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ABSTRACT

The 30-da, ocean-bottom seismograph senses ground motion
through 1 vertical and 2 harizontal velocity seismometers and pressure
variations through a transducer capable ot response to 1.0 cps.

Data are reccrded continuously on magnetic tape and the unit
has a depth capability of 25,000 ft.

During the summer and fall of 1964, several drops were made
1n the area south of the Aleutian chain and northeast of the Island of Ho'tlkaido,
Japanr.

Po".er density spectra of ambient noise samples over a long
time interval were selected from the two areas. Plots of these data vs
time are presented and compared with simultaneous meteorological maps
covering the respective areas,

Thesc results show a direct relationship between ambient
noise levels and local meteorological changes. In fact, low-pressure dis-
turbances were abserved to cause up to 20 db increase in ambient noise
level in the 0-2.0 cps range.

Ambient noise levels that previously were observed and
reported appear consistent with current findings.
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SECTIONM I

INTRODUCTION AND SUMMARY

A. INTRODUCTION

Upon completion of the 1963 program (Contract AF19(604)-
8368), Texas Instruments Incorporated was awarded a contract fron: the
Air Force Cambridge Research l.aboratories to construct ten ocean-bottom
seismographs to the following specifications:

Shape
Weight

In air

In water

Operating depth (maximum)
Sensors

Sensitivity

Type of magnetic recording

Recording speed

Number of recording channels

Dynamic range

Timing control

System frequency range

Power requirements

Calibration

Emplacing

Spaerical, 40-in dia.

With ballast 1620 1b
"/ithout ballast 1240 1b

With ballast 109 1b

Without ballast 250 1b buoyancy
25,000 ft

3 velocity, 1 pressure

Seismometers - 384 v/m/sec at 0.6
critical damping; pressure transducer
5 Mv/microbar

Data channels - direct analog
Time channels - digital

0.0075 ips - 33 days on 8-in. reel ot
tape

14 IRIG - analog

72 db overall - 3 output levels each
data channel 20-db separation

40-day digital clock using crystal
oscillator

0.5 to 10 cps

System total < 3 w
Recorder only < 1 w

Eich channel pulsed daily

F ree-fall to ocean floor



Recall By sonar command, preset time or
upon saltwater leakage into sphere

Locate Pulsed radio transmitter activated
upon unit breaking surface.
Located by directional antenna

These instruments wer= constructed and ready for ocean
testing 18 June 1964, During late Junc and July the units were tested in
shallow and deep water for reliable operation of the recall and recovery
systems,

The last week of August five units were dropped south of the
Aleutian chain near Adak in 10,000 to 18, 000 ft of water, During the 30-day
recording period several large charges (2376 1b) of composition B cxplosives
vere detonated as part of a joint program with the USC&GS to improve
epicenter and hypocenter determinations (Figure 1). * After 30 days the
instruments wecre recalled; however, twoe were not recovered,

For the final phase of the field program, the ship steamed to
o point northeast of Hokkaido, Japan, where four units were dropped in
water depths to 24,000 ft, Two of these units were recovered,

B. OPERATION

For launch and recovery, the seismographs are handled
from an oceangoing vessel equipped with a boom or crane.

Prior to iaunch the instruments are compleiely checked to
assure their proper operation, WWV is recorded on the magnetic tape and
the sphere is sealed. Then the units are lowered into the water and re-
leased to free-fall to the ocean bottom. At a later date, usually after 30
days, the units are recalled by sonar transmission from a surface ship or
by a preset time command. The recall activates a release mechanism,
allowing the bhuoyant sphere to surface for recovery.

The instant the antenna emerges, a radio begins transmitting.
This allows the recovery ship, using a Yagi antenna, to determine the direc-
tion toward the unit, Upon sighting the unit, the ship is brought alongside
so that the unit is floating in the lee of the vessel. A safety book is attached
and the unit is brought atoard by boom or other lifting device., Then the
sphere is opencd and WWV recorded on the magnetic tape,

The tape is removed for inspection on a portable playback
system before shipment to Dallas for transcription and analiysis. Prior
to the next launch, the unit undergoes a complete system checi beiore
installing new batteries and another magnetic tape.

