Spectral Reflectance and Albedo Measurements of the Earth from High Altitudes

H. E. Band
L. C. Block

OFFICE OF AEROSPACE RESEARCH
United States Air Force
BEST
AVAILABLE COPY
Spectral Reflectance and Albedo Measurements of the Earth from High Altitudes

L. C. KANSCOM

* A member of the staff of Utah State University. He assisted in the research covered by this report working under Contract AF 19(628):3244.

Partially Sponsored by
Advanced Research Projects Agency
Project Defender
ARPA Order No. 363

OFFICE OF AEROSPACE RESEARCH
United States Air Force
Abstract

Spectral radiance measurements over the wavelength range of 0.24 to 0.28 microns were carried out using Ebert-type scanning spectrometers mounted on the aft section of an X-15 aircraft operating up to 270,000 ft altitude. With the assumption of Rayleigh scattering in the atmosphere and allowing for ozone absorption, the reflectance and albedo are estimated and compared with the measured values. The elevations and azimuths of the sun and of the spectrometer during the flight were tabulated and used to compute the scattering and diffuse reflection angles. Apparent reflection of radiation from the ground is estimated, using a Lambert radiator model. Since the spectrometer at times pointed away from the earth, it should be possible to estimate the separate contribution of the ground to the reflectance and total albedo.
Contents

1. INTRODUCTION 1
2. INSTRUMENTATION 2
3. EXPERIMENTAL RESULTS 3
4. COMPUTATIONS 12
5. CONCLUSIONS AND PLANS FOR FUTURE WORK 16
ACKNOWLEDGMENTS 17
REFERENCES 17

Illustrations

1. Radiometer Mounting on X-15 Body 2
2. Ground Path of X-15 4
3. Altitude Profile of X-15 5
4. Spherical Polar Coordinate System 5
5. Geometry of Reflectance Measurements 6
6. Ground Locus of Spectrometer Axis during Flight 7
7. Spectral Radiance as a Function of Time 9
8. Spectral Radiance as a Function of Scattering Angle 10
9. \(\tau \) versus \(\alpha \) at 0.24 Microns 13

v
Contents

10. \(\tau \) versus \(A \) at 0.25 Microns 14
11. \(\tau \) versus \(A \) at 0.28 Microns 14

Tables

1. Calculated Apparent Ground Reflectance and Normal Optical Thickness 15
2. Albedo and Reflectance of Various Ground Types, Percent 15
Spectral Reflectance and Albedo Measurements of the Earth from High Altitudes

1. INTRODUCTION

The Optics and Radiometry Branch of the Air Force Cambridge Research Laboratories has been actively engaged in making measurements from on-board missiles and satellites.† As a part of this over-all effort, a program has been established utilizing the X-15 aircraft as a space platform. A series of flights has been planned and carried out. The purpose of the measurements is to investigate high altitude plume radiation characteristics and to make background-radiation, scattering and albedo measurements. The advantage of using the X-15 vehicle is twofold: (1) the instrumentation is recoverable, and reusable for additional measurements and (2) precise altitude, viewing angles, aspect angles, and scattering angles can be determined. Altitude information is recorded on board the vehicle and is also telemetered to the ground station.

(Received for publication 18 May 1965)

*This paper is a revised version of one presented at the October 1963 Meeting of the Optical Society of America at Chicago, Illinois.

†Supported in part by the Advanced Research Projects Agency.
2. INSTRUMENTATION

The instruments used are passive optical sensors. Bracketry has been incorporated into the upper tail fin section of the X-15 to accommodate the instrumentation. The instrument itself can be changed from flight to flight as long as it maintains compatibility with the bracketry, cabling, telemetry and size limitations. Figure 1 shows the location of the instrument with respect to the X-15 aircraft.

