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FOREWORD

This is the final report of the Engineering Projects Laboratory's

two-year contract AF 33(657)-8384 with the Aero Propulsion Laboratory,

Research and Technology Division, U. S. Air Force, Wright-Patterson

Air Force Base, Ohio. Together with the first annual report (DSR 9159-]),

a professional paper, and some theses, written and not yet written, it con-

tp.ins the salient results of the study.

Principal direction has been by F. T. Brown, Assistant Professor

of Mechanical Engineering, although until his departure from M. I. T. in

July 1960, J. L. Shearer, Associate Professor of Mechanical Engineering

provided general direction. The following are largely responsible for

their respective chapters:

Chapter 1 F. T. Brown

Chapter Z K. N. Reid, Instructor

Chapter 3 R. J. Gurski, Instructor

Chapter 4 F. T. Brown

Chapter 5 S. D. Graber, Research Assistant

Chapter 6 A. H. Greenleaf, Research Assistant

Chapter 7 W. B. Bails, Research Assistant

(written by F. T. Brown)

H."
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ABSTRACT

Techniques for sensing the relative threat of flow instabilities

in jet engines have been a long sought-after goal. This is the final

report of a study aimed at determining the feasibility of certain types

of fluia jet amplifiers used as fast pressure and temperature sensors.

The background of the project, the environment in which the fluid

sensors must operate, and initial results have been presented in the

first annual report.

i' The more theoretical aspects of the present report include a

study of the statics and dynamics of the interaction of a fluid jet and

a receiver port, the dynamics of the controlled deflections of jets in

fluid amplifiers, and the dynamic analysis of fluid systems. The more.

applied aspects include the design of a fluid-relay stall-cell sensor, a

fluid diode possibly useful for sensing blade wakes or stall cells, and a

unique reference-frequency pneumatic oscillator.
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1. INTRODUCTION

Techniques for sensing the relative threat of flow instabilities

in jet engines have been a long sought-after goal. The present study

has been directed toward the possible use of fluid jet amplifiers with

no moving parts to sense stall cells and blade-wake widths, and to ex-

tend the basic knowledge of these complex 6-port amplifiers which also

have many other military and non-military uses. In addition, a pneumatic

oscillator was developed, using some moving but non-sliding parts, which

has a frequency largely insensitive to pressure and temperature changes.

The background of the present project, the environment in which

fluid sensors must operate, and initial results under the contract are

presented in the first annual report.

The Engineering Projects Laboratory depends on Master's and

Doctor's degree candidates for the bulk of its effort. It is impossible to

accurately predict, let alone control, the durations of several adequate

thesis investigations, particularly at the doctorate level. Consequently,

only two Master's theses have been completed under the contract (a third

was abortive), while two most pertinent doctoral theses and one Master's

thesis are unfinished, a fact reflected in this report. Estimated completion

dates for all three are in August of this year. All theses are or will be

available at cost from the Engineering Projects Laboratory, Document

Room 3-154, M.I.T., Cambridge 39, Massachusetts.

The first few chapters emphasize the more theoretical aspects of

the work, and the last few the more practical. Chapter 2 describes an

extensive study by K. N. Reid into the statics and dynamics of the inter-

action of a fluid jet and a receiver port. A partially-theoretical partially-

experimental approach toward static diffuser optimization with a non-uniform

inlet-velocity profile is presented, although the experimental work itself ib

as yet mostly undone, The dynamics of fluid lines with a jet incident at one

Manuscript released by the authors June 1964 for publication as an RTD

Technical Documentary Report.
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end was investigated in detail both analytically and experimentally, with

good agreement. It is shown that most oscillations can be quantitatively

predicted from static measurements of the active upstream pressure-flow

characteristics at the jet-end of the line, plus theoretical considerations

for the passive part of the line and associated volumes, restrictions, etc.

Viscous wall shear is shown to substantially dampen most oscillations.

(L. E. Johnston, a doctoral fellowship student unsupported by this contract,

is studying the problem of two parallel lines coupled by a jet incident at one

end. )

The dynamics of the controlled deflection of jets in fluid amplifiers

and relays is the subject of Chapter 3, prepared by R. J. Gurski. Contin-

uing from the presentation in the first annual report, a mathematical model

for the dynamics of the jet under control is presented. The dynamic control

impedances as well as the dynamic response of a system is the goal of this

as-yet-incomplete effort. Considerable use of digital and analog computers

is involved.

The dynamic analysis of systems is discussed briefly in Chapter 4

including references to Engineering Projects Laboratory publications on

fluid lines and a general approach toward predicting the stability of fluid

systems. This latter development, sponsored by the present contract,

is presented in detail at the Harry Diamond Laboratories' Second Fluid

Amplification Symposium. Also in Chapter 4 the effect of bends on the

dynamic response of lines is discussed.

In Chapter 5, S. D. Graber presents his work on bistable fluid-

jet relays motivated by the desirability of sensing stall cells in axial-flow

compressors. Background work was presented by R. J. Gurski in ,1e

first annual report. Graber concentrates on the static stability of the jet.

Sensitivity of the device depends on a small stability margin for the deflected

states of the jet; rapid dynamic response depends on a large instability for

the center position of the jet. These conditions -un counter to one another

but an optimum configuration exists. Dynamic experimental results reveal

a frequency limitation.

Chapter 6 by A. H. Greenleaf, presents the developm,-nt of a fluid

oscillator which is intended to be efficient and have a frequency insensitive

_ • -•=,!.-.-. _ =• ... . . .. . - - . . . . . , , - 2- . . .



to large operating temperature and pressure changes. Mass-spring

oscillators of several types were considered, and a circularly-oscillating

wire-supported disk adopted. Pressure insensitivity results from a tan-

gential driving force, perpendicular to the radial spring force. Consequent

dynamic stability proolems are analyzed and then configurationally avoided.

Temperature sensitivity, resulting from changes in Young's modulus for

the wire springs, is compensated by an axial sub-buckling force induced by

a temperature-sensitive sealed dllows. Although the final breadboard

model worked with respect to its significant features, iurther minor develop-

ment is indicated for a truly useful oscillator.

In the first annual report a fluid-diode-blade -wake sensor was

proposed, and linear analyses and initial experimental results discussed.

In Cha?ter 7 of the present report the conclusion of this work is presented.

A nonlinear dynamic analysis is given. Of the three types of diodes studied

by. W. B. Bails only the vortex diode has marginally adequate experimental

static characteristics, but unfortunately this diode has dynamic characteristics

which fall short of the high-frequency goal. Th,.- Tesla diode, patented some

40 years ago, was given brief static testing anc. found to be superior to all

the others. All the devices, however, are shown to be ineffective at low

Reynolds numbers, greatly limiting small-scale applications such as the

desired sensor.

-3-



2. JET-RECIEVER STUDIES

2.1. Background

Various aspects of the over-all problem of jet-receiver-diffuser

steady-state and dynamic performance has been discussed by the writer

in previous reports on this and another contract, Ref. 1 and 2, as well

as in the writer's M.I.T. ScD. Thesis Proposal (Ref. 3). The discussions

of static •erformance dealt primarily with problem definition and the

adequacy and limitations of the available literature in providing a basis

for static performance prediction. It was shown that the over-all problenm

of static performance prediction can be separated conceptually into several

related fundamental hydrodynamic problems. For convenience, these

problems were classified as follows: flow through "short tube" orifices and

nozzles, flow of "controlled" submerged jets, diffusion of nonuniform

turbulent streams in constant-area passages, and conversion of kinetic

to potential energy in "slow expansion" and "sudden expansion" diffusers.

In the previous annual report on the present contract,( Ref. 1),

the problem of jet-receiver dynamic interactions was discussed. The

potential "causes and effects" of receiver pressure oscillations were briefly

d'scussed. A simple experiment was outlined which was designed to study

the dynamic behavior of the interaction region. The experiment was designed

so that the reflection coefficient of the source terminal (i. e., the interaction

region) could be measured. No significant experimental results were avail-

able at the time of writing.

The goal of the over-all program of study of jet-receiver per-

formnance is to provide a critical port!on of the information necessary for

rational design of jet modulator systems. Included in this report (Secs. 2.2

and 2. 3) are analytical and experimental results obtained to date on certain

of the jet-receiver static and dynamic problems thought to be particularly

critical in terms of accomplishment oi the desired goal.

-4 -
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2. 2. Receiver-Diffuser Steady-State Performance

2.2.1. General Characteristics of Diffusion Processes

The underlying problem of receiver-diffuser design is the

establishment of an optimum internal geometry based on a desired

criterion of merit. For example, one interesting and important

"optimal" problem involves maximizing the ratio of the powe recovered

in the receiver-diffuser to the power available at the nozzle supply con-

ditions. Regardless of the type of optimal problem, the function of the

receiver-diffuser is basically the same: that of efficiently transforming

the kinetic energy of a high velocity submerged jet into controllable

potential energy.

It is apparent on consideration of the fundamental character of

a free submerged jet that the receiver-diffuser inlet velocity profile will

be nonuniform in character. Perhaps the most important single problem

affecting steady-state performance prediction is a complete characterization

of the receiver inlet velocity profile. Certainly a complete description of

this velocity profile must take into account the critical geometrical and

operational parameters. One interesting question is: how far back (toward

the nozzle) into the otherwise free submerged jet is the disturbance intro-

duced by the receiver actually propagated? Answers to these questions are

goals of future experimental studies.

Having described the characteristics of the flow in the "free"

region between the nozzle exit and the receiver inlet, the next problem

to be encountered is a description of the flow within the receiver-diffuser.

Diffusion of a stream in internal flow, in the sense of increasing static

pressure, is accomplished by means of velocity profile "smoothing" and/or

simple area change. It is well known that diffusion takes place in a diverging

passage, the most common type of diffuser, due to the area change itself.

It is often forgotten that changes in the velocity profile also affect the dif-

fusion process, i.e., the ability of a passage to transform energy from

kinetic to potential. Equally imiportant, but less well known, is the fact

that diffusion may take place in a constant-area passage due to the effect

of velocity profile smoothing.

-5-



in order to understand the process of constant-area diffusion,

it is necessary to introduce the concept of uniformity of a fluid stream.

Uniformity refers to the closeness to which the transverse profile of

the longitudinal velocity approaches a "rectangular" profile (see Fig. 1).

A convenient quantitative measure of the uniformity of a velocity profile

is the momentum coefficienit defined as follows:

true momentum of the stream

momentum based on the continuity average velocity

Thus

V 2 dA

- 2
V A

Considering now the constant-area passage shown in Fig. 2, the

law of conservation of momentum requires that

2 4T L

2(a - a2 ) (2)

where

P 1 = static pressure at station 1

PZ 2 static pressure at station 2

"•I = V 2  continuity average velocity

aI and a= momentum coefficients

T= wall shear stressw

= fluid mass density

Thus the difference in static pressure at two stations is a function of the
difference in the velocity profile shapes (given by a, and az) at the two

sections and the wall friction iorces which act between the two stations.

It is well known that the velocity profile of the flow in a constant-area

passage tends to stabilize along the passage, i.e., asymptotically approach

-6-



a. Nonuniform b. Uniform

Fig. 1. Concet of Velocity Profile Uniformity
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() W(2)

Fig. 2. Velocity Profile Smoothing in a Constant-Area Passage.
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a "fully-developed" profile. With laminar flow, the profile always

approaches the well-known parabolic profile at a distance sufficiently

far down the passage. Likewise, in turbulent flow, the profile tends

asymptoctically to the familiar n-th power law profile. It is interesting

that the value of a for a 1/7-th power profile is approximately 1. 02.

If thc profile at a st tion in the passage is highly nonuniform

(a is much greater than the corresponding fully developed value), then

Eq. (2) shows Lhat an increase in profile uniformity may cause an in-

crease in static pressure which outweighs the decrease due to wall

shear. Certainly if the passage is long enough, wall friction will

eventually dominate. It should be noted that constant-area diffusion

is accompanied by inherent energy loss, as in any diffusion process.

An empirical approach to the study of constant-area turbulent diffusion

is discussed in Sec. 2. 2.3.

In a passage whose area increases in the direction of flow,

the "profile smootbing" form oz diffusion is superimposed on the area

change form. Area-change diffusion, in the sense of increasing static

pressure, ceases when the area change effect is balanced by the wall

shear effect. Energy losses in area-change diffusers primarily result

from velocity profile smoothing, wall shear, and separation. Experience

indicates that a nonuniform velocity profile at the entrance to a "slow

expansion" area-change diffuser leads to a significantly larger over-all

energy loss than would occur with a more uniform inlet profile (see

Sec. 2.2.4).

On the basis of this qualitative understanding of diffusion

proceases, past experience with jet pumps and ejectors, and con-

siderations of practical geometry from the standpoint of construction,

the following hypotheses are made (Ref. 2):

1. There exists a "best" length of constant-area passage

together with a "best" geometry of the increasing-

area passage such that the efficiency of the diffusion

process is maximized for a given set of conditions.

- 9-



2. There exia+ a "best'length of constant-area

passage together with a "best" geometry of the

increasing-area passage such that the desired

"shape" of the static pressure-flow characteristic

is obtained at the maximum possible efficiency.

These hypotheses must, of course, be verified by suitable

anatlysis and experiment.

A combined analytical and experimental program is underway

which is aimed at definiug the term "best" in a quantitative way. Pre-

liminary results of this study are given in Secs. 2.2..3 and 2.2.4.

2. 2. 2. Constant-Area Turbulent Diffusion in Jet Modulators

In a sense, the problem of constant-area turbulent diffusion

belongs to a class of problems known as "entry length" problems. A

brief discussion of the character of these problems is given in Ref. 2.

The velocity profile development of a turbulent stream in the consta.ut.-

area diffuser of a jet modulator diff ýrs in the following respe .. s fromn

that encountered in the usual entry length problems:

1. The velocity profile at the inlet section of the passage

is very nonuniform ancl, in fact, may be nonsymmetrical

as well,

2. The flow is already "fully developed" turbulent shear

flow or at least has a relatively high turbulence intensity

when it enters the passage,

3. Development of the velocity profile in the direction of

flow is primarily due to the transfer of xi-omentum

between fluid layers under the action of turbulent

shear stresses. The wall shear stress is small in

comparison with the turbulent f.resses, at least for

several diameters along the passage,

4. The development of the profile is accompanied by an

initial rise in static pressure; ultimately the point is

reached where wall shear becomes important and the

static pressure begins to decrease.

-10-
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5. Transition from an unusually nonuniform profile to

one having the 3ame degree of uniformity as the corres-

ponding fully developed turbulent pipe flow, takes place

in only a few diameters rather than the customary 20 - 502

diameters required in the usual entry length problem.

Figure 3 serves to illustrate schematically what might be

expected to occur in constant-area diffusion. In Cases a and b, it

is aasumed that the flow in the passage is turbulent and that the velocity

profile is identical to the profile in the corresponding section of an un-

obstructed free submerged jet. These two cases represent one end of

the spectrum of interest, .. e., the situation which should exist when no

throttling takes place downstream of the diffuser (receiver input impedance

is essentially zero}. When considerable throttling takes place (receiver

input impedance becomes very large), the flow in the passage may be

laminar rather than turbulent. Certainly as the receiver input impedance

approaches infinity, the fPow in the passage must proceed from turbulent

to laminar. Cases c and d of Fig. 3 illustrate cases of high, but not

infinite, receiver input impedance (I. e., finite through flow). In all

cases, the correspondirg fully developed profile is approached. Very

little beyond qualitative reasoning exists to substantiate the schematic

representations of Fig. 3. However, the results of a single experiment

reported in a 1950 PhD. thesis by H. L. Grimmrtt (Ref. 4), provides

some measure of verification for Case a. Grimmett measured the velocity

profile in a circular constant-area duct displaced 15 diameters from an

axially-aligned nozzle. It should be noted that there was no throttling of

the flow leaving the downstream end of the duct, and consequently, the

static pressure at the exit plane was atmospheric. These data are re-

produced in Fig. 4. Since the well streamlined, non-throttled duct places

virtually no obstruction in the field of the submerged jet, the duct inlet

velocity profile is indistinguishable from the corresponding portion of the

free jet profile. it is evident that the transition from the hiqi ly nonuniform

inlet profile to a seemingly fully developed profile takes place in 4-5 diameters.

It i.s interesting that the point at which the xall static pressure first peaks

occurs somewhat before the apparent point at which the profile is fully

-- 11--
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developed. Furthermore, the static pressure data show the relative

un.'nportance of the total integrated wall shear stress in the first 4 or

5 diameters of the duct. The "mportant conclusion is the fact that the

velocity profile smoothing, under the action of turbulent shear stresses,

takes place much more rapidly than the profile "shaping" as a result of

wall boundary layer growth. These data, although admittedly much too

limited in scope, provide the basis for the previous hypotheses concerning

the length of duct necessary to achieve a profile of high uniformity.

2. 2. 3. Empirical Approach to the Study of Constant-Area
Turbulent Diffusion

It is entirely possible that jtt modulator static performance

can be predicted adequately by simplified means without ever really

being concerned with the details of T e diffusion processes. However,

even if this ideal could be achieved, it is unlikely that there would exist

a truly rational basis for optimiz-tion studies. Cnnsequently, one seems

justified in considering, insofar as is feasible, the details of the flow

processes.

In establishing an analytical basis for optimizing the over-all

diffusion process, it is necessary to have a knowledge of the velocity

distribution in the diffuser passages. On seeking a solution to the constant

area turbulent diffusion process, one is faced with the inadequacy of our

understanding of even the most simple turbulent flow processes.

Truly no "exact" analytical solution to the basic equations of

motion has ever been found for a turbulent flow problem. Nevertheless,

the well-known sernii-empirical hypotheses established oy Prandtl,

Reichardt, and Taylor have been applied with a reasonable degree of

success in a number of important engineering problems and present

some hope for the present problem. Of course, a solution to the

turbulent diffusion problem would not be complete by itself. The truly

useful solution must. be applicable regardless of flow regime (i. e.,

turbulent, transition, or laminar). It seems unlikely that a single

solution can be found that will be universally applicable. What is more

probable is that two or more solutions :an be "matched" judiciously!

- 14 -



The turbulent diffusion problem can now be stated as follows:

Given the initial distribution of velocity and static pressure at a certain

passage section (i. e., at the inlet section of the passage), what is velocity

profile at another section downstream? Certainly a hint for a solution is

offereu by experimental evidence (Refs. 4 and 5) that the turbulent mixing

process is far more rapid than the boundary layer growth. The success of

Reicharc "s inductive theory of turbulence when applied to submerged jets

and other problems which have a principal flow direction, suggests that

his theory may be applicable to the present problem. This theory has

been applied with apparent success to problems of free jets, jets dis-

charging parallel to a wall, and jets discharging at the center of a duct,

by a group of investigators+ at the Engineering Experiment Station of the

University of illinois (Refs. 6 and 7). The technique developed to handle

the case of a jet issuing at the center of the duct, as in a jet pump, is

empirical ni nature in that two constants must be determined experimentally.

Such is typical for turbulent flow problems. An empirical expression is

presented in Ref. 7 for the prediction of the transverse total momentum dis-

tribution at the various sections of the duct. Recently, R. Moissis and

P. Griffith of M. I.T. successfully utilized the technique developed by the

previous investigators for the "ducted jet", to predict the total momentum

distribution in the wake of an air bubble in developing two-phase slug flow.

(Ref. 8). The same general approach will be followed in the analysis below.

Consider now the steady, incompressible axially-symmetric

turbulent flow in a constant-area circular passage. (The results of an

analysis for a two-dimensional passage will follow the present development.)

Boundary layer development at the walls is neglected. The theoretical

reasoning of Reichardt's approach is discussed in Refs. 9 and 10. The theory

is based on the momentum equation for the time-mean averages of the velocity

in the principal direction of flow. Thus

+The PhD. thesis by H. L. Grimmett mentioned in Sec. 2.2. Z. is part of

this larger study.

- 15 -
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S(3)

where

p = fluid mass density

u = instantaneous velocity in the x-direction

ii = time-mean-average velocity in the x-direction

v = instantaneous velocity in the r-directlon

= time-mean-average velocity in the r-direction

x = distance along axis of cylindrical passage

r = radial position in cylindrical passage measured
from axis of passage

P = static pressure; P = mean static pressure

The second basic equation in Reichardt's theory is of an empirical nature

and has the form

-v -A -(u) (4)
ar

The termn uv represents the turbulent shearing stress. The parameter A

is called the "momentum transfer length. " It has the dimensions of length

and is assumed to be a function of x only. Equation (4) thus relates the

turbulent shear stress to an easily measured mean flow quantity by means

of a "hypothetical" transfer length. In words, Eq. (4) states that the flux

of x-component of momentum which is transferred in a transverse direction

is proportional to the transverse gradient of momentum.

Combining Eqs. (3) and (4) and rearranging yields

-L + . (Pu .-- A r• (j 0 (5)
Ox Ox r O r a r

Assuming the pressure gradient in the transverse direction (i. e., ap/Or) is

of small order compared to the longitudinal gradient ap/ax, ap/ar can be added

to both sides of Eq. (5).without destroying its vallaity. Thus

-16 -



F -+2 (+p ul-)_i A -2a Lr -L (ý + eu-)j = 0 (6)
ax r 8r ar

Definingm= p+pu gives

am 1 A -a= 0 (7)

ax r a:Ir r

In order to simplify the boundary condltions, it is convenient to make

the following definitions: r = 2r/D, where D = passage diameter

and

M = (M- mo /- °

where

m (p +( p u ) at x---moD; taken as the fully developed

turbulent flow total momentum

(p + pu ) at x = 0; x = 0 is the total momentum at the

entrance of the passage and is assumed to be known.

Using these definitions, Eq. (7) can be written in dimensionless form as

follows:

EaM 4 A a -a (8)

ax r+ D2 7r+
This is a linear, second-order partial differential equation in the variable M.

Four independent boundary conditions can be specified:

1. (aM/r+r+=O = 0, from symmetry.

2. (aM/ r+ ) r = 0, since wall friction is neglected.

3. (M)x_-ao = Mfd, i.e., fully developed value of M is a

useful reference. It can be calculated frnm an accepted

power law profile.

4. (M)x 0 =o -(m 0 - /m° = i - M/Con 0 = f(r +);

this value of M is assumed to be known.

- 17 -



Solutioi of Eq. (8) by separation of variables and subsequent

substitution of the first two boundary conditions above yields the product

solution.

OD x7 + CA 2
M AnJ (anr +) expI 4A a dx (9)21=l n n 0 D- n

where

J = Bessel function of zero-th order0
J = Bessel function of first order

a = n-th root of J 1

A = a constantn

The function A = A (x) which appears in the exponential (i. e., the

momentum transfer length) must be determined empirically. Given a set

of experimental values of M, the function A (x) can be defined in such a

manner that experimental and theoretical values of M are identical. Re-

calling the definition of M, it is obvious that measurements of velocity

distribution and static pressure at various stations along the passage will

yield the desired experimental values of M. Equipment has been designed

and is now being constructed for the purpose of making measurements of

this type. A pitot probe will be used for these measurements. Additional

measurements will be made, using X-array I.ot-wire probes, of the actual

turbulent shear stress distribution at various passage stations. These

latter measurements will provide the additional information necessary for

direct integration of the original equation of motion (i. e., Eq. (3)). The

validity of the simplifying assumptions made in establishing Eq. (3) and,

indeed, the whole of the Reichardt theory, can then be determined.

