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Abstract 

Spectral radiance measurements over the wavelength range of Ü. 24 to 0. 28 

microns were carried out using Ebert-type scanning spectrometers mourned ön 

the aft section of in X- 15 aircraft operating up to 270,000 ft altitude.    With the 

assumption of Royleigh scattering in the atmosphere and allowing for ozone absorp- 

tion, the reflectance and albedo are estimated a»d compared with the measured 

values.    The elevations and azimuths of the sun and of the spectrometer during 

the flight were tabulated and used to compete the scattering and diffuse reflection 

angles.   Apparent reflection of radiation from the ground is estimated, using a 

Lambert radiator model.    Since the spectrometer at times pointed away from the 

earth, it should be possible to estimate the separate contribution of the ground to 

the reflectance and total albedo. 

in 
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Spectral Reflectance and Albedo Measurements 
of the Earth from High Altitudes * 

l.  INTRODl CTION 

The Optics and Radiometry Branch of the Air Force Cambridge Research 

Laboratories has been actively engaged in making measurements from on-board 

missiles and satellites.'    As a part of this over-all effort, a program has been 

established utilizing the X-15 aircraft as a space platform.   A series of flights 

has been planned and carried out.    The purpose of the measurements is to inves- 

tigate high altitude plume radiation characteristics and to make background- 

radiation, scattering and albedo measurements.    The advantage of using the X-15 

vehicle is twofold:   (1) the instrumentation is recoverable, and reusable for addi- 

tional measurements and (2) precise altitude, viewing angles, aspect angles, and 

scattering angles can be determined.   Altitude information is recorded on board 

the vehicle and is also telemetered to the ground station. 

(Received for publication 18 May 1865) 

*This paper is a revised version of one presented at the October 1Ö33 
Meeting of the Optical Society of America at Chicago, Illinois. 

t Supported in part by the Advanced Research Projects Agency. 
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2.  INSTRHMKNTATION 

The instruments used are passive optical sensors.    Bracketry has been incor- 

porated into the upper tail fin section of the X-15 to accommodate the instrumen- 

tation.    The instrument itself can be changed from flight to flight as long as It 

maintains compatibility with the bracketry, cabling, telemetry and size limitations. 

Figure 1 shows the location of the instrument with respect to the X-15 airvraft. 

Figure 1.   Radiometer Mounting on X-15 Body 

On the first set of flights, the instrument used was a duel channel Ebert-type 

rocking grating spectrometer built by Block Engineering Company of Cambridge, 

Massachusetts.    The spectral regions, the field of view, the dynamic range, and 

the gain setting can be varied from flight to flight.    Instrumentation details have 

been presented by Block, Band and Dana (1963). 
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1   ^\IM.R!MIM \|, RESULTS 

The radiometric data shewn in the accompanying figures were obtained wMle 

the aircraft was on a constant heading (191° 48') and performed no maneuvers 

other than climbing and diving.    A typical ground path and altitude profile are 

.shown in Figures 2 and 3.    Measurements taken prior to engine cutoff (80 sec 

after launch) were omitted as well as those token after large changes of heading, 

and after the subsequent more involved maneuvering of the vehicle.    This elimi- 

nates:   (a) the engine exhaust radiation and (b) the radiometer pointing errors 

caused by the rapidly changing altitude of the vehicle during banking and turning. 

The portion of the flight reflected in the present data lasted from 80 to 280 sec 

after launch, a total of 200 seconds.    During this time interval, the sun's altitude 

changed from AT' 41' to 48° 30' and its azimuth from HO" 43' to 109° 03' for a 

typical run (one A - vplue) as seen by an observer located at the radiometer.    These 

changes amount to 1. 7% and 1. 5%, respectively.    The altitude and azimuth of the 

radiometer axis; as well as of the sun were computed every 2 sec of flight time 

using the (time-varying) angle of attack* and the fixed angle between the plane's 

longitudinal axis and the optical axis of the radiometer.    This latter angle is 30*; 

that is, the radiometer looks rearward 30° vertically below the plane's axis.    The 

angular values of radiometer altitude and azimuth as well as those of the sun (as 

seen by an observer on the ground at point G in Figure 5) were then transformed 

to dir   ction cosines of the lines Sun-Ground Point and Radiometer-Ground Point, 
respectively by the relations 

i 

1 " -p-   ■- sin i> cos a R 

Y ... m ="5- = sin I, sm a 

n =-g-= cos £. (1) 

where I, rn, n are the direction cosines of a radius vector R having spherical polar 

coordinate components R. a, ^ (see Figures 4 and 5).    The scattering geometry 
is illustrated in Figure 5 in which i^/ is the usual scattering angle.    The scattering 

volume element of the atmosphere, AV, can be assumed to lie anywhere along the 
line radiometer-ground point G.    The justification for this is that due to the re- 
remoteness of the sun the angle Ö changes only slightly as AV is moved from the 

* This is defined as the acute angle between the plane's longitudinal axis and 
the tangent to the plane's trajectory at that instant. 



