SEMIANNUAL TECHNICAL SUMMARY REPORT
FOR
HYDROTHERMAL GROWTH OF CRYSTALS OF LaAlO₃

31 December 1964 to 1 July 1965
NONR-4616(00)

Submitted by:
Airtron, a division of Litton Industries
200 East Hanover Avenue
Morris Plains, New Jersey

OFFICE OF NAVAL RESEARCH
NONR-4616(00)
ADVANCED RESEARCH PROJECTS AGENCY
ARPA 306-62

The Government may duplicate, use, and dispose of this document for any purpose.

This research is a part of Project DEFENDER, sponsored by Advanced Research Projects Agency, Department of Defense, and technically monitored by the Office of Naval Research, under Contract NONR-4616(00).
BEST AVAILABLE COPY
SEMIANNUAL TECHNICAL SUMMARY REPORT

FOR

HYDROTHERMAL GROWTH OF CRYSTALS OF LaAlO$_3$

31 December 1964 to 1 July 1965
NONR-4616(00)

Submitted by:
Airtron, a division of Litton Industries
200 East Hanover Avenue
Morris Plains, New Jersey

OFFICE OF NAVAL RESEARCH
NONR-4616(00)
A: EDE RESEARCH PROJECTS AGENCY
ARPA 306-62

The Government may duplicate, use, and dispose of this document for any purpose.

This research is a part of Project DEFENDER, sponsored by Advanced Research Projects Agency, Department of Defense, and technically monitored by the Office of Naval Research, under Contract NONR-4616(00).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>III.</td>
<td>STATUS</td>
<td>3</td>
</tr>
<tr>
<td>IV.</td>
<td>MOLTEN SALT EFFORT</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>A. Crystal Growth</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B. Solvent System Investigation</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1. PbO-PbF$_2$-B$_2$O$_3$</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2. BaO-B$_2$O$_3$</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3. Bi$_2$O$_3$-B$_2$O$_3$</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>C. Solubility of LaAlO$_3$ in PbF$_2$</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>D. Chromium Doping</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>E. Discussion</td>
<td>16</td>
</tr>
<tr>
<td>V.</td>
<td>HYDROTHERMAL EFFORT</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>A. Tem-Pres Studies</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1. Phase Studies</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2. Crystal Growth</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>B. Large Autoclaves</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>C. Large Crystal Growth Runs</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>D. Discussion</td>
<td>30</td>
</tr>
<tr>
<td>VI.</td>
<td>SUMMARY AND CONCLUSIONS</td>
<td>35</td>
</tr>
<tr>
<td>VII.</td>
<td>PROGRAM FOR THE NEXT PERIOD</td>
<td>36</td>
</tr>
<tr>
<td>VIII.</td>
<td>REFERENCES</td>
<td>38</td>
</tr>
</tbody>
</table>

Airtron, a division of Litton Industries
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Molten Salt LaAlO₃ Crystals</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Photograph of Crucible with Crystals Attached</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Solid Phase Present at 20,000 psi</td>
<td>20</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Solid Phase Present at 400°C</td>
<td>20</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Al₂O₃ Solubility Data as a Function of K₂CO₃ Molality at 400°C</td>
<td>23</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Mole Percent La₂O₃ and Al₂O₃ Solubility in K₂CO₃ as a Function of Molality at 400°C</td>
<td>24</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Hydrothermal Crystals Showing Spontaneous Nucleation Coating of La(OH)₃</td>
<td>25</td>
</tr>
<tr>
<td>Figure 8</td>
<td>La₂O₃-H₂O Phase Diagram According to Shafer and Roy⁶</td>
<td>33</td>
</tr>
</tbody>
</table>

Airtron, a division of Litton Industries
I. PURPOSE

Our primary objective is to grow large single crystals of LaAlO$_3$ doped with Cr from a hydrothermal system, using seed crystals produced from a molten salt system. Factors influencing the growth of large single crystals such as regions of congruent solubility, crystal stability, and degree of solubility will be examined.
II. **ABSTRACT**

Large crystals of LaAlO$_3$ have been successfully grown from a straight PbF$_2$ flux. However, soak temperatures above 1400°C are required for solution of LaF$_3$ formed by the reaction of La$_2$O$_3$ and PbF$_2$. These high temperatures result in premature failure of the furnace and platinum container. PbF$_2$ was, therefore, abandoned and a search was initiated to modify the PbF$_2$ flux, or to find a more suitable solvent. Among the solvents investigated were PbO·PbF$_2$, BaO and Bi$_2$O$_3$, all with small additions of B$_2$O$_3$. Results are encouraging.

The regions of phase stability have been determined for LaAlO$_3$ and La(OH)$_3$ under hydrothermal conditions. From this data it is apparent that in order to operate in a region where LaAlO$_3$ is the only stable solid and to stay below the 435°C transition temperature, the solvent concentrations must be <2 or >7 m K$_2$CO$_3$. The composition of the fluid was analyzed quantitatively for alumina and lanthana content. Although the data show considerable scatter, they are in agreement with and have confirmed the observed crystallization of solid La(OH)$_3$. In the large crystal growth autoclaves, spontaneous nucleation of LaAlO$_3$ in the growth chamber has been obtained from a nutrient composed of powdered La$_2$O$_3$ and flame fusion ruby pieces. The physiochemical nature of the nutrient has added to the difficulty of calculating a correct fill. Only seven runs have been made thus far.