It would be highly desirable to establish an explicit relation foz

A = A (x). The assumption has already been made that A is independent of r.

This turns out to be a good assumption when the Reichardt hypothesis is used

for free jet analyses. In contrast to free jets, A cannot grow indefinitely

(as x increases) in a constant diameter passage. In the absence of wall

friction, it seems reasonable that the presence of a wall should have no

other effect on A than to place an upper limit on its growth. A purely

- 18 -
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arbitrary function. suggested in Ref- 7- that vpdtr-a o.e free j- e

relation for small x, but which imposes on A an upper limit which is a

fu-nction of the passage diameter is

2
A C x (10)

2 ý1 +

where c and b are arbitrary constants. By having such an arbitrary

function, it would seem that or.e has a lot of latitude in correlating ex-

perimental data. It is to be expected that the form of Eq. (10) will be

reasonable for a passage with little downstream throttling. in this case,

the value of A at the entrance of the passage should be very nearly identical

with that of the correspondLing free jet. Whether Eq. (10) is of a reasonable

form when there is considerable downstream throttling -emains to be

established.

Assuming the utility of Eq. (10), it is possible to carry the

analysis further. Combining Eqs. 19) and (10) yields

OD +~ ~ 2c 2  an2
SAnJo(anr+) e n (I +)exp

nzl no 2 [

The remaining two boundary conditions can now be utilized. These are

M -- 0 as x--oo

and

M = f (r ).

The first condition is satisfied by the exponential term of Eq. (11) which

tends toward zero as x increases without lir-it. The second condition yields

O0

f(r n J o (ar) (12)
n= n

- 19-
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By virtue of the ortnogonality of the Besse) series

~,1
f2+ j + r+ +

2 f(r) o (a r) r dr+ (13)

[ 0 1 (an) ] 2  0

provided the s:-ries is uniformly convergent. (Ref. 11) Now any arbitrary

initial profile of the total momentum, function, Mo, can be imposed on An.

Except for the case of little downstream throttling, a rational means for

evaluating M under all downstream load conditions does not exist presently.

The earlier mentioned experimental program is aimed at providing this

, -formation.

There is as yet no known way to predict the values of the empirical

constants, b and c, in Eq. (11). Resource must be made to judicious ex-

periment. However, point by point application of Eq. (11) is not a satis-

factory means of evaluatin- b and c from 2xperimental data. It is possible,

however, to greatly simplify the evaluation process by defining a one-
+

dimen3ional function which is integrable in r . The integral of M itself

is not a suitable function since, by conservation of momentum, it is always

zero. However, the integral of M2 is not conserved, and may be used to

define a one-dimensional function, I1 as follows:

I M 2 x 2rr+ dr + (14)

0•-

The function I appropriately may be termed the "mixing index."

For any set of valies of b and c, an equaticn resulting from a

combination of Eqs. (11), ("3), and (14) yields an analytical expression for

the variation of I as a function. ,•-; :- only. In addition, the value of I ccrres-

ponding to any position x may be found by performing graphically the inte-

gration of Eq. (14). In the latter case, the values of M are obtained from

experimental data. By trial-and-error the values of b and c can be chosen

such that the "analytical" and "measured-' values 3f I show good agreement.

The success of this procedure awaits the results of the experimental program'.
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Consider now the case of constant-area tiorbulent diffusion in a

two-dimensional passage. The momentum equation for the time-mean-

averages -f the velocity in the principal direction of flow becomes for this

case

au auv
ax '1 ax

where x is the coordinate in the p.tincipal, flow direction and y is the

coordinate in the tr, awverse direction meaured from the axis of flow.

Again, using Reichardt's hypothesis for the turbulent shear

stress leads to the following partial differential equation

aM _4 A 3 2M

E8x h2 ay+2
+

where h is the minimum transverse dimension of the passage and y = y/h.

The boundary conditions are of the same form as for the circular passage.

Again making use of the separation of variables technique for solving partial

differential equations, the following product solution for M is obtained

00 exp 4 AnZr2 +
M = c exp sin nTry

n= 0 h h

From this point on, the same considerations hold as in the circular

passage case.

2.2.4. Area-Change Diffuser Characteristics

The theoretical prediction of flow conditions in area-change

diffusers has long been an unsolved problem in fluid mechanics. Re-

searchers for over 50 years have relied almoit totally on experimental

techniques in the delign of diffusers. Two basic problems have been

stud'ed extensively in connection with the design of straight-walled diffusers.

1. Prediction of optimum geometry for most efficient

transformation of kinetic to potential energy, and

- 21 -
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flow regimes encountered with various degrees of

separation.

Many basic problemns remain unanswered, however. Nevertheless, con-

siderable experimental dat, are available on the "efficiency" of circular,

square, and rectangular diffusers having various area ratios, diverg,-nce

angles, inlet boundary layer conditions, and Reynolds numbers. A brief

bibliographical review of the literature is given by the writer in Ref. 2.

At the outset of the receiver-diffuser study, it was believed that

considerable data existed which could be used directly in predicting per-

formance of jet-modulator area-change diffusers. The results of a fairly

comprehensive literature survey showed that considerable information is

lacking. It is diffucult to make direct comparisons of the available results

of isolated studies since the experimental test conditions are not always

well q-ýined or even controlled. In addition, there is no common agree-

ment in the literature on the most convenient definition of efficiency. Con-

sequently, experimental results giving "efficiency" as a function of diffuser

geometry and various operating conditions, is often extremely co- fusing.

Even more important is the fact that, almost without exception, available

diffuser performance data are restricted to relatively high diameter

Reynolds numbers (say 104 and up). It is likely that in most future
applications of jet modulators, Reynolds numbers between 1 and 104

will be encountered.

It is, of course, fortuitous that so much experimental data exist

for the high Reynolds number range. The important trends and techniques

established by the previous studies will be invaluable in the efficient planning

of future experiments. indeed, .he hypotheses concerning optimum dlffvser

geometry discussed in Sec. 2. 2.2. were based almost totally on available

diffuser performance data. Since the available data are so important to

the over-all goal of the static performance study, somne of thebest avail-

ble pertinent diffuser data are reviewed below. Only the results of studies

with conical diffusers will be discussed below. The interested reader is

referred to Refs. 12, 13, and 14 for extensive discussions of diffusers of

all shapes and forms.
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01 the various efficiencies used in the literature, the most

common and probably the most useful in the rr-ajority of situations is

the "static pressure efficiency", or as sometimes terr:!ed, the "energy-

conversion efficiency". This efficiency is defined a:; the ratio of the

rate at which energy is transformed to the rate at which energy is supplied

for transformation. Consider a passage which expands from an initial

area A1 to a final area A 2 . Let P be the static pressure, p the fluid

mass density, u the component of velocity parallel to the axis of the

passage, and w the absolute velocity at any point. Thus the actual energy-

conversion or static pressure efficiency is

-AZ P udA- •jP udA
Ta p = -... ( 15)

1 pw 2  udA 1pw u2 A
A" 2 A'- 2

12

If the flow is purely axial at sections I and 2, w : u and P is a constant

over the section (i.e., no streamline curvature). Then

(P 2 -P!)ii 1 A1

ap = 1 6)

dA1 3 1 pu 3
A pu A 2 2

where

U u dA (17)
A1 A

Equation (16) can be simplified by defining a kinetic energy factor .3

as follows:
I• i 3

2-pu dA
A 2

(18)

1 -3
-puA

2
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The kinetic energy factor is analogous to (but not equal to) the momentum

factor a, defined in Section 2.2.3, in that it accounts for the nonuniformity

of the velocity profile. Utilizing this definition and recognizing that

continuity requires u 1 A 1 = u 2A 2 , the following expression is obtained:

PZ - 1 (19)
Il p1 - Z31 -ý 2  (A \Z -

Many investigators have used a one-dimensional approximation to Eq. (19)

as follows:

1j 2Z 1 (2())
p 2 2

Equation (19) reduces to Eq. (20) if it is assumed that the velocity profiles

at the entrance and exit sections are uniform (i.e., P1 = P2 1= 0).

The efficiency depends on many factors, the most important of

which is the rate of expansion of the flow. This is not surprising since it

is this factor which determines the magnitude of the opposing pressure

gradient. Some results of experiments on the flow beltween straight

diverging walls (conical section only) by Gibson (Ref. 15) and Peters (Ref. 16)

are summarized in Fig. 5. Efficiency, TIP, is plott, d against 20, the

included angle between the diverging walls. The efficiency is low at very

small angles, rises to a peak in the vicinity of 5 - 8 degrees, rapidly falls

as 20 Increases until a low point is reached in the vicinity of 60 degrees, and

then slowly approaches the theoretical value given by Borda at 29 = 1800.

The Borda limiting condition (i. e., a sudden expansion diffuser) is derived

from simple continuity and momentum considerations; the following ex-

pression results:

- 24 -
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2 (21)

P sudden A.,

expansion 1 +
A1

Perhaps the most important feature of the results of Fig. 5 is that the

efficiency reaches a peak value, which is quite high, in the vicinity of

5 - 8 degrees.

To understand the reason for the peak in the efficiency curve,

consider a family of diffusers having identical area ratios (A 2 /A 1 = const.).

If the included angle is small (say < 50), the wall friction losses are large

since the passage must be very long. However, the "separation" losses are

extremely small. Conversely, if the included angle is large (say > 150),

the passage length, and therefore the wall shear losses, are greatly mini-

mized. The separation losses, though, are greatly increased as the in-

cluded angle is increased. The peak efficiency condition then represents an

L'ptimum trade-off between wall shear and separation losses.

A factor which is often obscured in the presentation of diffuser

performance data is the effect of inlet and exit velocity profile nonuniformity.

Although efficiency calculations based on Eq. (19) take into account profile

nonunifor-mity directly, most investigators have not bothered to make the

additional (and tedious) measurements necessary to establish P, and 2"

The approach used by most investigators (if they bothered at all) has been

to study the effect of various inlet velocity profiles produced by using dif-

ferent lengths of constant diameter inlet pipe. For a very short inlet pipe,

the value of P1 is approximately equal to 1. As the inlet pipe length is

increased to say 30 diameters, the value of PI is very nearly that of a fully

developed turbulent flow profile (p1 : 1. 05, dependent on Reynolds num". ..

The percentage difference between the efficiencies calculated from

Eqs. (19) and (20) may be as small as a few per cent or as large as 10 - 15

per cent. Even if the diffuser entrance profil.2 is approximately uniforr-i

(i.e., PI z 1.0), the exit profile normally is quite nonuniform (P. >1.0).

Figure 6 is illustrative of typical flow conditions associated with a conical

diffuser having "near optimum" geometry.

- 26 -
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Fig. 6. Flow Conditions in a 7. 5 Diffuser with Eive Diameters
of Entry Length; Reynolds No. = 2 x 10 (Ref. 25)
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Due to the fact that the diffuser outlet velocity profile is

typically quite nonuniform, the addition of a constant diameter mixing

section downstream of the exit section may have an important effect on

the diffuser efficiency. A diffuser with constant diameter inlet and outlet

sections is shown in Fig. 7a. If the velocity profile at the diffuser exit

is more nonuniform than a fully developed profile (and in most cases it is),

the profile becomes progressively smoother in the discharge section which

follows. As a result, the static pressure continues to rise in the discharge

section until a position is reached at wh-'.ch the static pressure is a maximum.

From that point on, the pressure decreases due to wall shear. Peters

(Ref. 16) has found that the velocity profile at the point of maximum static

pressure is very nearly the same as the fully-develo-.ed profile. Results

obtained by Peters showing the point of maximum static pressure recovery

as a function of diffuser included angle and entrance section length are given

in Fig. 7b. The importance of the discharge length on diffuser efficiency

is obvious. In fact, modified definitions of efficiency are suggested which

utilize the static pressure at the point of maximum recovery rather than

at tne exic plane of the area change section. A one-dimensional relation

which corresponds to Eq. (20) is

P21- P1

1 'f= (22)

FU (AZ)]
Similarly -)2' can be substituted into Eq. (19) for the true efficiency in

place of P 2 . Therefore, the difference between qp and i3p' is a measurc

of the effect of the addition of adequate length of discharge section.

The difference between the true or actual efficiency between

two sections and the corresponding one-dimensional approximation is a

measure o. the nearuess to unity of the values of P at the two sections.

Figure 8 siows an interesting comparison between the actual efficiency

between sections(l) and (2), the approximate efficiency between (1) and (2),

and the approximate efficiency between (1) and (2'). The actual efficiency

between sections (1) and (2') is not shown but could be inferred quite easily.
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Fig. 7b. Influence of Diffuser Geometry on Point
of Maximum Static Pressure Recovery.
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in the Inlet and exit velocity profiles. What is most important about these

results Is the significance of even a seemingly uniform profile (i. e., fully

developed) on the value of the efficiency. If the submerged jet of a jet

modulator were to be diffused directly by an area change diffuser, the

corresponding efficiency would be quite low (even for so-called optimum

geometries) because of the high nonuniformity of the inlet velocity profile.

It was this belief that led to the hypotheses of Sec. 2. 2. 2. A careful study

of the available literature and past experience with jet-pipe valves leads

the writer to believe that:

I. the most efficient receiver-diffuser for a specified

"degree of diffusion" (i.e., total area change) is one

having in succession a constant-area mixing sectio. ,

"a "short" - 8 degree diverging section, and finally

"a sudden expansion section.

2. the most linear pressure-flow characteristics of a

three way, axially symmetric, axiaily aligned jet-

receiver-diffuser will result with a short, constant -

diameter mixing section followed by a sudden expansion

section.

The discussion above gives only a sample of the factors which

must be considered in the efficient design of area-change diffusers. Much

remains to be done in properly evaluating and extending the existing diffuser

performance da'ta. A more detailed discussion of diffuser performance

will be presented in the writer's ScD. thesis (summer 1964).

2. 2. 5. Orifice Characteristics

L- many applications of jet modulators (i. e., a "iour-way" jet-pipe

valve or jet amplifier), fluid may flow out of the receiver-dif'.iser into a

reservoir or plenum under certain conditions of downstream loading. In

such situations, the receiver-diffuser flow is "reversed", so to speak, and

the flow characteristics would be exp~ected to be radically d.fferent. Indeed

they are. If the receiver-diffuser consists of a constant-diameter mixing
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section followed by an area-change secct,-n, then the reversed flow

situation is that of flow through a "short-tube" orifice with a converging

or "sudden contraction" entry section. Curiously enough, the flow

characteristics of orifices of this type are not very well established6,

especially in the low Reynolds number range. A cursory discussion of

the available literature on short-tube orifices is gi,'en by the writer in

Ref. 3.

The writer reported the results of a recent M.I.T. study o*

sharp-edged short-tube hydraulic orifices in Ref. 17. This study was

carried out by D. 5. Tapparo, an S.M. thesis szudenit, under the super-

vision of the writer. The results of the study have led to an empiric:al

means of predicting the discharge coefficient for sb- rp-edgecd short-tube

orifices within the following limitations:

2 -L S 6, 100 < Red < 1000
D

and 4000 - Red S 25, 000 (where L = orifice length, D = orifice diameter,

and Red diameter Reynolds number). It is expected that these results,

even though somewhat limited, will be extremely useful to the writer in

e 'tablishing a means for pre-licting o-,er-all static performance of

receiver-diffusers.

Also expected to be c.' considerable value ai e the results of a

study of the friction factor in the laminar entry region of a smooth tube

by Shapirn et al several years ago. These results are valid for a short-

tube with a bell-mouth and for Rex <5 x 105 (where Rex is the Reynolds

numb,-r basee on length along the tube). With rather easily defended

assumptions, the orifice discharge coefficient car- be shown to be a function

of the integrated apparent friction factor multiplied by '.tie L/D ratio.
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2. ? 6. Experinentai Study of an Axially-Aligned, Axi-Symmetric,
Three -Way Jet Modulator

It is anticipated that results of studies discussed in previous

sections will eventually yield techniques useful in predicting over-all

static performance of jet modulators based on empirically derived

characteristics of sub-parts. Consequently, an experimental study

has been initiated to provide a means for evaluating these techniques.

A large-scale model of an axi-symmetric, axially-aligned tlh-ee-way

jet modulator has been designed and fabricated. Freliminar• .ests

have been conducted at relatively high Reynolds numbers and with a

few geometrical variatior.s. These results are presented in an S. B.

thesis by H. Leibowitz (Ref. 18). The apparatus was designed so that

a sy,,:tematic study can be made of the over-all diffusion process for a

wide number of internal and external receiver-diffuser geometries.

Provisions have been made in the apparatus for varying the nozzle-to-

receiver spacing, the length of constant-area mixing section, and the

incluued angle and area ratio of the area change diffuser section (by

using a series of -nolded plastic diffusers). A schematic of the ex-

perimental apparatus is shown in Fig. 9. The apparatus is sufficiently

flexible so that radically different geometries could be incorporated

if desired.

Illustrative of the preliminary experimental results are the

pressure-flow data shown in Fig. 10. These datz xow the effect of

variation of included angle of the area change diffuser. The significant

increase of maximum power recovery 'Qa x Pa) by use of a low angle

diffuser is c-"dent.

A comprehensive experimental study is planned which will

cover a wide Reynolds number range and incorporate a large number of

geometrical variations. Air (or water) and hydraulic oil will be used as

working fluids. R- suixts will be presented when they become available.

Z. 3. Jet-Rec-e.ver Dynamic interaction Studies

2. 3. i. Preliminary Measurements of Source Dynamic
Characteristic s

In the previous ainnial report on this contrct (Ref, 1), an

experiment involving a simplc axi-symmetric nozzle-receiver was outlined.
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20 s/D L/D r Conditions:

0 2 2 D = 0.25in.
S1 4 0 2 2 r

1800 25 2 D = 0.187 in.0' 180° 2. 5 2 n

Re -- 16.7 x 10 3

n
Nomenclature:

D = Receiver diameter
r

D = Nozzle diameter
n
S = Nozzle-receiver spacing

L = Diffuser mixing section length

29 = Diffuser included angle

P = Chamber pressurec

Ren = Reynolds number based on nozzle diameter

1.0
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Q
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P -P
a c
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Fig. 10. Pressure-Flow Characteristics of a Three-Way Jet
Modulator
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The experiment was designed to measure the dynamic characteristics of

the jet-receiver interaction region (termed the "source") as viewed from

a point downstream in the receiver. Provisions were made for introducing

a pressure pulse at a point downstream in the receiver, measuring the

preesure associated with the incident and reflected waves, and damping

out all extraneous waves. The experiment thus constituted a pulse or

ste-' response of the interaction region. Having obtained a dynamic

characterization of the source, stability of systems incorporating this

source could be investigated.

Since the last writing, measurements have been made which

indicate that the reflection of a pulse or step from the source terminal

can be characterized simply by a "reflection coefficient" for frequencies

up to at least several hundred cycles per second. This implies that for

low frequencies, the steady-state pressure-flow characteristics are

adequate to predict the interaction region phenomena. Measurement

techniques and typical steady-state characteristics are discussed in

Sec. ?.3.3.

2. 3. 2. "Creatioa" of an Active Source

Before a study of the dynamic or static characteristics of the

interaction region could be made, it was necessary to establish means

for "creating" an active source, i. e., a source which "feeds" an im-

pending oscillation. Certainly, past experience with jet modulators of

various types is sufficient to give one confidence that a sustained pressure

oscillatio._- in the receiver can be produced! It will be recalled that the

axi-symmetric nozzle-receiver-transmission line-load apparatus was

constructed to eliminate all unnecessary solid boundaries in the inter-

action region and all potential receiver cross-coupling effects. With

the apparatus so constructed, the influence of various types of nearby

bounding surfaces can be studied in a systematic manner.

Consequently, the apparatus was arranged to have a source

driving a transmission line blocked at its downstream end, since a sus-

tained pressure oscillation is most likely to occur in such a system. Then,

various solid boundaries were placed in the interaction region in an effort
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to create a "largep" ;amrnpl4tulde pesure oancillation i h ie h

configurations, shown in Fig. 11, were found to produce the desired

oscillation. Case (a) typifies the phenomena observed.

By proper placement of the wall in the jet, the jet is caused

to attach a-id follow the wall until the point is reached where an adverse

pressure gradient causes it to separate. Placement of the receiver

mouth near the separation point results in a sustained pressure oscilla-

tion in the transmission line and a co:responding oscillation of the jet.

The nature and cause of the osci.zttior- can be explained qualitatively as

follows: As the jet is "turned on", the pressure begins to rise in the

receiver as a result of simple charging of the associated capacitance;

the pressure in the separation region also rises above its "equilibrium"

value because of the lhgh resistance to flow introduced by the wall-to-

receiver mouth restriction; the pressure in the separation region finally

becomes large enough (but not necessarily above atmospheric) that the

jet is caused to separate further up the wall and thus partially miss the

receiver; the receiver and separation region pressures then tend to de-

crease until the original separation point is restored, at which point the

process is repeated again and a'gain. Of course, wave motion in the

receiver-line plays an important role in this phenomena. As the jet is

turned on, a compression wave travels down the line and is reflected

from the blocked end as a compression wave. When this wave returns

to the receiver mouth, it causes the separation region pressure to in-

crease rapidly and the jet to suddenly flip away from the wall. The

motion of the jet causes a sudden decreasc in the pressure at the receiver

entry and, as a consequence, causes a rarefa.ction wave to travel down

the line. This wave is reflected from the blocked end in like sense, and

on its return to the receiver mouth, reduces the separation region pres-

sure enough so that the jet can re-attach at the original point of attachment.

The receiver pressure oscillation is very nearly triangular in shape.

It is important to note that is is not necessary to have a wave-

like element (i. e., a transmission line) connected to the source in order

to observe a sustained oscillation. If a tank (simple capacitance) is sub-

stituted for the transmission line, the tank pre.sure will oscillate as well.
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Fig. 11. Demonstrated "Active" Sources.

- 38 -

"4;V



In this case, the oscillation is characterized by an exponential rise

followed by an exponential decay, i . e., a direct result of the inherent

RC characteristics of the receiver-tank combination. The charging and

discharging time constants usually are different, the discharging time

constant generally being the smaller of the two.

The explanation of the oscillation phenomena given above

applies qualitatively to Cases (b), (c), and (d) of Fig. 11 as well. The

most important ftatures of the potentially unstable configuration seem

to be: (1) a boundary be present onto which the jet can attach, and, (2)

the boundary be placed slightly into the jet and near the receiver mouth

so as to create a semi-enclosed separation region.

2. 3.3. Conceptual Representation of a Single ..Receiver Jet-
Modulato.r System

It is convenient to represent the system being studied by a chain

of four terminal elements as shc rn in the block diagram of Fig. 12, where

the W's are mass flow rates and the P's are static pr-ssures. The "source"

includes the nozzle, jet, and receiver-diffuser. The "line", if one exists,

includes any reasonably long constant diameter passage+ which connects the

source to the load, and along which wave motion effects are important. The

"load" includes all active and passive elemints attached to the line or directly

to the source, i.e., tanks, orifices (laminar or square law), jet-modulator

control ports, etc.

A characterization of the source involves establishing the functional

relationship Wa = f (Pa, geometry).

2. 3.4. Measurement of Steady-State Characteristics of an Act-'ve
Source

Reasonably early in the study, physical intuition and reasoning

led to the conclusion that the steady-state source characteristic for a

potentially unstaule geometrical c onfiguration was probably S-shaped.