Figure 1. Radiometer Mounting on X-15 Body

On the first set of flights, the instrument used was a duel channel Ebert-type rocking grating spectrometer built by Block Engineering Company of Cambridge, Massachusetts. The spectral regions, the field of view, the dynamic range, and the gain setting can be varied from flight to flight. Instrumentation details have been presented by Block, Band and Dana (1963).
3. EXPERIMENTAL RESULTS

The radiometric data shown in the accompanying figures were obtained while the aircraft was on a constant heading (191° 48') and performed no maneuvers other than climbing and diving. A typical ground path and altitude profile are shown in Figures 2 and 3. Measurements taken prior to engine cutoff (80 sec after launch) were omitted as well as those taken after large changes of heading, and after the subsequent more involved maneuvering of the vehicle. This eliminates: (a) the engine exhaust radiation and (b) the radiometer pointing errors caused by the rapidly changing altitude of the vehicle during banking and turning. The portion of the flight reflected in the present data lasted from 80 to 280 sec after launch, a total of 200 seconds. During this time interval, the sun's altitude changed from 47° 41' to 48° 30' and its azimuth from 110° 43' to 109° 03' for a typical run (one u-value) as seen by an observer located at the radiometer. These changes amount to 1.7% and 1.5%, respectively. The altitude and azimuth of the radiometer axis as well as of the sun were computed every 2 sec of flight time using the (time-varying) angle of attack* and the fixed angle between the plane's longitudinal axis and the optical axis of the radiometer. This latter angle is 30°; that is, the radiometer looks rearward 30° vertically below the plane's axis. The angular values of radiometer altitude and azimuth as well as those of the sun (as seen by an observer on the ground at point G in Figure 5) were then transformed to direction cosines of the lines Sun-Ground Point and Radiometer-Ground Point, respectively by the relations

\[
\begin{align*}
1 &= \frac{X}{R} = \sin \zeta \cos \alpha \\
2 &= \frac{Y}{R} = \sin \zeta \sin \alpha \\
3 &= \frac{Z}{R} = \cos \zeta,
\end{align*}
\]

where 1, 2, 3 are the direction cosines of a radius vector R having spherical polar coordinate components R, \(\alpha, \zeta \) (see Figures 4 and 5). The scattering geometry is illustrated in Figure 5 in which \(\psi \) is the usual scattering angle. The scattering volume element of the atmosphere, \(\Delta V \), can be assumed to lie anywhere along the line radiometer-ground point G. The justification for this is that due to the remoteness of the sun the angle \(\theta \) changes only slightly as \(\Delta V \) is moved from the

* This is defined as the acute angle between the plane's longitudinal axis and the tangent to the plane's trajectory at that instant.
Figure 2. Ground Path of X-15
Figure 3. Altitude Profile of X-15

Figure 4. Spherical Polar Coordinate System
radiometer entrance to the point G.* The latter is defined as the intersection of the extended radiometer axis with the earth's surface, considered plane for this purpose. The locus of G is plotted† during a typical flight in Figure 6. The supplement θ

*A numerical check shows that for a 500 mile path from radiometer to ground the angle θ changes only by about 5×10^{-6} radian, when the ground point G is taken as the position from which the sun's altitude and azimuth are determined, instead of from the plane's position. Atmospheric refraction introduces an error of about one minute of arc in $θ$. At present calculations are being made of the exact error due to neglect of the earth's curvature. Preliminary checks indicate an upper limit of 0.6° for this (see Section 4).