5: 

CALCULATIONS 

I   7* 

LONGITUDE   WEST 

Figure 2.   Ground Path of X- 15 
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ALTITUDE   PROFILE    OF   X-15 
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Figure 3.   Altitude Profile of X-15 

X-RSINC COS« 
Y-RSINC COS* 
Z-RCOS: 

Figure 4.    Spherical Polar Coordinate Syatem 
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Figure 5.   Geometry of Reflectance Measurements 

radiometer entrance to the point G.* The latter is defined as the intersection of the 
extended radiometer axis with the earth's surface, considered plane for this purpose. 

The l-»cus of   G is plottedt    during a typvcal flight in Figure 6.    The supplement« 

* A numerical check shows that for a 500 mile path from radiometer to ground 
-S the angle 9 changes only by about 5X10     radian, when the ground point G is taken 

as the position from which the sun's altitude and azimuth are determined, instead 
ci from the plane's position.   Atmospheric refraction introduces an error of auout 
one minute of arc in 6.   At present calculations are being made of the exact error 
due to neglect of the earth's curvature.   Preliminary cheeks indicate an upper 
limit of 0. 6* for this (see Section 4), 

| At the beginning of a typical data taking period the radiometer axis inter- 
sected the ground at 116* 54' longitude West, 37* 33' latitude North while the 
X-15 aircraft was climbing at 120,000 ft altitude.   At a time 164 sec later the 
radiometer was pointing at a point on the ground located at 117° 21' longitude West, 
35* 39' latitude North while the X-15 was diving from an altitude of 196,600 feet. 
At an intermediate point the plane was flying almost exactly level at 208,400 ft and 
the radiomete- pointed at the ground at 117° 08' longitude West, 36" 36' latitude 
North.    Thct    terrain points lie in the Death Valley area of California and Southern 
Nevada, which is largely desert.    Van de Hülst (1949) gives a (total) albedo of about 
25% for deserts. 
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Figure 6.   Ground Locus of Spectrometer Axis during Flight 
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of the conventional scattering angle 4- i^ given, using elementary analytic geom- 

etry,  Dy the relation 

cos 0 = ll 12 + mj m2 + n1 n2, (2) 

where the subscripts refer to the lines ''radiometer-scattering volume" and "sun- 

scattering volume", respectively.    In terms of polar coordinate angles this 

becomes 

cos Ö = sin IJ. sin C? cos (a.-a,) + cos Ci   cos £„• (3) 

In Figures 7 and 8 are sh wn the measured spectral radiance of the 

atmosphere and ground as a function of time  and of the scattering angle ip. 

The fractional contribution of ground-reflected solar radiation to the total 

measured radiance is claimed to be about 8% by Van de Hülst (1949) for 

X =  5400 A skylight and a normal optical thickness   r = 0.1  for the atmosphere. 

In general the value of the spectral reflectance of the ground is largely un- 

known, however, and varies considerably with the nature of the ground,* 

A Lambert law reflecting ground was assumed, its spectral reflectance being 

called A.t 
o 

The radiometer spectral irradiance (watts/m /ß) was measured as a function 

of aircraft position and altitude.   By postulating the applicable scrttering and 

attenuation laws over the spectral region used, an attempt was made to determine 

the apparent ground reflectance and the normal optical thickness of the atmospher«; 

below the radiometer, assuming a vacuum above.   In the initial set of measurements. 

*At the beginning of a typical data taking period the radiomeier  axis 
Intersected the ground at 116* 54'  longitude West,  37°  33'  latitude North 
while the X-i5 air» raft was climbing at 120,000 ft altitude.   At a time 
164 sec later the radiometer was pointing at a point on the ground located 
at 117°  21'  longitude West,  35°  39'  latitude North while the X-15 was diving 
from an altitude of 196,600 feet.   At an intermediate point the plane was flying 
almost exactly level at 208,400 ft and the radiometer  pointed ac the ground 
at  117° 08'  longitude West,  36°  36'  latitude North.   These terrain pointa lie 
in the Death Valley area of California and Sou^ern Nevada,  which is largely 
desert.   Van de Hülst (1949) gives a (total) albedo of about 25% for deserts. 

•fTme to the well-known hi0h absorption by ozone in the 2000-3000 A 
region the following data on A and T must be con&idertd inconclusive. 

mmmmmm    mmmmmmmmm 
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Figure 7.   Spectral Radiance as a Function of Time 

the wavelength range covered was 2400 to 2800 A.    In this spectral range there is 

strong ozone absorption, and Rayleigh scattering is strongly effective.    We there- 

fore invoked Rayleigh scattering, ozone absorption (see approximation below), 

plus the Lambert Law ground reflection contribution which is probably relatively 

insensitive to wavelength.   Curvature of earth and atmosphere, as well as atmo- 

spheric refraction were neglected.   Only primary scattering was assumed to be 

present. 