Such is true for most dynamic systems which exhibit a tendency toward

self-excited oscillations. A sketch of the "anticipated" active source

characteristic is shown in Fig. 13 along with a typical passive characteristic.

+ The line may also be made up of several lengths of piping, each having

a different diameter.
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Fig. 12. Block Diagram of Single-Receiver Jet-Modulator System.
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a. Conventional "passive" source b. Conceptual "active" source

characte ristic c haracte ristic

Fig. 13. Typical Passive and Active Source Characteristics.
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It is well known that intability is most often associated with a

blocked load condition. Furthermore, if sufficient fluid is allowed to

flow from the load, the system may be stabilized. Considering a system

consi.•ting of a source plus a resiEtive load, a blocked load (i.e., an

infinite load) characteristic superim-nposed on the source characteristic

consists of the zero-flow axis, as shown in Fig. 13. The point of inter-

section is, of course, the simultaneous "solution" or the equilibrium

condition (if one exists). To better understand the relationship which

must exist between load and source resistances in order to produce an

instability, it is helpful to refer to Fig. 14. Three typical cases are shown

for example only. This in no way presents a complete picture of system

stability, as will become evident in the following section. In each of the

cases shown in Fig. 14, only the region of intersection of the two charac-

teristics is shown. Stability "in-the-small" may be de-ermined by con-

sidering the consequences of a small positive preE sure disturbance relative

to the apparent equilibrium condition. Below each W versus P plot is a

schematic of a small control volume supposed to be. situated between the

source and load. The source flow enters the control volume and the load

flow leaves the control volume; equilibrium requires that these two flows

be equal. The length of arrow is indicative of the relative magnitude of

the cor'.eL4ponding flows entering and leaving as a result of the pressure

disturbance.

Both cases (a) and (b) represent stable systems since a positive

pressure disturbance leads to a load flow demand which is greater than the

source can provide, thereby causing the pressure to decrease once again.

In contrast, Case (c) represents a situation where the positive pressure

disturbance leads to a load flow demand which is smaller than t-e source

supplies., As a result, the pressure increases even further until c-ventually

some rmechanism places a limit on its magnitude- This is a static type of

instability. It will be seen in Sec. 2. 3. 5 that three types of instabilities

can be identified, one of which is a static '.nstability.

The conventional t•chnique for measuring the portion of th-

characteristic curve in the first quadrant for a passive source invol-v-es

varying the load resistance from zcro (vertical line) to Infinity (horizontal
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7ig. 14. Concept of Static Stability "In -the-Small".
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line), in such a way that the resistance is always positive. To measure

the portion of the curve in the fourth quadrant, it is necessary to vary the

load curve slope from a large negative value to a small negative value.

The negative slope load is produced by supplying flow from an external

source. In all cases, the load curve passes through the origin of the

coordinates. Figure 15 illustrates schematically the experimental

technique. Notice that there are two throttle valves, one of which is

generally always closed (although this is not necessary).

Obviously the technique employed to measure the characteristic

of a passive source would leac' to a static instability in the caee of an

active source (i. e., see Fig. I1c). If, however, a family of load charac-

teristic curves can be generated which all have a relatively low resistance

(i. e., large change in flow for a small change in pcessure) in the vicinity

of their point of intersection with the source curve, stable operation can

be achieved (i.e., see Fig. 14 b). A possible set of load curves is shown

superimposed on a source curve in Fig. 16. It is not necessary that all

the curves have the same slope, only that the slopes be very near zero in

the region of potential static instability. In contrast to the passive source

measurement technique, it is not possible for all the loz-d curves to pass

through the origin.

An experimental technique which can be used to obtain the active

source characteristic curve is shown schematically in Fig. 17.

The critical flowmeter is a simple orifice in which the flow is

always choked. Choked flow is insured if the supply pressure to the orifice

is maintained always at least twice the downstreamn pressure. Constant flow

is achieved by maintaining the pressure !onstant at a reasonably

large value compared to the maximum expecte., value of the downstream

pressure. The flow rate to be determined, Wa, is equal to the total flew

as indicated by the downstream rotameter minus the constant flow f'om the

external source. In the first quadrant, Wa is positive and the rotameter

flow is greater than the flow frorn the constant flow source. In the fourth

quadrant Wa is negative and the rotameter flow is less than the flow from

the constant flow source. It is evident that if the flow from the constant

flow source is adjusted properly, the flow rate Wa can bc made to u-idergo
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Fig. 16. Concept of Point-By-Point Measurement of an Active Source
Characteristic.
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large changes while the metering pressure Pm undergoes only small

changes. The progressive variation from one load characteristic curve

to another is accomplished simply by varying the amount of downstream

throttling. Notice, for example, that the load curve which intersects the

source curve at Wa = 0 is obtained by setting the downstream throttle

such that Pa = P = P ambient' In this case, the rotameter flow exactly

equals the flow from the constant flow source.

The measurement technique outlined above has been used

successfully to measure steady-state source characteristics for one

particular active source. There are, of course, other techniques which

could be used. For example, one promising technique involves the use

of a very long line connected to the source and/or a terminal load

attached to the end of the line having an impedance equal to the line surge

impedance. Any pressure waves would then be damped due to friction

and/or absorbed by the "perfectly matched" terminal. Although a reason-

ably successful attempt was made to construct a "perfectly matched" load

terminal, this technique was abandoned in favor of the other technique

because of superior performance and simplicity of the latter. A typical

measured characteri-tic is plotted in dimensionless form in Fig. 18.

The source geometry was chosen such that, when coupled with a load,

a high degree of instability exdsteA. It was the purpose of this preliminary

experiment to demonstrate technique only. A systematic study of the effect

of geometrical variations on the character of the source is expected to be

carried out in the future by another investigator.

2. 3. 5. Analytical Prediction of "Stability-in-the Small"

Consider, as before, the single-receiver jet-modulator system

consisting of an active source coupled to an active or passive load terminal

by means of a simple transmission line. In the discussion to follow, the

concept of "load" will be broadened to include all elements coupled to the

source. For the particular case being conside:-ed here, the "load" in-

cludes the transmission line and the load terminal. Such a system is

interesting as well as practical in that it serves as a potential building block

for more complicated systems.
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The presence of the "wave-like" element (transmission line) in

the system suggests that consideration be given to system dynamic stability

as well as the static stability discussed in the previous section. Professor

F. T. Brown has suggested that the absolute stability "in-the-small" of such

a system be classified according to the character of the load. The following

types of stability (or instability) are then identifiable: Static, wave, and

surge. These three types of stability arise on considering the effect of the

Slength of the transmission line coupling the source and load. Static stability

is obviously associated with a sys'em containing an extremely short line.

o Reierrlng again to the discussion of static stability in the previous section
U)

a and, in particular, to the sketches in Fig. 14, it is possible to establish a

simple criterion for static stability "in-the-small" (i. e,, for small dis-

turbances). The system is stable in the vicinity of the equilibrium point

(i. e., point of intersection of the source and load curves) if the source

0 impedance, Zs, and load impedance, Z1 , are related by the inequality

4-A

-'4 1 1
S-- + >0 (23)
U z z5 1

"u Notice that a positive value of source impedance implies a negative slope
7

_ oD the W versus P plot, whereas a positive value of the load impedance

implies a positive slope on the W versus P plot. This is merely a result

V of sign convention for the flow, i.e., positive flow is defined as flow from

V •the source to the load.

' If the source-to-load capacitance is also very small, the static

instability will result in a very high frequency oscillation. In such a case,

the concep; of static stability based on the measured steady-state charac -

teristic curve for the source may lose its meaning because of the inadequacy
7.4

-ll of this characteristic at high frequencies. For this case, the source dynamic

characteristics must be considered and it is appropriate to speak of the

corresponding dynamic stability (as distinct from wave and surge types of

dynamic stabilities associated with transmission lines).

If the line attached to the source is very long, pressure waves

take a considerable time to travel down the line and then return again.
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Over the period of the round-trip of a wave, the effective load impedance

seen by the source is the "surge" or "characteristic" impedance of the

line rather than the impedance of the load terminal. The idealized+ charac-

teristic impedance of a line of cross-sectional area A, in terms of a ratio

of pressure to mass flow rate at a point in the line, is given simply by

Z = t/A, where c is the speed of sound in the medium. The stability

criterion given by Eq. (23) applies to this surge situation if Z1 is replaced

simply by Zc. Thus the system is surge-wise stable if the following in-

equality is satisfied

I 1
- +- > 0 (24)

Z Z
S C

The oscillation frequency associated with a static or surge-type instability

is charactnristically quit high. The very high frequency noise associated

with most jet-modulator systems is undoubtedly a manifestation of the

surge-type instability.

Since the surge impedance only repre:lents the true load im-

pedance seen by the source for relatively short periods of time, it is

necessary to consider wave motion effects if stability over longer periods

of time i of interest (and it most often is of prime interest). Wave motion

effects obviously have their greatest importance for internediate length

lines. Here, consideration of the reflection of waves from both ends of the

transmission line lads to the concept of "wave stability. "

The ratio of the pressure amplitude of a wave reflected from the

termination of a line to the pressure amplitude oi the incident wave pro-

ducing the reflection is known as the "reflection coefficient". Am expression

was derived from first principles in the previous rtport (Ref. 1) which relates

the reflection coefficient to the terminal and line characteristic impedance as

follows:

P r Z t - Zc-- = r = (25)

P + Z t + Zc

+ neglecting wall shear
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where Zt is the terminal impedance. A close examination of Eq. (25)

reveals that the reflection coefficient, r, may be positive or negative,

must be equal t:o or less than unity if the terminal is passive and is

unbounded if the termination is active.

Consider i-ow a "lossless" transmission line having two terminals,

a source and a load. For the sake of generality, let the associated ter-

minal impedances be denoted as Z and Z2 , without specification as to

which refers to the source and which to the load. If a wave reflects first

off of one terminal and then the other, that is, undergoes one complete

cycle returning to its initial position and direction of motion, its n-.w

amplitude is rIr 2 time-- Ats !rdtial amplitude. The product rlr2 may be

positive or negative and equal to, less than, or greater than unity. If

I r 1 r 2 > 1, theri the wave has picked up energy (from an active source

and/or load) and the system is unstable. Such a result was clearly evident

in the limited data (oscilloscope pictures) presented in the previous report.

One of two types of instabilities may exist. If rI rZ > + 1, the instability

is "exponential" in-the-small (Type I) whereas if rlrZ< - 1, the instability

is oscillatory (Type 11). This follows directly from consideration of more

than one complete cycle of travel of a given wave.

The criterion for wave-type absolute stability is therefore

r 1lr < 1 (26)

A condition of marginal stability exists when

IJr 1 r.2 1 = I

Combining Eqs. (25) and (Z6) gives the criterion for absolute stability

in terms of the surge and two terminal impedances. Thus

Jrlr2f ( Zz') < 1. (27)
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Consider again the two types of instability. For Type I, Eq. (27) shows

that for absolute stability

Z2 + 0, if Z < Zc < Z 1 (or Z.)

2 < 01 if Z 2 (or Z 1 )

Z 1 + Z 2 >0, if Z > Z and Z2.

and for marginal stability, Z 1 + Z = 0.

For Type II, Eq. (27) shows that for absolute stability

Z1 z 2 +Z < 0, if Z > Z1 and Z2

ZIz 2 + Z > 0 if Z < Z1 or Z, but not both.

and for marginal stability,

1 2 2ZIZ 2 ±÷Zc 2 = 0.

A summary of the stability types and criteria for all possible

permutations of real terminal impedances (resistances) is given in

Table 1. This summary was originally prepared by F. T. d3rown and

is reproduced fromr Ref. (19). The reader interested in a detailed

treatment of stability considerations in "two-line" systems should refer

to Ref. 19. In that reference, coupling between receivers and/or loads

is also considered.

2. 3. 6. Graphical Techniques for Frediction of System Relative

Stability

The stability criteria developed in the previous section are

particularly useful when information concerning the absolute stability

of a system is desired; that is, is the system stable or unstable "in-the-

small?" Nothing can be inferred from these criteria concerning the

relative stability of the system. In addition, these or similar criteria

are difficult to apply in cases involving non-real terminal impedances.

Very often, a knowledge of the frequency and amplitude of a pressure
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oscillation is required. For example, such information is vital in the

design of oscillators. As another example, consider a system which ex-

hibits an instability. The over-all performance of the system may not be

impaired significantly providing the oscillation .requency is high enough

and the amplitude is low enough; again a knowledge of the detailed character

Sof the oscillation is required bef.•re its effect can be fully evaluated.

The suitability of graphical techniques such as the method of

characteristics (Ref. 20) and slope-line integration (Refs. 21 and 22) ior

dealing with transient phenomena in systems incorporating simple non-

linearities, wave-like elements, and other simple active and passive

elements, is well krown. It follows, therefore, that these graphical

techniques should be extremely useful in studying the relative stability

of simple jet-modulator systems comprising a single source, transmission

line, and load. As will become evident in the discussion which follows,

these graphical techniques afford an amazingly accurate and rapid approach

to the study of jet-modulator system stability. As a demonstration of the

utility of these techniques, three interesting examples are discussed below.

In each case, the analysis is semi-empirical in that experimentally derived

(or otherwise known) source and load pressure-flow characteristics are

utilized. The solutions presented are, therefore, limited to the range of

frequencies for which the steady-state source and load characteristics

are valid. In all cases, the basic equations describing system behavior

are presented in finite differ(nce form, since the graphical techniques

involv, a type of numerical step-by-step solution.

Example 1 - Active source coupled to a uniform rigid transmission

line blocked at its downstream end. A schematic of the system under con-

sideration is shown in Fig. 19. The soi-•tion sought is as follows: given

a small disturbance in the load end pressure, Pb' what is the resulting

variation of "Pb with t'me, i. e., does the disturbance die out or does the

presence of the active source lead to a wave instability. Furthermore, the

detailed nature of any limit cycle is to be determined.

Before proceeding with the example a slight digression to consider

pertinent details of the transmission line portion of the system only is deemed

- 54 -



Nozzle

& - - P -
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Fig. 19. Active Source Coupled to a Transmission Line Blocked
at Its Do-vmstrearn End.
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necessary. The line may be considered as a distributed parameter

system but only small amplitude waves are admitted. It is further

assumed that the gross fluid velccity is very small compared to the

speed of sound in the medium and that wave dispersion effects are

unimportant. The assumptions permit use of the well-known linearized

form of the wave equations. Of the various forms of the solution, the

most convenient is that given in terms of the conditions at the encs of

the line as follows:

PbI cosh r Z sinhr p
b c a (28)

. cosh WLbi -1 sinh P: a

L Zc P L

where

r. propagation operator

Z - characteristic impedance of the iLne; defined as thec

complex ratio of the instantaneous pressure to the

instantaneous flow rate at a given point in the line.

Both r and Z are, in general, frequency dependent properties. In

terms of the physical characteristics of the line,

A(s) = L jY(s) . Z(s)

and
zc(s) = Zf(s)

Y(s)

where

L = distance separating two stations,

Y = lie shunt admittance per unit length,

Z = line series impedance per unit length, and

s = LaPlace operator.

Brown (Ref. ?3) has shc -i that, for the case of uniform attenuation (i. e.,

no dispersion), the propagation operator can be approxi-nated as follows:

r = -a + rs (Z9)
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where

T = characteristic time of the line,

a= the attenuation factor; a is termed the attenuation

constant.

For the special case of an ideal, lo,;sless pneumatic line it follows that

r= Ts

C
0 __ = Z

c A cc

where

co 0 acoustic speed of sound; and

A cross-sectional area of the line.

Experiment and analysis shows, however, that 3ine friction is important

even in seemingly short lines. As will beccine evident in Sec. 2.3.9,

reasonable correlation between theory and experimnent requires con-

sideration of the effects of line friction (and corresponding attenuation).

Two convenient techniques are available for determination of

the characteristic parameters r and Z c; the constant R-L-C model

and a more rigorous and exact moiel based on the direct solution of

the continuity, mornenturmt, and energy equations which describe the

process. Although considerably more complex, the "exact"! model is

generally superior since it includes varying velocity profile and heat

transfer effects. Nevertheless, in certain cases the t-wo models yield

very nearly the same results and the Bimp]er R-L..C model is adequate.

Brief summaries of the techniques available" for computation of the

characteristic parameters are given below.

Constant R-L-C model (iRefs. 23, and 26)

The series impedance and shunt admittance are given by

Z= ID+ R

and

Y= CD
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where

I = inertance per unit length of line,

C = capacitance per unit length of line,

R = resistance to flow in line per unit length

D = d/dt

Thus

F= LVIC D + RCD

z1 Rý

But if R is sufficiently small (as it usually is) or if R/IA << i, where

w is the lowest frequency component of interest, then

=-a + TD:-C + LVC-I-D

2 I

I (+ R)
Zc ( + -- )

C ZID

For sinusoidal excitation the following limiting forms are useful:

R 1 R

WI -I

c c wC

r = L + j L -, C r _COw + jL L -
X --L

2 I 2 2

Thus, for uniform attenuation, the attenuation constant is
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_LR C Ra- 2 RF -C for R <<1
2V ] wI

and

a for R>> 1
2 WI

If it is assumed that the flow is fully developed and laminar and

that the line friction is the same as for steady flow, th.e attenuation

constant can be expressed in terms of line and fluid properties+ as

follows:

4Lv r8v <
a=...for << «

2 2
a c a w

0

a ZLfor 8v >>

ac 2
O a c

The assumptlon that the resistance is the same as for steady, fully

developed laminar flow, can only be defended for cases where the fre-

quency is low and the line length-to-diameter ratio is large. At the

higher frequencies the unsteadiness of the flow results in an effectively

higher value of the resistance. Rohmann and Grogran (Ref. 26) suggest

that R be increased by 20 per cent over the calculated value. Equally

important is the fact that in many practical situations (and perhaps the

majority) the line length-to-diameter ratio is not large enough to discount

the effect of increased resistance to developing flow, i.e., the apparent

friction factor (and therefore the resistance) is significantly greater in the

"entry length" of a tube than in the fully developed region many diameters

+
y = kinematic viscosity

a = line radius
S= frequency

- 59 -



downstream. Resistance estimates based on the friction factor correla-

tions summarized by Shapiro, et al (Ref. 27) should provide corrections

which are adequate for most engineering purposes. These correlations

allow computation of the integrated apparent friction factor in the laminar

entry of a tube as a function of diameter Reynolds number and the tube

L/D ratio. The resistance R is cmputed easily from friction factor

information.

"Exacf'Model. - Derivations for the propagation operator and

characteristic impedance are given by Brown (Ref. 24). The model

assumes: cylindrical tube, one-dimensional flow, isothermal walls,

small amplitude laminar disturbances, and continuous medium. Results

pertinent to the present study have been extended in range and replotted

in Figs. 20 and 21. Attenuation factors as a function of line and fluid

properties may be obtained from Fig. 20. Since dispersive effects are

neglected in the present example, only the magnitude of the characteristic

impedance need be considered. Figure 21 may be used to obtain a correc-

tion to the nominal value of the characteristic impedance (i.e., Zco= c o/A).

Having established means of computing r and Zc it is necessary

now to rewrite the line equations in a form suitable for step-by-step

giap'ical or numerical solution. The method of solution requires that

the equations be written in time difference form. By noting that

F -F F -F
e + e e - ecosh p- ; sinh er=

2 Z

and

e TDF(t) F(t + T)

a combination of Eqs. (Z8) and (29) yields the following two equations:

Pb(t+ 2T) Za Pb(t) ZW - W(t + T) Wb(t+ ZT)

b a b S a

Za. Wb(t)
-e Za 7 (30)

w
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Pb(t + ZT) 2a Pb(t) 1 Pa(t + T) ZCpW sS bF(t +W2T)
- + e 2c b acsI '~

P P P P
s s s L

Z W b(t) (31)
W

where

t = time variable

T = L/c = characteristic time of the line,0

c -= acoustic speed of sound in the fluid medium,0

Zc = characteristic impedance of the line,

W = nozzle mass flow rate, ands

P -= nozzle supply pressure.s

It is seen that events occur in increments of the characteristic time of

the line T, that is, the time required for a wave to travel from one end

of the 1 •e to the other. One period is equal to 2T.

Returning now to consideration of the entire system of Fig. 19,

the describing equations in addition to the line equations are

Source:

a f a geometr (32)
W s •P

w
b 0;Z (33)

The required solution is then a simultaneous solution of Eqs. (30) through

(33).
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Consider first the special case of a lossless line for which

e = 1. If the solution is assumed to "start" at an arbitrary non-

equilibrium condition at t = 0, a combination of Eqs. (30), (31) and

(33) yields:

SbP a(T) P b(O) Z cW SW a(T)
(34)

P p P W

for the period t = 0 to t = T, whereas

P -•b Pb(T T W W at(T)-b(2T_ a cs (35)( P P Z W

for the period t T to t = 2T.

Analogous results for the more general case (i.e., e a 1)

are:

Pb P a (T) Z)W - W(T)
b-- - a ea + (I -e (36)P P P P W P
s 1 s s s

and

P b P b(ZT) P a(T) Z cW W a(T) Pa(T)
_e (e - 1) - (37)

SP P P W P

Although Eqs. (34) and (35) for the lossless case admit simple

graphical interpretation, Eqs, (36) ana (37) do not. Since the usual case

is such that - a << 1, Eqs. (36) and (37) may be approximated by the

following more tractable equations:
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P(P )(T( Z W W(T)bb c s .-a a(T8= _ - ---- - ---- e -. (38)
P P P P W8 l s s s

P Pb(2T) P b10} Z ec WWs a(9
~ (39)

P P P Ws)2 s s s s

A simple graphical interpretation of the various system equations

is presented in Fig. 22. The limiting case tor which ea = 1 is shown by the

dotted line solution. The line equations may be rewritten to cover the time

period t = 2T to t = 4T. The graphical solution is cont-..u--d in the same

fashion as for the previous period of time. A complete s( "ition for the

case of a "lossless" line is carried out using an actual measured source

characteristic in Fig. 23a. These results are presented in terms cf a

phase-plane plot of Pb/Ps versus Wa/Ws. The corresponding plot of

P b/Ps versus t/T is shown in Fig. 23b. It is evident that an exponential

wave instability exists but that the nonlinearity associated with the source

characteristic places an upper bound on the oscillation amplitude. Thus a

"limit cycle" or "standing wave" exists whose frequency is the quarterwave

frequency of the line and whose amplitude is equal to 3. 84 times the nozzle

supply pressure for the case of a supply pre3sure equal to 10 inches of H 2 0.

A complete solution showing the effect of line friction in a 3 foot line (0. 518

inch in diameter) is shown in Fig. 24 for comparison. It is clearly evident

that line friction is Rignificant even in a comparatively short line. The

resulting limit cycle amplitude is reduced to Pb/Ps = 1. 94, whereas the

oscillation frequency remains the quarter wave frequency as expected. The
+

accuracy of the graphical method of solution as presented here, depends

mainly on the validity of the assumption that - a << 1.

+ The term accuracy here refer, to the method of solution of the describing

equations and not to the quanti, 3tive comparison of the results with actual
experiment.
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For the sake of generality, the solutions of Figs. 23 and 24 were

carried out on a nondimensional basis. However, although the dimensionless

source curve (for the particular geometry tested) is relatively independent

of nozzle supply pressure over the range investigated (5 -< Ps 5 20 inch .20),

the corresponding dimensionless characteristic impedance of the line is not.