Airtron, a division of Litton Industries
III. STAT

This report covers the six-month period December 31, 1964, through July 1, 1965. Table I indicates the completed goals set forth at the beginning of this Contract and the current status of uncompleted ones. The most serious delays were caused by the necessity to explore new solvent systems because of the inability to grow LaAlO₃ from PbF₂ fluxes below 1400°C, and the delivery of autoclaves which failed to hold the hydrothermal system because of faulty construction.
<table>
<thead>
<tr>
<th>Item</th>
<th>Goal</th>
<th>Purpose</th>
<th>Current Status</th>
<th>Problems Encountered or Expected</th>
<th>Original Estimated Completion Date</th>
<th>New Estimated Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equipment preparation & material procurement</td>
<td>Provide equipment & materials for crystal growth experiments</td>
<td>Complete</td>
<td>None</td>
<td>9/64</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Study to determine hydrothermal solvent suitable for LaAlO₃ recrystallisation below 435°C</td>
<td>Growth of LaAlO₃ below 435°C</td>
<td>Complete</td>
<td>None</td>
<td>10/64</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Study to determine flux from which seed crystals can be grown</td>
<td>Solvent selection</td>
<td>Complete</td>
<td>Insoluble LaF₃ produced with PbF₂ solvent</td>
<td>11/64</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Determine solubility of LaAlO₃ in hydrothermal solvent</td>
<td>Solubility curve</td>
<td>Complete</td>
<td>Stable La(OH)₃ phase</td>
<td>1/65</td>
<td>5/65</td>
</tr>
<tr>
<td>5</td>
<td>Determine solubility of LaAlO₃ in PbF₂ solvent</td>
<td>Solubility curve</td>
<td>Complete</td>
<td>Stable LaF₃ phase</td>
<td>2/65</td>
<td>6/65</td>
</tr>
<tr>
<td>6</td>
<td>Optimise growth conditions for large, high quality molten salt seed crystals</td>
<td>Provide large seed crystals</td>
<td>In progress</td>
<td>Stable LaF₃ phase requires use of new solvent systems</td>
<td>3/65</td>
<td>10/65</td>
</tr>
<tr>
<td>7</td>
<td>Determine effect of temperature, pressure and ΔT on hydrothermal growth of LaAlO₃ crystals</td>
<td>Growth of large hydrothermal crystals</td>
<td>In progress</td>
<td></td>
<td>4/65</td>
<td>10/65</td>
</tr>
<tr>
<td>8</td>
<td>Determination of effect of seed orientation and quality on hydrothermal crystal quality</td>
<td>Growth of high quality hydrothermal LaAlO₃</td>
<td>Not started</td>
<td>High quality seed crystals</td>
<td></td>
<td>6/66</td>
</tr>
<tr>
<td>9</td>
<td>Grow large LaAlO₃ crystals hydrothermally</td>
<td>Contract objective</td>
<td>Not started</td>
<td>None</td>
<td>8/65</td>
<td>8/66</td>
</tr>
<tr>
<td>10</td>
<td>Lifetime measurements</td>
<td>Contract objective</td>
<td>Not started</td>
<td>None</td>
<td>8/65</td>
<td>8/66</td>
</tr>
<tr>
<td>11</td>
<td>Write Final Report</td>
<td>Contract requirement</td>
<td>Not started</td>
<td>None</td>
<td>9/65</td>
<td>9/66</td>
</tr>
</tbody>
</table>
IV. MOLTEN SALT EFFORT

A. Crystal Growth

A summary of all molten salt runs is shown in Table II.

An attempt was made to optimize growth conditions for the growth of large seed crystals. All the runs up to this point had been made in 250 ml crucibles, and all had been too slushy to pour, even at 1300°C. It was felt that perhaps this was due to high evaporation rates of PbF$_2$ in small crucibles and too much solute.

The first run in the 5 1/4 inch can, where evaporation is only about 1 percent, was No. 34. (See Table II). In this run, 22 m percent La$_2$O$_3$ and 22 m percent Al$_2$O$_3$ were heated to 1300°C with PbF$_2$ as solvent. At the 1000°C pour temperature, once again, the solution was a slushy mass with a few LaAlO$_3$ plates on the surface.

It has been planned to explore a higher crystallization temperature range. Run No. 35 gave us the opportunity to explore the 1200 to 1500°C range. This run, with about two and one-half times as much total material as No. 34, was soaked with the pedestal reading 1300°C and the plug at 1400°C. The purpose of the large difference was to encourage the LaAlO$_3$ to crystallize on the bottom of the can instead of on the surface of the melt as is usually the case. A defective controller caused a more rapid cooldown than had been programmed, and the temperature at the pedestal was raised to 1400°C for one hour in order to redissolve any crystals that had been formed. The plug temperature was at 1500°C during this soak.
Molten Salt Effort (continued)

period and with the rotation of the melt it can be assumed that the temperature in the crucible was 1450°C, or higher. When the crucible was removed at 1200°C after a 2°C per hour cooldown, the usually slushy melt was absent. Instead, a thin crust of LaAlO$_3$ had formed over the surface of the melt, which, when broken, revealed a perfectly liquid flux, which was easily poured. About 100 grams of LaAlO$_3$ had formed on the walls and base of the can, of much better quality than any grown previously.

It was not immediately apparent whether the increased quality of the crystals and the fluid melt were caused by the higher temperatures, the temperature gradient or the reduced solvent evaporation caused by the crust, which covered the surface. Two additional runs were made, Run No. 38 with a ΔT of 140°C with a pedestal soak temperature of only 1300°C, and Run No. 39 with a 1400°C pedestal soak temperature and a ΔT of 100°C.

Run No. 38 with the lower soak temperature had better quality growth than No. 39 and liquid flux under the crust, but there was still some evidence of incomplete solution because most of the crystals were bunched together at the center of the base of the can. The soak period of two hours used for No. 38 was increased to 4 hours for No. 39 and the soak temperature raised from 1300°C to 1400°C with a ΔT of 100°C. The result was the highest yield yet obtained, 430 grams, with good quality crystals of a size suitable for hydrothermal seeds obtained from about 10 percent of the yield, see Figure 1. One rod measuring 0.121" x 0.910" grew completely free of flux inclusions.

Page 7

Airtron, a division of Litton Industries
Figure 1

Molten Salt LaAlO₃ Crystals

Page 8

Airtron, a division of Litton Industries
Three explanations for the sudden increase in quality and yield of LaAlO₃ in Run No. 39 are possible:

1. The crust, which formed over the melt in 5 1/4 inch cans somehow prevented oxide formation or evaporation from taking place to the same extent as in the 250 ml crucibles. The obvious test of this theory was a run in a sealed platinum can.

2. The 44 m percent solute concentration was simply too great for solution below 1400°C. The test of this theory was to repeat Run No. 39 with 50 percent less solute at a 1300°C soak temperature.