†At the beginning of a typical data taking period the radiometer axis intersected the ground at 116° 54' longitude West, 37° 33' latitude North while the X-15 aircraft was climbing at 120,000 ft altitude. At a time 164 sec later the radiometer was pointing at a point on the ground located at 117° 21' longitude West, 35° 39' latitude North while the X-15 was diving from an altitude of 196,600 feet. At an intermediate point the plane was flying almost exactly level at 208,400 ft and the radiometer pointed at the ground at 117° 08' longitude West, 36° 36' latitude North. These terrain points lie in the Death Valley area of California and Southern Nevada, which is largely desert. Van de Hulst (1949) gives a (total) albedo of about 25% for deserts.
Figure 6. Ground Locus of Spectrometer Axis during Flight
of the conventional scattering angle ψ is given, using elementary analytic geometry, by the relation

$$\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2,$$ \hspace{1cm} (2)

where the subscripts refer to the lines "radiometer-scattering volume" and "sun-scattering volume", respectively. In terms of polar coordinate angles this becomes

$$\cos \theta = \sin \xi_1 \sin \xi_2 \cos (\alpha_1 - \alpha_2) + \cos \xi_1 \cos \xi_2.$$ \hspace{1cm} (3)

In Figures 7 and 8 are shown the measured spectral radiance of the atmosphere and ground as a function of time and of the scattering angle ψ. The fractional contribution of ground-reflected solar radiation to the total measured radiance is claimed to be about 8% by Van de Hulst (1949) for $\lambda = 5400$ A skylight and a normal optical thickness $\tau = 0.1$ for the atmosphere. In general the value of the spectral reflectance of the ground is largely unknown, however, and varies considerably with the nature of the ground.*

A Lambert law reflecting ground was assumed, its spectral reflectance being called A.†

The radiometer spectral irradiance (watts/m2/µ) was measured as a function of aircraft position and altitude. By postulating the applicable scattering and attenuation laws over the spectral region used, an attempt was made to determine the apparent ground reflectance and the normal optical thickness of the atmosphere below the radiometer, assuming a vacuum above. In the initial set of measurements,

*At the beginning of a typical data taking period the radiometer axis intersected the ground at $116^\circ 54'$ longitude West, $37^\circ 33'$ latitude North while the X-15 aircraft was climbing at 120,000 ft altitude. At a time 164 sec later the radiometer was pointing at a point on the ground located at $117^\circ 21'$ longitude West, $35^\circ 39'$ latitude North while the X-15 was diving from an altitude of 196,600 feet. At an intermediate point the plane was flying almost exactly level at 208,400 ft and the radiometer pointed at the ground at $117^\circ 08'$ longitude West, $36^\circ 36'$ latitude North. These terrain points lie in the Death Valley area of California and Southern Nevada, which is largely desert. Van de Hulst (1949) gives a (total) albedo of about 25% for deserts.

†Due to the well-known high absorption by ozone in the 2000-3000 A region the following data on A and τ must be considered inconclusive.
the wavelength range covered was 2400 to 2800 A. In this spectral range there is strong ozone absorption, and Rayleigh scattering is strongly effective. We therefore invoked Rayleigh scattering, ozone absorption (see approximation below), plus the Lambert Law ground reflection contribution which is probably relatively insensitive to wavelength. Curvature of earth and atmosphere, as well as atmospheric refraction were neglected. Only primary scattering was assumed to be present.

The scattered radiant intensity from ΔV is proportional to the solar irradiance at ΔV. If Rayleigh scattering holds and the normal optical thickness* of the atmosphere (from the ground to infinity) is taken as

* The coordinate z measures vertical height above the ground.
\[\tau = \int_0^l \beta \, dz, \]

\(\beta \) being the extinction coefficient, then the scattered spectral radiance \(N \) seen by the radiometer from the top of the atmosphere is, according to Eq. 2.23 in Coulson (1959),

\[N_\lambda^S = \frac{1}{4} F_\lambda P(\psi) \frac{\sec \zeta_1}{\sec \zeta_1 + \sec \zeta_2} \left[1 - e^{-\tau(\sec \zeta_1 + \sec \zeta_2)} \right] \]

