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LIST OF SYMBOLS

radius of middle surface of shell
St. Venant torsion constant
= Eh’/12(1 - v®)
eccentricity of centroid of}ring frame section

modulus of elasticity

thickness of shell

e
E

G shear modulus
h

I, I

y 1 moments and preduct of inertia of ring section
Z2o" X2,
k = h°/12a°

2

K= Eh/{1 - v")

distance between ring frames

L, = L/a ‘
m number of waves in circumferential direction
n number of half waves in axial direction

2
M= 21, (1 - v7)/Lh®

N = Cpn(t=-v)/Lha®

radial pressure in Ibs. per sq. in,

e

axial pressure in lbs. per sq. in,

P
Q= 2r{1 ~v?3)/Lha®
R 2 2

[ ¢ 4] " —

A' s (Au MoT N + 1 Q}
2 2 2
Rpg= mAM(1 = m®8) + (N + m"Q)(1 = 5)]
Ry = A2[M(1 = 0°8)% + n®(N + n®Q)(1 - §)°]
S = (efa)

*
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v, W

displacement components of median surface of shell

extensional strain energy of shell
bending strain energy of shell
strain energy of ring frame
potential due to axial pressure P
potential due to radial pressure p
coordinates of shell and ring
warping constant

(nna) /L

Poissont!s ratio

x/a

angular coordinate in circumferential direction

(pa/K)
(Ph/K)




SUMMARY

A strain~energy solution of the buckling of a circular
cylindrical shell reinforced by evenly spaced circular ring
frames of equal strength under hydrostatic pressure was obtained
in Ref. (1). The buckled shape was assumed to be sinusoidal with
inflection points at the location of the ring framss, For
several geometrical configurations the critical pressure was
found to be from two to three times that given by the von Mises
solution (Ref, 2),

The assumed buckled shape used in Ref, (1) was modified to
permit the inflection points of the deformed shape to occur between
ring frames, For the geometrical configurations calculated in
Ref., (1), the critical pressure was found to be about one and
one~third times that given by the von Mises solution. This
represents a marked improvement over the solution obtained in
Ref. (1). _

The authors are indebted to Professor N.J, Hoff for his
advice and criticism; and to Mr. G, Booth for ﬂis assistance in

the numerical calculations,
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RESUME OF STRAIN ENERGY AND POTENTIAL OF GYLINDRICAL SHELL

The extensional and hending strain energies of ih: shell are

given by equation (3), (4) and (29) of Ref., (1) as

2 v - - 2
U, = [Eh/2(1-v )y' J" [ug v ifaava (v, w)+§(1 v)/Z;(vE-ru_q’) Jdzdo
. : (1)

o, = (Ehk/2(1 -va)ljc;zn,(; O[wzg + (wq)q;t»w;2 + vaag(ww+w)
+ 200v) g +(1 /2)v,=(1/2)0 " 1640 (2)

The strain energy stored in the ring frames as given in Ref.

(1) equation (13) is

U, = z[EIxo/2a31£fn(w*w )2dzp+[EI,z /2a31f2n[w -u, +(a/a)w ?¢]2d¢

+ [WA'/zalrz“ %49+[C,G/2a 1r2“tw (1~e/a)+u 1*do

+ [ED/2a 15? [NE¢¢ -e/a)+u¢vj d?gauL/a {(3)

The potential due to the axial pressure P(lbs. per sq. in.)

given in Ref, {1) equation (20) is

- - [Ph/21/' .I' °(? WEW ®)dedE (%)

The potential due to the radial pressure p (lbs, per sq. in.)

as given in Ref. (1) equation (26) is

y 12277 )ded
- [pa lg JZ Wit -w=w, Jdgds (5)
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ASSUMED BUCKLED SHAPE

