Behavior of the Carbon Electrode In Molten Carbonates

by

M.D. Ingram and G.J. Janz

Department of Chemistry
Rensselaer Polytechnic Institute
Troy, New York

Submitted for publication to J. Electrochemical Society

Reproduction in whole or in part is permitted for any purpose of the United States Government
Behavior of the Carbon Electrode In Molten Carbonates

by

M.D. Ingram and G.J. Janz

Department of Chemistry

Rensselaer Polytechnic Institute, Troy, New York, U.S.A.

ABSTRACT

The reversibility of various carbons as electrodes in the ternary carbonate eutectic has been compared. The rest-potential of electrodeposited carbon (-2.2V versus the Danner-Rey electrode) depends on the presence of occluded oxide. The simulation and use of this carbon in a high temperature fuel cell is discussed.

INTRODUCTION

Numerous attempts have been made to design a successful carbon fuel cell, the most notable being the high temperature cells constructed by Baur and others\(^1,2,3\). Frequently, fused carbonates or solid electrolytes impregnated with carbonate have been utilized; however, a study of the reversibility of the carbon electrode in such electrolytes appears to be lacking. A recent study\(^4\) of the cathodic deposition of carbon in molten carbonates suggests that an interesting new approach to the carbon fuel cell.
Carbon electrodes were supplied by Pure Carbon Inc. according to the following specifications: (1) Graphitized carbon; density = 1.75 g.cm\(^{-3}\); porosity = 10%; (2) Active charcoal; density = 0.9 g.cm\(^{-3}\); porosity = 45%. Electrolytic-carbon electrodes were prepared by the cathodic deposition of carbon onto gold electrodes. The current-voltage curves for the various carbons were obtained in the ternary eutectic of the alkali metal carbonates \((\text{Li}_2\text{CO}_3, \text{Na}_2\text{CO}_3, \text{K}_2\text{CO}_3); \text{mole ratio} \ 43.5: 31.5: 25.0; \text{m. p.} 397^\circ\text{C}\) at 600°C using a potentiodynamic technique described elsewhere.

Fig. (1) shows the polarization curves for graphitized carbon and electrolytic carbon electrodes of the same geometry (1 cm immersion, surface area = 1.0 cm\(^2\)), all potentials being referred to a Danner-Reay electrode. The significant feature is the displacement of the rest potential of the electrolytic carbon compared with graphite from -1.3V to -2.2V. This marked enhancement in reducing properties has been shown to be due to the occlusion of oxide. Further comparison of the current-voltage curves reveals that the electrolytic carbon behaves much more reversibly than the graphitized carbon.
The properties of electrolytic carbon have been simulated by "doping" the active charcoal, in fused sodium hydroxide for 12 hours before transfer to the carbonate electrolyte for evaluation. The polarization curves of the "doped" and "undoped" carbon electrodes (1 cm³ immersion) appear in Fig. (2). The undoped carbon has an initial rest potential of -1.45V, but considerable hysteresis appears in the curve due to the inclusion of oxide ions in the electrode on cathodic polarization and their subsequent removal on anodic polarization. The doped carbon has a rest potential of -2.0V and is highly reversible, giving an anodic current density of 100 mA/sq cm at -1.85V. The effectiveness of the doping procedure is best measured by performance of the electrode while passing a continued anodic current. Fig. (3) shows the variation of potential with time at a constant anodic current of 96.5 mA. The potential is seen to rise continuously from the initial value of -1.9V and reaches a value of -0.85V after the passage of 1 x 10⁻⁴ F. After this the potential remains constant and the behavior is clearly that of an undoped carbon electrode. From the free volume of the immersed portion of the carbon electrode it is calculated that the amount of NaOH which could be retained is equivalent to 1.1 x 10⁻³. Eqt. of Na₂O, and the observed doping is seen to be in very good agreement with this.

DISCUSSION

It has been shown elsewhere⁴ that the reversible deposition of carbon corresponds to the reaction:

\[\text{CO}_3^{2-} + 4 \text{e}^- \rightarrow \text{C} + 3\text{O}_2^- \]

(1)
and that the rest potentials of carbon is in accord with the equation:

\[E = E^0 + \frac{RT}{2F} \log \left(\frac{pO_2}{P_0} \right) \quad (ii) \]

where \(pO_2 = -\log_{10} (O_2^-) \)

The different rest potential of the various carbons (e.g. -2.2V for electrolytic carbon and -1.3V for graphitized carbon) are thus explained in terms of changes in the oxide activity at the electrode surface. Electrolytic carbon always contains substantial amounts of occluded oxide, and the establishment of equilibrium (i) is evidenced by the observed reversibility of the electrode towards polarization tests. Under an Ar atmosphere the steady-state O\(^{2-}\) activity in the ternary eutectic is low\(^7\) (ca.10\(^{-4}\)Molar), hence under these 'acid' conditions the stoichiometry of the anodic oxidation of carbon is more correctly written as,

\[C + 2CO_3^{2-} -4e^- \rightarrow 3CO_2 \quad (iii) \]

The anodic process occurs at a much higher potential than the cathodic deposition reaction and this is seen to be the underlying reason for the irreversibility of the ordinary carbon electrode in molten carbonates.