where \(\psi \) is the Rayleigh scattering angle and \(P(\psi) = \frac{3}{4} (1 + \cos^2 \psi) \) the normalized Rayleigh scattering function. \(\zeta_1 \) and \(\zeta_2 \) are the zenith angles of the radiometer and the sun, respectively. \(F_\lambda \) is \(\frac{1}{\pi} \) times the spectral irradiance (watts/cm\(^2\)\(\mu\)) of the sun as measured incident on top of the atmosphere.
The contribution from ground-reflected solar radiation must next be estimated. This is given by Coulson (Eq. 2.28) as

\[N_A^R = \frac{1}{2} A F_\lambda \cos \zeta_2 e^{-\tau \left(\sec \zeta_1 + \sec \zeta_2 \right)} \]

where \(A \) is the fraction of the incident solar flux reflected isotropically by the ground. (The skylight, that is, the ground illumination contributed by scattered rather than directly incident sunlight is neglected here.) Adding these two contributions we get for the total spectral radiance seen by the radiometer at the top of the atmosphere (without ozone absorption)

\[N_\lambda = N_\lambda^S + N_\lambda^R = \]

\[\frac{1}{2} F_\lambda \left\{ \frac{1}{2} P(\psi) \frac{\sec \lambda_1}{\sec \lambda_1 + \sec \lambda_2} \left[1 - e^{-\tau(\lambda) \left(\sec \lambda_1 + \sec \lambda_2 \right)} \right] \right. \]

\[+ A \cos \zeta_2 e^{-\tau(\lambda) \left(\sec \zeta_1 + \sec \zeta_2 \right)} \left\} , \]

\[0 < A < 1. \]

The normal optical thickness of the atmosphere \(\tau(\lambda) = \int_0^\infty \beta(\lambda) \, dz \) is wavelength dependent through the extinction coefficient \(\beta(\lambda) \).

By taking ratios of spectral radiance values at two different positions \(x \) and \(y \) of the radiometer and at the same wavelength we eliminate \(F_\lambda \) and get from Eq. (7)

\[R_{xy} = N_\lambda(x) N_\lambda(y)^{-1} = \frac{e^{-\tau(\lambda) \left(\sec \zeta_{1x} + \sec \zeta_{2x} \right)} \left[A \cos \zeta_{1x} - G(x) \right] + G(x)}{e^{-\tau(\lambda) \left(\sec \zeta_{1y} + \sec \zeta_{2y} \right)} \left[A \cos \zeta_{1y} - G(y) \right] + G(y)} \]

where

\[G(u) = \frac{1}{2} P(\psi u) \frac{\sec \zeta_{1u}}{\sec \zeta_{1u} + \sec \zeta_{2u}}. \]
This relation makes it possible to solve graphically or by trial and error for the two unknowns \(\tau(\lambda) \) and \(A(\lambda) \) for any value of \(\lambda \) at which radiance was measured. The wavelength dependence of \(A \) is expected to be slight.

The effect of ozone absorption in the atmosphere has not been formally accounted for. The example of Dave and Sokera (1959) and Couison (1959) was followed in approximating ozone absorption by taking its effect simply to be that of a "filter" interposed in the path of the solar radiation incident on top of the atmosphere.

Under this assumption, the quantity \(F'_a \) in Eq. (7) is multiplied by an equivalent "filter response" function \(G(\lambda) \), but the ratio Eq. (8) is not affected.

During the UV measurements presented in this paper, the cloud cover was negligible and therefore no correction for cloud reflectivity or absorption was attempted or needed.

It was not possible to incorporate corresponding IR or visible measurements in this paper since the experimental data for these wavelengths is still incomplete. Further measurements and data evaluation are in progress, and results in the 1.4 - 2.7\(\mu \) region are expected to be reported later.

