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CQ The Kinematics of the Angular Momentum of a Particle.

N I. — Translation Broadening of Angular Momentum.

H. E. Moses and 8. C. Waxg
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Summary, - The way a partiele changes its angular momentum under
inhomogeneous Lorentz transformations is well.known elassieally. The
object of the present paper and a later one is to consider the problem
quantum-mechanieally for particles of any mass and any spin. In the
present paper we zhall eonsider in detail the ease where a particle has

’ e iricevuto il 24 Agosto 1964

- a definite angular momentur in one frame of refere.ce and we shall

j caleulate tl:e probability distri_ ution of angular momentum in a frame

transiated with respeet to the coriginal frame. In a later paper we shall
treat the case where the two frames of reference are moving with respect
to one another. The basic mathematical tool is the form for the infini-
tesimal generators of the inhomogenec s Lorentz group devised by
Lomeont and Moses in which the Hamiltonian, square of the angular
momentum, : ompnnent of angular momentum, and heljeity are diagonal.
The present pape .nd the projected one are important iv multiple seat-
tering p. blems, for it is possible using the resulls to take into aceount,
to a certain degree at least, the eflect of the =election rules. Thoese rules
ara almost abvays ignered in multiple scattering problems. For example,
it is shown that when the density of a gas is sufficiently low, radiative
cooling goes on at a much faster rate when selection rules are taken into
account than when they are ignored.

1, — Introduction,

In classieal mechanies the problem of determining how the components of
the angular momentum of a particle transform when the frame of reference is
transformed under an inhomogeneous Galilean or Lorentz transformation has
an almost trivial solution. In quantwum mechanics, on the other hanid, tne

{(*} Dperated with support from the U. 5 Advanced lesearch Projects . Agency,
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2 THE KINEMATICE OF THE ANGULAR MOMENTUM OF A PARTICLE - 1 {789]

problem is very complicated becanse the components of the angular meo-
mentum are operators which do not ecomunute and hence are not simulta-
neously measurable. Instead of asking for the values of components in dif-
ferent frames of reference, one either ‘a) asks for the transformation properties
of the expectation value of the square of the angular momentum or (b) assigns
to each frame of reference probabilities that the aquare of the angular momentum
has a certain value. It is seen that the problem is .urther complicated if we
wish to consider particles of any spin and any mass.

In the present paper and a subsequent paper we shall consider the quantum-
mechanical problem where the frames of refersnce are related by an inhomo-
geneous Lorentz transformation. Since the Lorentz transformation ineludes the
Galilean transformation together with corrections such as the Thomas factor
a3 a limiting case and since the relativistic tneory inecludes particle spin in a
very natural way, it is seen that the case of the Lorentz transformation is far
more interesting than the Galilean transformation.

The principal tool which we shall use will be the form of the infinitesi- .l
generators of the inhomogeneous Lorentz group in terms of a representatior: in
which the Hamiltonian, squars of the angular momentum, 2-component of the
angular momentum, and helicity are diagonal. This form was given in ref. (3}.

Sinece the effect of rotations of frames of reference on the angular momentum
has been studied before, we shall not discuss them further. Instead, we shall
limit our attention in the present paper to the ease in which a particle of given
spin and mass has a given value of square of the angular momentum with
respect to one frame of reference. We shall then consider the expeectation value
of the square of the angular iromentum in a frame of reference displaced with
respect to the original one. We shall also obtain analytically and numerically
probabilities that the particles in the new frame of reference have certain values
for the square of the angular momentum.

In the subsequent - > t we shall consider the case where the two frames of
referenice are movi. agpect to each other with a constant velocity.