Tocher, Don, 1964: VELA UNIFORM Aleutian Islands Experiment,
VESIAC Special Bull., 10 June, p. 1-5,

Seismological Bull. for the VELA UNIFORM Alcutian Islands Experiment,
1964: USC& G5, Advanced Seismic Experiments Group (in press).
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C. DATA REDUCTION

For visual analysis, the magnetic tapes were reproduced on
l6-mm film which displayed all 14 channels on a X-20 film viewer at a scale
of 1 cm =1 s=zc.

TI developed a fast playback system whereby a 30-day tape
can be filmed in about 2 hr. This system includes a Fairchild 35-mm high-
speed camera fitted witha 16-mm guide and a galvanometer bank. The
film is processed separately. Existing transcription methods would require
several months to process the approximately 22, 500 ft of film involved.

All Aleutian and Kurile Islands film was scanned and event

and noise samples were selected for digitizing and spectral analysis through
TIAC™.

D, VISUAL ANALYSIS

1. Pressure Tranducer

Visual analysis showed the pressure transducer to be much
lower in sensitivity than theoretically expected. No significant excursion
was noted, except when an unusually strong local event occcurred. In view
of the excellent pressure data recovered from the previous ocean-bottom
units’,’“’< this lack of sensitivity was a serious data loss. Investigation to
determine the cause indicated a slight saltwater leakage in the transducer
which generated a slight d-c leakage into the reactance amplifier. This
resulted in decreasing the sensitivity of the transducer to low frequencies
without seriously affecting sensitivity to the higher frequencies. The net
result was that seismic data was adversely affected, whereas the recail
signal was received at sufficient sensitivity to trigger the release.

2. P-Times from Aleutian Shots
ek sk
The explosives program near Adak yielded P-arrival times

for the USC&GS in conjunction with their efforts to obtain better travel-time
data in the Aleutians. Table 1 lists the shot times, locations and , where
possible, P-onset times. The P-times for position 8 are not presented
because of clock drift.

Texas Instruments Automatic Computer

Texas Instruments Incorporated, 1964, Ocean-bottom seismometer
data analysis program: AFCRL Contraci No. AF 19(604)-8368, Final
Rpt., Oct. 12, Fig. 6, p. 16.

Texas Instruments, Incorporated, 1965, 30-day ocean-bottomn seis -
mograph: Serniannual Tech. Rpt. Noc. 2, Contract AF 19(628)-4075,
Feb. 5, p. 7.

o




Table 1
P-ARRIVALS FROM SHOTS

Shot Origin Time
No. Date (GMT) Latitude Longitude Fos. 7 Pos. 14
23 9/2/64 23:11:00.0 51 29 15N 175 52 27W EP 2311 28.8
22 9/4/64 23:36:59.75 51 22 09N 176 42 03W
21 9/5/64 02:46:00. 06 51 20 13N 177 19 01W IP 02 46 45.8 EP 02 46 40.6
20 9/5/64 05:54:00. 02 51 17 39N 177 49 55W EP 05 54 46,7
11 9/17/64 05:27:00. 00 51 03 32N 175 51 36W IP 05 27 55.9 EP 05 27 31.8
13 9/7/64 18:24:00.02 51 14 44N 174 19 05W IP 18 24 14
26 9/7/64 23:05:00. 35 51 46 02N 173 35 47TW EP 23 05 10
25 9/8/64 02:30:59.75 51 41 07N 174 14 08W EP 02 31 11.9
24 9/8/64 05:57:00. 17 51 35 51N 175 00 55W

19 9/8/64 23:41:00.05 51 11 08N 178 27 1*W

18 9/9/64 06:27:00. 25 51 02 26N 178 55 38W
32 9/10/64 05:22:00. 14 51 46 36N 178 33 43W

2 9/:1/64 21:30:59. 92 52 12 03N 178 05 35W
45 9/12/64 01:55:59. 389 52 08 03N 179 01 17W
42 9/12/64 06:03:59.76 51 51 15N 179 35 06W
40 9/12/64 20:30:59. 92 51 51 52N 178 35 58E
41 9/13/64 02:01:00.15 51 40 11N 179 28 16E

30 9/13/64 06:05:59. 97 51 21 54N 179 47 42W
46 9/15/64 19:06:00. 20 52 20 24N 177 16 23W EP 19 06 49,2
47 9/17/64 22:06:00. 13 52 21 28N 176 42 52W EP 22 06 42.2
59 9/18/64 01:22:00. 21 52 45 14N 176 43 34W EP 01 22 42.6
54 3/18/64 19:04:00.02 51 28 24N 179 23 09W
17 9/18/64 22:56:00.23 51 02 02N 179 44 51W
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3. Hokkaido-Kuriles

No charges were detonated during operations in this area.
Positions 2 and 4 are spotted on the Kokkaido-Kurile weather charts
(Figures 7 and 8).