4. COMPUTATIONS

The values of the scattering angle \(\psi \) were computed every two seconds of flight time using an IBM 7090 computer. The origin of time was 80 sec after launch (burnout). The scattering volume was assumed to be located at the ground point \(G \). The neglect of the earth's curvature introduced a maximum difference of 0.6" in the value of the scattering angle when the scattering volume was taken at the radiometer instead of at the ground point \(G \). This correction is, of course, independent of the negligible sun parallax over the scattering path, which has been discussed. The sun's position was found by storing the pertinent portions of the Greenwich hour angle and declination tables from the Air Almanac in the computer memory, and letting the computer interpolate linearly between entries whenever it was required. The geographical coordinates of the "ground point" \(G \) from which both radiometer and sun positions are reckoned were computed from the known attitudes of the aircraft, as were the zenith angles and azimuths of the radiometer. The required portion of an H, O, 249 table was also stored in memory. Entering this with the latitude of the ground point and the declination and local hour angle of the sun just obtained, the computer determined the required zenith angles and azimuths of the sun, by interpolation. These values were then entered into Eq. (3) above and the scattering angle \(\psi \) computed.
A total of 95 values of the ratio R_{xy} in Eq. (8) were computed from experimental values of N_x for each of the three wavelengths, 0.24μ, 0.26μ and 0.28μ.

The reflectance was allowed to vary from 0.4 to 0.05 in 35 steps of 0.01 and τ was computed. This resulted in $95 \times 35 = 4465$ tabulated pairs of A and τ values for each wavelength. Some of these were then plotted on the three scatter plots of Figures 9, 10 and 11, one for each wavelength. Because of the large number of points, only the points of maximum excursion were selected, giving the "perimeter" of the scatter plot. In future calculations this procedure is expected to be refined by having the computer calculate the weighted "centroid" of the scatter plot, thus taking account of the density of points. Also, the range of A will be extended from 0.4 to 1.0.

Taken from Figures 9, 10 and 11 the "most probable" apparent spectral reflectances A and normal optical thicknesses τ for each wavelength are listed in Table 1.

For comparison, Table 2 shows earth albedo values (clear sky) from several references, coded by capital letters.
Figure 10. τ versus A at 0.26 Microns

Figure 11. τ versus A at 0.28 Microns
Table 1. Calculated Apparent Ground Reflectance and Normal Optical Thickness

<table>
<thead>
<tr>
<th>(\lambda) (microns)</th>
<th>(A) (%)</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>14 - 24</td>
<td>0.170 - 0.315</td>
</tr>
<tr>
<td>0.26</td>
<td>15 - 26</td>
<td>0.005 - 0.006</td>
</tr>
<tr>
<td>0.28</td>
<td>24 - 33</td>
<td>0.009 - 0.104</td>
</tr>
</tbody>
</table>