The dimensionless characteristic impedance is defined as

- Z W
Z - C S

P
S

Thus the only way in whichT can be independent of P is if Ws/P 8 = constant,

that is, the nozzle is a laminar flow resistance. In most practical cases,

the nozzle is more nearly a square-law resistance. For the nozzle used in

the experiments, the following relation can be established from the nozzle

calibration data:

14.6
c ( 0.515

where Ps is given in inches of H 2 0.

Solutions showing the dependence of the predicted limit cycle

amplitude on the value of the dimensionless characteristic impedance

are presented in Sec. 2. 3. 9.

The graphical technique demonstrated here is, of course, not

limited to an infinite load terminal impedance. Solutions may be carried

out for any real finite load terminal impedance, whether it be passive or

active. It is interesting that a relatively small bleed orifice placed at the

end of the line can completely eliminate the limit cycle instability.

Example 2 - Active source coupled to a load chamber (lumped

compliance) with and without flow out of the chamber; no transmission line.

A schematic drawing of the system considered is shown in Fig. 25.
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Volume Vc fluid mass

density, p;fluid bulk
modulus ,

P a 

P b
P s w s Z" w a w b R

P b

Fig. 25. Active Source Coupled to a Load Chamber.
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The basic nondimensional equations which describe the system behavior

include

Source:

W
a f geometr (40)

W s \P s

Chamber:

W a W bPVF 3P Pa Wb _ c g __ _(41)

W W 13W dt d-r

or In finite difference form

bW ab] (42)

SL wL s Ws ave

Load resistance (assumed to be linear):

W b P S P b
_ s b- (43)

W RFW P

where T is the dimensionless time variable. These three equations

contain four unknowns, so one additional equation is required. Con-

sideration of energy. momentum, and continuity for the sudden expansion

from section a to b leads to the conclusion that Pa/Ps = f(Pb/Ps, Wa/Ws,

.%a/Ab) where Aa = cross-sectional area of inlet and Ab = cross-sectional

area of chamber. This functional relationship follows directly fromthe

earlier discussion of "sudden expansion diffusers. " if, for the purposes

of this example only, it is assumed that Ab>> Aa' then it follows that

Pa/Ps z P b/Ps. Therefore, Eq. (40) for the source characteristic can

be written
- 71 -



•a = f Pb , geometry (44)
W P/s

and the original measured characteristic (Wa versus P a) would still apply.

Equations (42), (43), and (44) may be interpreted graphically (for the first

increment in dimensionless time), as shown in Fig. 26.

Figure 27 shows complete graphical solutions for three selected

values of the load resistance. A limit cycle is seen to exist for the cases

where the load resistance is high; for low enough values of load resistance

the system is totally stable. The limit cycle frequency is easily determined

from the plots.

Since the method of solution requires the use of an approximate

finite difference equation to represent the original first order differential

equation, the solution is expected to be approximate. Accuracy is generally

assured if the slope of the "slope line" (l:6T/Z) is maintained sufficiently

large. In other words, since the parameter 6T contains both t (the time

variable) and V (the chamber volume) it suffices to always maintain Atc

small compared to the integrating time constant (i.e., pVPs/PWs). If

tCe solution is carried out using dimensionless parameters the actual

oscillation frequency or period for a given volume Vc is simple determined

by appropriately interpreting the oscillation period obtained in terms of r.

Consideration of the limiting case for which R, = co and V-- 0

yields interesting results. As the volume approaches zero, 6-r/2--0

(i. e., the "slope line" approaches a vertical line). It is then obvious

that the limiting condition results in an infinite frequency limit cycle

bounded by the "knees" of the source characteristic. (See the dotted linE

in Fig. 26). This result is, of course, impossible and therefore of academic

interest. Certainly the source dynamics must become significant long before

the theoretical limiting case is approached.

Actually the mathematical formulation presented above is over-

simplified for some practical cases. It is not necessarily valid to assume

that the dynamic behavior of the system is governed entirely by the charging
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I

and discharging of the lumped capacitance. Even though no line precedes

the pure capacitance, there may be a significant inertial effect at the

entrance due to the acoustic impedance of the entrance aperture. In fact,

it can be shown(Ref. 28) that the "effective" length of a sharp-edged

orifice is 1.7a where a is the radius of the orifice. The effect of the

presence of a line preceding the lumped capacitance is treated in

Example 3,

Example 3 - Active source coupled to a transmission line

terminated by a load chamber and load resistance. Figure 28 shows

a schematic of the system considered.

The describing time-difference equations are given below:

Source:

W ~//
fa - , geometr (45)

WS s Y

Line: (A lumped parameter model could be used to accurately model the
line for frequencies which are small compared to the fundamental
natural frequency of the line (See Sec. 2. 3.8)

w b (t + 2T) 2a Wb(t) 1P P a(t + T)-e - 2e' a

W W Ps sc s

2a P a(t) Pb(t + 2T)

-e (46)
P Ps s

Wb(t + ZT) Za Wb(t) W a(t + T)
+ e -2e aw w w

1 Pb(t + 2T) 2a Pb(t)

-e e- (47)
z P p
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Fig. 28, Active S urce Coupled to a Transmission Line Terminated
by a Load Chamber and Resistance.
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Chamber (See Fxaniple 2):

(Pb &T Wc (48)

\\-/ jave

where

tws pVc
s KI _

K 1 P

Load Resistance:

W P Pc s b (9S= (49)
W R W P

The graphical technique involves a simultaneous solution of the describing

eqnations as in the previous examples. The-re is, however, a fundamental

difference between this example and the previous ones. Onry one "dynamic"

element was present in the systems of Examples 1 and 2. In the present

example, there are two coupled "dynamic" elements - the line and the

chamber. Consequently, two graphical solutions must be carried on

simultaneously, with the resulting "common point of intersection" being

the "answer". A graphical interpretation of the technique is given in

Fig. 29. It is evident that the minimum value allowed for 6T/2 is TW s/KIPs-

A typical complete graphical solution for the lossless line case

is shown in Fig. 30. For the particular conditions chosen, it is seen that

a limit cycle instability exists.

The limit cycle or "surge" frequency can be determined directly

from the plot by counting the number of time increments required to complete

one encirclement on the phase plane plot, or more easily, by obeer-ing the
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period on the Itime plot. The -- rameters which determine the lirnitt cycle

frequency and amplitude for ,given source characteiistic arp obviously

the line 1%.ngth and characteristic impedance, the cham ter vc-luine, and

the terminal irmpeCAance. The nature of the solution in normalized forma

reduces the "free" parameters to the following pa'.r ofratios

7 %~V ZV
c %. " C C

Simple analytical means for cornwating mne "sitrgc or ilimit cycle

frequency for the special case of R, = cr art- preasented in Seýc. 2.30.8.

Unfortunately, accuracy of solution using this particular technique is

not assured in all cases. Since the system contains a single delay

element, (i.e., the transmission line) comp-utations yield results only

at the points in actual time represented by t =ZT, 4T, 6T,.... etc.

As in Example 2, good acc-uracy! requires that the slope 1 :6T/Z be large.

However, in contrast to the previcus exa -n~ie there- is now an important

restraint placed on the miaii'm~m sizýe Of 6Tr/2 due to t~he p;ýerjence of the

line. It easily is s-hown that urdles!5 Vi /V* is very small comrpared to

unity, that the slope 1: &-r/2 may be tC0 small.2 (or 1:Z may etol-e

to insure adequate accuracy of sol-ution. Obviously simple scaiing mani-

pulations on the abscissa and ordinate do not help. What Is actually re-~

quired is the introducc4 ton of an a.-tifice that w~l'. effectively reduce the

minimum relative value Of 6Tr/Z. Such an artifice -is achieved simply

by dividing the uniformn transmnission line into n-sections, each-having

a length L' = L/n a-.d a characteristic tim-e vr= T/1 n. The chamber

"Islope lines" are increased in number and slcpe by the factor nL. For

example, suppose the line is divided into 4 equ~al secrionsas shown in

F'ig. 31. Equatious identical to Eqs, (46) and. (47) excep! for ubvious

changes in subscripts, can be written for each section. The chamber sloo~e

lines have a slope 1:6T/S. It is possible now to compute the values of. all

the state variables of tuterest at points in actual time re~presented lay

t = 2T1, 4T', 6T1... etc. This, of course, requires t -hat the state

variables at the line points 1, 2, and 3 also be computed every 2T1. A

graphical interpretation of the solution Zeclaii~que is shown in Fig. 32
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Fig. 31. Transmission Line Divided into 4-Sections.
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for the case of n = 4. It is interesting that the technique yields the values

of the state variables at points 1, 2, and 3 rather "Autornatically"; in the

numerical solution to be discussed in Sec. 2.3.7 these values must each

be computed individually as time progresses.

2. 3. 7. Comiuter-Aided Numerical Prediction of System Relative
Stability

The elegance and general utility of the graphical techniques pre-

sented in the previous section are obvious. These techniques provide In-
0

sight into problem formulation and solution which is exceedingly difficult
o to realize with other numerical methods. Nevertheless, for detailed design

studies involving extensive computations, only machine computation

affords the necessary speed and over-all flexib".ity. Techniques for solving

the previous three example problems numerically with the aid of a digital

computer, are demonstrated below. Results of actual computations are given

in Sec. 2. 3. 9. Fortran program's for each cf the Examples are available

from the writer and are to be presented in the writer's ScD. thesis

(Summer 1964).

Example 1 - Active source coupled to a transmission line blocked

at its downstream end. Equations (30) through (33) fully describe the

behavior of this simplified system. Tfie source characteristic written

in functional for-m in Eq. (32), is experimental in nature and therefore
0

may be presented in graphical or tabular form. Tabular representation

is preferred (and assumed) nere.

$- The results of the previous graphical solutions indicate that events
$4

V occur in increments of the characteristic time of the line, T. Accordingly,

the simultaneous solution of the governing equations is most easily realized

U by "computing" changes every 2T units of time. If it is assumed that the

state of the system is known at time t = 0, then subtraction and addition

of Eqs. (30) and (31) yield the following two relations (Wb/Ws = 0).

+ The "exact" form of the line equations may be used here with no in-

L14  crease in difficulty.
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P Mt) P (t + T1 W it - T1
-aU -a - a' -e-e (50)

p5  p c W
S ~s

Pb(t+P T (t+ T) W (t + T)Pb- T -e +et - a(S=e+ ea' Z (51)

S S s

It is seen that the pressure at the downstream end of the line at time t

and t + 2T is related to the pressure and flow at the upstream (source)

end at time t + T. The source characteristic is, of course, good for

all time. Thus from Eq. (32) we have

Wa (t + T) IPa(tp+ T)a f _ (3 2a)
Wss

Starting with a given set of initial conditions (i.e. , at t = 0), the solution

involves: 1) simultaneous solution of Eqs. (32a) and (50) to obtain Pa(T)/Ps

and Wa(T),/Ws, and then 2) solution of Eq. (51) to obtain Pb(2T)/Ps. The

solution for each succeeding increment in time ZT follows in exactly the same

way. Due to the nature of the source characteristic, it is obvious that the

simultaneous solution of Eqs. (32a) and (50) involves iteration and inter-

polation (unless, of course, an algebraic relation is established for the

source characteristic). A useful and completely general approach is as

follows:

1. From Eq. (50) define a new function, WP, such that

W it + T) Pa(t + T) a Pb(t)
Wa a_ +e

c W P Ps s s
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Thus, an exact simultaneous solution of Eqs. (32a) and

(50) would give WP = 0.

.Starting with the first entry in a table of values

representing the source characteristic, compute

WP for successive points, noting that Pb(t)/Ps is

known and Wra (t + T)/W sand Pa(t + T)/P are the

values from the table. The two points in the table

which bracket the exact solution is found by noting

the change in sign of WP.

3. Employ any standard random or systematic iteration

technique to find the unknown point within an acceptable

tolerance. One useful and efficient iteration technique

nvolves successively halving the interval, computing

W a/Ws, interpolating to find Pa/Ps computing WF, and

testing WP against an acceptable tolerance B. The

process is repeated (usually 6 or 7 times for a reasonable

tolerance) until IWPI - B. For the step involving inter-

polation, the well-known parabolic interpolation technique

(Ref. 29) should be adequate for mnost purposes. The

final results of the above iteration can then be utilized

in Eq. (51) to obtain Pb(2T). Then the encire process

can be repeated in steps of ZT until the complete solution

is obtained.

Example 2 - Active source coupled to a load chamber. The

approach is fundamentally the sarme as in Example 1; however, the
governing equations are different and a slight modification is necessary

in the source characteristic searching procedure. Equation (42) des-

cribing the charging process for the chamber can be rewritten, and sub-

divided into two parts as follows:

+ The table is conveniently arranged so that the column of W a/W changes

in equal increments.
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Pb(ki Y) Pb(k) Wr a(k+ 1) W1 (k)b~vl b TY W a Li (52)

P PW

Pb(k+Z) - Pb(k+l) 8 T F-Wa(k+ I W b{(k+ 2) (53)
P sP 8 2 W sW !

The source and load characteristics become

Wa(k+ 1) P a(k+l1 Pbkk+ 1)
a- f a- f F b (54)

w p P sL Ps

and

Wb(k) Ps Pb(k) ( ab s (5 5a)
W R W P

s f S S

Wb(k+ Z) PS Pb(k+ 2)= (5 5b)
Ws RIW P

Starting with a set of initial conditions (k = 0), the solution involves:

1) simultaneous solution of Eqs. (52), (54), and (55a) to obtain Pb(1)/PS

and Wa(1)/W, and 2) solution of Eqs. (53), and (55b) to obtain Pb(Z)/Ps.

The solution for each succeeding value of k follows in exactly the same

way. An examination of the graphical solution of this particular problem

indicates that a range exists for which the "slope line" crosses the source

curve in three pla'ces; thus three solutions are possible but only one is the

desired solution. The same logic which leads to a selection of the correct

value when employing the graphical technique, must obviously be incorporated

into the numerical solution. The general approach is as follows:

86-
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1. From Eq. (52) define a function, WP, such that

WP + I

3) 2. Starting with the first entry in the t Lble of values

representing the source characteristic, compute WP

for successive points until the first "knee" of the curve

is exceeded, Care should be taken to stop before the

second ")knee" is reached. A change in sign of WP

indicates the bracket about the desired solution.. If

a change in sign is not found, start with the last entry

in the table and proceed backwards through the table

computing WP for each point.

3. Employ the earlier mentioned iteration and inter-

a) polation routine to find the desired point within

acceptable tolerance.

4. For the next complete computation reverse the

procedure in step (2) above.

In Step (3) of the above procedure, logic decisions must be employed

which indicate at which end of the table the computations are being made.

Furthermore, certain of the basic formula must be appropriately changed

to account for the direction of travel and placement in the table.

Example 3 - Activu source coupled to a transmission line ter-

rminated by a load chamber and load resistance. Here the most interesting

and useful solution is the one which allows the division of the line into

n-sections. The solution proceeds in much the same manner as for the

previous Examples except that it is more lengthy and does not involve

any possible triple value results as in Example 2. Again it is necessary

to start with a set of initial conditions for all state variables and then

proceed with a simultaneous solution of the governing equations. The pro-

cedure involves the following successive steps:
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•. Defilne a function, WP, such that

zc W Wa(t + T) Wb(t) jPb(t) P a(t + T)WP=- c + -_ _
P _ W W P P

s 3 s s

2. Starting with the first entry in the table,compute

WP for each successive entry and find the peints

in the table which bra:ket the desired point, i.e.,

Wa(nT!) and P a(nT'r). Note that T' = T/n.

3. Knowing the initial values of the n-i intermnediate

state variables, compute in succession Pl[(n + 11)T'
P-, (nT), P3 [(n - 1) T ]...-P--n_(3 T')•

4. Compute Pb(ZT') and Wb((2 T.

5. Return to step (2) to find Wat(n ?- 2)TF and

PaL(n + 2) TI] and ti-en continue on in the same manneraD

to find successive values of Pb and Wb.

2. 3. 8. Analytical Prediction of Surge Frequency for a Transmission

Line Terminated by a. Chamber.

0f the three examples presented in the previous sections, Example 3

represents the general case. Examples 1 and 2 are merely limiting cases

of Example 3, It is possible, without carrying out any graphical or numerical

solutions, to predict the surge frequency of the systein in Example ý, for two

important special cases: 1) R = o a.nd 2) R = 0. The surge frequency is

the lowest natural frequency of the system and is the frequency at which the

limit cycle is most likely to exist. Consider the first case of infinite load

terminal impedance. Two approaches; are available, depending on the nature

of the model for the line. Either the Lumped or distributed parameter model

may be used.

Distributed Parameter Solution. Assume that the line is lossless

and that the effective bulk modulus of the fluid in the line is equal to that

in the chamber. The governing equations for the lossless line are:
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P b l=cosh TD]Pa - zc Lsinh TD-]W a(56)

and

Wb = Z- 1 tnh TD Pa + [cosh TD Wa (57)

Considering the terminating chamber as a pure capacitance gives

V

Wb P- C DPb (58)

Combining Eqs. (56), (57), and (58) and eliminating Wa and Wb gives

I

Pb Z csinh TTD

P a jVc W 1
+

SjZ tan W -

where

w = frequency

The surge frequency can be determined by setting the characteristic

equation of the above transfer function equal to zero. Thus

PT _ T tan ,. T (60)

V Z
c c

Since

T = t and Z EEL

we find that

V

- 1tan 71 (61)
Vc
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where

V[ = volum.e of line :- A I

q = dimensionless surge frequency : )T

By noting that the fundamental natural frequency of the linc with zero

terminating volume is

= speed of sound _

41 4T

and setting w = 2nQci , we obtain

cl 2 (62)

Equations (61) and (62) relate the dimensionless surge frequency to the

line-to-chamber volume ratio. The resultinF relation for the fundamental

is Dlctted in Fi'j. 33. For the case when R1 = 0, it is necessary to consider

the multi-valued character of Eq. (61)

Lumped Parameter Solution. When the surge frequency is small

conmpared to the fundamental natural frequency of the line alone, a simp]e

lumped parameter model of the line-tank system is adequate. For example,

consider the line as a "Dure" inertance (no capacitance),

I dWbP a - P b A -d (63)
a b A dt

"ombining Eqs. (58) and (63), and solving the resulting .:haracteristic

equation for the surge frequency gives

Q £ P (64)Pi V

from which follows

1
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This expression is compared to the distributed parameter solution

in Fig. 33.

. 3. 9. Comparison of Analytical and Emrpiic.1 Predictions

With" Expe rim nae-M-'-----e• e s-

In order to demonstrate the validity of the graphical and numerical

solution techniques presented in Secs. 2. 3.6 3nd 2.3.7, results of a re-

presentative set of digital computer solutions and experimental measurements

are presented below.

Example I - Active source coupled to a transmission line blocked

at is downstream end. Two types ot experimental measurements were

made: 1) pressure oscillation amplitude at the downstream end (point of

maximum pressure for the standing wave), and 2) oscillation frequency and

waveform characteristics. Figure 34 shows a set of oscilloscope traces

which indicate the character of the waveform. If there were no wave dis-

persion and line friction effects, the waveform would be a square wave

since all odd numbered harmonics must be present; this follows directly

from the multivalued character of the line equations. Higher harmonics

ai - seen to be present in the pictures of Fig. 34, but they are highly

attenuated because of friction and dispersion. Oscillation frequency

estimated from the apparent fundamental in the pictures compares very

well with the expected qx -rter-wave frenuency.
Oscillation amplitude measurements were particularly difficult

for this system because of the sporatic presence of higher harmonics and

a very low frequency modulation. It is not irninediately clear, in fact, what

amplitude should be measured. A single frequency spectrum 2na].ysis was

carried out which indicated the presence of 3rd and 5th harmonics with

approximately the expected amplitudes, This suggested that the most

meaningful measurement would be the amplitude of the fundamnental, A

squarc wave having an amplitude w/4 times this fundamental should conm~parf..

with the predicted "square-wave" solution within the validity of the original

model. However, instrumentation was not available which could be ilsed for

making this measurement accurately. If no dispersive eifects were present,

a measurement of the true rms amplitude of the wav-fdrin -w:ould yield the

amplitude of the desired square wave. Since a true rms voltmeter was

available, measurements were carried out in this manner. A few spot
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HV 5

V :20 V :20

H 2:5
V :20 V2

H4 5 H :5
V :20 V 10

HH 5
V =20 V = 20

b) L I FT el) L 4 FT

V 5 20 VNE =H20

C)L 5 FT f) L F

V = verricai scaale in inches H{2 0/division (ap~prox.)

H = horizontal scale in Millis ec onds /division

L = Line length ix. feet

P - nozzle supply pressure = 10 inches H O for pictures (a)

through (e).

D line diamneter = 0. 518 inch

Fig. 34. Pressure Oscillations at the. Blocked End (Dowr'--Ps*Iream) of a
Constant Diameter r~ransrnission Line Coupled to an Active
Source. (Conf. 3).
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times the fundamental amplitude and the true rms amplitude was easily

within 5 per cent. Figure 35 shows the results of the rms amplitude

measurements. The results of digital computer predictions which in-

cluded the fr 4 ction correction from Fig. 20, are shown for comparison in

Fig. 35b. Although the comparison appears generally poor, several

important results are apparent. The model is adequate to predict the

qualitative behavior for the longer length lines; however, the friction

correction seems too severe to provide good quantitative comparison.

The solution Ls highly sensitive to the friction factor; for example, ea

for the one foot, line is 0.977 which results in a factor of two reduction

of the amplitude as compared with the results of the lossless solution.

Frequency limitation in the static source characteristic is,

perhaps, a contributing factor to the poor correlation at the higher

frequencies (i.e., shorter lines). Several cf the basic assumptions

underlying the line equations are open to some question for the shorter

lines. The inclusion of dispersive effects -night improve the correlation.

Nevertheless, the correlation is not actually very bad considering the

particular difficulties of experimental measurement and the extreme

sensitivity to the value of the attenuation factor. Several improvements

in the model which would lead to better correlation with experiment, are

presently under study.

Example 2 - Active source coupled to a simple chamber. All

measurements wei e made with line lengths greater than 6 inches preceding

the chamber. Pertinent expe-imental results are presented in connection

with Example 3. The apparent transiticn between the systems of Examples 2

and 3 will be explored in more detail in the writer's ScD. thesis.

Example 3 - Active source coupled to a transmission line terminated

by a chamber and load resistance. It was established earlier that the pertinent

free parameters are Vr /Vc and R1/Zc. Only the infinite resistance case

(Rf = oo) is considered here. Figures 36 and 37 show typical waveforms

for various values .f V, /V . Unlike the results for Example 1 the waveformsc

are very nearly sinusoidal. The chamber coupled to the line introduces a

type of "filtering" effect, such that the higher harmonics do not generally
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0.50 01

0.4001

0.20 05

All Pictures:

Vertical scale =10. 2 inches H 2 0/divis ion

Horizontal scale = 10 milliseconds /division

Nezzle supply pressure -x 10 inches H-1O

Line len~gth = 12 inches

Line diameter = 0. 518 inch

V I /VC = Line -to-chamber volume ration

Fig. 36. Pressure Oscillations in a Blocked Chamber Coupledi to an
Active Source 'Conf. 3).
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0.25 0.079,

0,20 0.05(

0.15 0.03",

0.10 0.025

All Pictures:

Vertical scale =10. 2 inches H 01/division

Horizontal scale = 10 millisec onds /division

Nozzle supply pressure =10 inchesH20

Line length = 6 inches

Line diameter = 0. 518 inch

V V= Line-to-chamber volume ratio

Fig. 37. Pressure Oscillations in a Blocked Chamber Coupled to an
Active Source (Con~f. 3).
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appear. As Vt /Vc becomes very small the situation of Example 1 is

approached and higher harmonics begin to appear. For longer lines the

-/VC waveforms become less sinusoldal and higher harmonics begin to be more

apparent. A comparison of measured and theoretical limit cycle frequencies

ia given in Fig. 38. The comparison is remarkably good even for such short
1.075 lines, thereby showing the validity of the mathematical formulation for the

range of conditions considered.