E. OPERATING TIME

Table 2 shows the total bottom time for each anit, measured
from the moment the unit contacts the ocean floor to the start-of-recall
time. Bcfore each unit is dropped, WWYV is recorded on the magnetic tape*
and the clock is reset to zero. After the unit is dropped overboard, the
moment of bottom contact is readily discerned from inspection of the film.
Start-of-recall time marks the beginning of the recovery operation in that a
coded sonar signal (each unit has its own sonar release code) causes the
release of the appropriate unit from its anchor. An ocean-bottom uait is
capable of recording for 30 to 33 days, depending on magnetic tape footage
or. the supply reel. An end-of-tape sensor then shuts off the recorder drive
motor, leavirg enough tape to record WWYV after recovery. The operated
(days) column of the table shows that all units recorded throughout the
expected time, except at position 7 where recording stopped unaccountably
after 12.7 days.

Table 2

ON-BOTTOM OPERATING TIME

Position On-Bottom Operated Remarks
(Days) (Days)
7 35.6 12,7 Tape recorder stopped at 12.7
days
8 34.9 32.0 S.ow clock rate. One-day-

clapsed clock time is equivalent
to about 1.55-day real time.
Accnurate event times were
not possible
14 38.9 32.9 Severe tape speed variations after
about 2davs’ recording; conse-
quently most data are not su.. -
able for digitizing. lHowever,
accurate event times usually
32.9 are recoverable
4 30.9 30.9

o~V
W
oo
<

“"Texas Instruments Incorporated, 1964, 30-Day Ocean-Bottom Seismograph:

Semiannual Tech. Rpt. No. 1, Contract AF 19(628)-4075, Mar. 6, p. 1.




In the remarks column are brief statements about clock and
tape speed problems affecting the quality of data. The units at positions 2
and 4 had no clock or tape recorder speed variations. Generally, all data
was adversely affected by crosscoupling and packaye resonance problems
which will be discussed later.

F. SOFAR Shots™

Enroute from the Aleutians to Japan, TI participated in a
cooperative 2ffort between ONR and the University of Hawaii to calibrate
SOF AR velocities in the Northwest Pacific. During the 8-day cruise,

1. 8-1b TNT charges were detonated at both 60- and 800-ft depths at
predetermined locations. Table 3 lists the exact times and locations of
these shots. Shot times were determined by recording shot impulses and
WWYV on a visicorder. The questioned times result {rom noisy WWV

reception.

N Texas Instruments li.corporatcd, 1965, 30-Day Ocean-Bettom Seismograph:

Semiannual Tech. Rpt. No. 2, Contract AF 19(628)-4075, Feb 5. p. 11.

Johnson, Rockne H., 1965, A Program for the Routine Location of T Phase
Sources in the Pacific, Hawaii Institute of Geophysics, Honolulu, Technical

Surmnmary Report No. 8, ARPA Contract No. Nonr-3748(01), March.




Shot No,

Table 3

SOFAR CRUISE DEPTH CHARGE TIMES AND LOCATIONS

Date

SUS #1

SUS #2

SUS #3

SUS #4

SUS #5

SUS #6

SUS #7

SUS #8

SUS #9

SUS #10

SUS #11

SUS #12

SUS #13

SUS #14

10-15-64

10-16-64

Charge
Time (GMT) Depth (ft)
19:46:07.90 800
19:51:02, 45 60
20:01:10. 33 800
20:56:01.25 60
20:59:03, 35 ~ 8G90
21:06:04, 22 800
21:47:02,52 60
21:51:07 7 800
22:01:05,72 800
22:38:01.18 * 60
22:41:04 800
23:30:20 7 60
23:32:01.17 60
23:36:08,42 800
05:25:01,17 ° 60
05:38:05. 11 800
06:26:03. 42 60
06:28:06.5 800
07:06:00.59 60
07:08:05,27 800
07:47:00. 8 60
07:51:05.92 800
08:28:03,03 60
08:31:04.72 800
19:48:03,12 650
19:52:04, 53 800
20:31:03.5 0
20:36:10.62 80C
21:11:00.79 Ol
21:13:07 300
21:56:02. 44 60
21:58:11.56 800