3. The formation of insoluble LaF₃ by the reaction of La₂O₃ and PbF₂ in the melt prevented the formation of LaAlO₃. The LaF₃ did not dissolve completely until soak temperatures in excess of about 1450°C were reached. The test of this theory was the same as under No. 2 above.

Run No. 46 was used to test theory No. 1. A platinum can measuring about 3 inches long by 2 1/2 inches wide was filled with only 15 m percent La₂O₃ and 15 m percent Al₂O₃, with 69 m percent PbF₂ added as flux. The cover was carefully welded on and the crucible inserted into a 3 inch furnace maintained at 1400°C. There was no ΔT, and a 2 hour soak period was programmed followed by a 15°C cooling rate. The crucible was removed at 1250°C. The cover was quickly punched open with a can opener. There was no liquid phase. When the cover was removed, there were no crystals of LaAlO₃.

Runs 44 and 47 were two attempts to test theory No. 2. Unfortunately,
Molten Salt Effort (continued)

an attempt was made to produce Cr doped crystals as a by-product of these experiments. Both platinum cans failed due to corrosion, apparently caused by reduction of PbO to metallic lead when Cr$^{3+}$ was oxidized to Cr$^{6+}$. This reaction apparently occurs quite readily in lead salts. A third attempt without Cr, Run No. 51, was successfully completed. In this run, 14 m percent La$_2$O$_3$ and Al$_2$O$_3$, respectively, were added to 64 m percent PbF$_2$ and 7.5 m percent B$_2$O$_3$. The crucible was soaked at a pedestal temperature of 1350°C and a plug temperature of 1400°C for 50 hours, then slowly cooled to 1200°C at the rate of 1°C per hour. When operated, there was virtually no liquid phase and no crystals. These two experiments and Run No. 39 essentially proved proposition No. 3 and a detailed analysis of this mechanism may be found in the Discussion Section of this report.

One major problem exists, however, in the production of crystals at such high temperatures from molten PbF$_2$. Furnace life and platinum crucible life are drastically reduced at 1500°C and above. Every time a furnace was used at greater than 1400°C it had to be completely rebuilt. Even 1350°C reduces the lifetime of the furnace. So severe was the furnace attack, in fact, that a search for a new solvent system was started in spite of the success which had been achieved with PbF$_2$.

B. Solvent System Investigation

Pure PbO was the original solvent used by Remeika1 in the synthesis of LaAlO$_3$. This solvent resulted in only very small crystals and proved to be

Page 10

Airtron, a division of Litton Industries
Molten Salt Effort (continued)

very corrosive to platinum particularly when Cr$^{3+}$ was used. In the light of our previous experience, three solvents suggested themselves:

1. **PbO-PbF$_2$-B$_2$O$_3$**

This solvent, which is a modification of pure PbF$_2$, appeared attractive because of the PbO-PbF$_2$ eutectic at 500°C. It has been used successfully for the growth of YIG2 and YAG.3

Run No. 53, with about 13 m percent La$_2$O$_3$ and Al$_2$O$_3$ respectively, was heated to 1300°C with a PbO-PbF$_2$-B$_2$O$_3$ mixture of 37, 35 and 0.6 m percent, respectively. The crystals produced when the run was poured at 840°C were small, clear crystals, similar to those that grow in pure PbO. In addition, LaF$_3$ was present. It was necessary to go to quite high PbO values to prevent LaF$_3$ production. Run No. 58 was made with 9 m percent PbF$_2$ and 63 m percent PbO, in order to minimize LaF$_3$ production. Again, only very small LaAlO$_3$ crystals were grown.

2. **BaO-B$_2$O$_3$**

This solvent has been used for the growth of YIG.4 It contained no Pb, so corrosion of platinum should be absent. It has a low vapor pressure so evaporation is not a problem.

Run No. 52 used 7 m percent La$_2$O$_3$ and Al$_2$O$_3$, respectively, in 52 m percent BaO and 33 m percent B$_2$O$_3$ in a 250 ml beaker. Unfortunately, the BaO appeared to be very impure. No crystals of LaAlO$_3$ grew and the flux had a dirty violet appearance. An attempt to purify this flux by premelting with...
Molten Salt Effort (continued)

out solute and decanting the pure liquid was only partially successful. BaO₂ which is available in reagent grade was tried next, but no crystals were found in the melt.

3. Bi₂O₃-B₂O₃

This solvent has been used to grow GaFeO₃. Run No. 54 consisted of 17 and 18 m percent La₂O₃ and Al₂O₃, respectively, with 38 m percent Bi₂O₃ and 27 m percent B₂O₃ as flux. The crystals produced were very small but clear, and very little solvent poured off at the 1070° pour temperature. The run was repeated, No. 55, with a lower solute concentration of 10 and 11 m percent La₂O₃ and Al₂O₃ in 46 m percent Bi₂O₃ and 33 m percent B₂O₃. No crystals grew from this composition, so the composition and conditions of No. 54 were repeated as Run No. 57. In this case, the photocell failed in the West controller, causing a rapid cooldown to 500°C, but good LaAlO₃ crystal growth on the surface of the solidified melt was obtained. A third run, No. 61, identical to No. 57, also produced crystals of LaAlO₃. These crystals measure approximately 5 x 5 x 3 mm and are light-green or gray and of fair quality.

The Bi₂O₃-B₂O₃ solvent thus appears to be the best solvent found thus far. It has a eutectic at 622°C, low volatility and is not corrosive. An attempt will be made to optimize growth conditions using this solvent.

C. Solubility of LaAlO₃ in PbF₂

Although we have abandoned PbF₂ as a solvent for LaAlO₃, con-
siderable work was done in an effort to obtain phase equilibrium data in the PbF$_2$-La$_2$O$_3$-Al$_2$O$_3$ system. We present this work since it may be of help to workers in the field dealing with related systems.