The assumed shape for the shell and ring frames used in the
previous report [Ref. (l); equation 27] satisfied the boundary
condition of simple & pports at each ring frame. For the case of
ring frames which have large resistance to twisting and bending
this condition is not the most suitable. In order to describe
end conditions which are intermediate between simple support and

rigid fixation at the ring frame, a term of the form
D cosmg(1 = cos?\E) (6)

nmust be added to the radial displacement w,

The displacement pattarn consequently becomes

u = A cosmg cosAf
v = B sinmg sinAgf (7)

w = C cosmg sinAE+D cosmg (1-cos 2AE)

The radial displacement w is zero at the ring frames and has
at least two symmetrical points of inflection between them. The
displacement pattern assumed in equations (7} dabove contains four
degrees of freedon because of the four arbitrary shape constants
A, B, C and D and will lead to a four by four determinant for the
calculation of the critical pressure.

If the displacements given by equation (7) and their

derivatives are inserted in the energy expressions given by

equ§tions (1) to (5) and if the indicated integrations are carried

out, the energy expressions become:

~3n




Ue = (KLoﬂ/L,)§h2A2+ (mB=C)?® = 2vAA(mB=C) + [(1wv)/2] (AB=mA)® +
+ 30° - (16/3AL°)[1~(~1)n][(mB-C)-~;AAD]; (8)

[ =
g

(kKLon/h)§02[7x4+(m2—1)2+2\’}2(m2-1)J+[(1-v)/2][mA+AB-2mAGJz
+ DA[160*+8n 2A%1=v)43 (mP =1 )2 +8VA% (mPm1)]
+ (16/3AL )E ={=1)3][<mAD(1 = v) (mA+AB=2mAC )
+ ODLA +(m2-1)2+2v>\2(m2-1)]] } (9)

V. = (m,on/z,)(Phxz/x)§A2+Ba+cz+wa+(16/3AL0){1-(-»1)“]01) (10)

V =« (xLon/u)(pa/K)icz[mz-1}~AA0+3D”’(m2..1)§

+ (8/3AL,)[1 -(~1)™ I 2CD(n?~1)-AAD] | (11)
U, = (KL %/4) [{2ET, /KLGa®)[ (1~em?/a)*A%CPsm*A%+ 2m?AAC (1 -en® /a) ]
+ (260,/KL 2> )[ (1-e/a P n®r %P A2 +2n®AAC (1 ~e/a)]
+ (2ET/KL _a®)[ (1 we/a)?m*) 20 2em A% +2m "N AC (1 me /2 ) ] } (12)
where :
K = Eh/(1-v?) , k = h?®/12a% (12a)

The ring energy may be simplified as in Ref. {1) by making
the following substitutions:
M = 2EI, /KLoa® = 2I, (1=v?)/(Lha®)
3 2
N = 2C,G/KL,a” = C.(1=v)/(Lha”)
N .. antJer ..5 AT 4. 2.\ IR X k'\
W ® &bl/Rlg8 = gl imV )7\L03 |}
S = (e/a)
Ry = mz(maM + N + sz)
Ry =mALH(1 =Sm )+ (Nen"Q) (148)]
2 2.2, 2 P 2
RG = A% [M(1%Sm“ ) +m“ (N+m“Q) (1=5) "]

volme




The ring energy then becomes

U, = (KL n/)[AR, + 2ACRy; + GRGT (14}

which corresponds exactly to equation (33) of Ref, {1}

pote
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DETERMINATION OF THE GRITIOAL LOAD

The total potential is given by
Usw U # Uy + U 4V 47 (15)
In order for equilibrium to exist the variation of the total
potential with respect to the parameters A, B, C and D must vanish,
The algebraic equations resulting from this differentiation are

given below, The equations are symmetrical and homogeneous.