The scattered radiant intensity from AV is proportional to the solar irradiance 

at AV.    If Rayleigh scattering holds and the normal optical thickness* of the at- 

mosphere (from the ground to infinity) is taken as 

* The coordinate z measures vertical height above the ground. 
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Figure 8.   Spectral Radiance as a Function of Scattering Angle 

T= j"0 0 dz. (4) 

ß being the extinction coefficient, then the scattered spectral radiance N seen by 

the radiometer from the top of the atmosphere is. according to Eq. 2. 23 in 

Coul8on(1959), 

sec £ 
~ r-    [ 1 - e-T(,"ec^l + 8ec?2) 

1 + sec ^2    L 
(5) 

where '4/ is the Rayleigh scattering angle and P (^) - 3/4 (l+^cos  \j/) the normal- 

ized Rayleigh scattering function.    £. and <£,, are the zenith angles of the radiom- 
1      " eter and the sun, respectively.     F. is -—times the spectra' irradiance (watts/ 

cm ß) of the sun as measured incident on top of the atmosphere. 

.  
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The contribution from ground-reflected solar radiation must next be estimated. 

This is given by Coulson(Eq. 2. 28) as 

K-TAFxcost'. 
-T (sec r. + sec £„) 

(6) 

where A is the fraction of the incident solar flux reflected isotiopically by the 

ground.   (The skylight, that is, the ground illumination contributed by scattered 

rather than directly incident sunlight is neglected here.) Adding these two contri- 

butions we get for the total spectral radiance seen by the radiometer at the top 

of the atmosphere (   ithout ozone absorption) 

N* ■ Nx * NI 

( ' sec X. + sec \„   j^ 
1 - e 

T(X) (jec AJ + sec AJ 

] 

A cos IJg e 
-T(A) (sec ll -■- sec ?„) I 

0<  A <   1. (7) 

The normal optical thickness of the atmosphere T(A) - /    ß(\) dz is wavelength 

dependent through the extinction coefficient ß (A), 

Py taking ratios of spectral radiance values at two different positions x and y 

of the radiometer and at the same wavelength we eliminate F. and get from Eq, (7) 

N^x) 
R     = —A  

xy N, (y)     e 

-T(A) (secC.+sect;, ) 
e ^_ [A cos Clx-G(x)] +G(x) 

T(A) (sec r^ + sec ?„ ) ly   ^^ s2y'   [A cos?ly-G(y)]  +G(y) (8) 

where 

sec C 
G(u) cjP^u) 

iu 

sec C 
lu 

ec ^ 2u 
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This relation makes it possible to solve graphically or by trial and error for the 

two unknowns T (A.) and A(X) for any value of X at which radiance was measured. 

The wavelength dependence of A is expected to be slight. 

The effect of ozone absorption in the atmosphere has not been formally 

accounted for.    The example of Dave and Sekera (1959) and Coulson (19R9) was 

followed in approximating ozone absorption by taking its effect simply to be that 

of a "filter" interposed in the path of the solar radiation incident on top of the 

atmosphere. 
Under this assumption, the quantity h'   in Eq. (7) is multiplied by an equivalent 

"filter response" function G(X). but the ratio Eq. (8) is not affected. 

During the UV measurements presented in this paper, the cloud cover was 

negligible and therefore no correction for cloud reflectivity or absorption was 

attempted or needed. 

It was not possible to incorporate corresponding IR or visible measurements 

in this paper sinoe the experimental data for these wavelengths is still incomplete. 

Further measurements and data evaluation are in progress, and results in the 

1.4- 2. Iß region are expected to reported later. 

4.  COMPUTATIONS 

The values of the scattering angle \p were computed every two seconds of flight 

time using an IBM 7090 computer.   The origin of time was 80 sec after launch 

(burnout).    The scattering volume was assumed to be located at the ground point 

G.    The neglect of the earth's curvature introduced a maximum difference of 

0. 6* in the value of the scattering angle when the scattering volume was taken 

at the radiometer instead of at the ground point G.    This correction is, of course, 

independent of the negligible sun parallax over the scattering path, which has been 

discussed.    The sun's position was found by storing the pertinent portions of the 

Greenwich hour angle and declination tables from the Air Almanac in the computer 

memory, and letting the computer interpolate linearly between entries whenever 

it was required.    The geographical coordiiiates of the "ground ooint" G from 

which both radiometer and sun positions are reckoned were computed from the 

known attitudes of the aircraft, as were the zenith angles and azimuths of the 

radiometer.    The required portion of an K. O. 249 table was also stored in memory. 

