ESD TDR 65-68

ESTI FILE COPY

Technical Report

387

On-Line Documentation
of the Compatible
Time-Sharing System

J. M. Winett

12 May 1965

‘Prepared under Electronic Systems Division: Contract AF 19 (628)-500 by

. Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

‘The work reporfed in. this document was performed at{Lincaln
Eaboratory, a center for researclt operated by Massachusetts
- Institute of ’L‘echnology, with the suppart of the U.S.Ait Force
nnder Contract AF 19(628}-500:. The computer time was. sup~ .
‘ported by Pm_xect MAC, ag M.I.T. reséarch; program Sponsored
hy theAdvanced’é_?e;seatthme:sAgency, Department of De-/
fense, nn&er Ufhf,e bf. NavatResedrch CQntraet‘Noﬂ:’-ﬂw(ﬂl')s

Nun menin Rec:pwnts
PLEASE DO NOTY RETURN

Perm:ssmn IS given to de<tmy this document
when st is no longer neaded :

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

ON-LINE DOCUMENTATION
OF THE COMPATIBLE TIME-SHARING SYSTEM

J. M. WINETT

Group 28

TECHNICAL REPORT 387

12 MAY 1965

LEXINGTON MASSACHUSETTS

ON-LINE DOCUMENTATION
OF THE COMPATIBLE TIME-SHARING SYSTEM®

ABSTRACT

The dissemination of informotion about computer progroms is hompered because of the
lack of conformity in documentotion, the delays inherent in any distribution system,
and the inability to select only desired informotion without being flooded with infor-
motion which is not of present interest. An on=line system for storing ond retrieving
information about the programs associated with the Compatible Time-Shoring System
(CTSS) has been developed to be included os o CTSS commond. This system will help
to document the system commands, supervisor entries, librory subprogroms, ond public
programs. These types of programshave been chosen since there is an urgent need for

hoving this documentation ovoilable on demond, i.e., on-line.

Accepted for the Air Force
Stonley J. Wisniewski

Lt Colonel, USAF

Chief, Lincoln Loborotory Office

* This report isbosed on a thesis of the some title submitted to the Department of Elec-
trical Engineering ot the Mossochusetts Institute of Technology on 18 Jonuory 1965,
in portiol fulfillment of the requirements for the Degree of Electrical Engineer.

iii

II.

[11.

V.

Vi

Vel

VII.

VIII.

TABLE OF CONTENTS

Abstraet

Acknowledgment
Introduction
Program Doeumentation

The Compatible Time-Sharing System
A. Computation Facility
B. Documentation of CTSS

The On-Line Documentation System

A. Objeetives

B. System Usage

C. User-System Interaetion

D. The Data Base for the INFO System

Design Considerations

A. General Approach

B. System Features

C. Language Features

. Storage Considerations
2. Console Printing

F. System Response

The Programming lL.anguage
A. The COMIT language
B. Use of COMIT Features

Additional Modifications
Summary
Referenees

Appendix A — Printing from a Session with the On-Line
INFO System

Appendix B — List of Publie Programs

Appendix C — Subroutine Usage Table for TSLIB1

iii

vi

10
14
17

19
179
21
24
22
219
26
20
27
30

30
31

32

38

19

ACKNOWLEDGMENT

The authar acknowledges the suppart given by the M.1.T. Lincoln Laboratary under the
Staff Associate Pragram far the pursuance aof the groduate wark far which this thesis has
been a part. The otmosphere far carrying out this reseorch and the camputer time on

the Compatible Time-Sharing System has been provided by Praject MAC.

The author would like ta express his appreciatian to the members of the Mechanical
Translation Group af the Research Laboratory af Electranics, under the supervision af
Dr. Victor Yngve, far odopting COMIT for use with CTSS and for their cantinuing ef-
forts ta moke COMIT mare useful asa progromming longuage. The authar is grateful to
Professor Corboté for his supervision af this thesis, and wauld like ta give speciol rec-

ognition to him far the development of the Campatible Time-Sharing System.

ON-LINE DOCUMENTATION
OF THE COMPATIBLE TIME-SHARING SYSTEM

I. INTRODUCTION

The dissemination of information about computer programs is hampered by the lack of
conformity in documentation, the delays inherent in any distribution system, and the inability to
select only desired information without being flooded with information which 12 not of present
interest. An on-line system for storing and retrieving information about the programs associated
with the Compatible Time-Sharing System (CTSS) has been developed to be included as a €TSS
command (Ref. 1). 'This system will help to document the system commarnds, supervisor entries,
library subprograms, and public programs. These categories of programs have been chosen
because there is an urgent need for having this documentation available on demand, i.e.. on-line.

In Sec. II of this report, some of the problems encountered with present procedures for
documenting programs are discussed, ‘and an attempt is made to categorize the different types
of documentation according to the detail of the information. Section 111 describes CTSS and
Sec. 1V deseribes the INFO system, a model for an on-line documentation svstem, indicating
the objectives of the svstem and directions for its use. Section V discusses some of the con-
siderations used in implementing the information system. Section VI describes the COMIT
programming language and how some of its features are used in the INFO system. Section VH
suggests some further modification to this on-line storage and retrieval system. and Sec. VII]

summarizes the research work.

II. PROGRAM DOCUMENTATION

The documenting of computer programs has been a problem since the development of the
programmed computer (Ref. 2). Whenever a computer program is written or a programming
system developed, it must be described by a set of documents which satisfy the needs or curi-
osity of the various people who desire to use or modify the program or system. The tyvpe of
documentation desired varies, depending on one's interest. To the very uninformed. the title
or name of the program may be sufficient. On the other hand, to a person who wants to make a
change in a program, a listing of the program in the original programming language is required.
Thus, depending on one's purpose, various forms of documentation are needed,

Ilven though a computer is a finite state machine with a finite memory and has limited com-
putation power (assuming a limited running time), a vast number of computation algorithms can
be written by specifying a sequence of computer instructions. Many of these sequences, in the

form of subroutines, can be included in different computation algorithms. Thus. once a

programmer solves one problem, the techniques used (the routines used in a program) ean
often be useful in solving another problem.

In order for a program written by one programmer to be useful to another programmer, it
must be doeumented in sueh a way that the seeond programmer ean use the program without
first analyzing it. This means that the doeumentation should elearly state the ealling sequence
of the routine, giving the format of input parameters, the proeess the routine performs on the
parameters, the format of the resultant output parameters, and the various exits from the rou-
tine. Programmers should be encouraged to doeument their work and should be permitted to
devote the neeessary time and effort required to provide meaningful doeumentation. Unfortu-
nately, the attempt to doeument a set of programs is rarely sueeessful; eonsequently, it is
often easier to rewrite a program than it is to analyze one already written to determine how
to use it.

Computer programmers, like most seientists, are exeeedingly demanding in their quest for
written information, but are reluetant to provide written information about their own work. This
is not to say that programmers are selfish and want to keep their work to themselves, but rather
to point out the diffieulty in satisfying the demand for doeumentation. Good written doeumentation
is provided by programmers who have a publie spirited attitude and pride in their work. Onee
the doeumentation of a program is provided, it is up to the interested person to read and study
the doeumentation.

Knowing how to do something requires more than just doeumentation. Many problems, sueh
as laek of knowledge, are blamed on poor doeumentation. No amount of doeumentation ean re-
plaece the thinking proeess and the effort required to learn about the work of others. The problem
of keeping aware of current information is not an easy one. Nevertheless, the advent of larger
eomputers and more sophistieated programming systems makes it highly desirable to improve
communieations among programmers in order to minimize redundant effort.

Onee the desired doeumentation of a program is provided, preferably by the original author
of the program, the doeumentation must be distributed or made available to those who want to
be informed about the program. Thus, the problem of doeumenting eomputer programs may be
separated into two parts: (1) ITow to prepare the doeumentation, and (2) how to make the doe-
umentation available to the right people at the right time. First, we shall eonsider how to
prepare the documentation of a program, then we shall diseuss ways of disseminating program
information.

In diseussing how to prepare the doeumentation of a program, we must indieate the type of
deseription needed and how this type is to be prepared. Sinee different people have different
requirements, a program must be described in many ways. Various readers require different
kinds of doeumentation to varying amounts of detail. The complete doeumentation of a program
might be provided by the following ten doeument items tailored to the needs of different people.

(1) Program Name: — This alone might be suffieient to indieate that a
program is or is not of interest.

(2) Classifieation: — If a short title or name is not suffieient to indicate
the general elass of problem with whieh a program is eoneerned, then
a set of related titles, key words, or deseriptors would be useful.

(3) Sentence Description of When Used: — A few sentenees indieating the

eontext in whieh a program might be used would supplement the infor-
mation supplied by the elassification descriptors.

(4) Paragraph Description of What Is Performed: — A paragraph de-
scribing what a program does should give all the information a
user would need to determine whether or not he wished to use the
program. It is here that the purpose of a program is indicated.

(5) Program Usage: — A description of how a program is used might
include a calling sequenee if it is a subprogram, parameters if it is a
commmand program, or operating instruetions if it is a main system.
If the program itself is a versatile system, this might indicate somec
other extensive manual as a reference.

(6) Program Information: — This information might include such items as:

(a) The author of a program
(b) A mailing list of people interested in the program
(¢} Amount of storage required
(d) System symbols or entries to the program
(e) Other subprograms which the given program uses
(f) Data common to other programs
(g) Speed of execution
(h) Programming language in which it is written
(i} Precision in which numerical data are caleulated
(j) Type of program, i.e., pure procedure, gencralized
suhroutine, rccursive subroutine, etc.
The following types of documentation could be helpful in determining the algorithms used
by a program:
(7) Page Description of Process: — In this item of documentation, the process
performed by the program is described. Details are included which are

not essential to its use but which would concern those making modifications
to the program.

(8) Flow Chart of Procedure: — Flow charts in the form of block diagrams
describe the procedures carried out by a program. The level of detail
shown by a flow chart varies to some degrce, but it is here that the
implementation of a proccss might be first determined.

(9) Description of Flow-Charted Proccss: — This ineludes the description of
algorithms used and how they are implemented. If a program is written
in a way that makes use of particular computer charaeteristies, e.g.,
the bit format of a computer word, this fact must be described in detail.
This type of documentation is most detailed and includes all phases of a
program's coding. It is quite often eliminated, since it is here that a
great amount of time and effort is required for documentation.

(10) Program lListing: — The most detailed deseription is the program listing,
written in a commonly understood programming language. Listings are
easy to produce but substantial effort is required to determine from this
type of doeumentation what a program does and how it is to be used. It
is true that some programming languages are more easily understood
than others (e.g., MAD rather than FAP), but nevertheless, the reader
is presented with a myriad of details so that the overall operations of
the program are buried within the dctails.

Note that in items (3), (4). and (7) the length of the documentation (i.e., sentence, paragraph,
or page) is used as an indication of the amount of detail presented. Program Information,
item (6), lumps together all miscellaneous items which might be pertinent to some programs,
but not to others. If these ten items of documentation were provided for all programs, a certain
amount of standardization would be achieved and the needed information might be available.
liven assuming that programs were documented as set forth, the problem of making the doc-

umentation available at the time it is needed still exists.

Let us consider the problem of how to prcpare this documentation. Only the author of a
program is really qualified to describe what the program does, but quite often he is more in-
terested in writing or thinking about new programs than in spending his time documenting what
he has already done. Also, a good programmer is not necessarily a good manual writer. If
the documentation of a program is to be casily understood by a user, then the documentation
should conform to certain minimum standards of format and types of items that must be included
in the documentation. Thus, there arises a need for a system to help authors document their
programs. (A system for this purpose has been developed for documenting the programs asso-
iated with CTSS and will be described in Sec. IV).

In addition, there is the problem of how t6 make the documentation available to the right
peoplc at the right time. There are two types of problems with which a user is eoneerned:

The first is determining in which program or programs he is interested, and the second is ob-
taining information about a specific program.

Consider thc problem of determining the program or programs of interest. If the programs
in the system were classified by using category descriptors organizcd into a hierarchical tree-
like structure, a user could examinc categories of programs until he found one that included the
program or programs in which he is interestcd. For example, a user might request the sub-
descriptor categories under the descriptor "COMMAND" and obtain a list of descriptors used to
classify commands. The uscr may then list the names of the programs under a particular cate-
gory, c.g., under the dcscriptor "EDITING". Although it is not necessary that the sct of de-
scriptors form a hierarchy, the useful concept of sub and super categories might be helpful in
isolating a particular program. The problem of ca—t:gory retrieval is bascd upon a useful as-
signment of descriptors or key words to a program and the lumping together of descriptors into
more general classifications. No suggestions arc being offered on how to generate a set of useful
deseriptors or how to incorporate ehanges in the structural organization of descriptor categories.

Another type of retrieval problem is centered around miscellaneous program information
(item (6) of the previous list). A user of a system might want to know which subprograms are
used, i.e., called by a given program, or how much space is required by a program and all those
programs which it calls. This information would be useful when ineremental changes to a pro-
gram result in small, but persistent, inereases in the program size. Conscquently, the program
may take up more space than is available, Conversely, a user might want to know which pro-
grams call a given program or a particular entry to a given program. This information is useful
when a ehange is contemplated in the given program and one is interested in the consequences
of such a ehange. Other types of retricval request which a user might like to ask would involve
finding the programs written by a particular author or written since a given date. When a user
wants information about a particular program, he may want all the available documentation, or
he may want only one item of information, c.g., its usage. This need is most common to on-
linc users of a computation faeility who forget the calling sequence of a program and would likc
to find this information as soon as possible and with the least amount of effort.

Thus, we havc indieated the types of documentation that are necded and the types of retrieval
requests that a user might want to make. It should be pointed out that the problem of retrieving
documentation on computer programs is similar to the library problem of general information
retrieval, although it is quantitatively different. The library problem is caused by the enormous

proliferation of published material and the difficulty of relating one article or book to another.

In solving the library problem, the information scientist, using techniques of analysis, attempts
to relate or categorize items for retrieval on the basis of specific criteria.

On the other hand, the problem of documenting computer programs is concerned with spec-
ifving information in such a way that it can be communicated from one person to another, ‘The
information scientist is free to organize and specify the information as he deems best, so that
it can be understood by someone unfamiliar with the information. M can be said that o some
degree the library problem is one of analysis, whereas the documenting of computer programs
is one of synthesis. The central problems are that the library information must be analyzed to
determine related items and the computer information, once synthesized, must be distributed to
the right people. Both attempt to provide all pertinent and useful information without creating
a flood of written material.