Molten salt solubility techniques used successfully with ruby are obviously not applicable to LaAlO$_3$ grown in PbF$_2$ systems, because of the formation of insoluble LaF$_3$. Only those runs in which this phase has been dissolved and LaAlO$_3$ crystallizes can be used for solubility determinations. Run No. 39 was such a run (see Table II). The flux from this run, which was poured at 1200°C was analyzed chemically and by X-ray diffraction. The wet analysis indicated 21.88 wt percent LaAlO$_3$ and 16.28 wt percent LaF$_3$ in the flux at the 1200°C quench temperature. The estimate obtained by X-ray diffraction was 20 wt percent LaAlO$_3$.

Solubility determinations utilizing the loss in weight of LaAlO$_3$ crystals immersed in PbF$_2$ in sealed platinum tubes were stymied by two factors. One was the high percentage of leaks in the sealed tubes at low, as well as high temperatures. The other was the very high apparent solubility values obtained because the LaAlO$_3$ crystals formed LaF$_3$ when dissolved in PbF$_2$. A summary of all weight loss solubility runs may be found in Table III.

The tubes were crimped in a 3 jaw chuck and welded closed with an electric arc. It was found that equilibrium was achieved in 48 hours. At the quench temperature, they were dropped into a bucket of water. Those
<table>
<thead>
<tr>
<th>Run No.</th>
<th>Wt. of Solvent (gms)</th>
<th>Wt. of Nutrient (gms)</th>
<th>Change in Nutrient Wt. (gms)</th>
<th>Wt. of Sealed Capsule (gms)</th>
<th>Capsule Size (in.)</th>
<th>Temperature</th>
<th>Solvent</th>
<th>Nutrient</th>
<th>Duration of Soak (hrs.)</th>
<th>Did Capsule Leak</th>
<th>% Solubility</th>
<th>Solvent Wt.</th>
<th>Amt. (gms) x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4040</td>
<td>0.5555</td>
<td>0.3985</td>
<td>4.0267</td>
<td>4.0107</td>
<td>1.5</td>
<td>1207°C</td>
<td>PbO2F3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>25.17</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.2528</td>
<td>0.5185</td>
<td>0.3555</td>
<td>3.8155</td>
<td>3.8077</td>
<td>1.5</td>
<td>1207°C</td>
<td>PbO2F3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>34.87</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9592</td>
<td>0.7113</td>
<td>0.1366</td>
<td>3.7074</td>
<td>3.6920</td>
<td>1.5</td>
<td>1207°C</td>
<td>PbO2F3</td>
<td>LaAlO3</td>
<td>no</td>
<td>14.24</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.2243</td>
<td>0.5027</td>
<td>0.3110</td>
<td>3.7918</td>
<td>3.7618</td>
<td>1.5</td>
<td>1207°C</td>
<td>PbO2F3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>25.40</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.5158</td>
<td>0.8515</td>
<td>0.8515</td>
<td>4.3424</td>
<td>4.3230</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td><56.17</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.5230</td>
<td>0.6260</td>
<td>0.4690</td>
<td>4.2450</td>
<td>4.1557</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td><41.10</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.8008</td>
<td>0.5073</td>
<td>0.4905</td>
<td>3.7916</td>
<td>3.8550</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td><28.17</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.5875</td>
<td>0.7433</td>
<td>0.7433</td>
<td>4.6211</td>
<td>3.2198</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td><46.82</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.9307</td>
<td>0.3960</td>
<td>0.3960</td>
<td>3.9816</td>
<td>3.8445</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>no</td>
<td>42.55</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.3646</td>
<td>0.4571</td>
<td>0.4571</td>
<td>3.8879</td>
<td>3.8511</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td><33.50</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.2282</td>
<td>0.4859</td>
<td>0.4859</td>
<td>3.7750</td>
<td>3.8216</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbO2F3</td>
<td>LaF3</td>
<td>yes</td>
<td>39.56</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.2186</td>
<td>0.4505</td>
<td>0.4505</td>
<td>3.7130</td>
<td>3.6523</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbO2F3</td>
<td>LaF3</td>
<td>yes</td>
<td><36.97</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.8131</td>
<td>1.2716</td>
<td>1.2581</td>
<td>3.5941</td>
<td>3.5457</td>
<td>1.5</td>
<td>1100°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>154.73</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9499</td>
<td>0.6149</td>
<td>0.6149</td>
<td>3.7286</td>
<td>3.6814</td>
<td>1.5</td>
<td>1100°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>33.79</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.8008</td>
<td>1.1742</td>
<td>1.1132</td>
<td>3.7130</td>
<td>3.6523</td>
<td>1.5</td>
<td>1100°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>139.01</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.8461</td>
<td>1.2968</td>
<td>1.2853</td>
<td>3.7130</td>
<td>3.6523</td>
<td>1.5</td>
<td>1100°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>151.91</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.0510</td>
<td>1.3167</td>
<td>0.5644</td>
<td>4.4769</td>
<td>4.5601</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>84.90</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.6521</td>
<td>1.1991</td>
<td>0.2965</td>
<td>4.0965</td>
<td>4.0120</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>75.83</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.8908</td>
<td>1.2465</td>
<td>0.6027</td>
<td>4.2089</td>
<td>4.1884</td>
<td>1.5</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>67.66</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.9177</td>
<td>1.5439</td>
<td>1.0060</td>
<td>8.1195</td>
<td>7.2280</td>
<td>4</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>142.07</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.8908</td>
<td>1.9468</td>
<td><1.9468</td>
<td>8.5785</td>
<td>9.8246</td>
<td>4</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td><218.55</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.8807</td>
<td>1.7910</td>
<td><1.7910</td>
<td>8.2823</td>
<td>8.2085</td>
<td>4</td>
<td>1200°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td><206.17</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.9227</td>
<td>1.8554</td>
<td>0.0243</td>
<td>4.3904</td>
<td>9.4330</td>
<td>4</td>
<td>1000°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>198.56</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.8841</td>
<td>1.9733</td>
<td>0.0567</td>
<td>8.5871</td>
<td>8.5804</td>
<td>4</td>
<td>1000°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>no</td>
<td>222.44</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.9227</td>
<td>1.9556</td>
<td>0.5739</td>
<td>8.4120</td>
<td>9.1136</td>
<td>4</td>
<td>1000°C</td>
<td>PbF3</td>
<td>LaAlO3</td>
<td>yes</td>
<td>149.75</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.3809</td>
<td>1.0906</td>
<td>1.3903</td>
<td>9.3817</td>
<td>9.1136</td>
<td>4</td>
<td>1000°C</td>
<td>PbF3</td>
<td>PbF3</td>
<td>no</td>
<td>142.67</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.4723</td>
<td>2.1006</td>
<td>2.1006</td>
<td>2.1006</td>
<td>2.1006</td>
<td>4</td>
<td>1000°C</td>
<td>PbF3</td>
<td>PbF3</td>
<td>no</td>
<td>9.67</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.7660</td>
<td>1.0955</td>
<td>0.8847</td>
<td>4.1708</td>
<td>4.1708</td>
<td>4</td>
<td>1000°C</td>
<td>PbF3</td>
<td>Al2O3</td>
<td>no</td>
<td>62.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.6531</td>
<td>1.0326</td>
<td><1.0326</td>
<td>8.1678</td>
<td>8.1650</td>
<td>4</td>
<td>1000°C</td>
<td>PbF3</td>
<td>La2O3</td>
<td>no</td>
<td>62.00</td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>
Molten Salt Effort (continued)