Table 2. Albedo and Reflectance of Various Ground Types, Percent

<table>
<thead>
<tr>
<th>Ground Type</th>
<th>Albedo</th>
<th>Reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>3-10</td>
<td>E*</td>
</tr>
<tr>
<td>Bare Ground</td>
<td>3-30</td>
<td>A</td>
</tr>
<tr>
<td>Fields, grass, etc.</td>
<td>3-37</td>
<td>A</td>
</tr>
<tr>
<td>Whole earth, total spectrum</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Whole earth</td>
<td>39</td>
<td>B</td>
</tr>
<tr>
<td>Green forest</td>
<td>3-10</td>
<td>C</td>
</tr>
<tr>
<td>Bare ground</td>
<td>7-20</td>
<td>C</td>
</tr>
<tr>
<td>Wet ground</td>
<td>8-2</td>
<td>C</td>
</tr>
<tr>
<td>Dry sand</td>
<td>18</td>
<td>C</td>
</tr>
<tr>
<td>Wet sand</td>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>Mojave Desert</td>
<td>24-28</td>
<td>C</td>
</tr>
<tr>
<td>Death Valley Desert</td>
<td>25</td>
<td>C</td>
</tr>
<tr>
<td>Whole earth (visible spectrum)</td>
<td>39</td>
<td>C</td>
</tr>
<tr>
<td>Whole earth (UV, visible, IR)</td>
<td>35</td>
<td>C</td>
</tr>
<tr>
<td>Whole earth</td>
<td>41.5</td>
<td>C</td>
</tr>
<tr>
<td>Whole earth</td>
<td>29</td>
<td>D</td>
</tr>
<tr>
<td>Whole earth</td>
<td>25</td>
<td>D</td>
</tr>
<tr>
<td>Forests</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>Deserts</td>
<td>25</td>
<td>D</td>
</tr>
<tr>
<td>Forests, Fields (0.3-3.0(\mu))</td>
<td>4.5-14</td>
<td>E*</td>
</tr>
<tr>
<td>Desert, sand, bare rock (0.4-0.8(\mu))</td>
<td>11-34</td>
<td>E*</td>
</tr>
<tr>
<td>Different types of forests (0.4-0.8(\mu))</td>
<td>3-57</td>
<td>E*</td>
</tr>
<tr>
<td>Limestone, Clay (visual albedo)</td>
<td>63</td>
<td>F*</td>
</tr>
<tr>
<td>Granite (visual albedo)</td>
<td>12</td>
<td>F*</td>
</tr>
<tr>
<td>Dry sand (visual albedo)</td>
<td>31</td>
<td>F*</td>
</tr>
<tr>
<td>Wet sand (visual albedo)</td>
<td>18</td>
<td>F*</td>
</tr>
<tr>
<td>Coniferous Forest</td>
<td>3-10</td>
<td>F*</td>
</tr>
<tr>
<td>Meadows, grass</td>
<td>3-25</td>
<td>F*</td>
</tr>
</tbody>
</table>

References - Table 2

C Smithsonian Meteorological Tables, Sixth Revised edition, pp. 442-3.

* These references contain detailed data on albedo and spectral reflectance in the visible and near infrared region. Entries in Table II are therefore only representative.
5. CONCLUSIONS AND PLANS FOR FUTURE WORK

The results of this investigation show that valid ground reflectance measurements in the 2000-3000 A wavelength range may be possible from high-flying aircraft. Comparison with other published reflectance data is difficult due to lack of coverage of this range, but extrapolation from data (Table 2, reference F) down to 4000 A indicate that our reflectances are about 2 to 3 times larger, assuming sand or desert surfaces. For limestone, clay, etc., surfaces, our reflectance agrees with those in reference F within 10 percent. Integrated reflectance (albedo) data will be compared with ours when our measurements and data evaluation over the visible and near infrared range are completed.

There is considerable doubt from other published work as to whether sufficient UV radiation can actually penetrate the atmosphere twice to yield a valid measure of ground reflectance. For this reason it is planned to extend the data evaluation of the present runs to the time periods during which the radiometer faced away from the earth due to strong rolling and turning of the X-15 vehicle. This should reveal whether there is a measurable contribution to UV reflectance by the ground.
Acknowledgments

The authors wish to acknowledge the assistance rendered by the following individuals: R. Barron and his associates of NASA Laboratories, Edwards AFB, California, and J. Manosh, F. Reslow and A. Eldridge of the Utah State University, Concord Radiance Laboratory.

References

AFCRL Survey in Geophysics, Optical Measurements made from Onboard the X-15 to be published.

No. 1. Examination of a Wind Profile Proposed by Swinbank, Morton L. Barad, March 1964 (REPRINT).

No. 2. Wind and Temperature Variation During Development of a Low-Level Jet, Yutaka Izumi, Morton L. Barad, March 1964 (REPRINT).

No. 3. Radiation Pattern of Surface Waves From Point Sources in a Multi-Layered Medium, N. A. Haskell, March 1964 (REPRINT).

No. 4. Photoelectric Emission Phenomena in LiF and KCl in the Extreme Ultraviolet, R. G. Newburgh, February 1964 (REPRINT).

No. 7. Airflow and Structure of a Tornadic Storm, K. A. Browning, R. J. Donaldson, Jr., March 1964 (REPRINT).

