subjected to a zero rise time acceleration input
Sand having a damping coefficient of i 0.2245 is, from equation 171,

1.485 (187)

This means that the critical impulsive velocity change for 50% probability of injury is

L _21.3 x32.2 x 0.0428

1.485

19.75 ft/sec (188)

Usinig tile values expre-ssed in1 e oiatioLs 1860 E•a1Utth•r 18oo, we are able to UeiMC the 50%
probability of injury curve for the case of a rectangular pulse acceleration input. This
is shown in figure29,
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NOTE: This injury curve is based upon dynamic models of the

human body using available experimental data. It is

subject to revision as additional data becomes available.

The only tolerance curves authorized by government

procurement agencies for the use as design limits are

those defined in HIAD or other applicable procurement

specifications.

1000 g

100 g

E-

Z 19.75 ft/sec.

g 3-_ 14.35 g
1. 485

0.01 0.0428 0.1 1.0

DUHAT.ON OF ACCELERATION PULSE 'N SECS.

Figure 29. 50% nrobability of injury curve for a roctangi',.a
acc.,.Iration p1ulso in t,e spinalk dirvctiou.



Summarizing the model, we have

A)p =52. 9 rad/sec

0. 2245

Corner duration - 0.428 sec

Critical velocity change Ar 19. 75 ft/sec (at <' Aý )
Urr

Critical zero rise time
acceleration "?eof. = 14.35 g ,

It should be noted, as pointed out in Reference 11, that head involvement occurs when
the duration of the acceleration pulse becomes very short. At the present time, insuf-
ficient daLa are available to determine the limitations associated with this degree of
freedom, however.

(2) Transverse model (soft head restraint).

There is a substantial amount of data to indicate that, for the positive transverse case
the 50% injury level is given by

4,€,kwr = 53.6 ft/sec

.Y9 = 40.0g

for rectangular acceleration pulses with zero rise time, and that a single degree of
freedom dynamic model represents an adequate description. These figures will probably
change somewhat as the process of data analysis continues, however.

From equation 173

'_f_ 53.6
ar 40.0 x32.2 .0416sees.

Thus, if we kmow the damping ratio F , we could obtain the frequency from figure 20.
For the probable range of values we have

2•W 0 0.1 0.2 0.3 0.4

AZ'M 2.0 2.6 3.45 4.72 6.83
0 W 48.1 62.5 82.9 113.4 164.1 rads/sec

Until rebound tests have been carried out, the only source of information on damping in the
transverse mode is due to a single impedance curve presented by Coermann in Reference 8.
This gives a peak impedance of 432 lb sec/ft at a frequency -a./gir " 7. 6 cps. Assuming
that the weight of the subject %as 152 lbs.,
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- 1.92

and from figure 24.

F = 0. 298

Since this result is for a "semisupine" position, and is a single data point, not much weightcan be attached to this result. It is extremely interesting to note that the peak impedancefrequency is 47. 7 rads/sec., however, since this is comparable with the values deduced
from pulse tolerance data.
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3. DYNAMIC CONSIDERATIONS IN THE DESIGN OF EXPERIMENTS
WITH LIVE HUMAN SUBJECTS.

Dynamic models are of considerable value in the design of physiological experiments,
and can save a great deal of time and money. For very short acceleration durations,
where velocity change only is of importance, there is little point in using a sled or
HYGE accelerator, since exactly the same results -an be achieved by drop testing.

The size of test equipment is also an important factor. Cases have arisen in the past
where short period inputs have been attempted on equipment whose maximum working stroke
automatically limits it to "impact" or impulsive velocity change experiments. Foi ,unately,
the dynamic models so far established allow us to define test equipment parameters quite
precisely. The theoretical considerations involved are examined in the next section.

a. Test equipment requirements for determining the tolerance limit of a sing]e
degree of freedom dynamic model.

3.0

'.0

1.0

0.5 - 1 . j ' ' - -'

0.•> .0 3.0 0

Figure 30. Rectangular pulse tolerar- ,e graph for a single
degree of freedom linear dynamic system with
zero damping.

Consider the nondimensional tolerance graph sketched in figure 30 for an undamped model.
The velocity change associated with the rectangular pulse input upon which this graph is
based will be
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A suitable nondimensionalization for A4& is therefore

-- "(190),,.)t g,,,.,,. •"&,

Equation 190 is sketched in figure 31.

SHORT PERIOD

RANGE
SIMPACT INTERMEDIA] E
SRANGE ZONE

pT

/

z
0

1.0 2.0 3.0

NONDIMENSIONAL DURATION A r - WdLt

Figure 31. Nondimensional velocity change required in
testing with a rectangular pulse.

It should be noted that true impace velocity changes occur for durations of A or,< 1.0,
and true short period accelerations in the range of AtZý * 3. 0. A velocity change of at
least

W1 $ 3/2

is renuired in the short period range.
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The associated stroke required over the acceleration period is given by

S IX ~~4 \f£~rg 4 4: AAL\"r(11

so that a suitable nondimensionalization is

(192)

This relationship is shown in figure 32.