that had water inside when they were opened were presumed to have leaked. Some that were dry inside, but showed large weight changes, were considered to have leaked also. Seventy-two percent showed evidence of leaks. Several corrections were made in the tubes and welding procedure.

1. Tubes were increased in length from 1 1/2 inches to 4 inches long.

2. Tubes were filled to less than one-half total length and the remaining volume was flattened before sealing.

3. The crimping procedure in the 3 jaw chuck was abandoned in favor of welding the flattened top of a tube folding over 1/8 inches and welding again. When this latter procedure was used for Nos. 26, 27, 28, and 29, all remained leak-free.

Solubility values varied widely; however, even in the tubes that did not leak at 1200°C, for example, Run No. 18, gave a value of 75.83 percent, yet at 1000°C, Run No. 24 gave a value of 222.44 percent, and No. 27 was greater than 142.67 percent. The reason for the wide variation of solubility values is not known, but there is an indication of retrograde solubility. A run with sapphire, instead of LaAlO₃ at 1000°C, gave a value of 9.67 percent vs. 10.01 wt. percent reported by Giess, using a similar technique. The values are close enough together to indicate that the technique is being duplicated. A new series using the new sealing method, but with Bi₂O₃ as the solvent, will be started soon.
D. Chromium Doping

Several runs were made in order to grow LaAlO₃ crystals with Cr³⁺. Run No. 41 contained 0.009 m percent Cr₂O₃ in the melt. The crystals were a deep red and fluoresced very weakly under 3660Å mercury radiation. Corrosion of the crucible was not excessive. The same percentage of Cr in two 5 1/2 inch cans, Nos. 44 and 47, led to premature failure of the platinum can when only a slightly higher soak temperature than the 1400°C used with No. 41 was employed.

E. Discussion

The major constituent found in the solidified melts in the PbF₂-Al₂O₃-La₂O₃ system is LaF₃. Also detected are PbAl₂O₄ and PbO as well as some PbF₂. It is obvious that two reactions take place during the heat up and soak stages:

\[3 \text{PbF}_2 + \text{La}_2\text{O}_3 \rightarrow 2 \text{LaF}_3 + 3 \text{PbO} \quad (1) \]

\[\text{PbO} + \text{Al}_2\text{O}_3 \rightarrow \text{PbAl}_2\text{O}_4 \quad (2) \]

It appears that LaF₃ solubility in the PbO that results from the double decomposition reaction of (1) is quite low, below 1400°C. The small yield of LaAlO₃ crystals usually found as a thin crust on the surface of the melt along with a few cubes of LaAlO₃, (see Figure 2), is a result of this limited solubility. As the soak temperature approaches the melting point of LaF₃ which is 1493°C, however, a rapid increase in solubility occurs. Just what the exact mechanism is that results in the formation of LaAlO₃...
Figure 2

Photograph of Crucible with Crystals Attached

Page 17

Airtron, a division of Litton Industries
crystals upon cooling from a soak temperature of 1500°C is not known, but
the reactions:

\[\text{LaF}_3 + \text{PbAl}_2\text{O}_4 \rightarrow \text{LaAlO}_3 + \text{AlF}_3 \uparrow + \text{PbO} \] \hspace{1cm} (3)

\[3 \text{PbF}_2 + \text{La}_2\text{O}_3 + \text{Al}_2\text{O}_3 \overset{1500°C}{\rightarrow} \text{LaAlO}_3 + \text{LaF}_3 + \text{AlF}_3 \uparrow + 3 \text{PbO} \] \hspace{1cm} (4)

offer an explanation, probably oversimplified, of what takes place in solution
during crystal growth. An analysis of the crystals and flux from No. 39 re-
veals that of 12.44 m La and 12.45 m Al in the original composition, 10.18 m
La could be accounted for in the flux and crystals after the run and only 6.65 m
Al. The weight loss which took place during the run, 2 pounds 10 ounces, could
be accounted for largely by the combined loss of AlF$_3$ = 487 gms and LaF$_3$ =
431 gms. Further evidence of AlF$_3$ formation and sublimation was obtained
from a similar analysis of Run No. 41, which was heated to only 1400°C. In
this case, 0.167 m La and 0.347 m Al remained out of a total 0.972 m each.
The loss of AlF$_3$ was less at lower temperatures.

If equipment were available which would enable crystal growth at
temperatures of 1500°C, it appears that PbF$_2$ would be a satisfactory solvent
for the growth of LaAlO$_3$.

In view of the above, solubility experiments using either the sealed
tube or fluxed melt techniques must be soaked at 1500°C in order to dissolve
all the LaF$_3$ formed. The value of 22 wt. percent LaAlO$_3$ for Run No. 39 which
was soaked near 1500°C probably comes close to an accurate value for LaAlO$_3$
solubility in this system at 1200°C.
V. HYDROTHERMAL EFFORT

A. Tem-Pres Studies

1. Phase Studies

The major effort during the past half year has been expended on projects utilizing the Tem-Pres apparatus.