Entering this with the k titude of the ground point and the declination and local 

hour angle of the sun ju^t obtained, the computer determined the required zenith 

angles and azimuths of the sun, by interpolation.    These values were then entered 

into Eq. (3) above and the scattering angle rp computed. 
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A total of 95 values of the ratio R      in Eq. (8) were computed from experi- 

mental values of N. for each of the three wavelengths, 0.24/i, 0.26;i and 0.28^. 

The reflectance was allowed to vary from 0.4 to 0.05 in 35 steps of 0.01   and 
95' T was computed.    This resulted in m KV\   = 4465 tabulated pairs of A and T values 

for each wavelength.    Some of these were then plotted on the three scatter plots 

of Figures 9, 1U and 11. one for each wavelength.    Because of the large number 

of points, only the points of maximum excursion were selected, giv:ng the 

"perimeter" of the scatter plot.    In future calculations   this procedure is ex- 

pected to be refined by having the computer calculate the weighted "centroid" of 

the scatter olot. thus taking account of the density of points.   Also, the range of A 

will be extended from 0.4 to 1.0. 

TaKen from Figures 9. 1'J and 11 the "most probable" apparent spectral 

reflectances A and normal optical thicknesses T for each wavelength are listed 

in Table 1, 

For comparison. Table 2 shows earth albedo values (clear sky) from several 

refeiences, coded by capital letters. 
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Table 1.   Calculated Apparent Ground Retlectancs and Normal Optical Thickness 

X(microns) A {%) 

0.24 

0.26 

0.28 

14 - ?A 0.170 - 0.315 

15 -  26 0.005 - 0.006 

24 - 33 0.009 - 0.104 

Table 2.   Albedo and Reflectance of Various Ground Types, Percent 

Forest 3-10 A 
Bare Ground 3-30 A 
Fields, grass, etc. 3-37 A 
Whole earth, total spectrum 35 A 
Whole earth 39 B 
Green forest 3-10 C 
Bare ground 7-20 C 
Wet ground 8-   2 C 
Dry sand 18 C 
Wet a and 9 C 
Mojave Desert 24-28 C 
Death Valley Desert 25 C 
Whole earth (visible spectrum) 39 C 
Whole earth (UV. visible, IR) 35 C 
Whole earth 41.5 C 
Whole earth 29 D 
Forests 5 D 
Deserts 25 D 
Forests, Fields (0.3-3.0^) 4.5-14 E* ) 

Et I   reflect- 
ft      on/^o Desert, sand, bare rock (0.4-0.8fi) 11-34 

Different types of forests (0.4-0.8ji) 3-57 
Limestone, Ciay (visual albedo) 63 F* 
Granite   (visual albedo) 12 F* 
Dry sand (visual albedo) 31 F* 
Wet sand (visual albedo) 18 F* 
Coniferous Forest 3-10 F* 
Meadows, grass 3-25 F* 

References - Table 2 

A American Institute of Phygics Handbook, 1957 edition, p. 2-132. 
B Smithsonian Physical Tables. Ninth Revised edition, p. 737. 
C Smithsonian Meteorological Tables, Sixth Revised edition, pp. 442-3. 
D Kuiper, G. P. (1349) The Atmospheres of the Earth and Planets, U, of 

Chicago Press, Chicago, pp. 75, 306. 
E Möller, F. in Handbuch der Physik 48, Geophysics II, pp. 214-5. 
F Handbook of Geophysics, Revised edition (1960), pp. 2-17, 14-1 to 14-7. 

* These references contain detailed data on albedo and spectral reflectance 
in the visible and near infrared region.   Entries in Table II are therefore only 
representative. 
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5.  COINCIAISIONS AND PLANS KOR FUTURE »ORk 

The results of this investigation show that valid ground reflectance measure- 

ments in the 2000-3000 A wavelength range may be possible from high-flying 

aircraft.    Comparison with other published reflectance data is difficult due to lack 

of coverage of this range, but extrapolation from data (Table 2. reference F) down 

to 4000 A indicate that our reflectances are about 2 to 3 times .arger, assuming 

sand or desert surfaces.    For limestone, clay, etc., surfaces, our reflectance 

agrees with those in reference F within 10 percent.    Integrated reflectance (albedo) 

data will be compared with o\irz when our measurements and data evaluation over 

the visible and near infrared range are completed. 

There is considerable doubt from other published work as to whather sufficient 

UV radiation can actually penetrate the atmosphere twice to yield a valid measure 

of ground reflectance.    For th^s reason it is planned to extend the data evaluation 

of the present runs to the time periods during which the radiometer faced away from 

the earth due to strong rolling and turning of the X-15 vehicle.    Th'3 should reveal 

whether there is a measurable contribution to UV reflectance by the ground. 
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