The behavior of the hydroxide-doped electrode is more complex. It is probable that OH\(^-\) ions, on contact with the carbonate, lose water to form O\(^{2-}\) ions as has been claimed\(^5\). The difference in the reversible behavior from that of the electrolytic carbon suggests that this evolved water is influencing the electrode processes in some way, most probably interaction with the carbon to evolve hydrogen\(^6\):
C + 2H₂O → 2H₂ + CO₂

The enhanced reversibility of the electrolytic and oxide-doped carbons suggests their use as fuel anodes in a high temperature fuel cell. Recently, Busson, Palous, Buvet and Millet have reported the potential of the reversible oxygen electrode in the ternary eutectic at 600°C (CO₂ = 1 atm; O₂ = 1 atm) is -0.53V against the Danner-Rey electrode. By transposing the observed carbon potentials onto the "oxygen scale" the electromotive forces of the following cells may be calculated:

(A) C (active charcoal) | ternary eutectic | CO₂ ⇌ O₂ | EMF = 0.92V

(B) C (electrolytic) | ternary eutectic | CO₂ ⇌ O₂ | EMF = -1.67V

(C) C (hydroxide, "doped") | ternary eutectic | C ⇌ O₂ | EMF = -1.47V

Further inspection of the current-voltage curve for the undoped active charcoal electrode reveals that at an apparent anodic current density of 100 mA cm⁻² the potential rises to -0.93V; that would give a maximum fuel cell voltage, assuming no other energy losses, of 0.4V. It is apparent that cells of type (A) would be rendered quite ineffectual by anodic polarization phenomena; cells (B) and (C) with their larger EMF are more attractive. Fig. (3) can be used to evaluate the hydroxide-doped carbon as a possible fuel electrode. After the passage of 1 x 10⁻³F the carbon is completely "dedoped", and this corresponds to the consumption of approximately 5% of the immersed carbon. This would clearly be unsatisfactory for a practical fuel electrode and a more fundamental approach is required.
It is convenient to define an "ideal fuel electrode" where all the carbon can be consumed under alkaline conditions. Two requirements must be met by this fuel. Firstly, it must have a stoichiometry given either by \((C, 3M_2O)n\) or by \((C, 6MOH)n\). Secondly, the carbonate generated at the anode should have the same composition as the main electrolyte. These requirements could be met, in large part, by flowing the appropriate mixture of alkali hydroxides into the carbon electrode while oxidation is proceeding.

ACKNOWLEDGMENTS

The authors acknowledge, with thanks, the experimental contributions and discussions of Bill Baron in various aspects of this work.

This investigation was made possible in large part by financial support received from the U. S. Department of Navy, Office of Naval Research, Chemistry Division, Washington, D. C.

REFERENCES

1. E. Baur, W.D. Treedwell, and G. Trumpler, Z.Elektrochem., 27, 199 (1921)
2. E. Baur and R. Brunner, ibid, 43, 725 (1937)
3. K. Birchoff, Ph.D. Theiss, University of Technology, Brunswick (1954)
4. M. D. Ingram and G. J. Janz, unpublished work (1965)
5. J. Dubois and R. Buvet, Compt. rend., 256, 1762 (1963)
6. F. Haber and L. Bruner, Z. Elektrochem., 10, 697 (1904)
7. N. Busson, S. Palous, R. Buvet, and J. Millet, Compt. rend., 260, 6097 (1965)
Figure Captions

Figure 1 "Polarization Behavior of Carbon Electrodes"

I Graphitized Carbon

II Electrodeposited Carbon

Figure 2 "Effect of Treatment with NaOH in Polarization Behavior of Carbon Electrode"

III Active (undoped)

IV Active (doped with NaOH).

Figure 3 "Performance of 'Doped' Carbon Electrode: Potential versus Time Behavior for Constant Anodic Current of 96 mA cm^-2."
Behavior of the Carbon Electrode In Molten Carbonates

Ingram, M. D. and Janz, G. J.

November 1965

ONR Contract No. Nonr 591-(10)

Behavior of the Carbon Electrode In Molten Carbonates

The reversibility of various carbons as electrodes in the ternary carbonate eutectic has been compared. The rest-potential of electrodeposited carbon (-2.2V versus the Danner-Rey Electrode) depends on the presence of occluded oxide. The simulation and use of this carbon in a high temperature fuel cell is discussed.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Molten Carbonates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Electrode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantees, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

4. PROJECT NUMBER: Enter the correct number of the project number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

5. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

6. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Restricted Data." A security clearance is required to view this report.

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through"

7. If the report has been published in the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indications of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the security classification of the information in the paragraph, represented as (clas): (clas), (clas), (clas). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical content. The assignment of limits, miles, and weights is optional.