AP 4m®(1=v) (1+k)(1/2) +Ry - PhA?/K]

+ BL-An{(1/2)(14%) = (k/2)(1=v}]]

+ CAw =(1=v)An®k + Ry + PaMaK ]

+ D [(8/3ALO)[1-(-1)n}ivk-(‘l-V‘)szk+pa}~/2K;] = 0
(16)

AL-m{ (1/2)(1+¥) = (k/2)(1=¥)}]

+ B[m®+(1=v) (1+k) (A ?/2) ~ PmAR/K]

+ C[-In§1+(1 -v)‘kzkg] | _

v 0 [ (8/338 )11 =(=1 )73 fomlt 417 k(1 )1} | = 0 (27)

AfA =(1=v)Amk + By, + pah/2K]
+ R[-mé‘l-;-?»zk(hv)']. .
+ O[1 +k{ (m%+1%) %41 w20®-2yA 2} +RgmPHA®/Kepam®= 1) /K]
+ D B8/3ALO J[1=(=1)1 é1 +k[ (m®+ A% F 41 w2mPa2va®]

-

- Ph}»a/Knpa(ma-ﬂ/K;J = 0 (18)

O




A [(8/37\L°)[1 -(n1)n]ﬁkv—ﬁ-v)xm2k+pah/2K§]
+ B [(S/BALO)[‘I -(=1 )“]ﬁ-m[nxzk(wv)};]
+ G [(8/3AL,)1 -(—1)“]%1 +k[ (m*+A2)2 41 =2m2=2vA%)
« PA? /K - pa(m®e1 )/Kg]
+ D[ 3+8k§ At 43 (1em® R /8enE A% w ;-uPhxa/K-3pa(m’°‘-1 )/K]=0
(19)
In order that a nonetrivial solution exist for these equations,

the determinant formed from the coefficients of the parameters

A,B,C and D must vanish, The determinant isg
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SPECIAL SOLUTIONS OF THE DETERMINANT

’

For the special case of a cylinder which is infinitely long,
A =,(nna/L) approaches zero for a finite value of n (number of
half waves in the axial direection) and Ry, Ry, and Ry also

approach zero., The determinant (2C) reduces to

' m2(1+k) (1-v)/2 O 0 0 |
i 0 m2 - m = tm iw
i 0 em 1ek(m*e )2-05] (m* w1 ) ‘c[1+k(m2~1)2-¢>1(m2~1 )
| 0 “tm o[1+k(m®=1)?= 0 (n°w1)] 30+ (i=1)"e "= 1)]]

(22)

The expansion of this determinant yields

m° [ 3=t21[1 +k(m®=1)? = qsl(m"‘-n]z-ma[a-tam+k(m2~1)2-¢1(m2~1)3u0

\23)
The two solutions obtained from equation (23) are
2,2
q-)]a = 1'4*1((1;1 -f_) (2#&)
(m®=1)
By = k(m =1) (24D)
It is noted that both soclutions given above are indspendsnt

of ne This means that the buckling pressure for an infinitely
long cylinder is independent of the number of half-waves in the
axial direction. Since the critical pressure obtained from

equation (24b) is lower than the one obtained from equation (24a},




the critical pressure for an infinitely long- shell

after suitable transformation of equation {24b) is given by
Py, = (nf=1)[En/128%(1 v?)] (25)

This agrees with the results given in equation (41) of Ref, (1)
and on pe 574 of Ref. (2),

=10




BUCKLING LOAD FOR_ODD VALUES OF n

If the third row of determinant (20) is multiplied by t
and the result subtracted from the fourth row, and if the
positions of rows and columns of the resulting determinant are

changed, the determinant given below is obtained,

8, =bA 8, =3 (n"=1)s, 6(=Ry ) 0 t(wRp)
=62 [, 3=Rg=B, A2 (mPw1)]
tla,, =Ryc+®, A 3R] 2, -;&1:2 a‘ S 3+<I>1J\/2 *0
tla, ] S W L (26)
tla, R C..cbzxz..@] (ma1)] 2, 82 8 & 52w (m2«-1)%

!

This determinant may be expanded more readily than
determinant (20).