The Compatible Time-Sharing System provides a means of attacking the retrieval problem
through interaction with an on-line user and, in addition, provides a means of uncovering the
particular needs of the on-line programmer. 'The problem of program documentation is part
of the general information retrieval problem and must contend with the problems associated
with storing a large body of information and searching for items which satisfyv a particular need.
By restricting the information base to that of the computer programs associated with CTSS, the

problem beecomes quantitatively more manageable.

IIT. THE COMPATIBLE TIME-SHARING SYSTEM

A. Computation Facility

The Compatible Time-Sharing System (CTSS) is a progranmming system for a configuration
of computer hardware centered around the 7094 computer. The hardware consists of a 7094
computer with two 32k word core memories; tape, drum and disk storage: and a 7750 com-
munications computer which handles input/ontput messages to and from remote consoles.

A programmer at a console communicates with the system through a set of conunands. ‘These
commands allow the user-programmer to write and run programs using standard procedures
with the added feature of having on-line interaction with his program. ‘tThrough the use of the
command language, a user can perform many tasks which make the computation facility more
accessible,

[n addition to the command programs, the time-sharing supervisor contains programs
associated with the auxiliary storage devices and the system as a whole. ‘these routines perform
for the user of the system the necessary code conversions, buffering, and accounting which the
hardware devices require. These tasks, performed by the time-sharing supervisor, are called
upon by special entries to the supervisor. The set of supervisor entries are, in essence, a set
of routines which the programmer can make use of in his programs. The user-programmer can
also draw upon a standard library of subprograms for direct inclusion in his computation al-
gorithms. These library subprograms may in turn call npon the supervisor routines to handle
input/ouput functions.

RBesides the system commands, supervisor entries, and library subprograms, a user has
access to a set of programs which are stored in a public file. Thus, from a users point of view,
the four types of programs associated with CTSS are: (a) System Commands. (b) Supervisor

Entries, (c¢) Library Subprograms, and (d) Public Programs.

B. Documentation of CTSS

The documentation whieh is presently available to describe the programs associated with
CTSS consists of (Ref. 3):

(1) The Programmers Guide

(2) Time-Sharing System Notes

(3) Computation Center and Projeet MAC Memos
(4) CTSS Bulletins.

Unfortunately, the Programmers Guide contains false and out-of-date information, and
consequently it is not adequate documentation of CTSS. The Bulletins, Memos, and Notes are of
some help but, since they are not indexed and are written at different levels of sophistication
and detail, something more is needed. Some Bulletins indieate that a new eommand or system
feature is available, but do not indieate how they are to be used. Other Bulletins indicate changes
or modifications to programs that were previously described but do not indicate the doeumentation
that has become supereeded or outdated. The major criticism with the present doeumentation is
that many aspects of the system are not described at all.

On-line use of a computer is more versatile than the eonventional use of a computer through
bateh processing. With this on-line ability come many new ways of employing the eomputation
faeility. As new features are developed, information on these new features must be eommunicated
to the users of the on-line facility. Thus, the problems of documentation assoeiated with an
on-line faeility are greatly increased and a new approach to this problem is required.

Adequate documentation should inelude a description of programs written by the users as
well as by the system's programming staff. Many users have either written programs which
are of general use or have developed techniques of on-line programming (such as useful RUNCOM
chains) which should be made known to all users. The following paragraphs from a report on
Project MAC and its users (Ref. 4) emphasize the need for More Adequate Communications
(MAC) between on-line users.

"In a broader sense, documentation refers not only to a deseription of CTSS
operations, but to communication among users about mutually useful programs,
Such communication is virtually non-existent at MAC, except by word of mouth
among members of related subgroups. The result is an enormous duplication
of effort. For example, an appreciable number of users have independently
written programs which produce "typewriter graphs" — eurves printed by
appropriate spacing of teletype/typewriter characters. As another example,
various users have written mathematical serviee programs for various standard
eomputations. These duplications are especially striking beeause one of the
chief reasons for preferring a large time-shared computer to an ensemble of

smaller machines is that it permits the users to enjoy the fruits of one another's
labor. This potential advantage is not being realized at present.

"Examples of inadequate documentation can easily be multiplied. One math-
ematician who tried to use the system eventually gave up beeause he was

such a poor typist that he had to enter almost every line of program re-
peatedly. He said he would not consider using CTSS again until there was an
editing routine that permitted changes of single characters within a line. At

the very time of his eomplaint, Samuel's editing routine, which incorporates
this feature, was available and being widely used. Sinee then it has beeome
even more readily available as a system command, but cven now this user would
have no way of finding this out, if he were to make another attempt. "

In fairness to the documentation of CTSS, one should note that for a system which has been

designed and implemented in a relatively short time, CTSS is rather well documented. In faet,

numerous memos have been written which indicate the philosophy of time-sharing and describe
the design of the supervisor system (see Ref.5). Since C'TSS is used by many people who are
eager to have new features implemented, it is understandable that the system’'s programming
staff has spent their efforts improving the syvstem rather than completing the documentation,
Nevertheless, the system would be improved if only the documentation were better. Another
point of importance is that CTSS has been designed as an experimental svstem, and thus does
not have the requirements for complete documentation, although as a resecarch project it should.

Now assume that a new reference manual was prepared which contained the documentation
of the system as it stands today. If this new manual were well written, well indexed, and
contained the documentation of all present programs, other problems in documentation would
still exist.

First of all, this new manual would have to be distributed to all users, novices as well as
experienced users of CTSS. 'The novice would find the amount of information overwhelming. lle
would read the manual to learn enough information so that he could begin to use the svstem. As
the novice spends more and more time at his on-line console, he tends not to go back to the
reference manual unless he has a specific problem. Eventually, after much frustration, he
becomes like the experienced user of todayv, who has read or heard of many features of the
svstem but is inclined to use only the techniques that he has used many times betorg. One often
avoids using a particular program because he never learned how, or forgot how to use it, or
doesn't have the documentation at hand. Hence, the conclusion to be drawn is that it is important
to have the right documentation available to the on-line user.

A second problem which influences the documentation is that programns are modified or
improved in such a way that the original description becomes out of date. This requires that
memos be re-circulated to notify users of the changes made. Since not everyone will want the
same amount of detail, a single memo must contain different levels of description, or many
memos must be prepared for distribution to either programmers, supervisors, operators, or
administrative personnecl.

Present procedures for distributing memos require that a programmer either request
documentation on a particular program, or that he be included on a distribution list for a par-
ticular category of documentation. These procedures fail in the following wayvs:

(1) The right people do not always get the documentation of interest. Fither

they do not know that the doeumentation exists in order to request it, or
they are not on the right distribution list.

(2) The user does not keep an up-to-date index of the documments that he
receives and hence does not know what is available to him,

(3} The user cannot find the documents that were distributed and hence
must request additional copies. This creates more problems, since
additional copies may not be available, and consequently more mayv
have to be duplicated, forcing the user to wait beforc he can get the

' desired information.

(4) Programs are changed or modified and new or amended documents are
not written and distributed.

(5) BEven if amended documents were written, it would be difficult to know
who must be informed of the changes. That is, the distribution lists
must be kept up to date.

(6) There are inherent delays in providing the documentation of a program,
or of a modification of a program, which would prevent a user from ob-
taining the latest information available (e.g., delays which occur during
preparation of a memo or during its distribution).

A third problem in kceping up-to-date documentation arises when on-line consoles are
physically removed from the computation facility. For example, the users at Lincoln Laboratory
have little contact with the administrative staff and have no contact with other users. Any
system of documentation from a computation center to remotc users is bound to be somewhat
unsatisfactory and at best is bound to impose delays caused by external delivery services.

The advancement of the art of time sBaring makes it feasible for many programmers to
use a computer from an on-line console. It also becomes reasonable to have many on-line users
who are physically dispersed and whose only communication with the computer is through the
on-line consoles. The problems of documentation then become a major and not a minor problem,.
Good written documentation is then more important, sincc there is no person with whom to
consult. Unless the classical system of documentation is perfect, a near impossibility, another
method of obtaining needed information is required. Also, thc timc that the documentation of
a program is needed is when a programmer wants to use a program, that is, while he is sitting
at his console. Unless his console is in his office, he will find that he does not have easy access
to the needed documcntation. The problem of remoteness from the computation faeility thus
increases the need for good documentation.

In order to meet the requirements of good program documentation, a system must be
decveloped to provide, in a better way, the right documentation when it is needed. Hcnce, a
standardized and more accessible documentation procedure for CTSS is needed. An on-line
documentation system offers the best means of providing information to CTSS users.

The on-line doecumentation must be integrated with the other forms of documentation and,
in particular, the comprechcensive Programmer's Guide which describes all facets of CTSS.

Since the original Programmer's Guide (Ref. 1) was published, the facilities of CTSS have grown
tremendously, as one could expect. The Programmer's Guide, now in the process of being re-
written, is intended to serve as an introduction to all phases of on-line computation with CTSS
and as a reference manual for those who are already experienced users. The on-line doeumen-
tation system is intended to supplement the more comprehensive refcrence manual, providing
information on newly written programsas wcll as informationon programs which have long been
in usc. The on-line system also cnables searching the whole body of available information. The
system may be useful in determining the nature of new programs just added to CTSS as well as

to remind a user of the usage or calling sequence of programs which are lcss widely employed.

IV. THE ON-LINE DOCUMENTATION SYSTEM
A. Objectives

In order to bctter provide information about the programs associated with the Compatible
Time-Sharing System, an on-line system for documenting computer programs has been developcd.

The design of this on-linc system attempts to satisfy the following objectives:

(1) Have up-to-date information available to the user on request, thus
eliminating the delays which occur in any memo distribution system.

(2) Have the ability to obtain specific information on request, e.g., the
author of a routine, as well as the complete documentation of a
routine.

(3) Give textual output in steps, i.e., printed according to information
item types (1) through (6) as described in Sec. II, indicating the
amount of printing that will result.

(4) TProvide the facility to search through the library of programs to
determine the ones which satisfy particular conditions.

(5) Standardize the format of the program description by requiring that
when a new program is added to the system all information of interest
is provided.

(6} Permit editorial control of the program documentation that is to be
included in the on-line system.
The on-line documentation system has been implemented as a CTSS command with command
name IN17O. Upon execution of this command, requests can be made to obtain answers to the

following types of questions:

(1) What does the command STRACE do. i.e.. when could it be used?

(2) How is the supervisor entry . FILDR used, i.e., what is its calling
sequence?

(3} What new programs have been added to the TSS library since
September 1st?

(4) Who is responsible for the command GPSS?
(5) What are the names of the command programs written by the STAVYY
since August 1st?

The system has been destgned as a general-purpose means of storing and retrieving textnal
information about computer programs. The immediate objective is to provide documentation
of system commands, supervisor entries, library subprograms, and public programs. These
tvpes of programs have been chosen because there is an nrgent need for having this docnmentation
available on demand, i.e., on-line.

The information describing a program is divided into information items. Fach item of
information is associated with an item name and is referred to as the item value of the as-
sociated item name. For example, the ttem valne "WINETT" is assoctated with the item name
YAUTHOR." ‘The following items of information indicate what is required as documentation of

a computer program:

(1) Program NAME (N) — A single word.

(2) Program TYPE (T) — One of the following: COMMAND, ENTRY,
LIBRARY, or PUBLIC.

(3) DESCRIPTORS (D) - Key words used to classify the programs in
the information files.

(4) PURPOSE (P’) — A short abstract or sentence description indicating
the context in which a program might be used.

(5) USAGIE (U) — The instructions of how to use the program, e.g., the
calling sequence.

(6) Programming LANGUAGE (L) — The language in which the program
is written.

(7) RETFERENCE (R) - A bibliography of where more information about
the program may be obtained.

(8) AUTHOR (A) — The name of the person who is responsible for the
program.

(9) DATA (DAY — The date the information was last entered or modified.

Additional information items may also be defined, e.g., program size, transfer vector. etc,,

but the above items are considered required to document any progran.

B. System Usage

A model of this information system has been implemented as a CTSS command program
with command name INFO. The system may be initiated as a console command or may be
"chained to" from another program. If, whenthe INFO system is called, the NAME of a pro-
gram is given as a command parameter, the doeumentation on that program will be printed,
after whieh the system will call CHNCOM. This procedure allows other command programs
to have aceess to their doeumentation. For ecxample, when no parameters are supplied with a
command which requires at least one parameter, the eommand should chain to the INFO command
with the eommand name as a parameter. This teehnique would provide a means of tying the
doeumentation of a command program to the eommand itself.

If only the command name INFO is typed, the system will respond
TYPE REQUEST, OR C.R. FOR INSTRUCTIONS..

whereupon a carriage return will initiate the request to describe the INFO command.

Alternatively, requests can be typed to the INFO system. There are three classes of re-
quests: (a) Retrieval requests to obtain information from the system, (b) Storage requests for
adding, changing, or deleting information from the system, and {c) System requests whieh
affeet the operation of the system. The Retrieval requests — DESCRIBE (D), LIST (L), and
FIND (F) — are to be used by all CTSS users. The Storage requests — STORE (S), EDIT (E),
ALTER (A), and REMOVE (R) — are to be used by the people responsible for the information
stored within the system. This responsibility may be shared with special users as will be
discussed in Sec. VI. The System request — QUIT — is used to terminate communieations
with the system, and the requests — END, TSSFIL, and USRFIL — are used for changing the
operation of the system.

Whenever the INFO system prints a eomment followed by two periods, it is the user's turn

to type. After processing each request, the system types
OKiw

To obtain a description of a Storage or Retrieval request, the user types the request name only.
A request to the INFO system indicates three types of scmantic information: (1) an imperative
request to the system, (2) a list of single information words, or (3) information items specificd
by item names together with the item values assoeiated with the item names. A request to the
system is assumed to be indicated by one of the first few words typed. Other words following
thc request name may be item names which are added to a list of "information words" or may
specify the values of information items which are added to a list of pairs consisting of an item
name and its value. When either the word "IS" or "ARE" is encountcred in a request, it is
assumed that the previous word is an item name and that the following words form the item
value. The input specifying the itcm value must be terminated by a comma (or the carriage
return at the end of the request) and may be followed by other item namecs and their values or
by item names alone. If thc word "THEN" appears as an information word, the input scanned
so far is assumed to constitute a request. After the request is processed, the input following
the word "THEN" is scanned for the specification of another request. Thus the word "THEN"
indicates the termination of a request and allows multiple requests to be typed. Words other
than item names or item values or the word "THEN" may be typed but are ignored by the system.
Requests and item names may be abbreviated by their first letter (cxcept the item name

DATE which is abbreviated DA). If an item value is specified more than once in an input request,

10

the value last specified takes precedence. Thus, the on-line user may change or correct the
specification of an item value by retyping the item name together with the item value in the
same input request.