Location
175°03'00" E 50°50'00" N
174°55'30" E 50°49'20" N
174°47'30" E 50°48'50" N

174°39'30" E

174°31'30" E

172°34' E

172°25' E

172°17!

53]

172°09' E

172°01' E

170°25' E

170°18' E

170°10' E

170°02' E

50°48'20" N

50°47'30" N

50°42'00" N

50°41'45"'N

50°41'30" N

50°41'15" N

50°41'00" N

50°39'N

50°39'N

50°39'N

50°39'N




Shot No. Date
SUS #15
SUS #16
SUS #17

10-17-64
SUS #18
SUS #19
SUS #20 10-19-64
SUS #21 10-20-64
SUS #22
SUS #23
SUS ne4  10-21-64
SUS #25
oUS #26 10-26-64

10

Table 3 (Contd)

Charge
Time (GMT) Depth {{t)
22:27:05, 17 60
22:36:04.92 60
22:41:04. 73 800
23:17:02.88 60
23:21:04. 83 800
23:51:04, 54 60
23:56:04, 35 7 800
00:01:05, 04 800
00:43:01.24 60
01:07:04, 18 800
22:16:02,25 7 60
22:22:06, 37 800
21:02:00, 94 60
21:06:05, 85 800
01:35:17 7 60
01:59:02.21 60
02:03:06., 09 800
07:32:01.99 60
07:41:07. 36 800
20:27:00, 92 60
20:31:03.51 800
20:36:01, 02 60
02:06 ? 60
03:02:09, 92 800
08:38:02.2! 60
08:41:05.29 800
23:36:00,19 60

Location
169°54' E 50°39'N
169°46' E 50°39'N
169°38' E 50°39'N
169°30' E 50°39'N
162°43' E 48°51'N
152°25' E 46°29'N
151°10' E 45°50'N
149°52' E 45°06' N
148°12' E 44°22'N
147°11' E 43°41'N
147°17' E 43°35'N
146°14' E 42°56'N
145°11' E

39°48'N




SECTION 1I
ANALYSIS
A. NOISE ANALYSIS-/.LEUTIANS
Noise data were digitized for positions 7 and 8 and the Adak

land station., Samples of 3-min duration were taken every 6 hr for the
vertical and one horizontal component (Table 4).

Table 4

NOISE DATA SAMPLES

Unit Position No. of Samples Time (local) Perio? (local)
Taken During Day Covered by Samples
2 7 49 6, 12, 18, 2400 0600 26 Aug. to
2400 7 Sept. 1964
4 8 49 6, 12, 18, 2400 0600 26 Aug. to
‘ 2400 7 Sept. 1961
1 Adak 17* 2, 8, 2000 1800 31 Aug. to

2400 5 Sept. 1964

* The land station did not begin to record until 31 August. Inaddition,
land spectra at 1400 (2400 GMT) were omitted because of
difficulties in the playback clock decoder which wouldn't
read time in the particular area of concern.

This table summarizes the number of samples analyzed and
the period covered. FPower spectra were computed for each sample and,
once each day, the coherence between the vertical and horizontal components
was obtained. As will be explained later, only data less than about 4.0 cps
were considered valid. Also, since the predominant inicroseismic energy
was confined to less than 2.0 cps, discussion is confined to the 0- to 2.0-cps
region.

Figure 2 (in plastic pocket) shows the variations in positions
7, 8 anc land spectra (in the 0~ to 2,0-cps band) over a 13-day period.
Spectral peaks are joined with a dached line, average power levels (over a
16-cps band) with a solic line and the 2.0-cps power density levels with
a dotted line. Also plotted are the variations of surface-wind velocity with
time, as obtained from the R/V Seascope-Log. Figure 3 (in plastic pocket)
shows one surface weather analysis chart for ecach day of the period. These
charts were oitained from the U.S. Naval Weather Station at Adak.