The complete'expapsion leads to a fourth degree algebraic
equation in @1 and @2. The gquation is lineayized by neglecting
term- of the order of @f, @:, ¢1¢2 and higher, The solut?on
optained when the structure is under hydrostatic pressure, that
ié, when

e = @2/2
is

+3™H ~tPH ] = o¥t”H 2
J [ eH, 2] ) 67K (27)

@]le




where

% - a a ea 82 ~a a_ wa a®] (28)
& " (1/H)[a, o, 2,  + 28 8 8, = 8,85 = %% " % 12}

2 2 2
= (A /2)a a + a a + a a - a - a - 8 +
H ( / )[ 11 22 11 33 22 33 13 12 23]

* 18,8, - az J(mP-1) +Alay.8, 5 = 8,8,,] (29a)
. (3-@2)(x2é2+m =1) +} L2 (29b)]
[a ~t & +2t RC]

H _ [ReBaghrag=°a, )+Rca,2/b)(a”-ra22)+RAda32 (m®1 +3%2)42; ,0° /2 h
Ha, utza +2t2R ]

(29¢)

. [R%(a 8, a? )+R20(a33322-a§3)+°RCRAG(a12a23-azgar311 (29d)

3 ' |
Hla, , ~t%a, +2t2R ]

Equation (28) may be transformed to
* e : 0
3’ = [0, +k0,1/[C,+C /2] (30)

which corresponds to equation (44) of Ref. (1) and is the solution
for the buckling problem when the displacement pattern of Ref. (1)
is useds It is noted that for large values of A = nna/L and for
m =2 tom = 15 it was shown in Ref. {1) that equation (30) can be
approximated by

@T = [A“(1-v2)/(m2+ka)2+k(m2+xa)2+RGJ/Lm2e1+Aa/2J {31)




BUCKLING LOAD FOR SVEN VALUES OF n

-

When there are an even number of half-waves n in the axial

direction the expression for ¢t given in equation group (21)

becomes zero, Determinant {20) reduces to:
' |
2

8, =0\ a ., 2 a, 3+¢>])\/2 0
«d A 0
l a12 a'22 ¢2)‘ 8.23 w 0
a +®A/2 a 8 w®Aud (m°=i) 0
13 1 23 33 2 1 2' 2 (32)
| a w4d A w3(m®=1
!0 0 0 Ml 3( kﬁ
In symbolic form the expansion may be written as
[a =43 x2-3(m?-1)]i Fi = 0 (33)
by 2

‘

wherel F‘ is the determinant given as equation (39) in Ref, (1),
which was obtained from a consideration of the simple sinusoidal
displacement pattern assumed there, Two solutions are obtained

by setting each factor in equation (33) equal to zero., For the

hydrostatic case the two solutions are

5! 3&k[16A“+3jm2-1)2+8kzm%-&fil
L 3(mPwt)+(20%)

(34)

and

@f = [C,+kC,1/[C+C, /2] (35)

Equation(35) is the same as equation (30) and may also be
approximated by equation.(Bl) for large values of A and for

values of m form 2 to 15,

~13w=




DETERMIFATION OF MINIMUM BUCKLING LOAD

AND ASSCCIATED CONFIGURATION

In order to obtain the smallest value of the buckling load it is
necessary to minimize equations (27), (32) and (33) with respect to
m and ne To qo this formally requires extended algebraic
manipulations, A more practical method for obtaining the smallest
value of the buckling load is given below.

It is known that the buckling load of a cylinder whose ends
are partially fixed lies between the value given by von Mises
(Ref. 3) for a simply supported shell and that obtained for a shell
whose ends are rigidly fixed, Both these solutions are relatively
simple in form and may easily be minimized numerically to give good
approximate values of m and n for a prescribed shell geometry.