A wide-range program was carried out to outline the P, T, and solvent concentration regions of stability for LaAlO₃ and La(OH)₃ especially in the areas below the reported transition temperature (435°C). The stability of LaAlO₃ was studied as a function of temperature and K₂CO₃ concentration at a constant pressure of 20,000 psi. The results are shown in Figure 3. Note that the LaAlO₃ field narrows with decreasing temperature. It appears that at 400°C, K₂CO₃ concentrations of less than 2 molal are required if the pressure is 20,000 psi.

Data were also acquired to determine the stability dependence of LaAlO₃ on pressure. Tem-Pres runs made at 300°C and at different pressures and K₂CO₃ concentrations are shown in Figure 4. Run duration varied from 24 to 64 hours. It was found that 24 hours was sufficient to assure equilibrium. The stability field of LaAlO₃ apparently has a minimum in it at about 5 m K₂CO₃ and 5,000 psi. Over 150 data points have been collected to date in order to provide information on phase equilibria and/or fluid composition.

In order to select the best solvent concentration and to investigate the composition of the hydrothermal solutions in greater detail, we have attempted to obtain more quantitative data from the hydrothermal solutions.
LaAlO$_3$ + La(OH)$_3$

Figure 3
Solid Phase Present at 20,000 psi

La(OH)$_3$ + LaAlO$_3$

Figure 4
Solid Phase Present at 400°C
Hydrothermal Effort (continued)

by analyzing the contents in the following fashion:

A hypodermic needle (20 gauge x 1 1/2 inches long) is inserted into the quenched capsule and the liquid contents are withdrawn into the attached syringe. Generally the capsule is severely deformed after removal from the hydrothermal environment, preventing ready insertion of the needle. To avoid this difficulty, the capsules are expanded back to their original volume by a heat treatment. The interior of the capsule is purged of all water soluble materials and any fine precipitates by repeated injections and withdrawals of deionized water.

Analysis for total aluminum and lanthanum is performed on the collected rinsings and a calculation of their concentrations in the original hydrothermal fluid is made.

Accurate results depend upon assumptions that:

1. The quenching rate is great enough to produce the required finely divided gelatinous precipitate or suspension.
2. Negligible crystallization occurs on existing solids.
3. The gelatinous matter is entirely removed by the rinsing technique.
4. The solids present at quenching are well formed crystals too large to be withdrawn by the hypodermic needle.

The work has been difficult since only about 0.6 grams of solvent are used per capsule. Assuming even a very high apparent solubility of

Airtron, a division of Litton Industries
Hydrothermal Effort (continued)

ten percent, this would mean the total solute available for analysis is only
60 mg which can be considered composed of La₂O₃ and Al₂O₃. The separa-
tion and analysis for each constituent must be carried out and related to the
change of a hydrothermal variable, which would have less than a 10 percent
effect. As a result, the data show scattering, some of which are shown in
Figure 5. These data have been smoothed out and are presented in Figure 6.
Note that the solid lines representing Al₂O₃ and La₂O₃ do not diverge greatly
from stoichiometry, the mole percent ratio being 1.1 to 1.2. The lower
molar solubility for La₂O₃ is in agreement with the appearance of La(OH)₃ as
a solid phase separating out as the solvent concentration increases.

2. Crystal Growth

Crystal growth attempts at 400°C in the Tem-Pres has been
plagued by the almost constant appearance of La(OH)₃ in the high pressure
form. Lanthanum hydroxide crystals form on the seed surface and grow
outward from it. A typical example of La(OH)₃ crystals growing on a LaAlO₃
seed is shown in Figure 7. Growth of the La(OH)₃ is caused by an incongru-
ent solubility condition which brings about a much higher ratio of aluminum
to lanthanum in solution than the ratio of aluminum to lanthanum in LaAlO₃.
Therefore, as the system is warmed up, LaAlO₃ dissolves until the solution
is saturated with respect to lanthanum at this point. However, the solution
is still far below saturation with respect to aluminum. Selective dissolution
of aluminum takes place at the surface of the LaAlO₃ crystal causing super-

Page 22

Airtron, a division of Litton Industries
Figure 5

Al_2O_3 Solubility Data as a Function of K_2CO_3 Molality at 400°C
Figure 6

Mole Percent La\(_2\)O\(_3\) and Al\(_2\)O\(_3\) Solubility in K\(_2\)CO\(_3\)
as a Function of Molality at 400°C
Hydrothermal Effort (continued)

saturation and subsequent nucleation of lanthanum as \(\text{La(OH)}_3 \). The process is continued until the solution solubility requirements are satisfied or the \(\text{LaAlO}_3 \) surface is "sealed off" by \(\text{La(OH)}_3 \) crystals. Deposition of \(\text{La(OH)}_3 \) can only be a temporary effect since it is caused by the incongruent solubility condition, but nonetheless it is a very serious condition. High quality seeds could be completely covered by \(\text{La(OH)}_3 \) deposition.

B. Large Autoclaves

Very little progress has been made in the area of large crystal growth. This is mainly due to autoclave problems. A three month delivery time plus improper fabrication of the seal parts by the manufacturer have caused unexpected delays in the growth of large crystals. Upon their receipt, a careful examination of the autoclaves by Airtron revealed faulty machining of the critical sealing surfaces. Upon the manufacturer's insistence, Airtron tested the vessels hydrothermally. Both seals failed, one at 4,000 psi and 350°C and the other at 13,000 psi and 450°C; whereas, the manufacturer's rating is 30,000 psi at 593°C.

The manufacturer has since remachined, tested, and returned both vessels. Airtron, in turn, retested both vessels and found them to be satisfactory. They are both being used routinely at the present time.

Seven large \(\text{LaAlO}_3 \) crystal growth runs have been completed as of June 30, 1965. Most of the runs were made in vessels of the same size purchased under Contract AF 33(657)-10508 for the hydrothermal growth of ruoy.