To continue the typing of a request on another line, precede the carrviage return (C, R.) by

a dash (-). When in doubt of what to do, type a carriage return.

RETRIEVAL REQUIESTS
1. The DESCRIBII (D) request:
DESCRIBIL NAME IS name, i{1) ... i{n)

This request is used to obtain the documentation of a program whose name is known. The
input with this request gives the program name and the names of the desired items of information,

[f no item names are specified, the information on all items will be printed. For example,
DESCRIBE THE COMMAND WHOSE NAMLE [S INFO
produces all the documentation associated with the INFO command, and
D N IS INFO, USAGE

prints just the item USAGE for the INFO program.

When more than five lines of text are to be printed, the INFO svstem informs the user of
the number of lines which follow. After realizing how much information will be printed, the
on-line user may terminate the request by pressing the CTSS interrupt or quit button.

If the interrupt button is pressed the user may tyvpe "CONTINUE (C)" to resume printing or
"RESTART (R)" to type another request. Printing will be resumed approximately ten lines
after the line at which printing was interrupted. (This is due to the fact that the C'I'SS output
buffers are cleared on interrupt.) Since a number of lines are lost on interrupt, the process of
interrupting and continuing provides a means of skipping lines of documentation. Unfortunately,
this proeedure gets very poor response from CTSS.

If the quit button is pressed, the on-line user may type another command or type the C'I'SS
command "START" to continue as deseribed above. This procedure gets very much better

response from CTSS.
2. The LIST (1) request:

LIST TYPE IS type, i(l) ... i(n)

This request is used to obtain a list of the names of all information items, a list of the values
of certain information items, or to list the names of all CTSS programs of a particular type,

The request may ask for the values of one or more of the following items to be listed:

ITEMS, AUTHORS, DESCRIPTORS,
LANGUAGES, TYPES, or NAMES

or may also request a list of all CTSS programs of a partieular type by typing one or more of

the types
COMMAND ENTRY LIBRARY or PUBLIC

after the words: TYPE IS. The list of programs of a particular type are obtained directly

from CTSS and thus automatically provide the most relevant list of programs available.

ol

A request to
LLIST NAMES
causes a list of the programs of all types to be printed. A list of descriptors may be obtained
by typing
LIST THE DESCRIPTORS
or just L. D
3. The FIND (F) request:
FIND i(1) IS v(1), ..., i(n) IS v(n)

This request is used to perform a search for the program or programs which have par-
ticular information item values. The items to be matched are given by typing the item names

together with their item values. Acceptable items for searching are:
TYPE, DESCRIPTORS, AUTHOR, DATA, and LANGUAGE.

A date value must be given in the form — DATE IS mm/dd/yy where mm is a numerical month,
dd is a numerical day, and yy is a numerical year. All programs whose date is greater than
that given will be printed, i.e., the most recently documented programs. Descriptors are single
words typed in any order and separated by spaces or the word AND.

For example, to find the commands which were documented since Septemher 1, 1964 and
have at least the descriptors UTILITY and EDITING type —

FIND TYPE IS COMMAND, DATE IS 9/01/64, DESCRIPTORS —
ARE UTILITY AND EDITING
or FTISC, DAIS9/01/44, D ARE UTILITY EDITING
(Note the use of the dash to continue the input request on the next line.)
When a search results in more than twenty matching items, the system asks whether the

user wants to continue the search. The user may then type YES or NO, For each twenty

more matching items, the user is given the option of continuing.
STORAGII REQUESTS

4. The STORE (S) request:

STORE NAME IS name, FILE IS file, i(l) IS v(l), —
., i(n) IS v(n)

This request enables one to enter information about a new program into an information file.
This request requires that information values be provided for each required item in the form:
item name IS/ARE item value

The NAME of new information items may be defined by typing the new item name and its value.
When the INFO system prints an item name followed by two periods, the user is to type the
value of that item, I[tem names and item values of other items may be supplied following the
item value which was requested by typing a comma after each item value and thus anticipating

the required input and reducing on-line interaction.

12

If the word FILII is specified in the input specification, a file with primary name the same
as the program name (if specified) and secondary name INFO is read. This file is assumed to
contain item values for this program where each item value is preceded by a line giving the
item1 name prefixed by a period and beginning in column one. If the primary name ol this input

file is not the same as the program name, the file name may be specified by tvping the item
IFILE IS file name.

If a file name is specified and a program NAMI] is not specified, the NANMLE of the program
may be read from the input file. A program NAMLE is indicated in an input file by the presence
of two periods before the program NAME. An input file may specify the documentation of many
programs by preceding the documentation of each program with a line giving the program NAMII
prefixed by the two periods (e.g., .. INFO)}. The priming of the comnuand documentation was

done from an input file (with name COMAND INFO) of this type by typing
STORE FILE IS COMMAND
5. The tDIT (F) request:
EDIT NAME IS name .

This request re-creates a BCD file (as a line marked file) from the information in the syvstem
for use in making changes to information items using some CTSS editing procedure. The EDIT
request requires that the program NAME be specified. [Zach information item is preceded by
a line giving the item name prefixed by a period (c.g., . PURPOSE), and consequently no line
of an item value should begin with a period. The primary name of the file created is the same
as the program name and the secondary name is INFO.

6. 'The ALTER (A) request:

ALTER NAME IS name, i(1) IS v(1), ..., i(n) IS v(n)

This request allows one to change item values in the information documenting a program
or to store additional information items. The ALTER request requires that the program name be
specified and is used 'ike the STORE request. The ALTIER request is different from the STORL
request in that it does not require that values for all information items be specified. 'That is,
the user-system interaction is different.

7. The REMOVE (R) request:

REMOVE NAMI IS name, DISd, AISa, TISi

This request is used to delete an AUTHOR, DESCRIPTOR, or ITEM name from the appro-
priate list, or to delete the documentation of a program from an information file when a program
is deleted from CTSS. To REMOVE the documentation of a program, give the program NAME,
To REMOVE an AUTHOR from the list of AUTHORS or a DESCRIPTOR Irom the list of DESCRIP-
TORs, specify the item value to be removed. To REMOVE an ITIEM name from the list of
[TEMs, specify the ITEM name. Verification of each request to remove the docinmentation of
a program is required.

SYSTEM REQUIESTS
8. The QUIT (QU) request:

This request causes the INFO system to call CHNCOM, and it may be used to terminate the

13

INFO command or to chain to other commands.
9. The END request:

This request causes the INFO system to terminate through the standard COMIT termination
sequence. (The INFO command has been written in the COMIT language.) The amount of unused
free storage, i.e., the number of WORKSPACE registers, is printed. This request may not be

abbreviated.
10. The TSSFIL request:

This request causes the INFO files to be obtained from one of the CTSS system file di-
rectories and is issued before thc INFO system is included as a CTSS command. This request

may not be abbreviated.
11. The USRFIL request:

This request causes the INFO files to be obtained from the user's file directory rather than
the system file directory. This request may be employed by a user to indicate that the doc-
umentation files are to be obtained from the user's file directory. In this way, a user may keep

documentation of his private programs. This request may not be abbreviated.

C. User-System Interaction

The INFO command responds to requests typed by the user by either performing the desired
request, printing a comment, or asking a question. When only the command name INFO is

typed by the user the system responds with
TYPE REQUEST, OR C.R. FOR INSTRUCTIONS..

whereupon the user may type a request or a carriage return for instructions of how to use the

INFO command. After completion of a request, the system responds with
OK..

and the user may typc another request. Whenever the system terminates a comment with two
periods, "..", it is the users turn to type next. The two periods can be interpreted either as
a final period or as a question mark.

The response from the INFO system may occur when it is interpreting a request or when

it is processing a particular request. The following responscs from the INFO system may

occur:
1. On Input —

(a) IS A NEW INFORMATION ITEM, CORRECT IT OR TYPE
OK OR IGNORE..

(b) IS A NEW DESCRIPTOR, CORRECT IT OR TYPE OK OR
IGNORE. .

(c) IS A NEW AUTHOR, CORRECT IT OR TYPE OK OR
IGNORE. .

The user may correct a misspelled word, type OK to indicate that the word should be accepted,

or type IGNORE to continue processing the request. In this way, the user is notified when he is

14

adding to the information for which a search can be muade.
{d) NO ROOM [IFOR NEW ITEM . PLEASE NOTIFY STAFP,

This comment is printed when too many new information items have been defined. The svstem

presently permits thirty new information items.

fe) __ . 1S NOT A "I'YPE, CORRECT TT 'OR TYPE IGNORE. .
(f) _ IS NOT A LANGUAGE VALUE, CORRECT 1T OR TYPPE
IGNOR .

Only one of the set of pre-specified values for the information items TYP I and EANGUAGE is
permitted, in order to simplify the storage of this information and to facilitate searching. Note
that these information items can take on only a given set of values; whereas, new values for
other items may be defined by the on-line user. The set of pre-specified values may be changed

or enlarged by a trivial change to the INFO command program.

() IS NOT IN THE FORMAT FOR DATE, FORMAT MUST BE
MM/DD/YY. .

A date must be given as MM/DD/YY where MM is a numerical month, DD is a numerical day,

and YY is a numerical year.

(h) REQUEST NAMUE MISSING. REQUESTS AR — DESCRIRBE.
LIST, TFIND; STORE, BDEY AAER. and REMOWE. .
If a request name is not found among the information words and at least one item name together
with an item value is specified, it is assumed that the request name was misspelled or not
typed, and the on-line user is requested to specify a request name. Any information word
previously typed will have been ignored and must be retyped, but information values do not

have to be retyped.

(i) PILE. BEING REND.
3y FLLE BEING READ TO ORTAIN ITEMS FFOR
PROGRANM.

These comments are printed when an input file is read to obtain the values of information items.
(k) FILE NAME NOT GIVEN, FILE IGNORED.
2. On DESCRIBE -
(a) PROGRAM NAME IS, .

The DESCRIBE request requires that the name of the program to be described be specified. The

user should type the program name and, if desired, the information items to be printed:
(b) __ NOT DOCUMENTED.,

This eomment is printed when the doeumentation of the program requested has not been stored,
{¢) (____LINES FOLIOW)

When more than five lines of text are to be printed, the INFO system informs the user of the

number of lines whieh follow.

{d) PROGRAM ___ NOT IN INFO FILE , PLEASE NOTIFY STAFT,

15

This comment indicates an error which might have been caused by a CTSS system failure.

3. On LIST -

(a) ___ IS NOT AN ACCEPTABLE ITEM FOR LIST.

Only the following items may be listed: ITEMS, DESCRIPTORS, AUTHORS, LANGUAGES,
TYPES, and NAMES. If one requests that NAMES be LISTed, the system will obtain from the
CTSS supervisor the list of programs {(commands and subprograms) for each TYPE. This list
will indicate the most recent status of the CTSS programs, since the list is obtained from the

supervisor itself.
() NG . 1S TQ LIST:
This comment is printed if no DESCRIPTORS or AUTIHORS have been defined.

(c) __ IS NOT A DESCRIPTOR.
(d) __ IS NOT AN AUTHOR.

In preference to listing all AUTHORS or all DESCRIPTORS, a user may request to list the name
of a particular AUTHOR or DESCRIPTOR to check whether it has been defined. One of the above

comments is printed if the particular value requested has not been defined.

{e) ___ IS NOT A COMMAND PROGRAM,
(f) ___ IS NOT AN ENTRY PROGRAM.
{g) ___ IS NOT A LIBRARY PROGRAM.
(h) ___ IS NOT A PUBLIC PROGRAM.

One of the above comments may be printed if a particular program does not exist as one of the
programs associated with CTSS. This information is obtained from the CTSS supervisor and

has no reclation to whether it has becn documented or not.

4. On FIND -
{a) NO MATCHING ITEMS FOUND.
This comment is printed as the result of a search for items with specified item values.
{(b) __ ITEMS FOUND.
{c) __ ITEMS FOUND SO FAR, DO YOU WANT TO CONTINUE..

When a search results in more than twenty matching items, this comment is printed before the

twenty items found arc listed. The user must type YES or NO.

5. On STORE —

(a) IS. .

Certain information items are required for the documentation of a program to be stored in the
INFO system. For each one of these, a comment of the above form will be printed whereupon
the uscr is expected to provide the requested item value. If the user terminates the value with
a commma, he may continue to specify other item values for this STORE request. For cxample,

after the system types —

TYRE IS

16

the user may type
COMMAND, DESCRIPTOR IS UTILITY, AUTHOR IS STAFF

to continue specifying the item values for the store request,

(b) __ IS ALREADY STORED, DO YOU WANT TO ALTER..
If an attempt is made to store the documentation of a program that has already been stored,
the on-line user has the option of ALTERing the documentation for that program with new
information.

6., On EDIT —

(a) PROGRAM NAMIL IS ..
A program name is required with the EDIT request.

(by __ NOT FOUND.

This is a possible response from the EDIT request.

7. On ALTER -
(1) PROGRAM NAME IS ..
A program name is required with the ALTIR request,
(b) —— NOT DOCUMENTED, DO YOU WANT TO STORE ..
If one attempts to modify the documentation of a program that has not been documented, he has
the option of storing the complete documentation for that program.
8. On REMOVI
(a) - NOT FOUND.

The response if a program is not documented, and hence cannot be deleted,

(hy ___ IS NOT AN AUTHOR.
(¢) ___ IS NOT A DESCRIPTOR.
(d) . IS NOT AN QOFFIONAL, ITEM NAME,

One cannot type an AUTHOR or DESCRIPTOR in a request unless it is defined in the appropriate
list.

(e) 1S BEING REMOVED FROM THIS LI, OK ..

Verification is required before the documentation of a program can bhe removed from the

information file.