31
CA 3

IMPACT INTERMEDIATE SHORT PERIOD
RANGE RANGE 46 RANGE

0

01

z
z 11 

1

0 0.1 0.2 e.3 0.4

NONDIMENSIONAL DURATION 0'r uWt

Figure 32. Variation of nondimensional accelerator stroke
with acceleration duration.

Thus we can define the acceleration stroke required as follows:

Impact s <
A (193)

Short-period go. S) > V 'ot cAr(93

71



We have seen that the parameter which most conveniently discriminates between impact
and short period acceleration is ?'0 , the nondimensional acceleration duration.

For impact accelerations 4l' ' /
(194)

For short-period accelerations 4Tl >

The stroke of an accelerator which produces a rectangular pulse is

SYArt 'k5 t" (195)

1  .)(196)

LA 4r
For impact experiments, , < Z • (197)

For short period experiments 1, (198)

Equations 197 and 198 agree with equation 193, as we should expect. The actual test rig
stroke limitations involved are plotted in figures 33 and 34 for spinal acceleration, and
figures 35 and 36 for transverse, using the existing dynamic models (Reference 2). The
operating range of S, in figures 33 through 36 is the range between the vertical cross-
latched lines. Limited sample testing at levels of less than 0. 1% probability of injury is
not considered worthwhile. On the other hand, testing at levels oi greater than 10% proba-
bility of injury is undusirable, from safety considerations. We may summarize these re-
sults as in Table 1 below:

TABLE 1
Test Rig Stroke Limitations

Impact (impulsive velocity change) Testing

Stroke must be less than .... 1. 29 in. for spinal (0. 1% injury)
2. 24 in. for spinal (50% injury)

3.45 in. for transverse (0. 1% injury)
6. 70 in. for transverse (50% injury)

Short-period 4cce~eration Testing

Stroke must be greater than . 3. 80 in. for spinal (0.1% injury)
6. 61 in. for spinal (50% injury)
8. 63 in. for transverse (0. 1% injury)

15. 02 in. for transverse (50% injury)
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Figure 34. Short period test rig stroke 'Or spinal

acceeraton o graL-te thlan 0. 0J5 sec.
duration, using live human subjects.
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Figure 35. Short period test rig stroke for transverse
testing with live human subjects.
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These results are particularly significant, since they indicate much more stringent test
rig limitations than generally realized. In the spinal case, for example, the structure
supporting the test subject should be extremely rigid, and absolutely no cushioning ma-
terial can be used if the results are to accurately portray the response of the human body
alone. * Also of interest is the observation that a very limited stroke device -- such as
a small diameter HYGE tester -- cannot be used for short-period experiments. Equally
evident is the fact that "dirt drops, " such as those carried out by Holcomb with the B-58
capsule, and other tests involving some resilience in either the test rig or the surface upon
which it impacts, cannot be reduced to give useful data, unless the acceleration-time history
is accurate y recorded. Usually it is not.

In the case of transverse experiments, the reverse is true. Almost any practical support
and restraint system may be used for impact testing, so long as the deflection under 40 g
static load does not exceed about two inches. Correspondingly, larger strokes are required
for short-period investigations and these can probably only be carried out on specialized
rocket sled and similar facilities.

Thus the type of test rigs needed may be roughly summarized as follows:

Impact Short-Period

Spinal Drop-Test (very HYGE Tester (very
stiff support) stiff support)

Transverse Drop-Test Rocket Sled, Daisy
Track, Ejection
Tower, Etc.

For practical purposes, the requirements in lateral testing will approximate those for
transverse.

b. The influence of the restraint system.

A restraint system is some form of resiliency between a human body and the structure of
the vehicle or vehicle subassembly with which it is associated. When the vehicle is sub-
jected to an acceleration, the existence of the restraint system means that the acceleration-
time history felt by the man is not the same as for the vehicle. This modification of the
vehicle's acceleration can be favorable or unfavorable, depending upon the dynamic char-
acteristics of the restraint system.

* It is reported that Swearingen 9 used a hydraulic snubber in many of his "impact"

experiments, so that they casnot necessarily be regarded as "impact" experiments.
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"A good restraint system will reduce the physiological effect of an acceleration because

(a) It increases the effective stroke through which the
man is accelerated to a given velocity change, and

(b) It increases the rise time of the acceleration, thus
reducing the dynamic overshoot of the man.

"A bad restraint system will increase the physiological effect of an acceleration because

(a) It permits the man and the vehicle to develop relative
motion before it bottoms out, thus increasing the shock
effect o' a given acceleration input.

The detailed effects of restraint systems, and the way in which they modify the physiological
effect of inpu accelerations have been discussed in Part I of this report and can, in principle,
at least, be ( nsidered in the analysis of test data. However, their presence is a complicat-
ing factor. At the present time, it seems logical to say that absolutely no series resiliency
should be permitted in spinal tests, and that the maximum restraint deflection in lateral and
transverse tests should be limited as much as possible, preferably to less than one inch, and
certainly to less than two inches.