These values of m and n are then refined numerically by using
equations (27); (32) and (33) which contain the effect of partial end
fixity of the shell, ‘ '

For a ghell with simple end supports, RA’ RAC and RC are zero,
In addition, the deformation pattern is sinusoidal with inflection
points at the rings so that the constant D in equation (77 18 Zero.
The resulting third order determinant is exactly‘the same as that

obtained previously as equation (39) of Ref, (1), Tor large values

EfleS.S‘ = [A%(1=y?)/(mRex2)2+ k(mP+A2)2]/(mPaq+2%/2) (36)

- lll-"
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Equation (36) where the subscript S.5. means simple support
corresponds to equation {45) of Ref, (1) A similar expression
given in Ref (3) was obtained by von Mises by using differential
equations,

For a.shell with rigid supports the deformation pattern is
defined by squations (7) with C = 0, The third row and third
column of determinant (20) vanish. For the case of hydrostatic

pressure the expansion of the reduced determinant yields

- ( Y 2 R -
Cét]R.S.“ (1/F)(a44(a‘]a22~a12)+t (22, 52,5025 RAC)
- 2 12 (37)
“a,,azs’azz(a13"RAC‘ ]g
where

= 27 (% 2 2 -
F = [3(n2-1)+2020(F, 8, =07, IAt2 [ag, (2 5By ) alzaZBJ ”

+(k2/2){a“4(ég]+a22)~t2[a§3*(a13"RAC)2]g
'5”= A +m?(1l+k)(1-v)/2

and the subscript R.Se means rigid support. For large values of A

equation (37) becomes

(3] _ = (3=62)+k[ 16A%+3 (m?=1) 2+ 8n2A-8VAR 14£PAY (1 wv? ) /(mP+A2)

HRS 3(m2=1)+22%
(38)

For structures having closely spaced rings the value of
(a/L) is large, consequently A is large and expressions (36) and
(38) apply.s It is also known that the number of half waves n in
the axial direc?ion will be small for this type of structure, so
that only n =1, 2 and possibly 3 need be uscd in the numerical
calculations of the buckling load.

The actual procedure is best explained by numerical examples,

This is done in the following section,




NUMERICAL EXAMPLES

The ring section and dimensions of the spell used in the
numerical example given here are the same as those used in Ref,
(l); and are shown in Fig. (1) of the present report, A shell
with a radius of 103 inches and thickness of 5/8 inch is considereds
The ring spacing is 30 inches and each ring is a 10 inch deep
Iwsection whose flanges are L4=3/k inch long and 1/2 inch thick
and whose web is also 1/2 inch thick. As a second example all
dimensione are kept the same except that the flange width is
reduced from L=3/L inch to 3«3/4 inch.

The constants determined by the dimensions of the shell are

A2 = (nma/LP =(1164341)
k = n?/122% = 3.06835 x 107°
K/a = 2,000, x 10°

Table (I) lists the values of BD]?S.S; (equation 36) and
[®1]R.S. (equation 38) for n = 1 and 2, and for various values
of m. The same quantities are plotted in Figure {2)s From Table
(I) it is seen that for n = 1; the minimum value of D?1]S.S. is
1,642 x 10"3 while the minimum value of ED1JR.S. is 24358 x 10~
These two values determ:ne a band in Fig. (2) and the minimum

for the actual structure with partial constraints must lie within
the band,

-16-




For n = 2, the minimum value of [¢1JS.S. is found to be
401 x 107> while the minimum value of [® g5, is 8607 x 107,
These values determine a new band which should contain the
minimum for a partially constrained shell with n =‘2. Since the
bands determined by n = 1 and n = 2 do not overlap, the minimum
buckling load parameter @1 will lie in the band determined by
n =1, This band also shows that value of m for the actual
structure lies between 14 and 18,

These preliminary calculations are valid for both the 3=3/4
and k=3/4 inch inch flange widths since expressions (36) and (38)
do not contain ring frame quantities,

The approximate values of m = 14 to 18 in conjunction with
n =1 are then used with the more accurate expression {27) which
applies to odd values of n ta determine the actual buckling lcad
parameter for the structure,

For the ring ?rame with the 4~3/4 inch flange widbh; the

moment of inertia, warping constant and St. Venant torsion corstant

are
I, = 94025 ing*
I'= 201,505 in/
Cp = 4792 in.”
w3
mw@ i -y, ot - S T -
. . iyt v el - R N T T o S e P SN oty
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The constants defined by equations (13) are