D. The Data Base for the INFO System

In order for this INFO system to satisfy the objectives of providing on-line documentation
of the programs associated with CTSS, the system must be primed with meaningful information,
This is no simple task. 'The files containing the documentation information must be made
available to the INFO system. Since the documentation consists of textual information, it must
be prepared for storing in the system either by the authors of the programs or by some other

knowledgeable person. [n addition, once the documentation has been brought up to date, i.e.,

17

information stored on the present set of programs, it must be kept up to date.

Consider first the problem of priming the system with information on programs already
available for use with CTSS. These programs eonsist of system commands, supervisor entries,
library subprograms, and public programs. The system has already heen primed with doc-
umentation of the 82 system commands in the concise format desirable for the on-line retrieval
system. The ED command, which permits input and context editing of a BCD file, was used to
produee a file (with name COMAND INFO) containing the documentation of the commands. “This
file was then used in a STORE recquest to store the doeumentation on COMMANDS. Following
similar procedures, on-line documentation for the other types of programs must he provided.

It is suggested that this be done as the new reference manual is being prepared. This task
might be assigned to a system's librarian or to one of the staff eonsultants.

Now consider the problem of keeping the doeumentation information up to date. 'This entails
providing additional documentation when new programs are added to the system and providing
revisions to the documentation alrcady stored when existing programs are modified. In an ideal
situation, documentation would be automatically obtained and no human supervision would be
required. Since the doeumentation of programs consists mostly of textual material, it must be
written by a knowledgeable person. On the other hand, an up-to-date list of the different types
of available programs ean be automatically obtained by using the LIST request.

One of the objectives of the on-line system is to aid in providing the desired doeumentation.
The STORE request requires that certain information items be provided, and in this way an
attempt is made to standardize the documentation. [Each time the documentation of a program is
stored or altered, the INFO system automatically supplies the information value to the information
item DATE. That is, the date the doeumentation is stored or altered is automatically stored
and the on-line user does not have to input its value. If each author of a program were to store
the documentation of his own programs, the INFO system could also provide the value to the
information item AUTIIOR by obtaining this information from the CTSS supervisor (the super-
visor knows the name of a user along with his problem and programmer number).

This brings up the question of responsihility, i.e., who should he responsible for keeping
the INFO system up to date and accurate. The information files associated with the INFO com-
mand are to he stored with the system files (i.e., in the directory of M1416, common file 2)
but are now temporarily stored with the public files (COMFIL P is in the directory of M1416,
common file 4), This restricts the numher of people who modify the information to those who
are assigned an M1416 problem numher. Thus, the machinery which is presently built into
the CTSS supervisor is used to control who is permitted to alter the information files. This
does not require that a staff member write the documentation of all programs. Any user who
writes a system program (COMMAND, FENTRY, LIBRARY, or PUBLIC program) may be asked
to provide an INFO file in the form appropriate for the STORE or ALTER rcquest, and this
file can then he used by a privileged user (problem number of M1416) as input to the INFO
system.,

The question of who has editorial control of the documentation, i.e., who has responsibility
for the INFO system, is still not answered. No simple answer is apparent. All that can be
said is that a system lihrarian who is responsible for all forms of documentation must be given
the responsibility of monitoring the on-line system.

The following procedure, which appears to be feasible, would help the system's librarian

keep up-to-date documentation on programs whieh are developed and eontinually modified by a

18

special user group. 1f INFO files are prepared by the speeial user groups for the progrims for
which they are responsible, these INFO files could be obtained from the special user group's
file directory and used as input to the INFO system. This procedure eould be perfornred by a
special-purpose system program. This system program to update the documentation could be
run automatically at specific times during operations of CTSS, In this wayv, the user graup
which develaps a program is alsa given the respansibility af updating the documentation of the
program. All that is required is that an INFO file be created and included in the user groups
file dircctory. This INFO file would be processed in a similar manner as REQUES T, Fitl's
are now pracessed. The special system INFO updating program would have to know, for cach
program, which user was permitted to update its associated doeumentation.

The problem of keeping the on-line system up to date with information on new programs
will always be with us, as will all problems concerning documentation. It is hoped that the
existence of an on-line system will tend to centralize the effort. Iven without altering the
problem of preparing docurnentation, an on-line system will help to make the documentation more

readily available to the on-line users.

V. DESIGN CONSIDERATIONS
A. General Approach

To insure that an on-line documentation system continues to be useful to the on-line users,
it is important to make sure that the information obtainable is correct and up to date. One way
to achieve this objective is to ohtain as much information as possible from the svstem directly
and automatically rather than to require that someone continually and manunally update the in-
formation.

The list of system commands can be obtained from the command directory which is stored
in core-A. Commands are either core-A transfer, core-RB transfer, or core-b executable
programs (saved files with a secondary namc of TSSDC.). These latter types are stored in the
system file directory (comfil 2 of M1416) and a check that the files exist in the directory can be
made to verify that the command is in fact executable.

A list of the active supervisor entries can be made by examining the appropriate directory
in core-A. The list of public programs can be obtained by examining the public fite directory
{comfil 4 of M1416, i.e., comfil 1°).

The'suhprograms which are available to be included in a user's program comprise a set
of library files. Originally there was only one library, the TSSLIDB file; but subsequently this
file was hroken down into TSLIB1 for general-purpase suhprograms, TSLIB2 containing de-
bugging programs, and KLLULIB containing subprograms for the ESL display. To determine the
programs contained within a library, a program can be written to read the program cards far
each subpragram within the library file. The names of the entries to the subprogram, the
transfer vectors or names of other programs which it calls, and the amount of core needed for
loading {both relocatable and common) can thus be obtained. This information can be obtained
by executing the command program PRBSS with a library file. Alternatively, the function per-
formed by the PRBSS program can be incorporated within the on-line documentation system.

A library file can also be used together with a special program to produce a cross-reference
table of the programs which are called by the entries in the library file. This information is

needed when a change is being made to a program and it is necessary to reflect the change baek

19

to the programs which call this program. This information has bcen prepared manually by
J.Saltzer (Ref. 5) for the core-A subprograms which form the CTSS supervisor. The command
program SUBUSE, prepared by B. Wolman at Project MAC, automatically prepares a reference
table, of the type mentioned, by examining the program cards of subroutines included in a
library file. By use of this program, an up-to-date reference table can be produced with no
errors, which is unlikely when this job is done manually. The INFO system could be designed
to accept a rcquest to initiate this program, thus centralizing the information retrieval tech-
niques.

Another way of insuring that up-to-date information is provided about a program is to
require that an entry be made in the information system before a program can be added to the
public file of programs or a new command added to the system. For example, the system
could check to insure that for each core-B command (file with sccondary name TSSDC.) a file
cxists with secondary name INFO. This could also be done for each public command in the
public file directory, i.e., for each saved file. This technique is not completely satisfactory,
but it indicates what could be done to coordinate the documentation of a program with the inclusion
of the program in the system.

The difficulty with the above schemc is that (1)the size of the system and public file dir-
ectories would be doubled by the inclusion of the INFO files, {2)there is no guarantee that the
textual information provided by an INFO file is meaningful, and (3)this technique can't be used
with the library subprograms which are combined into a single file, or for the core-A supervisor
entries for which no files exist. The main problem centers around the problem of how the
information is to be stored and how it is to be made accessible.

The INFO command is an information storage and retrieval system which has been de-
signed in the context of the Compatible Time-Sharing System, and thus certain design decisions
were based on the way auxiliary storage is handled within this environment. The general
problem of storage and retrieval has not been considered, only that part of the general problem
as it applies to the limited context of documenting the computer programs associated with CTSS.
For example, certain information items were considered to be required in the documecntation of
a program, and this requirement was built into the STORE request. In a different context,
information items othcr than those of this information system might be considered as required
Also, particular features of the COMIT programming language are used to store the values of
the items whose set of possible values are known. That is, in the present implementation, the
information item TYPE is treated in a special way and can take on as values only COMMAND,
ENTRY, LIBRARY, and PUBLIC. The context in which the INFO system is to operate'has
become an inherent part of its implemecntation (i.e., of the program).

The design of a truly general-purpose information storage and retrieval system would re-
quire that before it is used in a particular context, one spccifies to the system the form that
the information would take. For example, this specification could take the form of indicating
the names of the required information items and the format in which they are to be interpreted
and stored. A system to be used for bibliographic references might require the following

information items:

(1) Title
(2) Author
(3) Publisher

20

(4) Date of publication

(5) Type, i.c., book, journal, report, etc.
Optional information items might be:

(6) References
(7) Page numbers

(8) Personal comments.

Once the specification of a system is made, it becomes a special-purpose system which
is to be used in a particular context. A general-purpose information storage and retrieval
system should be designed to operate in threc modes. In the first mode, the specification of
the format of the information base is macde. This is done once, when the characteristics of
the particular application are defined. Thec second mode is the storage mode where the information
is provided to the system. The third mode is the retrieval mode. The second and third modes
would both be available for operation during the use of the system. The procedures performed
during the storage mode would make use of the specification of the information base but would
not be dependent on any particular format of the information. Similarly, the tvpes of retrieval
processes that could be performed would be independent of the particular data base on which
it was operating. A general-purpose information storage and retrieval system designed on these

principles could be used in many different applications.

B. System Features

The INFO system has been designed to accept new information for storage or changes to
information already stored according to information items. Verification by the on-line user is
required whenever an attempt is made to remove the documentation of a program. A file
containing information items for a given program may be created from the information stored
in the system and, after it has been edited, this file, or one prepared with the use of the CTSS
input facility, may be read by the INFO system to store or alter the information.

The user of the system can also list the values of certain information items which, in turn,
may be useful in either the storage or retrieval process. Whenever a request results in a
printout of over five lines, the system notifies the user of the number of lines which follow,
The system can also perform a search for the program which satisfies particular conditions
or has specific values for particular items. If the user makes an unsound request, the system
balks and checks to sec if the user really wants to make the request. If a search for programs
satisfying particular conditions finds more than twenty matches, the system asks whether the
user wants to continue the search.

The overall objective is to form a basis for obtaining textual information which describes
a set of programs. This system could be combined with other special-purpose programs,
such as a program which could automatically obtain the cross reference table of entries or
calls, similiar to that prepared by Saltzer and Wolman. A considerable amount of information
is obtained from the system itself, e.g., the list of active commands is obtained from the sys-

tem command directory and the list of supervisor entries is obtained from the supervisor itself.

C. Language Features

A central philosophy of the man-machine communication language is that if a user is very

familiar with the language and knows how the system behaves, he may comniunicate with it

21

in a very concise manner to accomplish his objcetives. On the other hand, the noviee, who is
just learning the language may be very verbose and clumsy, but the language will lead him
along, asking him questions and telling him what to do at every step of the way. If the user
does not know what to do, he simply types a carriage return and the system will respond, telling
the user what to do next. If the user has some expericnee and knows the format of information
to he typed, he can be terse in his input statcments.

The language used to communicate with the information system has been designed with the

following principlcs in mind:

(1) The input format is independent of the request to the system.

(2) The format is semantie, rather than syntactic, thus making it
simpler to learn, easier to understand, and more flexible in its
use. For example, to specify that an item X has the value Y one
may typc the statement

THE VALUE OF ITEM X IS Y
rather than speeifying just X and Y, where X is in one input field
position and Y is in another input field position. The INFO system

is permissive about the syntaetic form of an input request, allowing
words to be typed which may he ignorcd.

(3) The order of specifying items is not fixed, sinee item names must be
supplicd along with each information value.

(4) Thc system guides the user in steps indieating what to do. When
an on-line user is in doubt of what to do, he merely types a car-
riage return.

(5) Thc user can anticipate input if he knows what is required, thereby
reducing the on-line interaction.

(6) An experienced uscr can use abbreviations or eliminate redundant
words, and hence simplify the on-line language.

D. Storage Considerations

The organization or data structure of the information to be stored is dependent on the types
of retrieval to be performcd. Trade-offs ean be made between the ease of storing information
and thec ease of retrieving the information. In the documentation system, there are two types
of information or data:

(1) Textual information which has no relation to other textual information
and is rctrieved by specifying the name of the body of textual data.
(2) Information which is cross related and on whieh various types of
processing or searching are performed.
Tach typc of data should be kept in files separate from the program which proeesses the data.
This storage organization allows the programs to be changed without affecting the data which it
proccsscs. Since the types of processing that are performed on these two types of data are
different, the data structure should he different, and thus the information should be stored in
secparate files.

The textual information consists of groups of sentenccs to whieh a program name is asso-
ciated. For cach program name, there are generally morc than ten lines of text. Since in the
retrieval process only these lincs are desired, it is not nccessary to have all the textual
information in core storage. Consequently, auxiliary mass storage in the form of random access

files on the disk is used. In the present implementation, the body of textual information is stored

22

in three files {secondary names FILE1, F1LEZ2, and FILE3) according to an cqual partitioning
of the set of first characters of a program name. If it is desirable to make a finer partition of
program names, the first two characters of a name may be used.

Fach file consists of an integral number of tracks on the disk and, for efficiency of storage,
the information should be stored in such a way as to minimize the unused storage space on a
track. Assume that, on the average, each file contains one track which is only half used. The
more information stored in a file, the smaller is the percentage of wasted storage space. But,
if a file contains the textual information for more than one program, this file must be searched
linearly to obtain the text of a desired program. If more files are used, then, on the average,
the linear search for textual information is shortened, since each FILIE would contain less in-
formation.

On the other hand, when the body of textual information is stored in many shorter files rather
than in fewer larger files, the percentage of wasted storage is increased and the available disk
storage space is used less efficiently. In addition, when more files are used, the CTSS super-
visor is burdened with keeping track of the names of each file and its location on the disk. Thus,
the tirade-offs between efficiency of storage and ease of retrieval should help to determine the
optimum number of files to use.

The organization of the search information depends on the types of retrieval to be performed.
If the search data are cross related in such a way that various associations can be made between
the items of data, it is desirable to store each item of data only once and use pointers to indicate
the relations among the data. IList structure techniques, where one list can be a sublist of niany
lists, can be useful in implementing these relations. Other advantages of list structures are:

{1} The number of words or entries with which the program has to deal

does not have to be predicted in advance, thus eliminating the nec-
essity of reserving fixed length blocks of storage.

(2) Storage space once used can be put back on a free storage list when it
is no longer needed, thus making it available again when it is nceded.