Page 26

Airtron, a division of Litton Industries
Hydrothermal Effort (continued)

C. Large Crystal Growth Runs

The first problem that arose in conjunction with large crystal growth runs was the lack of an adequate supply of LaAlO$_3$ nutrient. A mixture of crushed flame fusion ruby and powdered La$_3$O$_5$ was tried as nutrient in Run La-1. Operating conditions were 9,000 psi with a growth temperature of 475°C and a dissolution temperature of 528°C. Solvent was 7 molal K$_2$CO$_3$.

For the first run an estimate of the internal fill required to produce the P-T conditions desired was made. Our first approximation was 80 percent internal fill with a 60 percent external fill to produce an estimated 10,000 psi at an average temperature of 425°C.

Actual operating conditions produced a pressure of 9,000 psi but at an average temperature of 495°C or 70°C higher than estimated. It was obvious that the percent internal fill must be increased considerably in order to achieve 10,000 psi at 425°C average temperature.

The seeds dissolved during the run, but all the ruby and La$_3$O$_5$ had reacted to form LaAlO$_3$ as verified by X-ray diffraction analysis. The reacted LaAlO$_3$ had a grey-green color with an octahedral habit. Some portions of the nutrient material fluoresced orange under ultraviolet light. The fluorescent portions were excised from the nutrient and X-ray analysis was made. The material which was white and crumbly was found to be LaAlO$_3$. The source of the fluorescence has not yet been determined, but is probably a rare earth impurity in the La$_3$O$_5$.

Aurora, a division of Litton Industries
Hydrothermal Effort (continued)

However, the fact that the mixture did react hydrothermally to produce LaAlO$_3$, provided an interim source of nutrient (though not entirely suitable) until the nutrient problem is solved. Armed with a reliable source of nutrient, a series of runs were planned to determine fill conditions for pressure balance and, if possible, obtain crystal growth and/or spontaneous nucleation.

Seal leakage forced termination of Run No. La-2 before any data could be obtained.

The planned conditions for La-3 were the same as for La-1; that is, 425°C average temperature, 10,000 psi with 7 m K$_2$CO$_3$. Internal fill was adjusted to 90 percent and external fill to 65 percent as compared to 80 percent and 60 percent previously. Actual P-T conditions achieved were 14,000 psi at 422°C average temperature or 10,000 psi at 403°C average temperature. Equilibrium conditions were at 15,000 psi, 405°C growth temperature and 468°C dissolution temperature.

All seeds were dissolved completely as in the previous run but a heavy deposit of La(OH)$_3$ was found on the wall and lid of the silver can. This deposit is expected from the phase data presented in Figures 2 and 3.

For the next run, (La-4), conditions within the region of LaAlO$_3$ stability were selected from the phase diagram to provide a region for crystallization that would be free of La(OH)$_3$ contamination. A percent fill was selected by extrapolating prior data to the P-T range desired. The ability to predict a

Page 28
Hydrothermal Effort (continued)

P-T relationship from a value of percent fill increases rapidly as the number of trials becomes larger. A relatively small number of runs can be made at differing fills which will provide data points which can be interpolated or extrapolated with reasonable accuracy.

The selected conditions were 10,000 psi at 450°C average temperature to be produced by an 85 percent internal fill of 7 m K₂CO₃. Actual data recorded an average temperature of 453°C at 10,000 psi. Conditions throughout the run averaged 11,000 psi with a growth temperature of 437°C and a dissolution temperature of 496°C.

Again all seeds dissolved but there was a large amount of spontaneously nucleated LaAlO₃ deposited on the can walls and seed rack. Verification of LaAlO₃ was accomplished by X-ray diffraction analysis. The X-ray pattern and the morphology of the spontaneously deposited crystals were the same as the reacted nutrient seen in every run. Substantiation of the phase diagram and crystal growth feasibility (by spontaneous nucleation) were established during the run.

Our next run, (La-5), was an attempt to utilize a hot pressed mixture of La₂O₃ and Al₂O₃ as nutrient. Since spontaneous nucleation had been achieved in No. La-4, the same conditions were selected for La-5. The nutrient was in the form of a cylindrical brickette approximately 2 inches in diameter by 2 inches high. Crushing the brickette produced pieces of a size suitable for use as nutrient.
Hydrothermal Effort (continued)

If the particle size of the nutrient is too small, the physical appearance of a mixture of solvent and powder is that of a thick phase. The paste-like condition severely restricts solvent flow through the bulk of the nutrient. Only a very shallow layer on the top surface of the nutrient is available for dissolution. Flow restriction can readily cause subsaturation of the solvent during warm-up. Seeds in contact with a subsaturated solvent will dissolve until they are gone or until the liquid is saturated.

The crushed ruby and powdered La$_2$O$_3$ normally used as nutrient could be termed a "paste". The hot pressed nutrient did not turn entirely to paste during the run which is somewhat encouraging. However, the seeds still did not dissolve away completely. Further experiments will be conducted with sintered and/or hot pressed mixed powders and hydrothermally reacted LaAlO$_3$.

Two runs, Nos. La-6 and La-8 (La-7 deferred to future), were made at 1 m K$_2$CO$_3$ to test growth feasibility at the low molality end of the phase diagram. In both runs, the nutrient was reacted but no spontaneous nucleation was observed.

A tabular summary of the runs made to date is shown in Table IV.