When the use of a restraint resiliency is unavoidable, its dynamic characteristics should be
recorded in as much detail as possible, so that its effects can be calculated and the basic
input pulse shape to the human body determined later by a device such as the Frost Restraint
Analyzer.
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APPENDIX I

SOLUTIONS OF THE SINGLE DEGREE OF FREEDOM LINEAR

DIFFERENTIAL EQUATION WITH CONSTANT ACCELERATION INPUT

The basic equation in linear dynamics is

where YC is some function of time.

1. The Complementary Function

When the damping is subcritical, that is to say, when C 4 4J the equation

' + 2 #1(2)

has the solution

.-e. + ~ ~ >
i(3)

or, if =

'c~ t ~ A2CS~~(S,. .~e&)~4I ~ 51(4)

where and (S) 0  are initial conditions and

This solution is the Complementary Function in the solution of Equation I(1).

2. The Particular Integral

The solution to Equation I(1) contains a Particular Integral determiaed by the function

.7c (t ). -

This is given by e" - (+"4 4W" - ) 1(5)

where P denotes the operator '
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3. Constant Acceleration Input c With Sub-Critical Damping.

In the special case when Y: ( ) - = a constant,

P Z.

L
because Y ( e ) and ( )_ 0. ,..ir1ust be added to the complementary
function S of Equation 1(4) noting that the initial displacement in Equation 1(4) is now
[?-'"- t-'S instead of ( 5 ), • Equation 1(4) now becomes

e+t +1(6)

e 
4

(~Tot?~l1(7)

where

IL -I

-7, ,d//

If we write

AYC

094 > 
1(8)

The displacement £ has maximum and minimum values when the displacement velocity
S= 0. These are given wben
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That is, when

where ,A -7 7A M )

Equation 1(9) is satisfied when

4" -t %, = of7 where - 0 - 0, 1, 2, 3....

ie, A = -- 1(10)

Now from Equation 1(8),

--
F

(.lr ,0 'XI
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~~1 J3I I.,,*

1(-0 fit1(13)

Substituting in Equation 1(7),

fi-

-x / e 114)

where -'aft- 1(15" -

Note that, for zero initial values of S and S Equation 1(7) becomes

-24 j el~ /- •,

1(16)

where

The maximum value of &) 9st4i is f.hen

--r •e' I(I7)Y4

and occurs when g -.
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APPENDIX 11

THEORY OF MECHANICAL IMPEDANCE FOR A SINGLE

DEGREE OF FREEDOM, LINEAR DYNAMIC SYSTEM

In this Appendix,we consider a damped, linear system, for which the equation of motion
is

Writing equation II(1) in Laplacian form, and neglecting transients,

ka4•

AA'-

The inverse of This is &at

Neglecting transients, this reduces to

where

• , = -.. e_ ... ,,

-a' - [t 1•(4)

Now if A sin. .t is the input acceleration, the input velocity is

A Al
S.U(5)
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The force in the system is

From equation 11(3)

_ , • • .11(6)

From equations 11(3) and H1(5) the force in the system is given by

F ___

Am 2 11(7)

where

it*4s 11(8)

"~+ 2.11(9)

and 2€ - 11(10)

Now from 11(5), we have that

-"(11)

Dividing equation 11(7) by II(11) the mechanical impedance is

21 A21____(at ?C,___

z Ou 11+*-,-aIw 4$atl(12)

Writing - h and - 23 ,the modulus is
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I / -a 11(13)

Obviously the phase angle is ex- 'X, -(14)

Of interest is the value of/Z/ when .g / , so that 1 = 1

, i 1 .. 1 (15)

In general the equation for IZI•r is of more value than the equation for /2/a,
since there is usually no way of knowing the correct value for Lo

From equation 11(13),

.t --

MEA) Ftl/ +'+ +ip) L 11(16)

Differentiating with respect to

-+ 2 4-

00P( ) Alý# 2J)/4tc~ 4 +1H(17)

where L( -I

Equating to zero to find the value for /L,

+ f 0T1(18)

(g 1 2,) , 2 -- 11.' 2 11(19)
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Note that as - 0, 1. 0

as C--- 0.77, •- o

Another limit of interest is I Z/A as C -- 0.

From equation 11(16), as - 1.0

I' ~ 11(20)

From equation 11(16) note that as - 0

A damped system oscillates at a frequency

Sw / -c 2 H(21)

Thus when a measurement of the frequency ý is available, as well as an impedance
measurement, we may determine " from the ratio

iza. -a'
* - 1H(22)

In many cases the frequency for maximum amplitude of the test subject (resonance) is
also determined.

Since • .-- (•, "y)

11(23)

The transmission factors (output/input) are therefore
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Displacement: T
Yei~~ 11(24)

A•cceielrarioa: • = - /:

From equation If(3),

Also

, - ,o -- L(Also

Substituting equations 11(25) and 41(26) into 11(24), the modulus of the transmission factor
becomes

+ I -to-e11(27)

that is, the transmission factor is the same for acceleration, velocity or displacement,
so long as the motion is sinusoidal.

We find the "resonant frequency" for which T is a maximum by differentiating equation
11(27), equating to zero, and solving for

This gives us -

In other words, the resonant frequency is higher than the undamped natural frequency W
although the free oscillation frequency ) is lower.
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