11




12

Figures 2 and 3 siow that the ocean-bottom power
levels are directly related to the area weather conditions. On August 26 and
27, the isobars were widely separated, wind velocities were low and the ocean-
bottom average-power levels also were low, about -15 dh ‘e 1 (!-’-/seczlcps at
1.0 cps).

An August 28, a strcng low-pressure disturbance appeared
approximately 1750 mi to the southwest and although still far from the
ocean-botton: positions, the average power for both positions 7 and 8
increased 5 db during the day. During August 29, as the low passed through
the area both ocean-bottom average-power levels rose to a maximuin of
about 0 db and the wind increased sharply. By August 30, the low was to the
northeast and spectral levels and wind v:locity fell, although no:
decreasing to the previous low level of August 26 and 27. The plateau reached
on August 31 and September 1 corresponds to a between-storm period, but
with higher average winds than on August 26 and 27.

The sarae pattern occurred September 2 to 4 as a second
strong low passed through the area. The land station also reflected the
passage. However, on September 4, levels fell very little because a new
low already had formed to the southwest which pa<sed through the area on
September 5. Another low came from the West-Southwest on September 6:
however, it was weaker and passed west of the area. Thus, on September 7,
average-power levels were dropping.

The correlation between ocean-bottom power levels and
weather conditions is summarized in Figure 4 which has a compressed time
scale, The thrce lows that passed through the area are represented by the
regions of high-wind velocities. In each case, average-power levels increased,
resulting in an 18 db difference between the lowest levels (August 26)
and the highest levels (August 29, September 3 and 6). The land station
showed similar correlation, but did not span the full 13-day interval.

Figure 2 shows that ocean-bottom noise levels began to
increase 1-1/2 days before surface wind velocities signaled the arrival of
the low-pressure disturbance. From 0600 August 28 to 0600 August 29,
the onset of a low-pressure disturbance is reflected by a 10-db increase in
average -power leveis at positions 7 and 8 and a 5-10 knot rise in wind
velocity (note the sharp wind rise at 0600 August 29). This indicated that
short-period microseisms generated by the August 29th low-pressure dis-
turbance were propagated over significant distances (about 1750 mi).

From Figure 2 it can be seen that the spectral peak variations
followed the average-power variations for both positions 7 and 8, indicating
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that the low was generating microseisms with substantial power in the region
of the spe-tral peaks. For position 8, the 2.0-cps power density-level
variations also followed the average-power variations, suggesting that the
low was a fairly broadband source. The agreement between 2.0 cps and
average-power variations is les: d=finite for position 7.

The vertical-horizontal coherences are low, as was found
previously*. It was reasoi:>d that when the low-pressure disturbances were
large distances from the area (i.e., narrow-beam sources), but close enough
to influence the ambient level, the vertical-horizontal coherences and/or
phase angles could be affected enough to indicate how the energy was pro-
pagating. This was not the case. Apparently, when the disturbances were
far enough away to be nairow-beam, energy arriving from them was not
predominant. When close enough to become the predominant energy, the
disturbances were no longer narrow-beam sources,

Figure 5 compares the average vertical spectrum for positions
7 and 8 (1964 data) with the Aleutian average for previous data on both the
land and ocean-hottorm units. Table 5 surnmarizes the number of spectra
and the time period involved for each curve.

Taocie 5

MOISE SAMFLE AVERAGE VS TIME PERIOD

Instrument Number of Noise. Time Period Covered
Samples used in
Average
Old OBS V 25 1 sample/hr for 5 hr for each of
5 days
Position 7 37 4 samples/day for 13 consecutive
OoBS V days
Old LLand V 40 1 sample/hr for 5 hr for cach of
8 days
New Land V 11 3 samples/day for 6 consecutive
days

“Texas Instruments Incorporated, 1964, Ocean-Bottom Seismometer Data
Collection and Analysis: Contract AF 19(604)-8368, Final Rpt, Oct. 12,

p. 37,
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it can be seen that the 1964 averages are substantially higher (about 18 db

at 1.0 cps) for both the land and ocean-bcttom data. A higher average would
be expected since all previous data were collected during periods when good
weather prevailed; however, over most of the 1964 period, average-power
levels were well above minimum (or good weather) levels. Thu., based on
the difference of 18 to 20 db between the maximum and minimum levels for
the 1964 data, 1964 averages would be expected to be 12 to 15 db higher than
previous averages, which accounts for the major part of observed difference.