No. 10. A Search for Rainfall Calendar Variations, Glenn W. Brier, Ralph Shapiro, Norman J. MacDonald, March 1964 (REPRINT).

No. 11. Lee Wave Clouds Photographed From an Aircraft and a Satellite, John H. Conover, April 1964 (REPRINT).

31. Some Numerical Results of a Model Investigation of the Atmospheric Response to Upper-Level Heating, Louis Berkofsky and Ralph Shapiro, July 1964 (REPRINT).

34. Falling Sphere Measurements of Atmospheric Density Temperature and Pressure up to 115 km, A.C. Faire and K.S. Champion, July 1964.

36. The Evolution of Temperature and Velocity Profiles During Breakdown of a Nocturnal Inversion and a Low-Level Jet, Yutaka Izumi, July 1964 (REPRINT).

37. A Test for the Period of 18 Cycles per Year in Rainfall Data, Glenn W. Brier, Ralph Shapiro and Norman J. MacDonald, July 1964 (REPRINT).

40. Tropopause Definition and Hourly Fluctuations, Arthur J. Kantor, August 1964.

41. Olivine Shear Strength at High Pressure and Room Temperature, R.E. Riecher and K.E. Seifert, August 1964 (REPRINT).

42. An Observation of a Large, Sudden Ionospheric Total Electron Content Decrease, J.A. Kloebuchar, H.E. Whitney and R.S. Allen, August 1964 (REPRINT).

43. The Height Variation of Vertical Heat Flux Near the Ground, W.P. Elliott, September 1964 (REPRINT).

44. A Mid-Latitude Biennial Oscillation in the Variance of the Surface-Pressure Distribution, R. Shapiro, September 1964 (REPRINT).

47. Notes on Wright's Interpretation of Temporal Variation of O/No Ratio in the Thermosphere, H.E. Hinteregger, September 1964 (REPRINT).

49. Observations of Ionospheric Wind Patterns Through the Night, N.W. Rosenberg and H.D. Edwards, September 1964 (REPRINT).

51. Mutually Consistent, Magnetic Charts Based on Orthogonal Functions, Paul F. Fouger, September 1964 (REPRINT).

52. Hourly Variability of Density at Radiosonde Heights, Paul F. Nee, September 1964 (REPRINT).

54. The Identification and Significance of Orographically Induced Clouds Observed by TIROS Satellites, John H. Conover, September 1964 (REPRINT).

ENVIRONMENTAL RESEARCH PAPERS (Continued)

No. 64. High-altitude Minimum Wind Fields and Balloon Applications, George F. Nolan and Randall A. Smith, October 1964.

No. 68. Solar X Rays From 3 to 12 Angstroms as Measured With a Proportional Counter Spectrometer, James E. Musson, November 1964.

No. 70. Radar Observations of Ice Spheres in Free Fall, J.T. Willis, K.A. Browning, and D. Atlas, November 1964 (REPRINT).

No. 73. Infrared Stellar Irradiance, Russell G. Walker and Anthony D'Agata, December 1964 (REPRINT).

No. 75. Winter Space Correlations of Pressure, Temperature, and Density to 16 km, Eugene A. Bertoni and Iver A. Lund, December 1964.

No. 79. The Fall-Off with Height of Terrain-Induced Vertical Motions, Louis Berknofsky, January 1965 (REPRINT).

No. 80. A Case Study Using Ozone to Determine Structure and Air Motions at the Tropopause, Samuel Penn, January 1965 (REPRINT).

No. 81. Analysis and Interpretation of TIROS II Infrared Radiation Measurements, R.S. Hauken, February 1965 (REPRINT).

No. 84. General Circulation of the Solar Atmosphere from Observational Evidence, Fred Ward, February 1965 (REPRINT).