Oscillation amplitude measurements were carried out using the

true rms voltmeter. In this case the rms value and the amplitude of the

1.050 fundamental are assumed to be the same. Typical measured results are

shown in Fig. 39. As expected, the amplitude decreases with increases

in both chamber size and supply pressure. The decrease in amplitude

with supply pressure is a result of an increase in the stiffness of the jet

with supply pressure increase.

A typical comparison of predicted and measured results is snown

in Fig. 40. The correlation is remarkably good considering the difficulties
.033 of measurement and the sensitivity of the solu-ion to the friction correction.

Since the frequencies were low compared to the natural frequency of the line

alone, the attenuation factor was computed from the lumped parameter

approximation (see Sec. 2. 3. 6). A minor improvement (in the favorable

025 direction) could be achieved by using the -nore exact values, but this

requires lengthy computation. Typical values of the attenuation factor

are: ea = 0.9988fcr L = 1 ft. and ea = 0. 9953 for L = 4 ft. Sensitivity

to changes in the fourth digit are apparent!

2onclusions - It is belie,,d that the experimental measurements

conducted to date adequately demonstrate the importance, general usefulness,

and limitations of the prediction models. Certain refinements are needed in

the models, but, for the majority of practical cases, the predictions are in

remarkably good agreement with the experiments.
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2.8 Legend:

Line length = 6 inches
Line d4 iarneter = 0. 518
V i /V = Line-to-chamber

volume ratio

2.4

1.6

.0

"-4

€4j

V, V/V = 0. 250
0 0

-'-4

S~= 0. 2C0
0 = 0. 150

D 0.8 0. 100
' O. 075

•<• O. 050

0. 4 0 . 02Z5

0.0

0 4 8"2 16 20

Nozzle supply pressure, inches H20

Fig. 39. Experimental Measurements of Pressure Oscillation Ar.-plitude

in a Chamber Coupled to an Active Source by Means of a

Six -inch Line.
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3. DYNAMIC ANALYSIS OF CONTROLLED JET DEFLECTION

3.1. LaPlace Transform Solution of the jet Equations

In an earlier report , Ref. 1, the equations de6cribing the motion

of the jet were written directly in terms of the values of variables at dis-

crete points. These equations in actuality assumed certain types of

approximations for the space derivatives of the transverse jet velocity

and position. There was no standard solution against which co-- -I le

compared the digitally computed solution ancI consequently no way of

knowing -hich derivative approximations would give the best results.

The purpose of this section is to compare the solution of the jet equations

using various space derivative approximations against two exact solutions.

3.1. 1. Redezivation oi Jet Equations

Consider a segment of the jet with stagnant fluid around it as

in Fig. 41.

The momentum equation gives:

Phd f -(P + ddn) hd -I (phd I dnV)
8n a t

+ (V + aV df) V~phdn - VV.phdn-)

-P P - V pV. (66)
an at a al

The appropriate no-idimensionalized variables are:

- VV-

V.
J

-i~i



p+a P dn
Y, n , •-

JV CZ t V + 2L- di
V

V. V

P

h = d&!pth

p = density

V. = axial jet velocity
3

V = transverse jet velocity

P pressure

Fig. 41. Control Volume Around a Segment of Jet.
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P

1 2
pV.

t J

(67)

y -

b

- V.t
t= 3

b

The quantity 1/t can be defined as the Strouhal number for the

modulator. Lquation (66) becomes

a7 a v- I a-p- (8
- - 1 -- P (68)

aa 2 aE

The jet position equation is(Ref. 1):

-+ V (69)at

We can combine Eqs. (68) and (69) and obtain (dropping the (-) notation):

8 + 2 a - (70)
at 2  ataI a f 2 an

This is a second-order partial differential equation of the parabolic type.

The forcing term of Eq. (70) can be evaluated as follows:
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Iap I L~P IlAP P a P 1P-a F -(71)

2 an 2 Ln 2 b 2 b 2 b

where

P = bubble pressure

Pa = atmospheric pressure

Thus Eq. (70) becomes

a2y 4  2 Y a 2 Y = F (72)

att2 atat a 2

3. 1.Z. Step Change in Pressure Across Jet

Consider a step change in F which acts over a finite length 00

of jet as shown in Fig. 42.

The expression for F is:

F := FoUS(t) (Vs(P) - U S(- 1) (73)

where U is the unit step function. The LaPlace Transform with respect5

to ( of Eq. (72) with Eq. (73) inserted, is:

2 + 2q dY + q2Y FoUs(t) FoUs(t)

dt 2  dt q

where Q -(i - e 0q) (75)

Equation (74) is now an ordinary differential equation which can be solved

in a straightforward manner by finding the homogeneous and particular

solutions, then superposing the resuits, and ev-aluating the arbitrary constants.
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Fig. 42. Step Change in Pressure Over a Finite Distance.
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Particular Solution

F Us(t) Q
-- (76)

p 3
q

Homogeneous Solution

The roots are equal, hence:

Yh = A 1 e -qt + A te qt (77)

Total Solution

-qt -qt FU U(t)Q

Y = Ae qt A teqt + o0 (78)1 2 3
q

Initial Conditions

Y =0 at t = 0

dYY- = 0 at t = 0
dt

Thus

FUs(t)Q F u (t)Q
A, - A_ 0S3 2

q q

Y(t) (  e -qt 1 -qt 1(79)
-U e - e + )O 79

Fo q_ q

The inverse LaPlace Transform of Eq. (79) is:

/ I d' ý22 2-Y
y e o0

.U(t) -e - t) (80)
k 2 s

- i'U6 -
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or

Y/ 2Y - Us ) I U (1 - 0} t

F 2 2 z2'
6)0 L

u ~(j - j )

0)

LU s(1" 1 o0 - U s( 1 - £ - t)

2 o

/(U - 1o)2 t

) A ] (81)

In addition we can obtain V by using Eq. '69).

F LSM + lJs(1 - t) L t - IT- U s(1 - 1 0)L -Po
0

+ U((I -1 - t) i - I t] (82)o o __1(2

Both Y and V are shown in Fig. 43.

3. 1.3. Expr iential Change in Fressure Across Jet

It is apparent from an earlier report (Ref. 1, page 13) that the

control region pressure looks like the step response of a simple first-order

system with a two unit time constant. The stcp response of such a system is

a simple exponential fim,.tion of time which can be easily generated for the

purpose of separately testing the jet equations. The simple first-order

response will be a good test input since it is reasonable to expect that the

bubble pressure will always be describable by a first or bigher-order

differential equation. The jet equations are solvable with this type of input.

The step response as derived in Sec. 3.1.2 is the special case where the

time constant of the forcing function is zero.
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Position Segment No. Velocity

,Step -

4 1 1,7
0 Exponential T =I 1/740 ir

00 1, 2 ;f-- Time Time3

2! 2
y2

0 
0 1 f 326 

- _ . . . .

4 3

2 2

0 ,- °0 2 3 ' 4 51 -

,4
41 4

0 • :0 ."-0 3 4 5 60 2 3 4 5 7
20

15 A

106 4-

0 4 56 0 3 4 5 9

30 
6

20 4

10 8 2

4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11

Fig. 43. Response of Jet Equations to Step and Exponential Inputs.
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The forcing function is

t

F FUs(t) (l -e )(Us(1) -Us ( f-0)) (83)

The LaPlace Transformed jet equation is

t
d-y + Zq dY + qZy = FU s(t) (I - e )-- (8.4)

dt2  dt q

Particular Solution

F U s(t) Q FoUs(t) Q
v O - (85)

P 3 1 2q q (-- -ci)

T

The homogeneous solution is the same as Eq. (77)

Total Solution

FoUs(t) Q FoU(t) Q

-qt -.qt 0 5 0 5 t (86)Y = Ale + Azte + 1 23 1

q

With the initial conditions as before, the arbitrary constants are:

Ao1FQ 1 2

q 2 q I -q)Z q q)Z 2

q q(-" -q) /
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The solution can be obtained by inserting the expressions for A J" A

in Eq. (86) and then taking the inverse LaPlace transform. The resulting

expression for Y/F0 is long and is best presented in parts for the various

possibilities of I and t. The velocity V is also included.

I <1
0

2- t

t~t
U- - ) -- T e - - t -

F

V T e S= 
-U s(t) L t- r (1 - e- )

Fo

0 - (t

Y T2e T+ -r (-r- e
F 012

I _V = Ust F T (e )er
F

0

0 <1 <f + t0 0

t<!

Y _k 
1U + T (r -t) (con't.)

F 2L
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( 0 -t,

T (T -f )0 -

V (t) -t T) -. -N o) + Te 0

F T

t >1

F SL 2 / - JjV 2(o-t)
Y - Us t o" + T _r - ) 1 e -r e

F | 2 0 e

01 e

oK /F 0 - Us~t M f 0 " T e e n
Fo

I >I + t
0

y - 0 (87)

F Fo 0

Both Y and V are shown in Fig. 43 1.

3. 2. Solution of the Jet Zguations Using Various Finite Difference
Approximations to the Space D)erivatives

The spae derivatives, a V/al anda Y/al, in Eqs. (68) and (69)

can be approximated at a fixed point in space by a finite difference expression

c I the form

- 111

-- 1



---- - T T:--'PT-- _T

n
df a af k n (88)

k i=

The coefficients of the differentiatioii formula, Eq. (88) can be

obtained from almost any numerical analysis text, (Ref. 30 and 31) though

often not eircctly. A digital computer program has been written which

calculates these coefficients for any n and all k's.

In the following ccses, the space increment, Al, is unity. The

jet is divided into 8 segments; the first four of which experience the driving

force, F, and the last four, no driving force. Both V and Y are computed, and,

in the three representative cases, compared with the theoretical response

by means of a graph.

Case I - Fig. 44 - Step Input

Derivative formulae:

dYk (89)
d - k - k-I89

dV
k Vk - Vk- (90)

dl

Comments:

1. Gives correct steady-state for V.

Z. Does not give the correct steady-state for Y.

3. Computed response leads the theoretical response

for segments 5 - 8.

Case II - Step Input

Derivative formulae:

dYk
di 5 Y k+I 0 .5Yk-1 (91)
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Position Segment No. Velocity
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0 1 0 Time 0 1 i i 4 " Time
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3
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2

0 1
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2 ~3 1
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12 6

Steady state _ __ _

8 4

4 2

0 0 _ __-_ __0

4 5 6 7 8 9 0 4 5 6 7 8 9

30 
61

20 t4..___

10

0 ,6.. i1 • 0 I .. :-

4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11

Fig. 44. Computed Jet Equation Response - Case I - Step Input.
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dVk -0. 5V
--- --- 0.5V k+ l O 5 k-i (9Z)

di

Terminating Conditions:

Same as Eqs. (89) and (90)

Comments:

1. Very little damping, Damping is introduced only

by the ternminating conditions.

Case III - Step Input

Deri- ative formulae:

dYk- 1.5Yk - 2YkI + 0.5Yk- (93)

dl

dVk =9T(4
k 1.5Vk - 2Vk-i + 0. 5Vk-2 

(94)
d I

Starting conditions:

Y-I = Y1 (95)

V 1 = V1  (96)

Comments:

1. Steady state is not correct for either Y or V.

Z. Computed response leads the theo:etical response

for segments 5 - 8.

Case IV - Step Input

Derivative formulae:

dY 1
- yl-yo

d -1 -
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dY2

"- "- 1.5Y2 - 2Y1 + 0. 5Y
di

dY k k

S-a Y (97)
di i= 0

Same for V

C omments:

Same as for Case 11L.

Case V - Fig. 45) - Step Input

Derivative formulae:

for

Yk' 9Eq. (93)

for
Vk, Eq. (90)

Comments:
1. Gives correct steady state for Y arnd V.

2. Computed response leads for segments 5 - 8.

Case VI - Fig. 46 - Exponential Input

Derivative formulae:

Same as for Case V.

Comments:

Same as for Case V.

Conclusions:

Only the derivative formulae used in Case V give the correct

steady state. The derivative formula for V is a two-point linear type.

It is reasonable to expect that the formula for Y should be a three-

point parabolic type. However, it is also seen that the computer response

is too slow, especially ior Y. Lead action still occurs for segments 5 - 8.
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Fig. 45. Computed Jet Equation Response -Case V - Step Input.
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Fig. 46. Computed Jet Equation Response - Case V -Exponential Input.



This is to be expected because a pure transport delay is impossible

to approximate with a finite set of continuous differential equations.

The general conclusion is that none of these alproximations

work very well. A good approximation should at least produce a

correct steady state and a transient which is a reasonable facsimile of

the theoretical one.

•. 3. Characteristic Curves of Partial Differentia1 Equations

3. 3. 1. Significance of Characteristic C> . ,e-

Certain types of partial differential equations possess what are
called characteristic curves. (Refs- 29 and 32). As an example,

consider the wave equation,

V 2 a Zp a p =0(

al1 at 2

where P = f(I) and Pt- 0 at t = 0. The ,olution is known to be of the

form

P(1)t) = 1 F - Vt) + f(! + Vt (99)
2 I

which can be represented as in Fig. 47. The value of P at point C

depends only on the values of P at A and D. Furthermore, every

point within the shaded area is determined by a pair of points on the

I axis in the interval AB. The two lines, Ac and BC, are cal'Ld
"characteristic curves". Di.'turbances at A and B prcpagat'. along

these curves and combine to form the -value of P at point C. The

shaded area is called the "region of determination" of point C.

Another region of determination, (Ref. 32), DEC, can be

defined in Fig. 48 when Eq. (98) is converted into a difference equation.

The value of P at point C is now determined by the values of P on the

last two horizontal lines.
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Fig. 47. Characteristic Curves for Wave Equation.

- 110 -



t

C

D E

I

I
I

D E

Fig. 48. Finite Difference Solution of Wave Equation.
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If the solution to the difference equations is to converge to the

true solution then the region of determination for the differ ice equations

must include or coincide with that of the differential equations. Thus DE

must be greater than AB. If DE were smaller than AB th-n the values of

P at points A and B would not influence the value of P at point C; in which

case the solution does not converge to the true solution when the mesh

spacing shrinks to zero.

3. 3. 2. Characteristic Cu yes for the Jet Equation

The characteristic curves , 2q.(72) can be obtained from

the quadratic: k'Ref. 29).

adi2 - bdtdl + cdt2 = 0 (100)

where a, b, and c correspond to the first, second, and third coefficients

of Eq. (72) respectively. With a = c = 1, and b = 2, Eq. (100) becomes:

(di - dt)2 0 (101)

Hence,

dt 1 (102)
dl

The single characteristic curve for the jet equation is shown in Fig. 49.

The value of Y at B is determined by the value of Y an equal number of

space and time units previous. With F = 0, the solution to Eq. (72) is:

Y(f,t) = Y(I - A, t - A) (103)

where A is a constant. If F is not zero it would appear that Eq. (103) is

in need of an additional term on its right side. This term should represent

the cumulative effect of F on the jet over the intervals (I - A)--Om and

(t - & - t.

All of the above indicates that the jet equation should be solved

by a technique which accumulates the effects of F and uses the values of Y

only at previous t's and I's.
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3.4. Generalized Transmission Processes

3.4. 1. Definition of a Transmitter

The two equations,

-P oq and (104)

Ox Ot

aq _ OP (I05j

Ox at

can be combined to obtain the well-known wave equation in terms of P or q:

OP OP (106)

Ox 2  t

or

a q a Oq (107)

2 I~2
Ox to

One can write Eqs. (104) and (105) in a convenient matrix form after

defining the operator

D - .(108)
at

Thus

d P0 D -D
x[ ] - , 1 -[t (109)dx q-D 0,

or

d S =NS (110)
dx

The variables, P and q, are called state variables, and S , a state vector.

Processes which can be described by Eq. (109) are w:-velike or diffusive in

nature. Thus Eq. (110) describes the generalized transmission process.

(Ref. 33).
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Equation (104) is the result of applying the momentum equation.

If body forces are present, then an additional term is necessary.

aP _ aq + F (I1l)

ax at

Equation (105) is the result of applying the continuity equation. Likewise,

if sources or leaks are present then:

8q _ P + Q. (112)

Ox at

Thus Eq. (11G) becomes

d S -NS + F (113)

dx

where F is a vector containing Fb and Q. Thus Eq. (112) describes the

generalized transmiss'on proce3s with external forcing.

3. 4. 2. Solution of the Generalized Transmitter Differential
Equations

The assumed form of solution to E~q. (113) is:

Sx N S o  GFo ' (114)

where M and G are square matrices. Differentiating Eq. (114)

dS dM dGx
dx S + F (115)

0dx 0

and substituting into Eq. (113) gives:

dM dG
dSM + d F =NMS + NGF + Fo (116)

dx dx 0 0 (
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Collecting terms;

-N S+ -G - N (117)

dx N S dN

If F is assumed constant over the interval of space, x, (though not time)

then

(d.. MNM S + dG -NG 0  (118)
dx

Since, in general, So and F0 are not equal to zez, then it must be that

d M -NM = o, (119)

dx

and

dG NG =:IU. (120)
dx

The solution to Eq. (119) is the well-known exponential given by

M= eN x M (121)

The solution to Eq. (120) contains two parts:

Homogeneous Solution

G N x (I 2z)

Particular Solution

G . N -1 (123)
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Total Solution

G = eN x G - N (124)

The matrices M and G can be determined from Initial conditions.
0 0

At x = 0, it is obvious that

S so •(125)

Therefore, from Eq. (114) it follows that

So= M So+GFo' (126)

which demands that

M =I andG =0. (127)

Hence, it follows that

M0 = lK and G 0= N (128)

Equation (114) becomes

Sx= eN x So+ (eN x - l)N N Fo (129)

which is a familiar result (see page 11, Ref. 1).

3.4.3. Application to the Jet Equations

Equations (69) and (68) can be rewritten as

dY DY + V, (130-

dx
and

dV= - DV + F. (131)

dx
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The matric e-quation is

d -~L D, 1] FYIE ] (132)
So-D

Thus

N -D ,(133)

0 -D
-xD -XDN x ,xe(14

e -ex - - --- (134)
eJ SO0 -xD

N-1 -a L -D - - 1135)
0 1 1

D

and

1 x 1e-xD -e -xD

N x D D2  D

(e N ------------ ------------ (136)
0 , (I xDD)

Dj

The solution for Y and V are:

-xD -x

-xD (y + XV 0+ D xe D F (137)
0 0-

e -xD v 0 + - e ' F. (138)
\D /
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Making use of the fact that e-xD is the time delay operator and replacing

x by Ax the above equations become,

S-A xD - xD
Yx+ Ax, t+Ax = (Y + AXV)x,t + G ) ,D2 D

D

Vx+Ax, t+ Ax = Vt + ( D - ) F, (140)

By comparing with Eq. (103) it is seen that indeed Eqs. (139) and (140) do

represent the desired form of the solution. The right-most portions of

Eqs. (139) and (140) represent the integrated effects of F over the space

interval x-- x + Ax and time interval t---o t + Ax.

Equations (139) and (140) are of a mixed form involving both

difference and differential (or integral) equations. Both types of equations

are easily solved by means of a digital computer. The method of solution

of the portions of Eqs. (139) and (140) due to F is discussed in the next

s c ction.

3.5. Monotone Processes

3.5. 1. Definition

Monotone dynamic processes are best described by Paynter,

(Ref. 33, pp. 280 - 286), of which a small section is reproduced below.

"A large number of fluid, thermal, chemical and
other industrial and organic processes are characterized
by a step response which is monotonic nondecreasing in
time as indicated. (See Fig. 50)

The corresponding frequency response, at least
for most continuous processes, would have a non-
increasing amplitude and non-decreasing phase lag
with increasing frequency as follows: (See Fig. 51)

All linear systems giving to such response can be
called monotone processes.

Monotone response Is manifested through:
(a) Time delay or dead time.
(b) Dispersion or rise time.

In physical processes, time delay is usually
associated with propagation or transport phenomena as
measured by the ratio of travel distance to propagation
or transport velocity. The dispersion in any process can
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Fig. 50. Step Response of a Monotone.
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Fig. 51. Frequency Response of a Moniotone.
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Fig. 52. Step Response of a Simple Lag.
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ultimately be attributed to the law of increasing
entropy, whereby the distributed resistances in
any system cause an attenuation increasing with
frequency. Such scattering action is reduced by
isolation and relaying methods, bit is always
present to some degree.

Oscillatory processes, characterized by the
presence of complementary energy storage elements,
will have monotonic response whenever the energy
dissipated per cycle becomes sufficiently large com-
pared to the energy stored in each mode. "

By way of an example, it is seen that the simple first-order

lag is a monotone and is dynamically characterized by a single number,

the time contant. (See Fig. 52).

It is possible to determine a transfer characteristic of the

form: (Ref. 34).

G(D) = 1 1 b (141)
+biD + b D + ... bk Dk

1 2 k

wbich will adequately represent a monotone process over a desired

range of frequencies. In order to determine the coefficients of the

polynomial it is necessary to have a representative step response

E, of the process from which can be calculated the time moments which

are defined as:

+ 00

a 0 dE (t), (usually normalized to unity)

-00

•+ 0C)

ak= tk dE(t). (142)

- 00

The moments and the polynomial coefficients are related by the determinant:

(Ref. 34).
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b b 001 0

b b b 0 .• 0

a n n! i - ' (143)

b b bn b
n n-1 -Z2 1

If the step response is the result of a transfer characteristic

of the form given by Eq. (141), then indeed one will obtain an exact

representation. However, if the step response exhibits discontinuities

then probably the process contains time delays and consequently cannot

be exactly represented by Eq. (141). The resulting representation in

this case, though not exact, should still prove adequate for most

applications. A word of caution is appropriate at this point. it may

seem that a better approximation is always possible by taking more

terms in the polynomial. However, some of the higher order coefficients

(bk), may be negative, resulting in an unstable representation, which is

generally useless.

3. 5. 2. Application to the Jet Equations

Let us consider the contributions to Y and V caused by F

in Eqs. (139) and (140):

-AxD) -. txD

Y (1 -e Axe , (144)
F D2 D

and
V (i - AxD)

z V - 1 e )(145)
G F" D

One can immediately write the solutions to these equations for a step

change in F:
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Y t U t s (t - A X) I (t• - X AXI X A(t A AX) (146)

F 2 s

L
and

-= t- U (t - Ax) t - Ax (147)
Cl s

These responses are shown in Fig. 53. It is now apparent that G 1 and

G 2 represent monotones with discontinuities. Therefore, it is not

possible to find exact representations in the form of Eq. (141) for

G1 and G 2 ,

The moments for G can be easily calculated with the aid of

Eq. (142). In this case &x is taken as unity. They are:

1 1
a= 1 a 1 = 1, ... , ak = (148)2 k+ 1

From these and Eq. (143) it is now possible to obtain the bk:

b =1
0

~1
2

_1

b, - (149)
' 

12

b= 0

b 4 =

720

Therefore, the best approximation to G2 is

G2' = 1 (150)
1 +1 D+ 1 D2

2 12
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Fig. 53. Monotone Approximations for Jet Equations.
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St2" s compared to that ot u 2 in Fig. 53.