(3) The program is relieved of the problem of allocating a fixed storage
location for the data, since the list of available space links together
the usable storage space.

The search information in the INFO system consists of the information items — TYPE,
AUTHOR, DATA, LANGUAGE, and DESCRIPTOR which are associated with a program NAME.
This search information is stored in core by using the list or string structure of the COMIT
language (Sec. V1). The data for a given program are stored as two constituents plus one
constituent for each DESCRIPTOR. The first constituent consists of the program NAME with
the values for the information item program TYPE as subscript values to the logical subscript
TYPE. The second constituent consists of an AUTHOR value with the DATFE documented as its
numerical subscript and the LANGUAGU value as the subscript value to the logical subscript
LLANG. Each DESCRIPTOR is stored as a single constituent following these first two, and the
dafa for each program are separated by a constituent with the special symbol «X. The data
are stored on 47 SHELVES (linear strings in COMIT) corresponding to the 47 different possible
first characters of a program name. A finer or coarser partition could be made by a simple
change in the program. The more shelves that are used, the easier it is to obtain the data of
any given program since, on the average, the amount of data on any given shelf is reduced.

In the present implementation of the INFO system, the search data are stored in one file

{with second name DATA), and when these data are loaded into core they are stored on the

23

-STORAGE *= = SHELF/.80 + --DATA + -FILE1 *

- = SHEUEZ 8l =+ =-DATA .+ ~EIlE] #
*+ = SHELF/.82 + --DATA + -FILEl *
. = SHELF/.83 + --DATA + <=FILEl *
*1 = SHELF/.84 + --DATA + -FILEl *
*2 = SHELF/.85 + --DATA + -FILEl *
*3 = SHELF/.86 + --DATA + -FILEl *
A = SHELF/.87 + --DATA + -FILEl *
B = SHELF/.88 + --DATA + -FILEl *
C = SHELF/.89 + --DATA + -FILEl *
D = SHELF/.90 + --DATA + -FILEl *
B = SHELFAST =+ <=DATA » =f(LE] =
F = SHELF/.92 + --DATA + -FILEl *
G = SHELF/.93 + --DATA + -FILE] *
H = SHELF/.94 + --DATA + -FILEl *
*) = SHELF/.95 + --DATA + -FILE2 *
*~ = SHELF/.96 + --DATA + -FILE2 *
*§ = SHELF/.97 + --DATA + -FILE2 *
*+ = SHELF/.98 + --DATA + -FILE2 *
*4 = SHELF/.99 + --DATA + -FILE2 *
*5 = SHELF/.100 + --DATA + -FILE2 *
*6 = SHELF/.101 + --DATA + -FILE2 *
| = SHELF/.102 + --DATA + -FILE2 *
J = SHELF/.103 + --DATA + -FILE2 *
K = SHELF/.104 + --DATA + -FILE2 *
L = SHELF/.105 + --DATA + -FILE2 *
M = SHELF/.106 + =--DATA + -FILE2 *
N = SHELF/.107 + --DATA + -FILE2 *
O = SHELF/.108 + --DATA + -FILE2 *
P = SHELF/.109 + --DATA + -FILE2 *
*/ = SHELF/.110 + --DATA + -FILE3 *
, = SHELF/.111 + --DATA + -FILE3 *
*(= SHELF/.112 + --DATA + -FILE3 *
*7 = SHELF/.113 + --DATA + -FILE3 *
*8 = SHELF/.114 + --DATA + -FILE3 *
*9 = SHELF/.115 + --DATA + -FILE3 *
*0 = SHELF/.116 + --DATA + -FILE3 *
Q = SHELF/.117 + --DATA + -FILE3 *
R = SHELF/.118 + --DATA + -FILE3 *
S = SHELF/.119 + --DATA + -FILE3 *
T = SHELF/.120 + --DATA + =FILE3 *
U = SHELF/.121 + --DATA + -FILE3 *
V = SHELF/.122 + --DATA + -FILE3 *
W = SHELF/.123 + --DATA + -FILE3 *
X = SHELF/.124 + --DATA + =FILE3 *
Y = SHELF/.125 + --DATA + -FILE3 *
Z = SHELF/.126 + --DATA + -FILE3 *

Fig. 1. File Specification LIST.

24

47 shelves. If more DATA files were used, by partitioning the search data in a different way,
the amount of data on a given shelf from a given DATA file would be reduced. If all the DATA
did not have to be searched, this would result in a reduction in the amount of data that must be
read and loaded into core storage. Since quite often it is necessary to search all the data, no
savings would be obtained in this case. The amount of search data that can be stored in core at
one time is limited and, as this amount grows, the system is eventually forced to split the

data into more than one DATA file.

In the present system, thec search data use approximately fifteen words per entry. The
system has 10,000 words of available free storage, which is used to store the INFO DATA file
and to proccss the textual information for a single program. About 1000 words of free storage
should be reserved for processing requests and textual information of a single program. This
leaves room for search data for about 600 programs. When more space is required, the INIFO
DATA file can be partitioned into multiple sections. The prcsent partitioning of the information
for storing in files is illustrated in the File Specification L.ist (a COMIT list rule) shown in
Efig: 1

E. Console Printing

Information on the documentation of a program is conveyed to a user through an on-line
console. The primary types of consoles presently in use with CTSS are (1) the Model 35
Telectype, (2) the IBM 1050 Selectric, and (3) the IESL display. llach type of console has a
different set of characters associated with it, and sends and receives different character
signals. The CTSS supervisor performs all the code conversions for transmitting and receiving
characters between a remote console and a program within the computer. The CTS8S supervisor,
by rules of convention, maps each character signal received into a BCD code for representation
within the computer and maps codes gcnerated by a program into signals for transmission to a
console for printing.

Characters are represented in the computer in one of two modes; in the "normal" mode,
i.e., as a 6-bit code, or in the "full" mode, i.e., as a 12-bit code. In the 12-bit mode, the
high-order 6-bits are referred to as logical case bits. Some characters can only be represented
in the "full" (12-bit) mode, and others may also be represented in the "normal" (6-bit) mode.
These mappings between signals and codes are peformed by the supervisor in one of the two
modes which is set by program control.

If the mapping is performed in the "normal” mode, and a character which can only be re-
presented in the "full" mode is typed, the character may be converted to the corresponding
"normal” modc character by deleting the case bits, or it may be ignored. The characters which
are convertible depend on the console heing used and are usually restricted to the set of lower
case letters (represented in the 12-bit mode only) which are converted to upper case letters
(representcd in the 6-bit mode) Thus, when operating in the "normal” mode a user may type
a character which is ignorecd, or he may type a character which gets converted to a different
character. If an attempt is made to print a character which does not exist on a particular
console, the character is either converted to a printable character or is ignored.

The INFO system has been implemented for use in the "normal" mode, and hence only the
"normal" BCD set of characters may be printed (although some of the characters in the "full"

set may be typed and converted into characters of the "normal" BCD set). Consequently, textual

25

descriptions of a program are printed in all upper case lettcrs regardless of the console being
used. This makes reading and comprehending of the information slightly more difficult.

If the INFO system were designed to operate in the "full" mode, both upper and lower case
letters could be printed on those consoles which have them. For those consoles which do not
have lower case letters, the CTSS supervisor would map them into upper case letters. The
problem with this mode of operation is that twice as much storage space would be required to
storc the textual information; consequently, the average search time for the documentation
of a program would be doubled.

It is important to bc able to program a time-shared computer for on-line interaction in
such a way that it is not dependent on the console being used. Each character should be given
a unique representation within the computcr, regardless of the console being used. In this way,
programs could be written with the assumption that the characters output to a console for
printing will be the same, regardless of console. This is not the case in the present design of
thc CTSS adapter module. In addition, it is useful to have two modes of operation, one in which
characters output are represented uniquely (thc "full" set) and a second in which some characters

are converted to "normal" sct characters.

F. System Response

A user sitting at his console makes a request to the system and desires the system to
respond immediately, i.e., within the human reaction time, which is of the order of 2/10 of a
second. The system's response is governed by the amount of timc required to process a user's
request and the amount of time which is necessary for the system to communicate a complete
response to the user,

The real timc required to process a request depends on the complexity of the request,

i.e., the amount of processing that has to be done, and the scheduling algorithm which determines
what portion of real time is allotted to a particular user for his computation. A user does not
have control over the algorithm used to determine his priority of service; hence, he can only
attcmpt to minimize his demand for computation which is based on the complexity of processing
that is required. It will be indicated that the amount of time required for a particular process

is based on the structure of the data or information stored.

The time required for the system to communicatc with a user depends on the nature of the
on-line console. The output from an on-line console may either be printed (by a typewriter or
a plotter), displayed (as lights or as a picture), or punched (on punched paper tape or on punched
cards). The time required for each type of output is different, and this correspondingly influences
the information systcm's response to the on-line user. In general, the uscr does not consider
that the system has rcsponded until the output is completed and it is the user's turn to act. Thus,
if a user makes a request requiring that tcn lines of output be printed, he waits until all ten lines
have been printed before he begins to rcad the lines to complete the system-user portion of the
communications cycle. The timc required for a page of text to be displayed on a viewing device
is at lcast an ordcer of magnitudc faster than the time it takes for the page to be printed on a
typewriter. Consequcntly, in discussing a system response to a user's request, one should
keep in mind the responsc timec of a particular on-line consolec.

The typcwriter console used with the present CTSS system imposes a considerable dclay

when morec than ten lines of output are produced during one man-machine cycle. Because

26

of this fact, it is important that the on-line user have the ability to request from the systecm only
the information which he wants to have, without producing additional unwantcd information which
consequently increases the response time of the system and decreases thc percentage of useful
information. Even a slight difference in console communication spced is noticeable to the on-
linc uscr. Users find the IBM 1050 console preferable to the teletype console primarily because
of thc former's faster typing speed. It appears that this is more important than the difference
in console key layout, since a user can easily adapt to different kcy positions.

If display devices for textual information were more accessible, this consideration would
not be so crucial to the user-system responsc. A page of textual information can be displayed
much faster than it can be typed, tremendously improving the communications betwccen the
system and the on-line user. Several techniques are suggested for displaying continuous pagcs
of text.

Consider that a page is made up of a fixed number of lines, say twenty, depending on the
rcsolution of the display device. Successive lines are displayed on a page as they are generated,
until the page is full. A full page may be indicated either by a light or by a marker displayed
at the bottom of the page. When the user has viewed the page, he might push a button, flick
a switch, type a carriage return, or make an indication with a light pen to view the following
page.

Alternatively, as one pagc becomes filled, the top few lines could bc made to disappear and
thc rest of the page moved up so that additional lines could be displayed on thc bottom. The
amount of the page that is moved up could be controlled by a continuous knob which the user
could turn as if he were rolling up a scroll. With this technique, the user always has displayed
in front of him a portion of a previous page, i.e., a number of lines preceding the last line
displayed. The importance of many of these considerations to the on-line operation of a computer

should influence the design of future time-shared computers.

VI. THE PROGRAMMING LANGUAGE
A. The COMIT Language

The INFO command has been written in thc COMIT programming language (Ref. 6) which
has recently been adapted for use with CTSS. COMIT was chosen because it is well suited for
string manipulation of textual material. It uses a linked string structure for storage of data;
hencc, no limit is imposed on the length of the English words or the naturc of the text. A COMIT
progran: is easy to modify during the trial and error procedures of developing a suitable
communication language between man and machine, i.e., between the user and the on-line program.
The built-in string manipulation and searching features of COMIT permit casy experimentation
of processing algorithms, for example, in defining a new search routine. Thec version of COMIT
used has some of the ncw COMIT II features, in particular, the ability to execute a binary sub-
routinc (assembled in FAP or MAD) upon transfer from the "go-to" of a COMIT rulec,

The data which are manipulated or processed by a COMIT program consist of constituents
to which may be associated onec numerical subscript and any number of logical subscripts which
may take on up to 36 logical values. A constitucnt is a concatenation of any number of BCD
characters; whereas, logical subscripts and subscript values are a concatenation of up to 12
BCD characters. Constituents are connected, through the use of pointers, in a linear string.
There may bc 128 strings of constituents which are referred to as the WORKSPACE and the
127 SHELVES.

2l

BINARY

SUBPROGRAM 3
RULES TABLES > INTERPRETER ENTRY

including EXIT
WORKSPACE REFERENCE
RULES TABLES ond SHELVES TABLE
}
BINARY
SUBROUTINE

Fig. 2. Poths of control between binory subprograms ond COMIT routines.

PROGI SXA RETURN, 4
TSX $.COMIT, 4
TXH RULES
TXH RULENO
RETURN AXT w4
TRA 1,4
RULES PZE TABLES

TABLES

Fig. 3. Form of compiled COMIT progrom.

28

A COMIT program consists of a set of rules which are executed interpretively. A rule
consists of the following: a rule name and optional subrule names; a left-half for matching
with the constituents in the WORKSPACE; a right-half for specifying the manipulation of
constituents found in the left-half; a routing for indicating operations to be performed with the
WORKSPACE constituents, with the SHELVES, or with the input/output devices; and a go-to to
specify which rule is to be interpreted next. A go-to may specify the execution of a binary
subroutine rather than a COMIT rule.

The running of a COMIT program consists of compiling the rules into a compact coded form
and producing reference tables of rule names, subrule names, subscript names, and subscript
values. The compiled program is then interpreted with reference to the associated tables and
with a possible transfer to binary subroutines compiled by the FAP or MAD translator. In the
present version of COMIT, the binary subroutines must be loaded into core together with the
COMIT compiler and interpreter. At the time of execution, the core space used by the compiler
is available as free storage for inclusion in the WORKSPACE.

Improvements in the organization of the COMIT system are being made which will make
COMIT more usable as a programming language. For exaniple, the present version of COMIT
requires that all the available core storage be assigned to a COMIT program, whether or
not all the storage is needed. The COMIT system is being modified so that only the portion of
storage which is required at any given moment is assigned to the program. ‘Thus, the amount
of storage assigned can change dynamically as the requirements of a running program vary.

In particular, the amount of storage needed for the INFO system multiplies with an increase in
search data. The amount of core storage presently required for the INFO system is about
20,000 registers; thus, with the modification to the COMIT system, a two-thirds savings would
be obtained. Consequently, the amount of time required to load and swap the command would
be reduced. When this improvement is made, the INFO system can be rccompiled to take
advantage of the savings.