In general, it can be concluded \hat the position 7 and 8 vertical
curves are reasonably consistent with previous results, both in cbsolute and
relative levels. As before, the OBS and land verticals differ by approxi-
mately 20 db.

B. NOISE ANALYSIS - KURILES

Noise data were digitized for positions 2 and 4. Samples of
3-min duration were taken at about 0800 local time each day for the vertical
and both horizontals over a 3CG-day period firom October 27 to November 25,
1964, Power spectra were computed for each sample and vertical-horizontal
coherences were obtained every fifth day. Again, only data in the 0- 2.0-cps
banc were interpreted and displayed.

Figure 6 (in plastic pocket) shows the variations in the positions
2 and 4 spectra with time over the 30-day period. As before, spectral peaks
are joined with a dashed line, average-pcwer levels with a solid line
and the 2, 0-cps power-density level with a dotted line. Figures 7 and 8
(in plastic pocket) show one surface weather analysis chart for each day of the
period. These Figures are for 0900 local tirie or about 1 hr after the noise
samples were taken.

By comparing the spectra witn the weather maps, the direct
correlation between ocean-bottom pcwer levels and regional meteorological
conditions can be seen. There were four periods when average-power levels
were relatively high: October 29, November 2, November 14-16 and
November 22-24. In each case,a low-pressure disturbance was over or near
the drop locations, as evident in the corresponding weather maps.

In addition, Figure 9, which summarizes the data on a com-
pressed time scale, shows 7 periods for which the average-power curves
had maxima. Each of these can be associated with a nearby low-pressure
disturbance.

During periods of relatively low average-power levels, the
only lows close to the station were on the west side of the Japanese mainland;
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these lows would not be expected to contribute much to the ocean-bottcm
spectral levels, because Japan would be an effective barrier for the generated
energy. In general, when average-power levels were low, isobars were
widely spread in the vicinity of units.

While ther: is a definite relationship between the power levels
and weather conditions for the Kurile data, it is not as striking as for the
Aleutians. This is reasonable because the low-pressure disturbances which
passed through the Aleutian drop area were very well defined, quite intense
and approached from the open sea. However, the Kurile lows often were
weak and poorly defined. For the 4 obvious high-power levels previously
mentioned well-defined strong lows did exist.

Figure 9 shows, as was the case in the Aleutians, the average-
power levels for the 2 Kurile positions fluctuate in parallel over the entire
30-day period. For the October 27 to November 7 period, position 2 had
higher levels than position 4, while for November 8 to 25 the opposite was
trie. In the Aleutians, position 7 always had higher levels than position 8.
Having 2 units down simultaneously, showing the same level fluctuations
with timme, unquestionably rules out the possibility that the latter were due to
instrumental drift.

Figure 6 shows that both the spectral-peak variations and the
2,0-cps power-density variations followed the average-power variations
throughout the period. This again suggests that the storm centers, which
are presumed to be the main cause of gross ambient variations, must
generate energy in a fairly broadband, at least to 2,0 cps.

The vertical-horizontal coherences again were low in the
0- to 2.0-cps band. This agrees with the Aleutian and all previous analyses.

Figure 10 shows the average vertical spectra for positions 2
and 4, for position 8 Aleutian data and for previous Aleutian averages. The
Kurile averages were obtained from 24 ncise samples (with not more than
one for each day) over a 30-day period. (The Aleutian averages were
described earlier.) Position 2 and 4 averages agree very well and are
between the two Aleutian curves. This result seems quite reasonable, since
the old Aleutian data was low-biased due to collection of data in fair weather,
The 1964 data were somewhat high-biased due to sturmy weather over much
of the period during which the units were on bottorm, The Kurile averages
were longer termed than the Aleutian averages and seem to have contained
high, low and normal power levels. Since it was found previously that

average levels were much the same at different locations™, it would be
expected that the Kurile averages fall between the high and low Aleutian

averages,

?‘:‘I‘exas Instruments Incorporated, 1964, Ocean-Bottom Seismometer
Data Collection aud Analysis: Contract AF 19(604)-8368, Final Rpt.,