The steady-state value of the unit step response ofG1 is 1/2.

It is usually more convenient to normalize this to unity for the purpose

of calculating the bk. The steady-state gain of the resulting transfer

characteristic can then be mnodified very easily.

Proceeding as before, one finds that for G 2 the ak are:

a 1, =- ... ,ak 2151)
3 k+2

and that

b =10

2

3

= _7

36 (152)

4

135

b= 11

6480

b 39b-

51,030

The best approximation to G is

1

G 1 2

2 7 D2 4 11 D4
1 + - D + 2 + - D1 +D (153)

3 36 135 6480

where the " 1 / 2 " is the correction for the steady-state gain. The step

response of C,1 ' for the 2nd, 3rd, and 4th order cases is compared to

that of G in Fig. 53.

- 134 -



The approximations that ultimately will be used for G1 and G

depend on two factors:

1. The expected frequency content of F, and

Z. Cornpmt'r e-torage and time.

It was seen in Sec. 3. 1. 3. that the bubble region pressure looks

like the response of a simple first-order system with a time constant of

about 2 units. The bubble region pressure is the force, F, in Eqs. (144)

and (145). The harmonic content of the bubble pressure signal is therefore

small at frequencies above the break frequency, l/T z 0. 5 rad/unit. The

natural frequency _f G 2 ', Eq. (150), for example, is wo = 3.46 rad/unit

which is comfortably above 0. 5. Since G 2 ' is a good approximation to

G2 up to frequencies of 3.46 rad/unit then it follows that it also should be

sufficiently accurate when driven by the bubble pressure. Similar con-

siderations apply to GI'.

Using higher-order approximations for G, and G2 without

justification is wasteful of computer storage and time. If a jet is

modeled by 8 segments, a Znd-order approx.m.tion for G., and a

3rd-order approximation for G 1 , then it becomes necessary to operate

on 40 x 40 matrices. A minimum number of three such matrices

necessitates 4,800 words of computer storage.

3. 6. A Possible Model for the Fluid Jet Modulator

From the results of the preceding sections it is now possible

to propose a simplified model for a single control port fluid jet modulator.

A non-functional biock diagram is shown in Fig. 54.

The input to the system is the control pressure applied upstream

of the control port restriction. The resulting control flow combines with

the flow being demanded of the bubble region by the jet. The excess flow,

resulting from this combination, then causes the bubble region pressure

to "charge-up" to a new level because of the compliance (compressibility)

of the fluid in the bubble.

The bubble pressure then causes the jet to accelerate to a new

position. The change in position of the jet at the knife-edge affects the

demand characteristics. The characteristics are also influenced by the
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buibilt pressure. The resulting change in the demand flow then affects

the bubble region pressure thus closing the loop in the diagram.

Figure 55 shows a functional diagram of the same system. The

checked enclosures indicate the correspondence with Fig. 54.

The difference between the control and bubble pressures is

multiplied by the control port conductance, G, to produce the control

flow, W . This flow is being supplied to the bubble region. The flowS C

being demanded of the bubble region is then subtracted off. When the

system is in steady state this difference is zero. An excess of one over

the other causes a rate of change of bubble pressure, and consequently,

a transient. This pressure rate is integrated to produce the bubble

pressure. The bubble pressure is fed back thus closing a loop.

The net pressure across the jet, (P - P a) is applied to a transfer

characteristic similar to Eq. (153) which determines the position of the jet

in the region of the knife edge.

The atmospheric flow is computed as a product of two distinct

functions. it is -postulated that this flow passes through some effective

area which is a function of Ye and the lateral setback of the knife edge and

is described by a static function, q.. The effective pressure driving this

flow is a function of (P - Pa), or its negative, and is described by 01. The

simplest possible functions that seem appropriate are:

01 c'PBa P)

2 -o 0 e 2

where Y i:0 the lateral setback of the knife edge and b is jet width at theo

knife edge. The atmospher'z flow would be

(r,(Y 0 -Y e- 2) (P a-P)
Wa a;(o -e a b

which is recognized as the form of the simple orifice equation.
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The returin flow it computed as a function of the jet position only.

The simplest possible reticulation of 03 would be

W = O; Y +_- + 6 Yr e 2 o

W cc (Y + +!y); y +6 + + 6-Yr e 0 e 0

where 6 is a constant which allows the W = 0 point to fall within orr
without the non-zero range of Wa

The entrained flow, We, is assumed constant although this is

probably not strictly true.

The combination of these three flows then combine to produce

the demand flow thus closing the loop.

The above model assumes that the jet equations derived in

Sec. 3. 5. 2. are valid (at least dynamically) and that the demand

characteristics can be reticulated as indicated in this section. Both

assumptions must be verified by experiment.
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4. THE DYNAMICS OF SYSTEMS

4o 1. The Transmission of Waves in T nes

Viscosity and heat transfer disperse the wave-fronts in flule

lires. LaPlace operators for the propagation and characteristic im-

pedance functions have been derived by the author (Ref. 24) for liquid

and perfect-gas filled lines, and the frequency response and parts of

the step responses were calculated. Following the suggestions of the

author (Ref. 35), S. E. Nelson found the complete families of the step

responses of liquid-filled lines. This work is presented in a thesis (Ref.

36); a professional paper is planned. All of the above work assumed

small disturbances in rigid cylindrical lines with laminar flow.

D. M. Auslander is presently finishing his S.M. thesis in

which he makes theoretical predictions for the frequency responses of

liquid flow in cylindrical rigid lines with a gross turbulent flow. The

The predicted attenaution is much greater than for laminar flow. Both

smooth-walled and rough-walled pipes are considered.

None of the above work was supported by the present contract.

A question of frequent importance is the effect of bends on the

transmission of waves in lines. A rather simple answer can be provided

when the wave-lengths of interest are much longer than the dimensions of

the bend, and the disturbance is small. Under these conditions the steady-

flow characteristics of the bend apply, producing a pressure drop propor-

tional to the square of the flow. The proportionality factor, which depends on

the sharpness of the bend, is given for several geometries in even elementary

fluid-mechanics texts. The small disturbance assumption allows a. incre-

mmntal linear resistance to be found. This resistance is an increasing

function of the gross flow; it is zero for zero gross flow.

Thus the bend acts like a friction joint in a straight pipe. An

incident wave is partly reflected and partly transmitted; it A is the linearized

resistance for small disturbances about a gross flow in a line with charac-

teristic impedance Z (roughly equal to the speed of sound divided by the

area of the line), the reflection and refraction operators (coeff'clents in

simple cases) are respectively,
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reflection operator:

R (154)

2Z +R
0

refraction operator:

Zi o (Z + R) (155)

2Z +R
0

4. 2. The Stability of Fluid Systems

Fluid systems, especially those containing proportional fluid

amplifiers with no moving parts, often display little understood bistable

or cyclic instabilities. The author has prepared a paper on this subject

(Ref. 37) which will be widely available before the present report; the

present contract is therein credited with the support for the work. Therefore,

the substance of this work omitted herein.

Two general criteria for small-disturbance stability are presented,

with simple illustrations involving amplifiers, lines, and volumes. Applica-

tion of the criteria to real systems is based on separate measurements of

certain static and dynamic properties of the more complicated elements

and analysis of the separa.e properties of the other elements.
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5. STALL CELL SENSOR

5.1. introduction

The concept and test results on the first model of a stall-cell

sensor are described in Sec. 3.2 of the first annual report. Analytical

work of both a theoretical and experimental nature has continued. A

static stability analysis has been completed which should result in useful

design formulae. The experimental study was continued, utilizing a new

test model, and although results are mostly of qualitative value, some

quantitative data is presented.

5. 2. Bistable Jet Amplification

Fluid jet amplifiers are classed as analog (proportional) and

digital (bi-and tri-stable) depending on the stable operating positions

of the jet. A bistable jet is unstable in the center position and stable

only in its two extreme positions. The mechanism of bistable jet

amplification is explained as follows.

While a free jet is inherently statically stable, a jet which is

not permitted to blow freely into the environment may be rendered

statically unstable through proper design of the discharge region. Con-

sider a jet discharging to a region such as that shown in Fig. 56. In

passing throtugh the discharge region, the jet entrains flow, we, The flow

entrained is relatively unaffected by control port pressure differences and

jet curvature and hence remains constant on each side. The entrained

flow removed fromthe control port is equal to the flow into this region

from the environment, wa. Then, on the side in the direction of jet

curvature, the velocity of the flow passing through the area between the

projection and the edge of the jet increases. Due to increased frictional

losses, the pressure on that side (Pl) decreases. The pressure on the

opposite side (P 2 ) increases. A pressure force is then seen to act on the

jet in the direction of curvature. If the pressure force accompanying a
"Irsmall" deflection of the jet exceeds the force due to the accompanying

Y-component of momentum reaction, static instability results - the jet

curvature will then increase until the jet attaches to the projecting edge.

In the case of a two-sided amplifier, such as the one shown, this is re-

ferred to as bistable operation.

- 142 -



Xi xi
L- y w-W Projection

/- -7 '-

1P z

Fig. 56. Discharge Region Giving Static Instability.

R 
R

W X| . Wc

bo Control port

X = axial setback

W. Y = lateral setback
.1 0

R = control line resistance

b nozzle width0

Fig. 57. Discharge Region With Control Lines Added.
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Curvature of a bistable jet can be effected by adding control lines

to each side of the discharge region. This is shown in Fig. 57 along with

nomenclature that will be of useý By increasing the control flow on the

side of attachment, aecreasing control flow on the unattached side, or

both, the jet can be flipped from one side to the other. The ability of

the power jet to flip quickly in response to an alternating signal trans-

mitted to the control port led to the proposed application. A schematic

of the stall sensing arrangement is shown in Fig. 58 (see also Fig. Z0

of Ref. 38). In Fig. 59c a possible packaging arrangement is shown.

5. 3. Theoretical Study

5. 3. 1. Static Stability Analysis

Brown has presented a criterion for static and surge stability of

the center position of the power jet, based on experimental measures of

the characteristics of the device as measured at the control port-;. Van

Koevering has generalized this to include non-center jet positions and con-

figurational asymmetries. Brown and Simson have reported criteria for

the wave (organ pipe) stability using some of the same results, and in

Sec. 4. 2. of this report, Brown discusses a generalized approach to the

stability and response of linear systems.

The stability analysis for the center position of the jet is herein

interpreted analytically in terms of the jet model given by Simson (Ref. 39)
plus one added assumption, reducing greatly the requirement fo- e.cperi-

mental data. The analysis is for a symmetrical amplifier, assumes no

feedback effects of the receiver ports, and neglects the dynamic head of

the control flow which enters through a very large passage. In addition,

the "return flow, Wr ", is assumed zero for th.e center position of a jet,

a condition which is approximately necessary ý >r bistability. The flow

entrained into the jet, We, is assumed to be un-affected by small deflections

of the jet. Thus the changes in the control flc~w we are equal to minus the

changes in the flow wa which enters the control region from the environment

by passing between the knife edge and the jet. Brown's criterion fcr

center-position stability then becomes (See Ref. 40)
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Fig. 58. Proposed Stall Sensing Arrangement.
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(R)Y 0 JY 70 L 2  - P-)1P l=const.

-=const. "-JPa- P1

in which the subscripts I and 2 refer to the two control regions, Y1 is

the deflection of the jet as shown in Fig. 60, and R is the resistance of

the upstream restriction. The resistance R can be assigned either steady

state or surge values.

The deflection of the jet, for small pressure gradients, is very

nearly

x 0(P - pl)
-- o a P)(Y1I= - (] 57)

Zpb V.

an assum-ption based on the uniformity of the pressure gradient across

the jet and the conservation of the momentum of the jet. The nozzle width
is b0 , and the jct mean -elozciy V-o 3

The most critical assumption Is the modelling of the flow wa

-4

Wal= C d Y al t• 2P(-P 1) (158)

where t is the depth of the model. This is, of course, the classical adaption

of Bernoulli's equation to flow through an orifice. The orifice here is as-

sumed bounded by the "edge" of the jet. The atmospheric flow is assumed

to be into the control port, a condition necessary for bistability. For positive

control flow, this imposes the requirement Wc < we.

The substitution of Eqs. (157) and (158) into Eq. (156), noting that

dYal=- dYl, gives the condition for stability

2 2
W 1X w

> -11 + - 0 ao (159)

P (CdY ao t) 2  (R) Y1=0 P 2 boCd 2 Yao3 t 2 V.-
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The remnaining steps are to put w_ and Y into more convenient forms.
- i. di,

Using Simson's model for a jet, and assuming that the knife edge is within

a distance of 5.2 nozzle widths from the nozzle,

Yao = Y) - 0. 169X - 0.5 b (160)

The flow w is the difference between the entrained and control flows;ao

using Simson's model for the former and w for the latter,

w = 0.035 pX t V. -w (161'ao o 3 co

For the general case of finite resistance and Wc, Eq. (159)

with the condition of Eq. (161) results in the following criteria for bistable

operation:

YI=0
('PPb Y V. 2 + (Pc P - X

R C 0 ao C

R IC1 035pXt0VW.Ab Y V. +Z2(PCP) x ll
Y=0 0aoo

- tV ) 2  oC d ao3 -(0.035)2 Xj 0

for ]inear resistance
11\ w

co (16Z)

7()P -P

(R Z (PC F• bo Y ao V o P S(( "7 (163)

l\2-% V(Pc4( -1)

0. 03.yJ.. 035pXotV jpb Vj2 + 4 (PC o
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- kPLTVi ro Ud -ao (oJ.03 5) J - 0

for souare-law resistance, (163)

co

R Y 0 2(Pc - P)

where Pc is the control line supply pressure, P is the average control

port pressure ( = PI + PZ)/2), and Yao is given by Eq. (160). These

results enable a theoretical prediction, for example, of the optimum control

line resistance for a particular configuration.

For the special case of blocked control passages (R = io), Eqs.

(160), (162), and (163) reduce to

3 94

Y<,. 169 X + 0. 5b + ( (164)

Cd b

For the case of finite R, this relation represents a necessary (although not

sufficient) condition for bistability on which dimensional choices can be

based.

The upper limit imposed on Y by Eq. (164) represents the0

transition from bistable to tristable operation. By reducing the control

line resistance sufficiently, the operation can then become continuous. The

lower bistability limit is approximately the point where the return flow

becomes finite for a center-positioned jet. This limit represents a transition

from bistable to continuous operation, and may be estimated from Eq. (160),

by setting Yao = 0. The dimensional limits for bistability given by Eqs. (160)

and (164) are plotted in Fig. 61.

5. 3. 2. Atmospheric Flow Coefficient

Continuing the analogy of orifice-type flow for the atmospheric flow

component, it is shown by dimensional analysis that the loss coefficient Cd

has the following functional relationship (neglecting the effect of variations

in control port shape)
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Fig. 61. Dimensional Limits for Bistable Operation.
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CY ao $ (165)Cd =-- - eal

where Rea is the Reynold's number associated with the atmospheric flow.

Taking the characteristic velocity as the bulk r.ean velocity of

the atmospheric flow and the characteristic lengtii as Y ao' the Reynold's

number can be expressed as

Re - ao (166)
a •t

From Eqs. (158) and (161)

C = 0 (167)

Wao = 0.035 X0 tf2p (Ps - v, co (161)

so that the desired functional relation for Cd is determined experimentally

by measuring Ps. w 0 and P.

Da-.a of this type has been extracted from a load-flow diagram

presented by VanKoevering (Ref. 41, Fig. 5.8 +) and is presented
graphically in Fig. 62. This plot is for fixed Y ao/t; Cd is seen to vary

moderately with Reynolds number over this range. The latest test model

(described in Sec. 5.4. 1) was tested with Y ?/t ranging from 0.39 to 0.58

and Reynold's number on the order of 4000. Cd had values ranging from

0. 2 to 0. 3 and was a moderate function of Y ao/t and weak function of

Reynold's number. Leakage resulting in a large control port pressure

asymmetry limited the quantitative value of the data.

5. 3. 3. General Application of Theory_

The procedure for applying the proposed theory in designing for

optimum bistable operation is outlined below. This is for the most general

situation, where Cd is a function of Reynold's number in the range of interest.

+The value of R' on VanKoevering's Fig. 5.8 should ¾e 6.75. The corrected

value is computed from p. 98 of his thesis.
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1. Determine Y ao/t. Approximating P = w --= 0,

determine Re from Eqs. (166) and (161), the controla

line resistance being known.

2. From experimental data of the type presented in

Fig. 62, determine Cd-

3. Solve Eqs. (162) or (163) for the control line

resistance, still approximating P = 0.

4. From Eqs. (158), (160), and (101) solve for w

and P.

5. Using these values of w and P determine the new Reco a

and corresponding Cd. Solve Eq. (162) or (163) again, etc.

until the process converges. Better initial assumptions

should lead to faster convergence.

5.3.4. Application of Theory to Stall Sensing Amplifier

For the application at hand, with square-law control Ltne resistance

and equal supply and control port pressures, Eq. (162) simplifies to

0. 035 Xt (bY + zx 2 b 2 2 3 (.3)2 X4~

d o o 0ao o d - d ao C,
Co0  7 (bY+0 X ) o --- 020z ao+ xo0

(168)

where d and C are the control line orifice diameter and flow coefficient,

respecthiely. Fof control flow Reynold's number

Zvd
Rc 0 > 260

V

where v is the average velocity through a sharp-edged orifice, C0 can

be assumed conutant at about 0.625 (Ref. 42, p. 183). This Reynold's is

easily excceded in the pi-escnt application.
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Brown's graphical source-load matching technique was applied

to the load flow curve corresponding to Fig. 62. A value for optimum

control line ovifice diameter of 0. 0319 inch was predicted at zn operating

point for which the atmospheric flow Reynolds number is determinsed to

be approximately 105. From Fig. 62 this corresponds to a flow coefficient

of 0.66. The appropriate dimensions and d = 0. 0319 inch in Eq. (168)0

give Cd = 0. 566 in fair agreement. The variation in do for these two

values of Cd is about 30 per cent.

Using the dimensions of the new test model; X 0 0. 253 inch,0

bo=0.058 inch, t = 0.175 inch, Eq. (168) was solved for d0 in terms of

Yo' (= Y 0 /b 0 ). Two positive real roots were always obtained but a con-

sideration of the direction of inequality ruled out the larger (as they

indicated that orifices larger than the optimum favor bistability). The

results are plotted in Fig. 63 (• = Aspect Ratio = b/t).

5.4. Experimental Study

5.4. 1. Test Apparatus

The test amplifier, shown in Fig. 64, is a modification of

several earlier models which presented difficulties due to (1) Control

port resonance, (2) Knife-edge reattachment, (3) Pressure asymmetry.

The first problem arises from wave phenomena in the control

regions. It is in part dv to low frequency standing waves and the effect

is best minimized by making the control ports as small as possible.

Small control ports also favor dynamic response.

In order to minirmize hysteresis, sharp knife edges are employed.

This presents a problem due to the formation of a separation pocket

downstream of the knife edges (see Fig. 65). A deficiency of flow from

the environment: into this region can cause the jet to reattach downstream

of the edge of the knife resulting in a large increase in hysteresis. Data

summerized by Simson (Ref. 39, p. 131) predicted reattachment at larger

lateral setbacks (hence small P - see Fig. 65) with the present test model

for all but impractical knife-edge lengths. An alternative solution involved

placing large holes in the face plates in the region of the separation pockets.
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tivitv of setback toierance on op .-ating characteristics led to a micrometer

adjustment permitting easy changes to 0. 001 inch accuracy. The problem

of leakage was particularly perplexing because the desired free movement

of he knife edges prevented adequate sealing.

rhe dynamic test arrangement (Figs. 66 an 1 67) is similar to

that of the first annual report. ro eliminate control line dynamics, the

control lines are vlmost negligibly short, although they were initially long

enough to insert piezoelectric pressure transducers. During static testing

and while adjusting the signal line supply pressure for dynamic testing, a

monome:er is added to the signal control line. The test model has dimensions

given in Sec. 5.3.4.

5.4. Z. Static Test Results

A large amount of experimental data has been taken using t he

present and earlier test models. Unfortunately, dimensional misalignment

and leakage problems limited the quantitative value of most of the results.

The upper instability limit (for R = co) as given by Eq. (164)

is plotted in Fig. 61. Setbacks are nondimensionalized with respect to

nozzle width. The results of two test runs at a supply pressu.-e of 3.45 psia'+

and with X = 3.89 are shown in Fig. 61. The smallest possible setbac.,

used in practice to decrease the hysteresis bond of the control, increasing

the gains.

From Eq. (168), d0 is plotted versus Y and Cd in Fig. 63, for

the dimensions of the present test model. The experimentally determined

optimumn orifice diameters for Yo' = 2. 07 are plotted. Agreement 's fair

within the range of valic~ty of the theory (i.e., incompressible fiC - Ps <Z in. Hg).

Data points further up in the compressible range (6 to 10 in. Hg) are off the Zraph.

A sudden jump between 4 and 5 in Hg was observed.

+ 3.45 psi is the average stall-free pressure ratio across a single compressor

statge as determined in the first annual report.
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Fig. 67. Dy-iarnic Test Apparatus.
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One of the principal objectives of the experimental study was to

determine if the hysteresis could be reduced sufficiently to permit bi-

stable operation with the a valiable pressure swing (PiAX - PMiN < 0. I psi).

This was done successfully and reported in the First Annual Report

(see Fig, 21). With the new test model, operation with very emall

hysteresis was difficult due to coptrol port noise of the same order of

magnitude as the hysteresis. The signal (slightly filtered) from a

piezoelectric in one control port is shown in Fig. 68. Control port

resonance caused random flipping of the jet, the large jump indicating

jet movement. The increase in noise is possibly due to the sharp knife

edge. Tilting the knives at an angle less than 900 would probably reduce

the noise.

Defining Gain as Supply Pressure times Recovery Ratio divided

by Hysteresis; with a recovery of 70 per cent, hysteresis within 0. 1 psi,

supply pressure of 3.4 psi, the gain would be slightly greater than Z4.

5.4.3. Dynamic Test Results

A primary purpose of the experimental study was to determine

the frequency response characteristics of the amplifier. In Sec. 3. 2. 1

of the First Annual Report, it was established that the amplifier must

have a frequency response better than 400 cps at 5 per cent modulation,

corresponding to a rise time of 0. IZ5 millisecond. The test results

reported in the first report indicated a maximum frequency response

of 260 cps at 37 per cent modulation and only 60 cps at 8 per cent

modulation. This corresponds to a rise time of about 1.4 milliseconds.

For the nozzle supply pressure of 2. 94 (pressure ratio = 1. 2) the nozzle

flow velocity is 598 ft/sec. Then with the lateral setback - 0. 06 inch,

the transport time defined as 2X /V1 is 0. 0167 millesecL d. Thus the

response time is greater than 80 transport times which is much larger

than the results of Sec. 2. 1. 5. in the first report would indicate. The

discrepancy was attributed to dynamics associated with the long control

line.

In the new test model the control line was virtually eliminated.

The control ports however, were larger than before to permit instrumenting

each control port with a piezoelectric pressure transducer.
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The stall cell signals are shown in Fig. 20b of the first report.