To facilitate the use of COMIT with programs compiled by other translators, and in par-
ticular for use in CTSS, the following modification to the COMIT system is proposed.

In order to enable binary subroutines to use a subroutine written in COMIT, the COMIT

compiler should write a binary file containing the coded COMIT rules and its associated tables
in the form of relocatable binary card images preceded by an entry sequence. The COMIT

interpreter would be split from the compiler and added to the CTSS BSS library file. When the
binary routines are loaded into core with a BSS loader (one of the standard CTSS LOAD com-
mands) the compiled COMIT program is also loaded together with the kntry Fxit Reference

Table (a FAP program through which COMIT calls binary subroutines) and the COMIT interpreter
(obtained from the library). Figure 2 indicates the paths of control between COMIT routines

and other binary subprograms which may be loaded into core at the same time.

The COMIT interpreter contains all the machinery for interpreting rules, manipulating
the WORKSPACE and SHELVES, and allocating storage from its storage list. When a routine
calls a COMIT subroutine, the "entry sequence" stores index register four in order to return
to the calling program and transfers to the COMIT interpreter with, as parameters, the
beginning location of the rules, and the number of the rule which is to be interpreted first (the
rules are assigned sequential numbers at compilation time).

The compiled COMIT program together with the entry sequence might take the form as

shown in Fig. 3, where . COMIT is the entry to the COMIT interpreter.

29

Note that the location of the TABLES is given indirectly from RULES.

This scheme can easily be incorporated with the changes now being made to thc COMIT
system. Besides the modifications already indicated, the COMIT language must be adapted to
permit the specification of an entry point at a particular COMIT rule, and for each entry the
compiler must generate an entry sequence with an appropriate value for the parameter RULENO,
If no entry is specified, the compiler must generate an entry sequence with RULENO set to the
first rule of the program, the return set to COMEND (the standard procedure for terminating
a COMIT program), and with the initial instruction for the storing of the return (index 4)
eliminated. Also, the COMIT interpreter must be modified to return to the calling subroutine
when an END rule is encountered.

The procedure outlined above is not recursive; once one COMIT routine is entered it can-
not be entered again until it is completed, i.e., it falls to the END rule. It may call a binary
routine or another COMIT routine, but these other routines cannot call the original COMIT rou-
tine. It does enable large COMIT programs to be written in pieces and permits the features of

COMIT to be used together with the features of other languages.

B. Use of COMIT Features

Certain features of COMIT have been most appropriate for programming the INFO system.
These are:
(1) The automatic handling of available core storage space by means
of a free storage list.

(2) The automatic storing, via string pointers, of any number of char-
acters as a constituent, i.e., for a single word or for the complete
textual description of an information item.

(3) The list structuring of the SHELVES which is used for partitioning
the data alphabetically and for facilitating access or addressing of
portions of thc data.

(4) The left-half scarching of the data for information items with matching
DESCRIPTORS, TYPE, LANGUAGE, and AUTHOR, or for a DATE
(stored as a numerical subscript) which is greater than a given value.

(5) The right-half specification of output format for printing on a console
or for storing data in a filc.

(6) The simple input/output routing conventions for reading lines typed on
a console or for printing lincs on the console.

VII. ADDITIONAL MODIFICATIONS

The design of the INIFO system has progressed through many stages of modification. In an
early stage of the design, the request language was awkward and required a fixed and stylized
format. Experience in an on-line environment led to improvements in the request language
until the present form appeared satisfactory. In the present system, requests can be typed to the
INFO system or, alternatively, the rcquest to describe the documentation of a specified program
can be initiated by specifying the program NAMLE as a command parameter when the INFO
command is called. A further modification to the system would permit all requests to be spec-
ified as command parameters. Thus, one would be able to resume the INFO command and

specify a request in one line of type. TFor example
INFO D NAME IS TYPSET, USAGE AND AUTHOR

to initiate a describe request. The present design of the CTSS supcrvisor limits the number of

command parameters to twenty, and each parameter must be six characters or less. There

30

would be no problem specifying a program NAME since a name is at most six eharacters, but
an AUTHOR or DESCRIPTOR might be more than six characters and, hence, could not be given
as a command parameter. Also, there would be no problem specifying requests or item names,
since these can be abbreviated. In a future design of a time-sharing system on a different
computer, these limitations can be eliminated.

As was discusscd in an earlier seetion, it would be useful to define sub and super categories
of deseriptors. The implementation of a hierarchy of deseriptors could be inc‘m‘_p(—\:‘ded into
the present descriptor list by tagging each descriptor with a level indicator. A modification
could be made to the LIST request so that a request to LIST the DESCRIPTORS would give only
the descriptors whieh are in the subcategory of a specified deseriptor. Further study could be
made to determine a good way to define descriptor categories.

The classifieation of programs has been done superfieially in the SHARFE index of distributed
programs (Ref. 7), but these are not eompletely satisfaetory. Broad eatcgories such as arith-
metic, input/output, code eonversion, etc., are only of limited use. More specialized categories
are needed and other associations must be made among programs which can be used to help
locate or pick out a program satisfying a partieular need.

The problem of determining the programs which are of interest cannot be solved by category
retrieval alone. More sophisticated techniques are needed. ¥For example, a dictionary of
synonyms and antonyms might be useful for expanding the deseriptor language and adapting it to
different contexts. A dictionary of related words could be used to define additional relations
among programs. I[f a dictionary entry related thc descriptors INPUT and EDIT, a request for
documentation with descriptor EDIT would also provide the information which had the descriptor
INPUT. Teehniques for analyzing English sentences might be useful in determining the nature
of a request and providing the necessary semantic information. More research is needed to
devise techniques of category retrieval.

As a future modification to the INFO system, the portion of the program which is concerned
with the STORAGE requests could be separated from that portion which is eoncerned with the
RETRIEVAL requests. As a result, the size of each portion of the program would be reduced.
More core storage would thus be available for search data during retrieval processing. Or,
alternatively, when the size of the retrieval program is reduced, the program load and swap
time are deereased, resulting in an improvement in system response. The present model of
on-line documentation system was implemented as a single system to make use of common
processing procedures and to coordinate the programming effort.

The allocation of work to develop a programming system is divided among (a) the writing
of the source program, (b) the compiler or translator, and {c) the functions performed by a
supervisor or monitor system. In the design of the present INI'O system, the on-line com-
munication language was specified in the source program; the COMIT compiler was used to
handle storage alloeation and data strueture; and the CTSS supervisor eontrolled message com-
munieations between the program and the on-line users, and the storage of information on
disk files. Eaeh of these features might be better implemented by a redesign of the system, as

is true when developing ncw programming techniques.

VIII. SUMMARY

The on-line documentation system, as implemented, serves as a model for demonstrating

the usefulness of an on-line documentation system and for designing the suitable language for

31

communicating with thc system. The system indicates somc useful tools for better documentation
of computer programs in an on-line cnvironment. It is hoped that through use of this system,
insight into the area of program documentation can be obtained.

On-line users of a computation facility demand more up-to-datc documentation of the
available programs, and an attempt to satisfy their demand should be made. Also, the problem
of communication is greatly increased when users of the computation facility are remote from
the computer and the administrative staff. As the computer becomes more like a utility,

adequate communications of all types and in all forms must be provided.

REFERENCES

1. F.J. Carbatd, et al., The Compatible Time=Sharing System: A Pragrammer's Guide
(M.I. T. Press, Cambridge, Massachusetts, 1963).

2. M.M. Janes, E.C. Van Harn, and J. M. Winett, "A System far Staring and Retrieving
Infarmatian abaut Camputer Programs,' Caurse 6. 543 Seminar Paper, M. 1. T., Cambridge,
Massachusetts (16 December 1963).

3. Camputatian Center Memaranda, Praject MAC Memaranda, Time-Sharing Technical
Notes, CTSS Bulletins, and Pragramming Staff Nates.

4. U. Neisser, "MAC and its Users," Praject MAC Memarandum MAC-M-185, M.I.T.,
Cambridge, Massachusetts (29 September 1964).

5. J.H. Saltzer, "CTSS Technical Nates," Praject MAC Technical Report MAC-TR-16,
M.I.T., Cambridge, Massachusetts (1965).

6. V. Yngve, COMIT Pragrammer's Reference Manual (M. 1. T. Press, Cambridge,
Massachusetts, 1961).

7. SHARE Index af Distributed Pragrams, M. 1. T. Camputatian Center.

22,

APPENDIX A
PRINTING FROM A SESSION WITH THE ON-LINE INFO SYSTEM

(Words in lower case were typed by an on-line user. }
{ Words in upper case were typed by the INFO system,)
(This session with the IN'Q system was on 1/07/65.)

resume info |
W 403.6 |
TYPE REQUEST, OR C.R.FOR INSTRUCTIONS..

list the items

REQUIRED ITEMS ARE — NAME, TYPE, DESCRIPTORS, DATA, AUTHOR., LANGUAGE,
PURPOSE, USAGE, AND REFERENCE.

OPTIONAL ITEMS ARE — SIZE, AND V.

QIS .

list authors and then list diseriptors
AUTHORS ARE — .STAFF CAMPRBELL CORBATO DAGGETT POUZIN IONES
MINSKY ROSS WINETT YNGVE

(@) LR

DESCRIPTORS ARF - . BOOLEAN COMMANDS COMPILER CONVERSION CONSOLLE
DEBUG DOCUMENTATION EDITING ERRORS EXECUTION EXITS PFILLE FMS
DEBUG DOCUMENTATION EDITING ERRORS EXECUTION EXITS FILE ITARDWARI
1/0 LOADER LOG MISC. PROGRAM RIEADING SIMULATION STATUS

SUPERVISOR TAPE TEST TIMER TRANSLATOR UTILITY WRITING

(©)):

list the programs whose type is command

SYSTEM COMMANDS

LOGOUT LLOGIN ENDLOG INPUT EDIT STARI
QCTPRAT OCTTRA 1LOAD NCLOAD VI.OAD LOADGO
PM STOPAT TRA PATCIT FAPDBG STRACE
LISTF PRINTF LIS TRILE SAV I RESTOR
R MAD MADTRN CHMODE DELETE RENAM IS
SPLIT S SR GEORN UPDATE CONFILL.
AED COMIT LISP ED SNOBOT. PRIBSS
EXTRSS UPPDBSS RUNCOM SDUMP GENCOM LDABS
MEMO MODIFY DITTO RIEMARK DY NANO RQUEST
ARCHIV BETFAP CRUNCH LOG RBLODI STRESS
COGO TYDPSET RUNOFTI® CTEST1 CESTPE C PSS
C'TESTS CTISTS CTEST? CTESTS GRS CTISTA
OCTLK USE PRSI RESUME CONMBIN GRSS
PRBIN (OR=H PRINT MADBUG

O :
list type is entry

SUPIERVISOR ENTRIES

WRFIX WRFLXA RDIFLNA . WRITE .DUMP . LOAD . READK
. ASIGN CAPEND . RELRW .SEEK LIS s o NIDIRID) AR,
. ERTAT .DLETE . RENAM SRESET . UPDAT JELERR » @FRMLG
INSTRT INPEND GETMEM GETCOM SETMIEM (L.ITAL) (EFTM)
DIAD DORMNT FNRTN NEXCONM GIETIAC FRATLA RSTIMIE
DEFERR AKNOLG TSSFIL USRI, SEIMEU SETBCD SETRRIN
SAVBRK GETBRK SELCTE GLETCLIC GETCLS SETCLS CHNCOM
SETLOC GETLOC COMNICTLL SETMON SETUSR . ERASTE EREAD
DSGORPE GETMON GIETINME LOGINA CLOCON CLOCRI SLEMEP
SELECT CTtECK MONSCD MONINT PETSS RODMIISS WRMIESS
FORBID ATTCON REDLIN RELEAS ALLOW SET6 SET42
SNDLIN SNDILINA SLAVE

OK. .

33

desc n is ed, da pu
DATE IS — 1/14/65
PURPOSE IS — FOR INPUTING OR EDITING 14 WORD BCD CARD IMAGE FILES
USING CONTEXT EDITING.

OK..

find des is utility, a is staff

20 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE. .

yes

ARCHIV, BLODI, CTEST7, CTESTé, CTESTS, CTEST1, COPY, COMFIL, COMBIN,

CHMODE, DELETE, EXTBSS, EDIT, FILE, GENCOM, INPUT, LISTF, LOG,
PRBIN, PRBSS,

32 ITEMS FOUND.

PRINT, PRINTF, R, RQUEST, REMARK, RUNCOM, RESUME, RESTOR,
SPLIT, SAVE, UPDBSS, UPDATE,

OK..

describe name is prbss, usage

USAGE IS — (6 LINES FOLLOW)

PRBSS 'A' 'B!

LIBRARY FILE 'A' BSS IS READ AND A SUMMARY OF ALL BSS PROGRAMS
BEGINNING WITH THE PROGRAM WITH ENTRY NAME 'B' IS PRODUCED.,
IF 'B' IS OMITTED THE SUMMARY BEGINS AT THE BEGINNING.

OK. .

f1lis mad
5 ITEMS FOUND.

ED, MADBUG, PRBIN, PRBSS, PRINT,
OK. .

f date is 1/01/65

20 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE. .

yes

AED, ARCHIV, BLODI, BEFAP, CTEST9, CTESTS8, CTEST7, CTESTS6,
CTESTS, CTEST4, CTEST3, CTEST2, CTEST1, COPY, COMIT,
COMFIL, COMBIN, CHMODE, COGO, CRUNCII,

40 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE..
yes

DITTO, DELETE, DYNAMO, ED, ENDLOG, EXTBSS, EDIT, FILE,
FAPDRBG, FAP, GPSS, GENCOM, INPUT, INFO, LOGOUT, LOGIN,
LOADGO, LISTF, LISP, LDABRS,

60 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE..
yes

LOG, LOAD, MADBUG, MADTRN, MAD, NCLOAD, OPL, OCTTRA,
OCTPAT, OCTLK, PRBIN, PRBSS, PRINT, PRINTF, PATCH, PM,
R, RQUEST, REMARK, RUNCOM,

78 ITEMS FOUND.

RENAME, RESUME, RESTOR, STRESS, STOPAT, SDUMP, SNOBOL,
SP, SD, SPLIT, SAVE, START, TFILE, TRA, UPDBSS, UPDATE,
USE, VLOAD,

OK. .

d n is ditto, r

REFERENCE IS — GUIDE PP. 82-86
SYSTEM NOTES NUMBER 3
BULLETIN 5 AND 32,

OK. .

d n is typset
TYPSET NOT DOCUMENTED.
OK: .