M= 8,257 x107
N = 4279 x 107°

Q= 0174 x 10

S = .0485

Ry = m°(8,275m°+.279) x10™°

Rg = M [8.257+n"(,0352n =0549)] x 107

R, " m2A[8. 522-m%(,384)] % 10”5

In the calculated results listed in Table II; some
additional values of m have been included to facilitate the
construction of suitable curves. The results for the 4=3/L
inch flange width are given in Fig. ([ )e The minimum value
of @ is found to be ‘

e, = 24234 x 1077

The corresponding critical pressure is

bod Ibo o.l
pcr LL7 YTbs. per sq. in

For the ring frame with 3-3/4 inch flange width the mement

of inertia, warping constant and St. Venant torsion constant are

I, = hoht8 in,”

I = 99,152 in®

. &
Gr w ,708 in,

«18




The constants defined by equations (13) ars

M= 4107 x 1077

N = o249 x 107

Q = ,00855 x 10~

S = .0485 , N

Ry = m® (411 5m2+,249) x 107

Ry = A% [4a107+m2(,0174nP=4173)] x 1077

R =m®A [Le3bbem?(,191)] x 1077
AC

Table II lists the values of @1 for different values of m
and the results are plotted in Figure {3)s The minimum value of
@] is found to be .

¢, = 2.150 %1073
The corresponding critical pressure is

» O le. Y 8Qe in
Pop L3 P q .

] -3
It is noted that the minimum values @1 = 24234 x 10
-3
and, ¢1 w 2,150 x 10 obtained above fall within the band
n=1of Fig. (2)0




CONGLUSIONS

The critical hydrostatic pressures obtained in Ref, (1)
by using the sinusoidal displacement pattern with‘inflection
points at the ring frames were found to be 970 lb. pe? Sqe in.
and 756 1lb. per sq. in. for the cases of the ring frames with
4-3/4 in. and 3=3/L in, flange widths respectively. These
pressures were large compared'to the value of 328 lb, per sq. in.
obtained from the von Mises solution (Ref,3) which does not
include the effect of the rings,

| The corresponding critical pressures obtained in this
report by usgsing a displacement pattern which permits the
existence of inflection points betweem ring frames are 447 and
L30 1b, per sqe. in, respectively, The considerable reduction
of the critical pressure is due to the more realistic deflect-
ion pattern assumed,

It is believed that further changes in the d isplacement
pattern will not refine the resulis to any appreciable extent
and that the comparison of the values of L7 and 430 lb, per
sq. in. to the 328 1lb, per Sq. ine of von Mises seems reasonable

for the structure assumed,

- 20 -
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TABLE I

THE VARIATION OF THE BUCKLING LOAD PARAMETER & WITH m and n
FOR_SIMPLY SUPPORTED AND RIGIDLY FIXED ENDS

ned nel nw2 n=2
n o JS.S.xw” [@‘]R.s.x1o3 [@1]S.S;x103 [mlja;s;xm‘*
8 3,949 4962 5,287 12,857
10 27588 3:.616 4;816 12;105
12 1,937 2,878 bob5 11,371
1 1,681 2.513 4192 10,699
15 1:,6416 2;u22 4.108 10:398
16 1,6420 2,372 4. 050 104115
171,673 2,358 42019 9.861
18 4,728 2,372 1,010 9.628
20 2. L6l .05 9.241
22 4.170 8;95!+
2L 8:755
28 8.607
30 8,601
3l 8,898




TABLE . II -

THE VARIATION OF THE BUCKLING LOAD PARAMETER o, WITH

L E=

10
12
14
16
18
20

m FOR n = 1 AND PARTIALLY CONSTRAINED ENDS

@1 x.103

L=3/L inch flange

2;893
2.503
2.298
2.234
2.277
2.376

3 x 10°
3=3/k inch flange

2.650
2.320
2,173
2,150
2.215
2,346
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FIG. | DIMENSIONS OF RING SECTION AMD SHELL
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