D. Discussion

The phase stability study made to this time has not encompassed the full range of all variables. The data have been restricted to the pressure, solvent concentration and temperature conditions where it appeared
<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>Pressure</th>
<th>Growth Temperature</th>
<th>Dissolution Temperature</th>
<th>K$_2$CO$_3$ Molality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-1</td>
<td>5-5</td>
<td>9 K</td>
<td>475°C</td>
<td>≤38°C</td>
<td>7</td>
<td>No growth. Nutrient reacted to form LaAlO$_3$.</td>
</tr>
<tr>
<td>La-2</td>
<td>5-13</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-</td>
<td>Leaked.</td>
</tr>
<tr>
<td>La-3</td>
<td>5-17</td>
<td>15 K</td>
<td>405°C</td>
<td>468°C</td>
<td>7</td>
<td>Seed dissolved, S. N. La(OH)$_3$.</td>
</tr>
<tr>
<td>La-4</td>
<td>6-1</td>
<td>11 K</td>
<td>438°C</td>
<td>495°C</td>
<td>7</td>
<td>Seed dissolved, S. N. LaAlO$_3$.</td>
</tr>
<tr>
<td>La-5</td>
<td>6-10</td>
<td>11.7 K</td>
<td>440°C</td>
<td>490°C</td>
<td>7</td>
<td>Seeds etched back, no growth, nutrient hot pressed mixture of oxides.</td>
</tr>
<tr>
<td>La-6</td>
<td>6-21</td>
<td>10.2 K</td>
<td>336°C</td>
<td>412°C</td>
<td>1</td>
<td>No. S. N., nutrient reacted, liquid milky.</td>
</tr>
<tr>
<td>La-7</td>
<td>Deferred to Future</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La-8</td>
<td>6-28</td>
<td>18.8 K</td>
<td>414°C</td>
<td>500°C</td>
<td>1</td>
<td>Seeds etched back, No. S.N., nutrient reacted, liquid milky.</td>
</tr>
</tbody>
</table>

S. N. - Spontaneous nucleation of LaAlO$_3$ crystals in growth chamber.
Hydrothermal Effort (continued)

to be desirable to carry out crystal growth, particularly below 435°C. From
the data collected for the stability of LaAlO$_3$ and La(OH)$_3$, it was concluded
that at 400°C crystallization of only LaAlO$_3$ could be carried out at reasonable pressures but only at very low (less than 2 m) or very high (greater than 7 m) K$_2$CO$_3$ concentrations.

Growth under other conditions would set up a transitory state in
which La(OH)$_3$ would form until steady state conditions were attained. The
existence of a high pressure form of La(OH)$_3$ had been shown by Shafer and
Roy who also reported the X-ray diffraction data for this phase. The phase
diagram as reported by them is shown in Figure 8. The pressure and tem-
perature conditions data for the appearance of this phase are in that area
where crystal growth of LaAlO$_3$ would seem to be most desirable. Furthermore, the correspondence of these data with the findings of this study are
in fair accord. Four small capsules were charged with La$_2$O$_3$, 7 m K$_2$CO$_3$
solution and then at 400°C subjected to pressures of 5,000, 10,000, 15,000,
or 20,000 psi to check on the pressure solvent concentration dependency for
the appearance of the high pressure La(OH)$_3$ phase. In all cases, part of the
La$_2$O$_3$ was converted to La(OH)$_3$; the rate of conversion appearing to be pres-
sure dependent. The greatest degree of conversion to La(OH)$_3$ occurred in
the capsule operated at the highest temperature. The results of this experi-
ment would indicate that the requisite pressure for the conversion to La(OH)$_3$
is lowered by the presence of base.
Figure 8

La$_2$O$_3$-H$_2$O Phase Diagram According to Shafer and Roy6

Page 33

Airtron, a division of Litton Industries
Hydrothermal Effort (continued)

The source and form of nutrient was shown to be somewhat of a problem in two ways. First, in attempts to prepare a sintered material, it was found that these samples would disintegrate on standing in air due to the hydroscopic nature of La₂O₃. This disintegration occurred even after firing the equimolar Al₂O₃-La₂O₃ mixtures to 2000°C. The high temperature vacuum pressed sample was fairly successful but further investigation of this material is required.

The second area where a lack of suitable nutrient produces difficulty is in calculation of the proper percent of fill necessary to produce a requisite pressure and temperature. The estimation of fill requires several runs in any case but we encountered more difficulty than anticipated. We believe this was due in part to the hydrolysis of La₂O₃ by the K₂CO₃ solutions changing the effective void volume when powdered La₂O₃ and crushed ruby were used.

Although extensive crystal growth on the seeds has not been obtained as yet, the observation of spontaneously nucleated crystals is most encouraging. The work for the coming months will be directed entirely toward the growth of large crystals.
VI. SUMMARY AND CONCLUSIONS

Precipitation of insoluble LaF$_3$ from PbF$_2$ melts render this solvent impractical for crystal growth of LaAlO$_3$ below about 1500°C soak temperatures and these high temperatures lead to rapid furnace and crucible failure. Of the solvent systems investigated, Bi$_2$O$_3$-B$_2$O$_3$ appears to hold the most promise as a substitute.

The phase stability and solubility studies of LaAlO$_3$ would indicate that solvent concentrations of less than 2 m or greater than 7 m K$_2$CO$_3$ should be used in order to grow crystals below the 435°C transition temperature for LaAlO$_3$. Seven runs have been made in the large autoclaves and, as anticipated, some difficulties have been encountered with nutrient and fill conditions. Spontaneous nucleation of LaAlO$_3$ in the growth chamber was achieved.
VII. PROGRAM FOR THE NEXT PERIOD

During the next period, we will:

1. Further attempts will be made to grow LaAlO$_3$ from BaO-B$_2$O$_3$.

2. Optimize growth conditions for the growth of LaAlO$_3$ in Bi$_2$O$_3$-B$_2$O$_3$ fluxes.

3. Use both the flux melt and sealed tube technique to determine solubility of LaAlO$_3$ in this system.

4. Grow crystals of LaAlO$_3$ at least 1 cm2 of a quality suitable for use as hydrothermal seeds by slowly cooling large batches in the 6 inch furnace.

5. Continue to investigate possible nutrient sources.
 a. Sinter hydrothermally synthesized LaAlO$_3$.
 b. Sinter equimolar evaporated samples of lanthanum and aluminum, nitrates or oxalates.

6. Make further adjustments of fill conditions as required by nutrient changes.

7. Grow crystals in regions determined from phase study below 435°C.

8. Carry out an investigation of growth above 435°C.

9. Study the optical fluorescence of chromium doped samples as grown.

10. Determine dopant levels by X-ray analysis.
Program for the Next Period (continued)

11. Investigate quality of sufficiently large crystals for strains, dislocations, etc., by the Lang X-ray technique.

12. Investigate LaAlO₃ phase transition and relation to growth conditions.
VIII. REFERENCES