34

store file is typset
FILE TYPSET INFO BEING READ.

FILE TYPSET INFO BEING READ TO OBTAIN ITEMS FOR TYPSET PROGRAM.
S{(\LTZF‘,R IS A NEW AUTHOR., CORRECT IT OR TYPE OK OR IGNORE. .
(¢]

RIEBFERBNGEE I$. .
memo mac-193 cc-244
QIE ;

d nis typset

NAME IS - TYPSET

TYPES ARE - COMMAND

DESCRIPTORS ARE — UTILITY EDITING

DATE 1S - 1/15/65

AUTHOR IS - SALTZER

LANGUAGE IS — MAD

PURPOSE 1S — USED TO INPUT AND EDIT 12-BI'T (FULL MODE) MEMO FILES,
EDITING IS BY CONTEXT AND WITHOUT LINE NUMBERS.

OFTEN USED WITH RUNOFF TO PREPARE MEMOS,

USAGE 1S - {30 LINES FOLILOW)
TYPSET 'NAME!
'NAME' IS FIRST NAME OF FILE (IF FOUND) WITH SECOND NAME (MEMO).
THERE ARE TWO MODES OF OPERATION, INPUT AND EDIT.
IN INPUT MODE LINES MAY BE TYPED CONTINUOUSLY
WITHOUT RESPONSE FROM THE TYPSET COMMAND,
TO CHANGE MODES TYPE A C.R.
REQUESTS MAY BE ABBREVIATED BY THEIR FIRST LETTER.
IN EDIT MODE REQUESTS ARE. .
FIND 'LINE!
TO FIND LINE BEGINNING WITH THE NON BLANK CHARACTERS IN 'LINE
LOCATE 'STRING'
TO TFIND THE LINE CONTAINING THE 'STRING' BEGINNING IN ANY COLUMN
NEXT 'T'
TO MOVE TO THE NEXT I-TH LINE
DELETE 'T'
TO DELETE THE NEXT 1 LINES INCLUDING THIE PRESENT ONE.
PRINT 'T'
TO PRINT I LINES.
RITY PI TELINTY
THE PRESENT LINI IS REPLACED WITH 'LINE'
TOP
THE CURRENT POINTER IS SET TO BEFORE THE FIRST LINE IN THE FILE
BOTTOM
INPUT MODE IS ENTERED TO ADD LINES AT THE END OF THE FILE
INSERT 'LINE'
THE 'LINE' 1S INSERTED AFTER THE CURRENT LINE
CHANGE *STRING1*STRING2* 1 G
STRING2 1S MADE TO REPLACE STRINGY IN 1 LINIES
IF G 1S GIVEN ALL OCCURRENCES OF STRING! IN A LINE ARE REPLACED,
"5 NAY BE ANY CIHARACTER.
VERIFY ON/OFF
I ON - FIND, NEXT, LOCATE, AND CHANGE REQUESTS WILL BE VERIFIED
1I" OFF — NO VERIFICATION WILL BE MADE,
SPLIT 'NAME!
TIHI LINES BEFORE HERE ARE FILED WITH NAME 'NAME'
FRASE 'X'
Xt IS SET TO THE ERASE CHARACTER
KILL 'X'
X' 18 SET TO THE KILL CHARACTER
REFERENCE IS - MEMO MAC-193 CC-244

QK .

{ The INI"O command is described by the on-line system as)
(follows. This deseription can be obtained by typing a)
(C.R. after the INFO system is resumed.)

38

d n is info
NAME IS — INFO
TYPES ARE — COMMAND
DESCRIPTORS ARE — DOCUMENTATION
DATE IS — 1/08/65
AUTHOR IS — WINETT
LANGUAGE IS — COMIT
PURPOSE IS — (22 LINES FOLLOW)
THIS IS AN ON-LINE SYSTEM FOR STORING AND RETRIEVING INFORMATION
ABOUT THE FOLLOWING TYPES OF PROGRAMS ASSOCIATED WITIH CTSS —
SYSTEM COMMANDS, SUPERVISOR ENTRIES, LIBRARY SUBPROGRAMS, AND
PUBLIC PROGRAMS,
THE FOLLOWING ITEMS OF INFORMATION ARE AVAILABLE ABOUT A
PROGRAM —
PROGRAM NAME (N)- A SINGLE WORD.
PROGRAM TYPE (T)- ONE OF THE FOLLOWING.. COMMAND, ENTRY,
LIBRARY, AND PUBLIC.

DESCRIPTORS (D) — KEY WORDS USED TO CLASSIFY THE PROGRAMS
IN THE INFORMATION FILES.

PURPOSE (P)— A SHORT ABSTRACT INDICATING THE CONTEXT IN
WHICH A PROGRAM MIGHT BE USED.

USAGE (U) — THE INSTRUCTIONS OF HOW TO USE THE PROGRAM.

PROGRAMMING LANGUAGE (L) — THE LANGUAGE IN WHICH THE PROGRAM
IS WRITTEN.

REFERENCE (R)— A BIBLOIOGRAPHY OF WHERE MORE INFORMATION
ABOUT A PROGRAM MAY BE OBTAINED.

AUTHOR (A)— THE NAME OF THE PERSON WIIO IS RESPONSIBLE
FOR THE PROGRAM.

DATE (DATE) — THE DATE THE INFORMATION WAS LAST STORED OR
ALTERED.

USAGE IS — (23 LINES FOLLOW)

TO USE THIS INFORMATION SYSTEM, TYPE THE COMMAND 'INFO'.
REQUESTS TO THE SYSTEM ARE DESCRIBE (D), LIST (L), FIND (F),
STORE (S), ALTER (A), EDIT (E), AND REMOVE (R). TO OBTAIN A
DESCRIPTION OF EACH REQUEST, TYPE THE REQUEST NAME ONLY.

REQUESTS TO THE SYSTEM SPECIFY AN ITEM NAME, OR AN ITEM
NAME TOGETHER WITH AN ITEM VALUE ASSOCIATED WITH THE ITEM NAME
IN THE FORM 'ITEM NAME' IS/ARE 'ITEM VALUE'. THE REQUEST NAME IS
TYPED FIRST FOLLOWED BY ITEM NAMES AND ITEM VALUES WHEN
APPROPRIATE. AN ITEM VALUE BEGINS WITIHI THE WORD 'IS' OR 'ARE'
AND MUST END WITIT A COMMA. TIIE WORD 'TIIEN' INDICATES TIIE TERMINATION
OF A REQUEST AND THUS ALLOWS MULTIPLE REQUESTS TO BE TYPED.
WORDS OTHER THAN ITEM NAMES OR ITEM VALUES OR THE WORD 'THEN' MAY BE
TYPED BUT ARE IGNORED.

REQUESTS AND ITEM NAMES MAY BE ABBREVIATED BY THEIR FIRST LETTER.
IF TIHE WORD 'QUIT' IS TYPED IN A FIELD IN PLACE OF AN ITEM NAME
THE PRESENT REQUEST IS IGNORED. IF TWO OR MORE INPUT FIELDS SPECIFY
THE VALUE OF AN ITEM THE LAST VALUE TYPED TAKES PRECEDENCE,

TO CONTINUE INPUT ON ANOTHER LINE PRECEDE THE CARRIAGE RETURN
(C.R.) BY A DASH (-). TO INCLUDE A COMMA (,) AS TEXT IN AN ITEM,
FOR EXAMPLE IN A SENTENCE DESCRIPTION, PRECEDE THE COMMA BY A
STAR (I.E.*,). TO INCLUDE A C.R. AS TEXT IN AN ITEM PRECEDE
TEHE, CR. BY A STAR. (*9).

WHEN IN DOUBT OF WHAT TO DO, TYPE A C.R.

REFERENCE IS — SEE JOEL WINETT, EXT 6039 OR 81-301.
(@)

(Fach request can be described by typing the request }
(name only.)

list

EIST Bk, « oo il(ND TR E IS) " TYAREY

THE LIST REQUEST IS USED TO OBTAIN A LIST OF THE NAMES OF ALL
INFORMATION ITEMS, TIIE VALUES OF CERTAIN INFORMATION ITEMS, OR
OF A PARTICULAR TYPE. THE REQUEST SPECIFIES
ONE OR MORE OF TIIE FOLLOWING ITEMS TO BE LISTED — ITEMS, AUTHORS,

36

DESCRIPTORS, TYPES, LANGUAGES, NAMES, OR TYPE IS COMMAND, ENTRY,
LIBRARY, OR PUBLIC.
OK..

describe then find

DESCRIBIE NAMLE IS 'NAME!', I(1) ... I{N)

THE DESCRIBE REQUEST IN USED TO OBTAIN THE DOCUMENTATION OI' A
PROGRAM WHOSE NAME IS KNOWN. THIZ INPUT OF TIHIS REQUEST GIVIES
THE PROGRAM NAME AND THE NAMES OF THE DESIRED ITEMS OF INFORMATION.
IF NO ITEM NAME IS SPECIFIED THE INFORMATION ON ALL ITEMS WILIL
BE PRINTED. FOR EXAMPLE TYPE -

DESCRIBE DATILE AND PURPOSE OF PROGRAM WIIOSE NAME [S INIFO
OK. .
FIND I[{1) IS V(1), ..., IN)IS V(N) . ’
THE FIND REQUEST IS USED TO PERFORM A SEARCH FOR TIHE PROGRANM
OR PROGRAMS WIHICH HAVE PARTICULAR INFORMATION ITEM VALUES,
THE ITEMS TO BE MATCHED ARE GIVEN BY TYPING THE ITEM NAMES TOGETHER
WITH THEIR ITEM VALUES., ACCEPTABLIE ITEMS FOR SEARCHING ON ARE
— TYPE, LANGUAGE, DESCRIPTORS, AUTHOR, AND DATE. A DATE VALUE
MUST BE GIVEN IN THE FORM — DATE IS MM/DD/YY, WHERE MM IS A NUMERICAL,
MONTII, DD IS A NUMERICAL DAY AND YY IS A NUMERICAL YEAR. ALL PROGRAMS
WHOSTE, DATE IS GREATER TIAN THAT GIVEN WILL BE PRINTED, (LE.TIIE MOST
RECENTLY DOCUMENTED PROGRAMS). DESCRIPTORS AR SINGLIE WORDS TYPED
IN ANY ORDER AND SEPARATED BY SPACES. A LIST OIF DESCRIPTORS MAY BIS
OBTAINED BY TYPING — LIST, DESCRIPTORS.

FOR EXAMPLE TO FIND THE COMMANDS WHICH WERE DOCUMENTATED
SINCE JULY 4TH. AND HAVE AT LEAST THE DESCRIPTORS UTILITY TYPE —
FIND, DATE IS 6/04/64, DESCRIPTORS ARE DISK READ
OK. .

store then edit then alter then remove

STORLEE NAME IS '"NAMLE', FILE IS 'FILE', I(1)y IS V(1), ..., [{N) IS V(N)

TIIE STORE REQUEST ENABLES ONE TO ENTER INFORMATION ABOL'T A NEW
PROGRAM INTO AN INFORMATION FILLE., TIIS REQUEST REQUIRES INFORMATION
VALUES FOR EACH REQUIRED ITEM IN THE FORM FEEM NAME' IS/ARKE
'ITEM VALIE', THE NAME OF NEW ITEMS MAY BE DEFINED BY TYPING THE NLEW
ITEM NAME AND ITS VALUE. WHEN AN ITEM NAME IS PRINTED, TYPE THE
ITEM VALUE. [TTEM NAMES AND ITEM VALUES OF OTHER ITEMS MAY Rl
SUPPLIED BY TYPING A COMMA AFTER EACH ITEN VALUE THUS ANTICIPATING
THE REQUIRED INPUT AND REDUCING ON-LINE INTERACTION.

OK. .

EDIT NAME IS 'NAME!

THE EDIT REQUEST CREATES A BCD FILE (AS A LINID MARKED FILE) FOR
USE IN MAKING CHANGES TO INFORMATION ITEMS USING SOME 1TSS EDIT
PROCEDURE. TIE TFILE CRFATED CONTAINS ALIL INFORMATION ITIEMS
EXCEPT THOSE ITEMS WINTCIT CAN BE USED WITII THI FIND REQUEST.

EACH INFORMATION ITEM IS PRECEDED BY A LINE GIVING THIE ITIEM
NAME PREFIXED BY A PERIOD (E.G.— .USAGE) AND CONSEQUENTILY NO
LINE OF AN ITEM SHOULD BEGIN WITH A PERIOD. THE FIRST NAMI
OF TIIE FILE CREATED IS THE SAME AS THE PROGRAM NAME AND THE
SECOND IS INRO!,

OR:

ALTER NAME IS 'NAME', I{1) ISV(1), ..., I{N) IS V(N)

TIHE ALTER REQUEST ALLOWS ONE TO CHANGE ITEM VALUES IN THE INFORMATION
DOCUMENTING A PROGRAM OR TO STORE ANOTIHER INFORMATION ['TEM.
TIE ALTER REQUEST REQUIRES THAT THE PROGRAM NAMIE BLE SPECIFIED,
OK. .