Oct. 12, p. 40.
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C. SIGNAL ANALYSI>

After a close examination of the signal data, it was decided
that computer inalysis was not warranted. The vertical and horizontals
exhibited dynamic crosscoupling between about 4.0 and 7. 0 ¢ps, which is
the region of predominant signal energy for all the local or near-regional
events. The crosscoupling was diagnosed from visual examination of the
records, shake-table teating of the unit and analysis of noise coherences.

Figure 11 shows the 2000-1b calibration shot of September 8,
1964, as recorded on the OBS unit at the Adak land station. The OBS unit
was placed on a concrete slab so that it would be rigidly coupled to the earth.
Near the beginning of the arrival, the OBS V duplicated the Beniof{ reason-
ably well, although there was some indication in the record of crosscoupling,
since the OBS V had more high-frequency content. Later in the record,
howevar, the crosscoupling was severe and the OBS V showed no visual
correlation with the Benioff.

For the ocean-bottomn units, the problem appeared mucih more
serious. Figure 12 shows the same calibration shot as recorded at the
position 8 Aleutian unit. High-frequency oscillation occurred immediately
after the first arrival. The same type of phenomenon was observed for
teleseisms. Evidently, the teleseisms contained enough high-frequency
energy to set the system ‘atc oscillation. For noise, crosscoupling was
observed, but was found ot serious enough to affect the analysis in the low-
frequency region (0.2 to 2.0 cps) where the noise power was peaked.

Mechanical crosscoupling has been eliminated in the new units
by bnttom-damping the gimballed aesembly on which the seismometers are
mounted with a high-viscosity damping compound. Figure 13 shows the
coherence between an OBS vertical and an outside EV17 vertical, and an OBS
horizontal and an outside EV 17 horizontal (with the same orientation) for
noise recorded in the laboratory. Very high coherence over the entire
1.0 - to 10.0-cps passband is obtained which meane the OBS seismometers
are acting independently. In addition, OBS and rutside power spectra
were virtually identical.

The reason for the more serious effect on the ocean bottom is
not clear; it may have been due to poor pac..age coupling to the ocean bottom.
This problem will be examined closely in the California test phase.

D. SUMMARY AND CONCLUSIONS

Our analysis has shown that variations in the ocean-bottom
ambient-noise level are directly related to local meteorological conditions.
In periods of severe weather conditions (i. e., low-pressure disturbances),
the ocean-bottom ambient rises as much as 18 to 20 db in the 0- to 2. 0-cps
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range. Ewing and Prentiss (1963)* also studied the problem and found some,
but not conclusive evidence for a relationship. The results of Bradner et al
(1965)** indicated that low-pressure disturbances contributed to the ocean-
bottom ambient. The long-recording instruments provided the capability for
the first study of this nature where continuous ocean-bottom recordings in
all weather were made avaiiable.

Our analysie also indicated that low-pressure disturbances
generate microseisms in a band of at least 2.0 cps and that microseisms
from the lows propagated as far as 1750 mi,

Results of the 1964 noise analysis are consistent with previous
c.aalysis. Noise levels on the ocean bottom are about 20 db higher than on
land. Average Aleutian noise spectra were higher for 19°4 than for previous
dxta because most of the 1964 data analyzed were recorded during periods
of active local weather conditions. Due to necese’ty, the previous data
were recorded during fair-weather conditions.

No signals were computer-analyzed because of instrumen-
tation problems (dynamic crosscoupling of the vertical and hcrizontal
seismometers in the 4. '- to 7. 0-cps range). This problem has been
corrected irn the new units.

* Ewing, J. I. and D. D. Prentiss, 1963, The seismic motion of the deep
ocean floox: Bull. of Seis. Soc. ot Am., v. 53, r. 4, p. 765 +.

“*Bradner, 1., J. G. Dodds and R. E. Foulks, 1965, Investigation of
microseismic sources with ocezn-bottom seismometers: Geophysics,
v. 30, n. 4, Aug., p. 511-526.
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