The mneans._ Of m.0dullati-ng the 4inpt- sgAAA "-t Y%> rrrdt 'ýVt i-,1tbr

of the stall siinal; the minimum pressure being lower than in the actual

case. The experimental input signal is shown in Fig. 69. The rise time

associated with the signal increase should closely simulate the rise time

with the actual signal.

Dynamic test results are shown in Fig. 70. The lower trace is

from the piezoelectric in the signal control port and the upper trace

from a piezoelectric placed downstream of the knife-edge as in the first

report. The modulation is approximately 25 per cent.

The asymmetry in the input signal is evident in the lower trace,

the rise time in one direction being much greater than in the other. The

effect on the upper trace is to lengthen the output pulse width. At 455 cps,

the control port transducer indicates sharp response to the larger de-

creasing pressure signal.

5.5. Conclusions

Experimental data enabling an assessmenL of the theoretical

stability criteria is incomplete. To avoid the dimensional asymmetry

and leakage problems a large scale test model should be constructed.

With such a model these extraneous effects would have less consequence.

The dynamic test results demonstrate the strong dependence of

response on pressure swing. A reduction in size of the control ports

could increase the response significantly. With the larger pressure

swing it appears that the response is adequate. By staging amplifiers,

using proportional devices in all but the last stage, the stall cell signal

could be amplified to the necessary pressure swing.
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6, DESIGN OF A TEMPERATUJRE-INSENSITIVE PNEUMATIC

OSCILLATOR

6. 1. Introduction

A constant-frequency pneumatic oscillator is a necessary element

in pneum3ýtic logic systems and coald form part of the basis of temperature-

-neasuring and speed-measuring devices. The frequency of a really useful

oscillator should be insensitive to the temperature and pressure of the fluid.

The objective of this report has been the development of a fixed-frequency

pneamatic oscillator which requires n temperature control and only the

pressure control of a common regulator.

A very simple oscillator consists of a pneumatic jet amplifier

with transmission lines connected to its control ports in such a way as

to cause a dynamic instability. See Fig. 71. Since the velocity of sound

varies as the square root of the absolute temperature, the lengths of the

transmission lines would have to be automatically adjusted over a large

range, aiid the adjustment would have to be very precise. The lengths

would also have to be adjusted for pressure changes, since the entrain-

ment of flow 5and the velocity of thi, jet significantly affect the frequency

o0 oscillation.

Another oscillator is one in which a linear mechanical spring--mass

system (essentially a tuning fork) ctntrols the frequency. Since the damping

is smaiel, the frequency is limnited tc the vicinity of the natural frequency

oA the spring-mass system•; co-apen'ation for changes in pressure and

temp:;rature are smaller and need not be so precise. For this reason,

only osclllators controlled by spring-ma.ss systems have been considered,

although an oscillator with a pneumatic resonator might be satisfactory

for some purposes.

To meet the require.ent of pressure insensitivity, the goal has

been driving pressure forces which are as nearly as possible in phase

with the velocity of the maes so that they subtract from the damping forces

but neither add to nor subtract from the spring forces. Then the phasing of

the pressure forces would be independent of both temperature and pressure

except to the extent that the modulus of elasticity of the spring and the

din-isions of the vibrating system vary with temperature. The amplitude
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of motion would change with pressure, however, requiring some non-

critical control to increase the range of pressures over which the device

would ooerate usefully.

6. 2. Circular-Motion Oscillator

A disk on a shaft of negligible mass can be made to vibrate (without

rotation) in a circular path. This motion can be considered as the super-

position of two mutually perpendicular lateral vibrations with equal ampli-

tudes and a ninety degree phase difference. See Fig. 72.

From steady-state circular mnotion, the conditions for equilibrium

are

2
mrw - kr + G (169)

in radial direction

Brw = F (170)

in the tangential direction where

m = mass of the disk

w = the angular frequency of .vibration

r = the displacement from the center position

k = the lateral stiffness of the shaft

G and F = forcing functions

Notice that if G = 0, then =- =k/m. F might be a function of r, .&(r).

Thus, if a configuration can be found which will provide a driving force

which is perpendic-ol1.r to the displacement at all points of the cycle and

of constant magnitude for any given amplitude, then the frequency of

oscillation wil be the undamped natural frequency of the disk-shaft system.

F(r) might be a function of pressure and temperature, but only the amplitude

of oscillation is affected by changes in pressure and temperature.

The relationship F(r) might have a sharp cutoff at a certain amplitude,

r, as shown in Fig. 73. The equilibrium amplitude is detern.ined by the

intersection of the damping force and the F(r) curves.
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6. 3. Problemns Affecting the Configiuration

Two pfubleriiis greatly aflect the configuration and limit the usefulness

( t h e s.. ..i . . . . t .. .c Is th e .n in i -m.z a t. o n o f t h e'- I fl ow

and pressure forces which aff-ct tiCe effective spring constant. This wi] be

discussed in detail iater.

The second problem is that of the stab ity cf the circular-motion

equilibrium. It may be Ci31rable to substitute for the ideal F(r) another

F(r, 0), where Q is the angle or wdt. For example, in the shaded portion

of Fig. 74a, F(r, 0) might be zero. Now tOe intersection of the damping

force and the driving force curves has no meaning except in a qualitative

way, and equilibrium motion is not strictly harmonic, although perhaps

very nearly so.

Assuming harmonic motion, it can be seen that the circular equili-

brium motion might be unstable. A slhght increase in the anmplitude in the

X-direction would, because of the slope of the F(r, 0) curve, result in a

decrease in the Y direction driving force and, consequently, the Y-direction

amplitude. By similar argument thp X-direction amplitude would increase

some more, and the final steady-state motion would be elliptical.

For certain applications, an elliptical motion would be acceptable,

but more often, circular motion is desired. If the numbe-. of regions of

positive driving force (shaded areas in Fig. 74b) is increased, then F(r, 0)

approaches *-Tn ideal, co-itinuous F(r). For this case, a more careful anal/sis

is required to determine. the etability of the circular motion. Such an analysis

was motivated by initial experimenmal observations of sharply elliptical rather

than the desired circular motion.

6.4. Sability Aaalysis for Continuous F(r).

In this anilysis the motion of the end support is taken into account.

it is assun.ed that the movable end support of Fig. 75 moves up and down

without sidewise or rotational -. otion and that its motion is directly propor-

tional to the motion of the vibrat ý.ng disk. (We assume that the wire is stiff

axially). The result is that *he effective mas, spring, and damping constants

for vibration in the radial direction are different, generally, from those for

vibration in the tangential direction. (For pure!-, circular rnoticn of the disk,

:he End support does not move at all).
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The kinematic equations are:

rur

Velocity = ru-r r r u0 (172)

Acceleration = U r u+ 1J Zi-0 + rj u (173)

where ar is a unit radial vector, u0 is a unit tangential vector, and r

and 0 are polar coordinates in the system whose center is the neutral

position of the disk.

Next, using only the radial acceleration, velocity and displacement

and assuming linear dairping, the dynamic equation for the radial direction

is written.

mt - ro-J + B ÷+K r = 0 {174)r[ r r"

where r-subscripts refer to the radial direction.

Let
K B

2 - r B rr~ -~ ; 2•~ r; (175)
Wr 2ýr Wr= 175

m mr r

then

2cr'- r + 2rWr i- + W r = 0 (176)rr r

The dynamic equation for the tangential direction is

m0 Lr+ 2i0J + B 0 rQ - F(r) = 0 (177)

where Q..subscripts refer to the tangential direction.

Define

_ K B

Qo - , 2y - , and f (r) = £(r) (178)
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where F(r) is the continuous driving force;

then

k ± 21-) 2• ;0w rQ - f (r)= 0. (179)

in analyzing the stability of circular motion, we can linearize

equations (176) and (173) and investigate the effect of a srnall departure

from equilibrium. Equation (176) becomes

*2 2AY'r 2rL@O Ar + 2r ý Ar w ) r+= 0 (180)

Now
di

Af(r) =-d Ar = f'Lr, (181)
dr

so Eq. (179) becomes

Q Ar + rA & + 2-AQ + 2QtI + 2 9 Ar + Zt,, trAQ - f'Ar =0

(182)

For the equilibrium conditon under investigation,

r is constant
"r'= r= 0

Q = (183)

0 0

so tCat Fqs. (18'1) and (182) become

2 2.
Ar'+ Z+ r 2 i 4(r -W ) Ar - 2rw AQ = 0 (184)

r r r

rAQ + 2w•Aw, + 2A W &r + 2[w rAO - f'Ar =0 (185)

S-r 17 r
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When the Eqs. (184) and (185) are combined and the AQ terms eliminated

(one differentiation involved). the result is

n "+ 2w (;~ + A.) ' , Z1÷4 rO)'3 0 - -
~r+~ r +r ~ r 4 rY

L

+ L wor (" ±r + ) . 2 wQf, Ar = 0 (186)

The stability of several situations might be investigated. The

simplest one is that for which

wr =0 ' ,r =0 (187)

(end supports rigid, supporting wire stretchable) and

ýr Q << 1 (188)

(a very reasonable assumption in any case of interest here). We now get

3 2
(D 4- 4 4w:i D + 4ý tO) Ar = 2 w of'Ar (189)

where

D S (190)
dr

Figure 76is a polar plot of the left-hand side of Eq. (189) with D replaced

by jw. The Nyquist stability criterion for this inverse Nyquist plot re-

quires, for a stable circular motion, that 2 VIf' have a value of the real

ýaxia within the cairve; for 3tability,

-6ý0 < f, < 2 ;W02 (191)

This result is expressed graphically in Fig. 77. The lower limit for the
2

cutoff slope, -6ý0 co2 , is the one of intterest. Physically, an instability
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at this slope is not very spectacular; the path of motion merely begins to

become elliptical. Note, from the polar plot, that the frequency for

oscillations of Ar about the equilibrium radius is 2w 0

The range of permissible cutoff slopes can be increased by intro-

ducing a lag into the driving function. At the operating radius, we use

Sg(192)

A r (TD + !)

to replace the V previously used. Physically, this means that changes in

the driving force are related to changes in the radius at an earlier time,

i.e., at an earlier angle, 0, in the motion. If the lag angle is almost

ninety degrees, then an increase on the amplitude in, say, the X-direction

will result in a decrease in the driving force in the same (X) direction,

but ninety degrees later.

To find the effect of this lag upon the stability, the left-hand side

of Eq. (189) and the polar plot of Fig. 74 are multiplied by (jTow + 1).

If T» >> I at w = w0 , the wo = w 0 point will be rotated count, rclockwise

almost ninety degrees, and the magnitude at w = w will be multiplied by

T wo " The new polar plot is shown in Fig. 78. We find that, for stability,

3 3 2
- T T < g' < (193)

2

and
3 3

- -- TTg !min 2 1 0 Two9(14
=__ -- - - (194)

f' 2 4rraiin -6•

where

1> > and LK < 1, probably. (195)

Of course,

- m. (196)

max
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The optimum lag 3s actually slightly lzess 1-han ninety d'tgrees and rotates

the point of maximum amplitude at~ 1. 15,a to the negdtive real axis.

If the g' cutoff slope is too steep, the re-sulting "insrability" has an

oscillation frequency This mneans th-at the motion is not elfptical

hut epicyclic.

Although the use of the 'lag provides for a m-.ich -3t.-eper allrnwable

cutoff slope ?ai-d conseqaently a greater pressure range for satisfactc-ry

operation, its usc increases the complexity of the osciflator. For this

reason, the os,;cfllator's built --nd tested all lack~ed the lag.

A lead could also be used and would be e-ven more successful than

a lag, although it would mnake a still more complex system. In this case

Af ( TD + 1) (197)
Ar

would be used ýo replace V in Eq. ( 39). The polar plot would be divided

by (j~rw + 1). The result (See Fig. 79) would be a staýble systen7 for? all.

cutoff slopes and all pressures.

A physical interpretation c,; these resulls is now given withi the aid

of Fig. 80, which shows a hypothetical di-sk motlion in which r 1 is t. large.

The simplest system. senses the error in r aand corrects r b by correcting

F a. If r b is reduc-ed, r c in turn becomes elongated, r c rec-accd, au~d the

motion becomes elliptical. The system with a ninety degree lag correctAs

r c. If r c is reduced, r a is consequently inc~reased mor-e, and £hz- monoion

becomes eccentric. In the systemn witl- a leac, ra itself, rathoe r than 'its

innecent compler ents, is corrected.

ýNow- suppose th'at (,) :1) but that .Assumne a systemr

like that of Fig. 81. If the amplitude of radial vi~bration of the disk is 6,

then the am-plit~ude of -vertical vibr~iLion of tL~e top support is apiroximately

6 2 /L. The effective mass of t-he support as se-en at the disk is

6 2

L M = 5N1(198)

6 L

1J77-
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,nd the natural radial frequency is

K (199)•r 1-V 6
rn + - M

L

.J the disk is vibratirg in a circular path, the top support will not move

it all, so the tangential natural frequency i&

W /_K; (200)

Routh's stability - -terion applied to Eq. (175) yields, for the lower

imit of stability,

r r2 .) [r 2 1 (201)

(A L

kssuming r <<I, this becomes

2 2 2 2

f, r ( r 3 r 6 W (202)

Now, with hindsight not yet available to the reader, we assume that

/L = 0 02 and M = Z0 n. tis a result, c. r = 1 0/1.4.

An application of Routh's criterion, Eq. (202), .-hows that for
2

tability, the steepest allowable cutoff slope is -3. 94c0W compared to2

6ý 0 W, for rigid end supports and stretchable spring wires, or, equi-

alently, zero support mass. This indicates that it is necessary to

-inimize the movable support mass.

Extra damping might be given the vertical motion of the support.

"we assume that ;r = 10 ;939 Eq. (202) shows that P'min = - 26. 5 r,

he additional damping seems to be desirable.
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6. 5. Temperature Compensation

The frequency of the ideal circular-motion oscillator is not
affected h- changPR in the physical ,.1pipere of the ga- ... w.ng through

- 3 - - - -- -, - ___ .. . ... . . S I:• . o I- &.... %4r 1

it. Changes in temperature will. however, change in the size and the

stiffness of the mechanical parts.

Changes in stiffness dominate changes in size. According to

simple beam theory, the lateral stiffnes3, K of a siaft is prop )rtlonal

to EI/L3 where I is the second area moment of the cross-section, £

iq the modulus of elasticity in tension, and L is the length. I is pro-

portiondl to L4 at all temperatures, so K is proportional to El. Fig,•e

82 (Ref. 43) shows the variation in E with temperature for some steels.

Along the linear portion of the curves,

AE 2.13 x 10- 4  (203)

EAT 0F

From any materials handbook, a typical value for the coe±fficient of linear

expansion of steel is

AL 6.7 x 10-6 (204)

LAT 0F

For purposes of analysis, the change in size will be neglected. Fine ad-

justment of an actual oscillator can overcome this neglect.

Now we have

AK - AS 2x (205)

KAT EAT 0F

If AT - 1000 0 F, then AK/K t 20 per cent. This number will be kept in

mind henceforth. Notice that linearity is here assumed.

Of several possible mechanisms investigated for temperature

compensation, the only one that seems really satisfactory for such a

large-scale compensation is the varying of the axial compression or

- 180 -

_=4 m •



32 - Carbon and allkoy steels

1"0 Ausientitic Stainless

24

+ 22Il

x< 20

14

12 z 0 t

0200 600 1000 1400 1800

Temperature, 0F

Fig. 82. Variation of Modulus of Ellasticity with Temperature-.

Counter balancing mrass

Top support

AA Single convolution
bellow.;

Adjustment for BR
initial compress 7

Bottom support

Axis
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tension of the supporting wires by means of a sealed bellows. VT"th

this mechanism, one end support can be made non-rigid, as required

for linearity of the vibrating spring, and the actual compensating mnotion

can be kept very small, although the force changes by a substantial

7 amount.

Figure 83 shows schematically the oscillator with the bellows

temperature compensator. The bellows are designed to be flexible in

the axial direction and stiff in the lateral direction. The vibrating disk

is supported for by four wire springs. Because of the parallelogram

action of the four wires, the net moment felt by the movable end support

is small, and the only force to be resisted is the lateral force.

Sealed chambers A and B encircle the axis. The gas in chamber B

is at a higher pressure than in chamber A. The pressure difference applied

to the movable support is proportional to the absolute temperature of the

gas in chambers A and B. With the spring of the bellows or with a separate

spring, the wires can be given an initial compression. As temperature in-

creases, the stress in the wires changes from compressive to zero to

tensile. Since the fatigue resistance of the metal becomes less at high

temperature, the adjustment should be such that the compressive stresses

become zero at the highest temperature.

The use of two chambers, A and B, eliminates the influence of

changes in the environmental pressure. In some applications, one chamber

might be omitted. If the oscillator is subjected to acceleration, the counter-

balancing mechanism shown in Fig. 81 is necessary in order that the os-

cillator be insensitive to acceleration in the axial direction, The oscillator

will still be sensitive to accelerations and vibrations in the lateral direction

to a degree depending upon its mass and spring constants. Because of the

sensitivity to forces in the axial direction, the oscillator driving and porting

mechanism at the vibrating disk must be designed so that the axial pressure

forces, as well as the radial flow forces, are kept very small.

6. 6. Lateral Stiffness of the Springs as a Function of the Compression

For the cantilever beam shown in Fig. 84 the maximum deflection is

given by (Ref. 44).
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tan 1\ (206)PI \P-I EI

This can be modified for the case of Fig. 85:

2Qp E tan P'L24E L (207)

Equation (207) can be put into the form (Ref. 45)

1 I 6 ( 3 /.tan a -a (208)

Kiat Q 4 EI a3

where

SP L (209)

4 EI

For P = 0, (Kia 0is 1ZEI/L3 from simple beam theory or by reducing

of Eq. (208). Then
3

a.
Ki at 3 (210)

lat) P= 0 tan a - a

Den Hartog then expands this in an infinite series:

Kfat 7L 1 P t  2

0P= 0 crit 525 ( crit
(~K~~t)(211)

- 0.011 N Pt

1 0.987 - 0- 0.001 P - - ...
c rit Ic ritI crit
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where PIcrit =7T 2EI/L2 either from the Euler buckling formula or the
reduction of Eq. (210) for Kfat = 0.

If Kiat/(KI at) P= 0 is plotted as a function of P'/P' ct the function
is nearly a straight line. Assuming that it is linear, and assuming a linear
relation between change in temperature and cha.ige in the modulus of

elasticity,

K = Ko( 1 - a.AT) 7 (212)

L o crit (1 -AT)

where P is the total buckling load for all the wires,o c rit

K and P are for T = 0,

AT = temperature change (213)

AE

EAT

and

P= -APA (o ) + C0 Ai (I - aAr) (214)

where P is the pressure difference between chambers A and B in Fig. 81 and
C is the bellows spring constant, both for AT = 0, and A& is the initial
deflection of the bellows. A' is the area of the ends of the chambers. Then,

AP A' C A' / AP A' C A& a.
K = + + AT (215)

L o crit "o crit T cPocrit Po crit!

For temperature insensitivity, the coefficient of AT must be zero;
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/\

C AP A'
c= 1P 0  (216)

P0 crit ToPo crit

So then

AP A C &
K =K 1+ 0 0 (217)

•5 / P PL o c rit o c rit

where K is the lateral stiffness of the springs supporting the disk. In the

physical system A P 0 and A I are both easily adjusted. Hence both K (and

the frequency) and the temperature compensation can be adjusted.

The two assumptions of linearity made here, narnely a = a constant

and K I at 7(Klat 01 - P'criitcannot be justified for really precise

, ompensation without a much more extensive investigation of the relation

a, between modulus of elasticity and temperature. Assume a actually is

constant. For a 1 f00 0 F temperature range, the maximum P in Eq. (212)

is 20 per cent of Pcrit" The deviation of Eq. (212) from a straight line over

this range is about + 0. 006 per cent. Remember, however, that a beam in

bending is a linear spring only for small deflections. The size of the assumed

linear range is related to the precision required.

6.7. Configurations to Provide Driving Force and Output

The first circular-motion oscillator designed and built consisted of

a flat disk suspended by four wires as in Fig. 86. The circular path of the

disk was in a plane adjacent to a plate containing air ports which were covered

and uncovered by the motion. Pressure was supplied to the housing for the

system. Output lines were connected to the ports in the base plate. The two

crescent-shaped ports, shown in Fig. 86b and c, provided two outputs 180

degrees out of phase with other. (A photograph is shown on Fig. 87a).

The driving force for the disk was provided by vanes set at a spiral

angle around its periphery. The flow through the vanes was greatest at the

largest opening uncovered by the disk, and the flow force caused by the

vanes was always tangential to the direction of the displacement of the disk.

See Fig. 86c.

When tested, this oscillator showed some sensitivity to pressure

because of two undesirable forces affecting the spring constant. One of
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these was the colurroa loading on the face of the disk. The other radial

pressure force was a result of flow into the partially closed ports.

The flow fkrce on the edge of a plate closing a hole was measured

roughly and found to be generally as shown in Fig. 87. Because of the

skew of the curve, this radial force could not be balanced adequately by

the corresponding force on the opposite edge of the disk.

Another design was built and tested. The vibrating disk had

eight holes evenly spaced in a circle. Each hole was perpendicular to

the radius at that point but slanted with respect to the axis of the disk.

Thus, flow through a hole was giver a velocity aZ' 'd momentum in the

tanigential direction. The base plate contained another ring of eight holes

at a :3lightly greater radiu3. See Figs. 88 and89b. A displacement of the disk

from the center position resulted in a greater opening i r flow on one

side than the other, and therefore, a tangential flow force. As the

amplitude became greater, however, the disk and plate holes overlapped.

less so that the flow force was reduced. The amplitude was not limited,

though. After the circular motion attained a certain amplitude, further

increases in pressutre caused the motion to continue to grow with an

elliptical shape. The stability analysis was then made to understand this

phenomenon.

It seems reasonable to expect that the flow forces arising from flow

through a hole be less than the flow forces on an open edge, since the re-

duction of pressure by Bernoulli flow is felt at least partially all around

the interior of the hole. The first of the two oscillators just described

has a pressure sensitivity of about 1 per cent per psi supply pressure. The

second had a sensitivity of about 0. 02 per cent per psi. The comparison is

crude because the oscillators were only roughly of the same size.

Both oscillators had the vibrating disk upstream so that the output

could be taken directly from the base plate. A simple experiment, the

results of which are summarized in Fig. 89, emphasized that it would

have been better to place the disks downstream.

An oscillator with a pneumatic lag in the amplitude-sensing mechanism

was considered but not built, even though the stability analysis had indicated
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that a lag was quite desirable. A possible configuration is given in Fig. 90.

"The holes in the upper disk whic., meter the supply air are aligned with the

corresponding holes in the supply plate when the disk is centered, but be-

come more and more misaligned (orbiting around the supply hole) as the

amplitude of oscillation increases. The chamber causes a lag between

changes in flow through the upper disk and the driving force provided by the

vanes on the lower disk. The flow is in the proper direction for keeping the

radial flow forces low, and consequently, the oscillator as shown has no useful

output; auxiliary ports are necessary.

The third oscillator built was quite the same in principle as the

second, but the flow was reversed. The disk was made very thin so that

the sides of the holes wold not interfere with the flow (see Fig. 91a) and

vanes were placed immediately behind the holes to provide the driving

force, as shown in Fig. 91b. Instead of being in a slightly larger ring,

the holes in the supply plate were drilled in line with the holes in the disk

and then half-plugged, as shown.