REMOVE NAME IS 'NAME', D IS 'D', A IS 'A', ITEM IS 'T

THE REMOVIE REQUEST IS USED TO DELETE AN AUTIOR, DESCRIPTTOR, OR
ITEM NAME FROM THE APPROPRIATE LIST OR TO REMOVE THE DOCUMENTATION
O A PROGRAM FROM AN INFORMATION FILE. THIS REQUEST MIGITT BE
USED WHEN A PROGRAM IS DELETED FROM CTSS. VERIFICATION OF EACH
REQUEST TO REMOVIEL TIHE DOCUMENTATION OF A PROGRAM IS REQUIRED,
QI

end
5511 REGISTERS OF THE WORKSPACIK WERE UNUSED.
R 49.300+34.216

37

LIST OF PUBLIC PROGRAMS

797 TRACKS USED ON 1/18/65

RUN
MONO4
AEDIL.B1
APPEND
SQZBCD
WIHO
DIS
RELRW
SAFE
PRSYMB
SQZBCD
FDOCT
DSKLIB
ops2
STOMAP
PLIST
@GTPRi
LPREAD
MLIB
2AED
MAP
TRANSE
CONVOL.
DIFTTER
GAME
COMMND
SURB
STRO03
OPr1L65
IS
STROO8
NEWCT?3
SLAVE
ALEDBUG
STROO1

SAVED
SAVED
BSS
SAV D
BSS
SAVED
SAVED
SAVED
SAVED
SAVED
SAVED
SAVED
BHS
3SS
SAVED
SAVED
SAVED
DATA
3SS
LOAD
SAVED
BSS
I3SS
13SS
IRSS
[IST
BSS
LLINK
SAVED
INFO
LLINK
SAVED
SAVED
RSS
LINK

APPENDIX B

- DBGMEM

SQUALL
DO
VARFIX
{BLOOD)
SLEEP
BLODI
PADBCD
SAFE
PADBCD
LISTER
FDOCT
SET
QRS
STOMATDP
LIST
SUBLIS
DISX
CMWRIT
. RBIN
RBASIS
INTEGR
FIL.
MINMAX
ESLOPS
APIAPT
CTEST4
STROO5
STROO7
UPDBSS
RUES

I

ATD002

39

SAVED
INFO
SAVED
INFO
BSS
SAVED
INST
BSS
INFO
SAVED
SAVED
INFO
DATA
SAVED
INFO
SAVED
DATA
SAVED
DATA
BSS
BSS
BSS
DIR
BSS
CRUNCH
SAVED
SAV¥ED
LINK
LINK
SAVED
INFO
INFO
(MEMO)
SYSTEM
SAVED

- [
- FILES
- DIST&SS
— SURBUSIS
VARIFIX

— ALDLIB
- CTSS
— SAVFIL
~WRFULI.
RERUN
LISHCR
- ors2
— RUNBUG
MACHI

- LIST
- QUIS
— CHAIN
— SL.PLIB
— GRS
21

- CONVT
— DATA
GRETF

- n' 012
TRACE
STR004
STRO0O2
STROOE
BAYLES

_ DELRQ
- OLDRQ
= T
COMAND
ATDO001

— USER

SAVIED —
INFO
SINMIRLD
SAVED
SAVED
BSS
SAVED -
SAVIED
BSS
SAVIED
INTFO
WORDS
SAVED
BSS -
INFO —
SAVIED
DATA
RSS -
ENIFE
BSS
BSS
SAVED
1358
SAVED
BSS: -
LINK
[LINK
[LINK
BSS
SAVED
SAVED
SAMIER
INFO
SYSTEM
REMARK

(
{

This table was produced using the SUBUSE command wrilten

by Barry Wolman. The table was produced on 12/22/64.

ANA
ATN
BLK
COM
COS
COT
DIM
EXP
FLK
INT
1.OG
MOD
ORA
SIN
SQR
TAN
ZAL,

ACOS
ASIN

ATAN
BZEL
COLT

DEAD
DFAD
DEDY
DEMP
DEFSRB
DPNV
puMp
ENDF

EXIT

FILE
EREE
BRI
GCLC
GCLS
GLOC
GMEM
GNAM

INDV
. BSE
JBSK
LR
.MTX
.RWT
ASISae

IS
IS
Is
IS
IS
IS
IS

APPENDIX C

SUBROUTINE USAGE TABLE FOR TSLIBI1

NOT USED.
NOT USED.

CALLED BY

NOT USED.
NO'T USED.
NOT USED.
NOT USED.

CALLED BY
GALLIBD} 1B

NOT USED.

CALLED BY

NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.

NOT USEDR.
NOT USED.
NOT USED.

CALLED BY
CALLLBER: SBY!

CALALED "BY

NOT USED.

CALLED RBY
CALLED BY

NO'T USED.
NOT USED.
NO'L USIED.

CALLED BY

CALLED BY

CALLED BY

NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED,

CALLED BY

NOT USED.
NOT USED.
NOT USED,
NOTT MSED.
NOT USED.
NOT USED.
NOT USED,

SEEK
01300

SEEK

.01300

{(ST1B) (RWT)
SCHAIN BREAD
SETVEH SEEK
MOVE1 DWRITIE
B

{IOH)

(1OH)

BREAD DREAD
EQEXIT (RWT)
(FeT) ISP
EOFXIT RECOU P
SETVR

(RWT)

SCHAIN BRIEAD
SETVEB SEEK
CHMODE DELETE
PRNTP ROFINB

DWRITE DSKDMP

41

)

BWRIT
XECOM
SETBERR

SETVE

BWRIT
ESTAT
CONARG
GN EIAL
GCL.C

DREAD
BOIEXTT

SEEK

BW R
FDUALE

DREAD
R ENARN [
CONLIF.
CHNCOM
GEPCE

MAXO
MAX1
MINO
MIN1
SCLE
SCLS
SEEK
SETU
SFDP
SIGN
SLOC
SMEM
SNAP

SQRT
SRCH
TANI
XDIM
X FIX
XINT
XLOC
XMOD

BCDEC
BREAD
CLOUT
COMFL
DEFBC
DELBC
DERBC
DREAD
ENDRD
ERASE
ERROR

EXITM
EXMEM
EXP(1
ER(2
EXP(3
FSTAT
GETCE
GETTM
GTNAM
IOEND
IOITR
IOPAR
[OSCP
IOSET

. DUMP
.FILE

. LOAD
. LOOK
.READ
.SAVE
.SEEK
JOBTM
LDUMP

LJUST

MOVE1
MOVE2
MOVE3
OCABC

NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY

CALLED BY
CALLED BY
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.

CALLED BY
CALLED BY
CALLED BY
NOT USED.
CALLED BY
CALLED BY
NOT USED.
CALLED BY
CALLED BY
NOT USED.
CALLED BY

NOT USED.
NOT USLED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED,
CALLED BY
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY
CALLED BY
CALLED BY
NOT USED.
NOT USED.
NOT USED.
CALLED BY
NOT USIED,
CALLED BY

CALLED BY
CALLED BY
CALLED BY
CALILIID BY
CALLED BY

(STB)

(SCH)
DWRITE
(RWT)
DELETE
.01300
SEEK

EOFXIT
(STB)
EXIT

GTNAM
(STB)

SCIIAIN
(TSH)

(RR)
LOG
EXP

(STB)

SCHAIN

DSKDMP
SEEK
DSKDMP

SEEK

.01300
SQRT
DELETE
SCHAIN
SCHAIN
SCHAIN
(IAR:L)

42

(TSH) SCHAIN
(TSH) BREAD
SETVB SEEK
SYPAR SETERR
(RWT)

(RWT)

.01300 EXP(2
SQRT TAN
GTNAM

XECOM

SRCH (RWT)
SYPAR

EXP(2 ACOS
TAN INDV
XECOM GCLC
XECOM GCLC
XECOM GELE

BWRITE
DSKDMP
DREAD

ACOS
INDV

EXP

OCDHRC
OCLBC
OCRBC
PDUMP
PRNTP
RANNO
RDFLX
RJUST
SETVR
SLEEP
STQUO
SY PAR
TIMER
VREAD
WRIFLX

XECOM
NXMAXO
XMAX1
XMINO
XMIN1
XSIGN
(BST)
(CSH)
(BEFT)
(EXE)
(FIL)
(FPT)
(101T)

(RLR)
(RTN)
(RWT)
(SCH)
(SL.I)
(ST1.0})
(SPII)
(STB)
(STT)
(TSB)
{TSIT)
(WT.R)

AKNOLG
APPEND
ASSIGN
BWRITE
CHMODE
CHNCOM
CLKOUT
CLOCOR
CLOCON
COMARG
COMFIL
DIEGEREIT
DEISIET IS
DORMNT
DSKDMT?
DSKLOD
DWRITE
ENDJOBRB
EOTFXIT

IS

CALLED BY
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY
CALLED BY
NOT USED-
NOT USLED.
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY

NOT USED,
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED
CALLED BY
NOT USED
CALLED BY
CALLED BY
CALLED BY
CALLED BY
CALLED BY

NOT USED.
CALLED BY
CALLED BY
NOT USED,
NOT USED.
NOT USED.
NOT USED.
NOT USED.
NOT USED-.
NOT USED.
NOT USED.
NOT USED.

ROT USED,
CALLED BY
CALLED BY
CALLED BY
NOT USED.
CALLED BY
NOT USED.
NOT USED.
NOT USED.
NOT' USED.
CALLED BY
NOT USED.
CALLED BY
CALLED BY
NOT USED.
NOT USED.
NOT USED.
CALLED BY
CALLED BY

SNAP

.RDATA
SCHAIN

STOMAP
ERROR
SETVRB
EOFXIT
PRNTP
EXTT

. BSF

. BSF
(IOT)
DWRITT
CSETUP
(SCTI)
DWRITE

DREAD
. BSF

(SCH)
(SCH)
(STIB)

SCHAIN

COMTL

SCHAIN
EXIT

. PRSL.T
(TSID)

43

(CSII) DELETE
XECOM

(FPT) . PCOMT
SCHAIN BREAD
SKEK (1OH)
SETERR SNAP
(SPH) DREAD
(SPIH) (CSH)
DREAD

(STB)

(STB)

EXIT

XECOM GTNAM
DFAD

BREAD DREAD

.RDATA
BWRITE
(EXE)
FREE
(RWT)

('St

RENAME

SETVE

FWRITE
GETBRK
GETCFN
GETCLC
GETCLS
GETCOM
GETIME
GETLOC
GETMEM

IOHSIZ
01300
.01301
01311
SOBBO
.03311
.APEND
. ASIGN
. COMNT
DLEETE
. ENDRD
. ERASE
. FILDR
.FSTAT

.PCOMT
. PNCHL
.PRBCD
+PRINT
. PROCT
. PRSLT
. PUNCH
.RDATA
.READK
.READL
. RELRW
. RENAM
. RESET
.RPDTA
. RSTOR
. RSTRN
.SAVRN
.SCRDS
.SETUP
.SPRNT
AR
. TAPWR
.WRITE
KILLTR
MOVIE)
PRNTPA
PRNTPC
RDFLXA
RDFLXB
RDFLXC
RECOUP
RENAME
RSCLCK
RSTRTN
SAVBRK
SCHAIN
SETBCD
SETBRK
SETGLE
SETCLS
SETEOF

NOT USED.
NOT USED.
NOT USED.,
CALLED BY
CALLED BY
CALLED BY
NOT USED.
CALLED BY
CALLED BY

NOT USED.
NOT USED,
NOT USED.
NOT USED.
NOT USED.
CALLED BY
CALLED BY
CALLED BY
NOT USIED.
CALLED BY
CALLED BY
CALLED BY
NOT USED.
CALLED BY

NOT USED.
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED,
NOT USED,
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED,
CALLED BY
NOT USED.
CALLED RY
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED.
NOT USED.
NOT USED,
NOT USED.
NOT USED.
NOT USED,
CALLED RBY
CALLED BY
CALLED BY

SCHAIN XECOM
SCHAIN XECOM
COMARG

SYPAR

BREAD BWRITE
GMEM

.RDATA (I0H)
SEEK

SEEK
SCHAIN XECOM
SEEK SRCH
DELETE

(SCH) SCIHAIN
DELETE

. PRSLT

(TSH) BREAD

RENAME CHMODE

. PRSLT . SET

(SCH) BWRITIE

STOMAP (FPT)

RDFLXB

SEEK (EXE)
SCHAIN XECOM
SCHAIN XECOM
SCITAIN

44

GCLC
GCLC

SRCH

DELETE
(RWT)

FSTAT

DREAD

DELETE

DWRITE

SNAP

GCL.C
GELG

FRIEI

RENAME

SETVB

SETVR

SETERR
SETIFMT
SETFUL
SETIOC
SETMEM

STETNAM
SETVBF
STOMAP
STOPCL
TIMLET
TSSIILL
USRFIL.
VWRITE
WRDONT
WRFLXA
XDETRM
XSIMEQ
(EFTM)
(LFTM)
(SIPTTM)
(STTIM)
(TSITM)

IS
s
IS

NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALILED RBY

NOT USED,
NOT USED.
NOT USED.
NOT USED.
NOT USED.
CALLED RY
CALLED BY
NOT USED.
NOT USED.
CALLED BY
NOT USED.
NOT USED.
CALLED BY
CALLED BY
NOT USED.
NOT USED.
NOT USED.

MISSING SUBROUTINES. ..

MOVIID)

BREAD BWRITE
GMEM

SYPAR

SYPAR

DELETE PRNTP
SETUIR .RDATA
(02 ;2 B3 .RDATA

45

SRCH

(1011
(101T)

FRER

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security clessificetion of title, body of abstrect and indexing annotetion must be entered when the overall report is clessified)

1. ORIGINATING ACTIVITY (Corporete euthor)

Lincoln Laboratory, M.L.T.

2¢. REPORT SECURITY CLASSIFICATION
Unclassified

2b. GROUP
None

3. REPORT TITLE

On-Line Documentation of the Compatible Time-Sharing System

4. DESCRIPTIVE NOTES (Type of report end inclusive detes)

Technical Report

5. AUTHORI(S) (Last name, first name, initiel)

Winett, Joel M.

6. REPORT DATE

12 May 1965

7e. TOTAL NO. OF PAGES 7b. NO. OF REFS
52 7

CONTRACT OR GRANT NO.
AF 19(628)-500

9a. ORIGINATOR’S REPORT NUMBERI(S)

TR-387

b. PROJECT NO.
e 649L 9b. OTHER REPORT NO(S) (Any other numbers thet mey be
2 essigned this report)
s ESD-TDR-65-68

10.

AVAILABILITY/LIMITATION NOTICES

None

SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Air Force Systems Command, USAF

13.

ABSTRACT

The dissemination of information about computer programs is hampered because of the lack
of conformity in documentation, the delays inherent in any distribution system, and the inability
to select only desired information without being flooded with information which is riot of present
interest. An on-line system for storing and retrieving information about the programs associ-
ated with the Compatible Time-Sharing System (CTSS) has been developed to be included as a
CTSS command. This system will help to document the system commands, supervisor entries,

library subprograms, and public programs.

These types of programs have been chosen since

there is an urgent need for having this documentation available on demand, i.e., on-line.

14.

KEY WORDS

documentation information retrieval on-line systems
computer programs information systems time sharing
catalogs computer applications data storage

46 UNCLASSIFIED

Security Classification