No. 85. An Investigation Into the Use of Temperature Gradients as an In-Flight Warning of Impending Clear-Air Turbulence, George McLean, February 1965.

No. 89. Ionospheric and Tropospheric Scintillations of a Radio Star at Zero to Five Degrees of Elevation, John P. Castelli, Jules Aarons, and Herbert M. Silverman, March 1965 (REPRINT).

No. 90. A Demonstration of Antenna Beam Errors in Radar Reflectivity Patterns, Ralph J. Donaldson, Jr., March 1965 (REPRINT).

No. 91. Coupling of Magnetohydrodynamic Waves in Stratified Media, II. Poeverlein, March 1965 (REPRINT).

No. 93. Airflow and Precipitation Trajectories Within Severe Local Storms Which Travel to the Right of the Winds, Keith A. Browning, April 1965 (REPRINT).

No. 101. The Evolution of an Ionospheric Hole, Malcolm A. MacLeod and Dan Golomb, April 1965.

No. 104. Data Previous to the International Geophysical Year 1: 3577 (OL) Line at Sacramento Peak, New Mexico, G.J. Hernandez, May 1965.

No. 110. A Measure of Skill in Forecasting a Continuous Variable, Irving I. Gringorten, June 1965 (REPRINT).

No. 112. The Inherent Smoothing of Whole-Disk Solar Indices, Ralph Shapiro, June 1965.

No. 115. Seasonal Atmospheric Attenuation Measurements at 3.27 cm Wavelength, John P. Castelli, June 1965.

No. 117. Origin of Linear Elements in Mare Humorum, John W. Salisbury, Vern G. Smalley, and Luciano B. Ronca, July 1965 (REPRINT).

No. 120. Molecular Oxygen Distribution in the Upper Atmosphere,2. A.S. Jursa, M. Nakamura, and Y. Tanaka, August 1965 (REPRINT).

No. 124. Atmosphere in Focus, David Atlas, August 1965 (REPRINT).

No. 126. Ozone and Temperature Structure in a Hurricane, Samuel Penn, August 1965 (REPRINT).

No. 127. N°tions at Twilight, William Swider, Jr., August 1965 (REPRINT).

No. 129. Turbulent Atmospheric Parameters by Contaminant Deposition, S.P. Zimmerman, August 1965 (REPRINT).

Spectral Reflectance and Albedo Measurements of the Earth from High Altitudes

Scientific Report, Interim.

BAND, Hans E., and BLOCK, Louis C.

September 1965

ARPA Order 363

Task 8662

62503015

none

AFCRL-65-674

AFCRL-65-674

Spectral radiance measurements over the wavelength range of 0.24 to 0.28 microns were carried out using Ebert-type scanning spectrometers mounted on the aft section of an X-15 aircraft operating up to 270,000 ft altitude. With the assumption of Rayleigh scattering in the atmosphere and allowing for ozone absorption, the reflectance and albedo are estimated and compared with the measured values. The elevations and azimuths of the sun and of the spectrometer during the flight were tabulated and used to compute the scattering and diffuse reflection angles. Apparent reflection of radiation from the ground is estimated, using a Lambert radiator model. Since the spectrometer at times pointed away from the earth, it should be possible to estimate the separate contribution of the ground to the reflectance and total albedo.
Scattering angles
- Diffuse reflection angles
- Reflectance
- Albedo
- Light scattering
- Rayleigh scattering

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. **GROUP:** Automatic downgrading is specified in DoD Directive 5000.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capital letters, system numbers, task number, etc. immediately following the title.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, system numbers, task number, etc.

7. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

8. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

9. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

10. **AVAILABILITY LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC.
 2. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...
 3. "All distribution of this report is controlled. Qualified DDC users shall request through...
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...
 5. "All distribution of this report is controlled. Qualified DDC users shall request through...

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsors (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (S), (R), (C), or (L).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical content. The assignment of links, rules, and weights is optional.

Security Classification

Unclassified