It is interesting to examine in greater detail the operation of this

oscillator and to examine especially the action of the amplitude cutoff.

Consider air flow in the configuration of Fig. 91b. The momentum of the

fluid flowing through the holes is WV, where W is the mass flow rate and

V is the velocity. If the vane is set at a 45 degiee angle, then the lateral

force on the vane is approximately WV/f. This assumes that the flow

is straight through the holes, which is not strictly true. In fact, with

this assumption we overlook a small source of radial force which will be

discussed later. It is assumed also that the velocity of the disk is small

compared to the velocity of the air. It is, in fact, 30 inches/second for

0 0 = 500 cp3 at an amplitude of 0.01 inch.

The product WV/V-is now derived for both incompressible and

compressible flow. For incompressible flow,

V =F -LP-- (218)
! p

where AP is the pressure drop across the holes and p is the fluid density.
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W = pVA (219)

and

F - pVA - AAP (220)

For isentiopic compressible flow,

V = M f yRT (221)

where M is the Mach number, and N is the ratio of specific heats.

WV = pV A= pAM2yRT (222)

Using the equation of state

P - ((Z23)
RT

we get

SW V P A M Py Ao0(224
F- - ___- o(224)

where P is the stagnation (supply) pressure, and P is the pressure where

V is taken. From isentropic flow tables(Ref. 46) P/P 0 M 2y can be calculated,

and it is plotted as a function of P/P in Fig. 92. For sonic flow (P/Po< 0. 528),

P/P M 2y remains constant at 0.739.

In each of these casea the driving force, F, is proportional to an

effective area, A. Figure 93 represents the disk given an X-direction dis-

placement from its neutral position with respect to the supply plate. On

each vane the momentum force, which is proportional to the common area

of the supply plate hole and the disk hole at that location, is indicated by an

adjacent vector in the figure. Ideally the net X-direction force on the disk

is zero. This is not strictly true because the flow is given a slight deflection

in going through the holes and impinges upon each vane with a slightly different

initial angle. Setting each vane at a slight angle with the radius might correct

this.
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The net Y-direction force is the desired tangential driving force.

This net force is proportional to the effective area, A, which is the sum

of all the open areas multiplied by the proper angle cosines. This effective

area was obtained graphically as a function of the displacement and is

presented as Fig. 94.

In the stability analysis it was found that for w r = 'lQ/l.4 the steepest

permissible cutoff slope is about twice the damping-force slope. In Fig. 93

a straight line has been placed so that, at its intersection with the area curve,

this relation between slopes is met. The area curve is proportional to the

driving force, so the straight line is proportional to the damping force.

This intersection gives tae maximum amplitude of oscillation with circular

motion as 0. 66 times the diameter of the holes in the Uisk. To find the

pressure range for the oscillator, a minimum useful amplitude must be

chosen. The ratio of the maximum to the minimum driving force is deter-

mined by the multiplier needed to make the damping and area curves inter-

sect at the minimum amplitude. If the minimum amplitude is 0. 35 times

the diameter of the disk holes, then the ratio of maximum to minimum

driving force is found to be 2. 35. If the driving force is proportional to

the pressure (it is for critical flow and for incompressible flow), then the

ratio of maximum to minimum pressure is also 2. 35.

Different types of damping curve are shown in Fig. 95. The square-

Law damping is somewhat more realistic than the linear damping. The addi-

tion of Coulomb damping introduces a stable 200-amplitude equilibrium point.

which can keep the oscillator from starting itself.

Equating the driving force to the damping force, we get

P -A 0 W rm (225)

_F2
where P' is a pressure function and m is the mass of the oscillating disk.

Since A is a function of the radius, the preceding equation can be

rewritten r
P'd _--d" (226)

2 A

d9
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I

where (r/d)/A/d-), a function of r/d alone, has been plotted in Fig. 96. The

term on the left in Eq. (226) is independent of the size of the oscillator for

geometricalLy similar oscillators. To show this, we write

Eld4
KQ d 1

m m d 3  d

This incidentally, is itself of interest, although not surprising.

Then

d d 1
cc 3- cc -

2; Q WQ m de ••
d3

The damping force is

W 2m mcrd r,

The air damping force is proportional to the projected area of the moving

parts and to their velocity, or for geometrically similar oscillators, d 2 .

Therefore,
oa.l

The internal damping moment is given by the formula

MdC

-d (227)
I

whe re

Hence the internal damping force, proportional to M d/L, is proportional

to
I 2crd•

cL

and again
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Equation (226) would be used in determining the size of the oscillator for

a. specified frequency and supply pressure level. Some information about

ýQ would be required.

6.8. Design of the Springs

The next task is the design of the spring support system for the

disk. A minimal size is desired. For each wire, considered as a beam,

the bending formula is

6- 3  
(228)

12EI

and the spring constant is

Q IZEI (229)

6 L3

For the disk-spring system, the spring constant is affected by n, the

number of wires:

K -nlEI (230)
L 3

where K is the spring constant, n is the number of half-wires, L is the

wire length on each side of the disk. For a round wire, the moment of

inertia, I, !sTrc4 /4, where c is the wire radius. The maximum moment

on a wire is the product of the spring constant, the deflection, and the

length:

M = K6L (231)

The maximum stress is given by the relation

M c
mwa - b max (232)
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Equations (230), (231), and (232) combined yield the two equations,

.2
L• 0".

. (233)

12 E6

* and

K 3En L__. (234)

L3 ( 12 Ed

Equation (234) rearranged gives

( KI ZE:) 4 (235)
3En7Tf

In operation,

= KZ (36)
m

s o that
2

K = m U0 (237)

Equation (235) gives the minimum length for a specified disk configuration,

natural frequency, and allowable stress.

6. 9. Construction of the Third Oscillator

The output of the third oscillator was a flow of air modulated by

the vibration of the disk. The output air and the driving force air were

supplied separately. The modulation of the output flow was done by four

ports in the disk arranged in a ring at a larger radius than the driving holes

and vanes. There-were corresponding ports in the adjacent stationary port

plates, and the result was a set of four valves similar to conventional plates

valves. In making four valves it was intended that different combinations

of the outputs could give a single-phase output with frequency W., a push-

pull output with a frequency w,, a push-pull output with frequency 2 w of
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and a single output with frequency 4w 0. Details of the porting are shown

in Fig. 97. The vibrating disk is detailed in Fig 98; Figs. 99 and 99a

show the whole oscillator. Detail drawings of all the parts are in the

Appendix.

The output valves were designed to balance the pressure forces or,

the faces uf the disk. Baffles were put in to keep the jets at the valve

openings from hitting the opposite sides of the holes and creating radial

forces. Leakage flow channels, placed around each of the driving flow

ports in the port plate adjacent to the disk led into an exhaust passage

in the plate. By placing a slight restriction in the exhaust line downstream

from the vanes and keeping the leakage flow exhaust line unrestricted, the

axial pressure forces in the center of the disk could be balanced for a given

pressure and approximately for neighboring pressures. This was not done

in the tests of the osci]lator, however, because the pressure sensitivity

was already quite low.

The starting point in the design was the choice of a frequency, a

convenient yet small amplitude, and a maximum allowable wire stress:

W = 500 cps =Wrx 103 rad/sec

d = 0. 010"(the hole size is roughly the amplitude)

%b = 60,000 psi witheE = 30 x 106 psi

The 1zyout of the disk came next, and as a result,

M= 0.258 x 10l5 lb. sec /in.

n= 8

The value of K used was 120 per cent of the desired K .o allow for an

initial 20 per cent compression of the wires at ambient temperature.

Equations (233) and (235) yielded a wire size of

L = 0. 706 in.

c = 0.00831 in.

diameter = 0.0166 in.

Area 2.17 x 10-4 in.Z

1= 0.374 x 10-8 in. 4
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Investigation showed that for a wire compression of 20 per cent of

the buckling lcad, the maximurm bending moment is 98 per cent of that :f
the uncormpressed wire. The lesson is that for all practical purposes, the
maximum stress in the wire can be calculated as the sum of the compressive

stress and the maximum no-compression bending stress:

max b c

where a-b is the fluctuating bending stress and a-c is the constant compressive

stress.

In the actual oscillator, the wire sizes were

L= 0.72 In.

c = 0. 0080 in.

diameter = 0.0160 in.

Area 2.01 x 10-4 in. 2

1= 0.322 x 10-8 in.4

We recall that the critical founding of a single wire is

c rit - V El (238)

L
2

For all the wires together, the critical load is

rP =4 PI (239)
Scrit crit

Consequently, it was found that

P = 1. 84 lb.c rit

0.Z P' = 0.367 lb.

crit
0. 2P,'__ c =it = 1830 lb/in. 2

area

ma (1.8 + 62) x 103 lb/in.2
max
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an d

P = 7.34 lb.
cr it

0. 2 P = 1.47 lb.

A.n estimation of the linearity of the spring can be obtained using the

relation

K= K~\ 0 1 :i ) (212)
o Pcrit)

The axial stiffness of the wires is very great in comparison with

the axial stiffness required in the end support. Hence, for a displacement,

6, of the disk, the axial displacement of one end suppcrt, the other being

fixed, is Z 6 2 /L. The column loading caused by this displacement, is the

product of the axial stiffness of the support and displacement, 2 Ka6 /L.

The relative change in the lateral stiffness at the disk is therefore

ZK 62
a (240)

L Pcrit

and is a measure of the deviation from linearity.

In this test model, the movable end support was suspended on four

wires each 0.47 inch long and of the samne diameter as the disk spring wires.

For this case, Eq. (230) yielded

Ka = - 52 lb/in
L 3

The mass of the end support was about 20 times the mass of the

disk. It has been shown that for this ,situation the maximum radius for

circular motion of 0. 65 times the disk hole diameter, the minimum

amplitude for operation is about 0. 35 times the hole diameter. Then for

the third oscillator, the deviation from linearity over the range of operation

was

a6max amin)
= 0. 05 per cent

L Pc rit
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The materials used were chosen for availability and machinability

and would not he suitable for high-temperature applicai.ons. The disk,

port plates, and end supports were brass, the springs were steel music

wire, and the housing was structural steel. The effective diameter of the

spring wire was made larger where it passed through the disk by forcing a

short piece of hypodermic tubing over a slightly flattened portion of the wire;

the tubing was then pressed into the disk. Getting the wire mountings tight

and the internal damping to a minimum required installing the wires several

times. Even then the wires had sL.ghtly different damping in different

direction.

6. 10. Testing of the Third Oscillator

Figure 100 is a representation of the test setup. A more elaborate

setup would have been desirable but would have taken much more time than

was available. For convenience, frequency change was measured as a

function not of compression but of tension in the spring wires. All the air

connections were made with 1/16 in. I.D. plastic tubing. Properly, the

flows as well as the pressures should have been measured and the pressure-

flow characteristics of the tubing obtained so that the actual pressures at

the oscillator could be determined. Time did not permit this.

Each output line was equipped with a valve in series and a bleed

valve. 'I he valves in series allowed the output lines to be opened to the

pressure transducer alteri~atively or in combinations. The bleed valves

adjusted the pressure and flow levels of the output. The valves were small

and simple, made with 6-32 screws in a plastic block.

There were three provisions for adjusting the position of the disk

relative to that of the facing port plates. The spacing between them was

adjusted by a screw through the base spring support and bearing upon the

bottom port plate, controlling its vertical position. The clearance between

the port plates was fixed by spacers. The port plates could be rotated in

the housing to adjust angular position. The lateral position of the disk could

be adjusted by adjusting the position of the top support for the springs. This

adjustment was extremely difficult; it would have been better to make port

plates adjustable laterally so that their position in all directions could be

easily adjusted by screws while the oscillator was running.
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The largest pressure signal at the output was obtained with the

output line bleed valves completely closed. The leakage flow in the

oscillator was more than the flow required for rnaximum output pressure.

The only output measurements taken were pressure measurements with

the bleed valves closed.

The output measureTnents were very disappointing. Figure 101

a and b, show five results for two different input conditions, stated there.

These were taken with the oscillator in the same condition of adjustment

which was the best adjustment obtained. Lack of good adjustment allied

with inaccuracies in the oscillator parts were probably responsible for

the unequalness of the different outputs. Notice that the driving force

supply pressure for both the output measurements is quite a lot larger

than the output supply pressure. With these two pressurt-s equal, the

oscillator would not run. Considerable damping was added by leakage

flow in the clearance spaces. This damping needs to be taken into

account in the design of an oscillator of this type.

The result of the frequency versus wire tension test is given in

Fig. 102. These data were taken with the output supply shut off. The

curving of the line could well be the result of error in measurement.

Using equation (Z1Z) and the value of P eit = 7.34 lb. obtained for this

oscillator, we find that for a loading of 10 oz., K should increase by a
r_

factor of 1.085 and that w. should increase by11.085 = 1.04Z. For no

tension the frequency was 486 cps. This times 1. 042 is 506 cps. The

measured frequency for 10 oz. tension was, from the curve, 507 cps, and

from the data point itself, 108.5 cps.

These frequency measurements were made by countih~g the number

of cycles in oscilloscope photographs of leakage fiow in the output lines.

The sweeD time was 2 milliseconds for 19 cm sweep. Better apparatus,

such as a precise electronic oscillator, could beat against the pneumatic

oscillator, indicat.ing the short-time stability of the pneumatic oscillator

frequency as well as the long-term changes.

With the output air supply turned off, the frequency as a function

of driving force supply pressure was measured. As mentioned earlier
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Fig. 101a. Third Oscillator Output (Tracings from Photographs).
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thl-ere wasa no force ala 'ncing r e te i 1Ii rkin

are gi ven in zhe following t ýe.

Driving Force

Supply Pressure, psig Frequency, cs

22 484.0

26 485. 5

30 486.0

34 485.0

38 484.5

The frequency figures are precise to not more than + 0. 1 per cent,

or 0. 5 cps. The largest frequency difference is 2 cps for a pressure

difference of 8 psi, or 0.05 -per cent per psi.

6.11. Conclusions

Because of the output of the third oscillator was so small, one

M-ight conclude that it would be useful only for drivimg an amplifier,
probably cf the fluid-jet type. A diffei ent approach would, ther. ore,

be to assume that anything vibrating would be useful. if amplifiers vere

properly applied to it, and then to design something to vibrate with a

constant frequency. An oscillator driven as the second and third os-

cillators were driven would merely use the exhaust behind the vanes to

drive one, two, or more amplifiers.

A possible design of a very precise oscillator, and alao one with

relatively large clearances, is given in Fig. 103. The amplitude would

not be large enough to pull the inner ends of the slots out of the air jets

or the outer ends into the jet. Pressure forces on all surfaces per-

pendicular to radii would be nearly the same all around the disk. The

driving-force versus radius curve would not turn downwards in the range

of amplitudes of interest, so to make the oscillator operate at a]l properly,

a jet amplifier control r-uld be necessary.

Pitot tubes set beneath the slots at the propel' radius and connected

together would sense the am.plitude and cause the jet supplying the oscillator

to flip awv:y fro-m its receiver port whzen tht oscili3tion amlitude became
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almost ideal amplitude control if the lag inherent in the amplifier and

lines was not too large. As shown, output pickups would mirror the

amplitude-sensing pickups. Axial forces would be balanced by virtue

of the twin-disk design.

Two subjects which might be investigated are the effect of external

random vibration on the frequency of a circular-motion oscillator and the

effects of slight variations of spring and dampihg constants with angle

around the oscillator axis.

6.12. Other Oscillators

Quite different oscillator designs were briefly considered also.

A pneumatic lag causes oscillation in the device shown in Fig. 104, but

the driving force has a large component in phase with the flapper dis-

placement. Since the lag parameters are pressure and temperature

dependent, this oscillator has an additional temperature sensitivity and

would need a good temperature-insensitive pressure regulator. With a

bellows-column temperature compensator, it might be used If the re-

quirement for precision was not too great. It has, over the circular-

motion oscillator, the advantage of one-dimensional motion. Oscillation

might be angular, rather than translational, so that a properly balanced

oscillator would be insensitive to linear acceleration in any direction.

When the flow of a fluid is reduced, pressure forces are needed

to change the momentum; these pressure forces are in phase with the

velocity of the valve causing the change in flow. For the oscillator shown

in Fig. 1 0 5 , the motion of the oscillating member toward one side increases

the restriction at a on one side and decreases it on the other side. The

fluid momentum in region c increases on one side and decreases on the

othe'. The pressure changes necessary to produce the momentum changes

have opposite signs on the two sides of the oscillating member, and a net

lateral force results. It is in phase with the rate of restriction change at

a and the velocity of the oscillating member. By adjusting the restriction

at b, the net steady-state pressure moments active on both sides of the

oscillating member, including regions c and d, can be reduced to zero.

Because of this sensitive adjustment, this oscillator would be quite sensi-

tive to changes in the downstream impedance and would have to be used in

connection with some form of amplifier. Furthermore, no convenient cut-

off technique for high pressure is apparent.
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7. FLUID DIODE SENSOR

7.1. Introduction and Summary

The concept of fluid diodes used tc sense the width of the wakes

behind compressor blades, along with initial results of a study conducted

by W. B. Bails, were given in the first annual report. This section Is a

continuation which assurne: the reader is familiar with that report.

W. B. Bails presented his thesis, "Fluid Diode Sensor", in

September 1963+, and performed a lltie analysis thereafter. Of the

three 'large-scale" diode types tested, only one, the "vortex diode",

gave a resistance ratio approaching the desired value. The flow was

"urbulent. For corresponding small-scale moeels the flow was bascially

laminF r; all the resistance -atios were reduced, with even that for the

vortex diode being unsatisfactory. Nevertheless, dynamic tests were run,

with the realization that better diodes would eventually be needed. The

vortex diode appeared to nave a low cut.,-)ff frequency, rendering it useless

for the high frequency response required for blade-wake sensing.

Subsequently, A. A. Khaliq built a model of the Tesla diode which

was brifely tested statically by F. Brown. The static operation was superior

to that of the other diodes, alth.-ough a turbulent flow is still essentially

necessary. Further work should be done on these diodes, including dynamic

testing; they seem to be a practical basis for a diode sensor.

7.2. Dynamic Analyss

The linearized dynamic analysis was presented in the first annual

report. The nonlinear square-law analysis was carried so far as the step

responses of the resistance-volume combination, hut not to the steady-state

solution to the complete siquare-wave input. This latter is outlined briefly

below; complete details have been given by BailIs in his thesis,

T:iree solution domains exist: unsaturated, partially saturated, and

saturated. In the unsaturated case the individual step responses never reach

+ Available at cost from the Document Room, 3-156, Engineering
Projects Laboratory, M.I.T., Cambridge, Mass. 02139.
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the limiting values. In the partially saturated case the limiting value is

reached for steps in one direction only; it is reached for SteDs in both

directions in the fully saturated case.

The unsaturated case is shown in Fig. 112. Matching the response

segments head-to-tail gives, in the steady state, the deviation between

average and the middle value of pressure of

Pm L D 12 -1 - +zf
a + j1 2L42 13

F- 3 2 3 2
+(241)

12 1213

in which

Sl _L- + 1Y C1 2 + t.
S___m__ 4132/ 4 (

s2 f-2 ( 42 P 4

174 a1
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For oartial saturation in the forwvrd directionwnen

2 ; Y - -. . ..;( 2 4 4 )

'Y

the solution is

f 2 2 \ý C,(25
p___ - + -P M- + 2a) 1 (245)

a4-'Y 6 3, _

In the negative direction, when

, - 1 ; "y; 3 ; _ > _ _1 ( 2 4 6 )-Y

the solution becomes

"2 2 + (247)
1P " P +

m L+ K 2 3  2P 4.

Finally, for the fully saturated case, when

QŽ2; -y -23 (248)

the solution is simply

S -P = - . -- (P3 - 1) + c,. - -,Y2 9
a + • 3__

The solutions over-all domains for a particular value Ar/,- 0.7

are plotted In Figs. 12 - 115. :n Figs. 116 - 118 linear and nonlinear analyses

are compared. with sorne expe.-rmental data :or a small value of IAT'/TaR
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7.3. Static Testing - Small-Scale Models

Three models of the nozzle diode were made, employing two basic

dE ns. The two-dimensional diode, shown in Fig. 119b, was modeled

directly from the large-scale water-table models using three cascaded

nozzles. The othEr two diodes, shown in Fig. 119a, were three -dimensional,

ar.d contained six nezzles each. The vortex diode testes is shown in

-cFig. 120a and the diffuser diode in Fig. 120b.

The flow through these diodes was norninally laminar, as shown by

0 Table 2 which reports the maximum Reynolds numbers. Since the flow in
C)

the large-scale models was tutbulent, quite different performance would be

(I) expected, and in fact was observed. Experimental results are shown in

o Figs. 121 - 125. As mentioned earlier, only the vortex diode has even

marginally satisfactory static characteristics. Approximate corres-
.-4 ponding values of the linear and nonlinear parameters are given in Table 3.

7.4. Dynamic Testing - Small Scale Models

A schematic of the test setup is shown in Fig. 126. The slotted
_-•4

r, t': disk pictured in the first annual report was replaced with. the disks pictured

P ° in Fig. 127, since the first disk was deflecting the jet significantly. Typical

resulting dynamic pressures, measured with a 0. 02-inch-diameter Kistler
S3

3. piezoelectric transducer, are shown in Fig. 128.

o 4• The final experimental results -re given in Figs. 116 - 1.8 and

-40" 129 - 137. Since the static performances were already known, the principal

4 $4 interest here is any upper frequency limit to the characteristics. Such a

< 0, limit is decidedly apparent for the vortex diode, which unfortunately was

d ) the only diode tested by Bails with even marginally satisfactory static

4 performance. This limit apparently is inherent to the transient vortex-
.. C

0 0. forming process. Detailed discussions of the experimental procedure and
Z 0 results are given in Bail's thesis.

- The failure of the various diodes tested has led to the later work

on the Tesla diode.

7.5. Static Testing - Tesla Diode

The Tesla diode tested is shown in Fig. 138 and 139. Tests were

performed with hydraulic oil to achieve low, transitional, and high Reynold's

numbers. (The characteristic distance used to compute the Reynold's number
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A- - _,Arom

Pulse Generat ,r with a 1 disc.
Y

Section of a 2-10 disc.
'Y

Fig. 127. Presaure Pulse Uenerator.
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is the narrowest width of the main channel, which is equal to the depth

of the mode] namely one-quarter inch).

The results are given in Fig. 139. In the laminar flow range

(Re < 100) the diode is almost totally ineffective. Its effectiveness in-

creases with Reynold's number as expected; the limiting value of the ratio

of pressure drops at high flows was not actually found, but must be near

5.0. This is adequate for useful fluid diode sensors, although a somewhat

higher value would be preferable. More stag -s of cusps should '.elp.

A fundamental cause of the fall-off in -,irmance of fluid diode

sensors at high frequency can be traced to this -,eynold's number effect.

As frequency ascends, the flow rate of fluid slushing back and forth is

o reduced, and the effectiveness of the diode consequently is diminished.
A satisfactory design rule would be to expect significant attenuation in

the performance of diode sensors when the peak Reynold's number falls

below about ZOOO. This may occur at an insufficiently high frequency.
0 Increasing the size of the device decreases this problem, but introduces

wave-speed limitations. A compromise optimum size must exist.

'4j

0

01

.44
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Fig. 139 Results of Static Measurements of Tesla Diode.
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