The problem of tu + ties of the angular momentum as the frame of
reference changes is importa: - if one wishes to take into account selection
rules in certain types of multiple senttering problems,

Let us consider, as an example, a gas in which photo-ionization and photo-
recombination take place. One might consider the gas as being contained in
a transparent container which is illuminated by an esternal souree of photo-
ionizing radiation for an instant and ask for the rate of decay of the number
of free electrons due to photo-recombination. The decay rate will depend upon
multiple absorption and emission processes and thus upon the probability
that the electrou is recaptured by an atom with the subsequent emission of a

(1Y J. 8. LosoxT and II. . Mossa: Journ., Math, Phys., 5, 294 (1964},
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photon. Beecanse of the selection rules the photoelectron has only a finite
number of poszibilities for its angular momentum {usually 1 or £ since the orbital
angular momentum changes by 1) with respect to the emitting atom. To be
captured in a permitted procezs by anether atomn, the electron must have the
certain specific angular momenta with respect to the captoring atom, usually
the sam~ angular momenta as it has with respect to the emitting atom. Consider-
ing the emitting and capturing atom: as constituting two frames of reference
we are imnmediately led to the problem of determining the probability that
the electron has a given angular momentum in a second frame when it is pre-
seribed in the first frame. If the probability of having a suitable angular momen-
tum is very small with respect to the eapturing atom, the preb.bility of mul-

the multiple absorption and emission processes which go on in the gas and regard
the atoms as being free in so far as photoionization processes are concerned (*).

Az a second example of multiple seattering where the selection rules may
nla | decisive part, let us consider the radiative cooling of a gas. Consider a
gas of one kind of atoms, which for simplicii; of discussion, can have only
one excited state. In the gns some of the atoms will be in the excited state and
some will be in the ground state. If we restrict our attention to the way gas
cool: by emission of radiation only, some of the atoms will drop from the excited
state to the ground state by emitting photons. f these photons some will
escape the gas completely. Some, however, will be captured by atoms in the
ground state and excite these atoms. The exeited atoms will then emit photons
of the same frequency. The absorption and re-emission process slows down
the rate at which gas cools by emission of radiation,

As in the previous example each of the photons whieh is emitted from
an atom has a speecifie angular momentum whith respeect to the atom (the
angular momentum is 1} beeause of the selection rules. To be absorbed by
an atom in the ground state the photon must have the correet angular mo-
mentum with respeet te the ahsorbing atom (again 1}, Henece, one must
evalnate the probability that the photon has the correet angular mementum
with respect to the absorbing atom when it has a given angular momentum
with respect to the emitting atom.

One ean think of many other examples. (Generally speaking a complex
particle will emit a given particle, the process being subject to selection rules.
For absorption by another particle one must ealculate the probability that
the right angular momentum conditions are satisfied.

{*} Wa are indebted to Dr. Ars Nagvi of the Geophy=ies 'srporation of Amerisa
for his observation of the effect of seleetion rules on the multiple proeesses in this
example. Indeed, his ohservation in this case led us to the diseussion of the selectio:
rules which follows and ultimately to our interest in the transformation properties of
the angular mowentuwir in quantuin mechanies.
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4 THE EKINEMATIOR OF THE ANGULAR MOMENTUM OF A "aRTICLE - I [791]

In all of these multiple seattering procesies, the cross-section ¢ for ab-
sorption must be replaced by Wo where 5 is the probability that the angular
momentum bas the ecorrect value,

As far as the suthor knows, no one has taken the selection rulcs seriously
into account in processer of the type deseribed above, possibly beeause no one
has heretofore calculatud the probability W.

We may expect chat when the gas has low densities so that the average
distance between atoms iz great, W wiil be small so that multiple processes
can be ignored. Likewisze at high {translational) temperatures such that the
atoms have a high relative velocity on the average with respect to each other,
W will be small and the effects of mmltiple processes are small. From such
considerations it is clear that if selection rules aure taken into account, the
effect of multiple processcs is less than if the selection rules are ignored.

fpeaking more abstractly, most calculations of multiple seattering take into
account conservation of energy but not conservation of angular momentum.
Tize of the selection rules has the effeet of taking into aecount conservation
of angular momentum.

In the present paper it is shown by numerical caiculation that when the
density is such that the average distance betwecn the emitting particles is
of the order of half a De Broglic wave length of the cmitted particle, W will
be of the order of 0.2 or less. (It should be noted that We is still orders of
magnitnde much greater than cross-sections for forbidden transitions.) When
the interatemic distance is greater than of the order § the De Broglie wave
length of the emitted particle W becomes signifieantly less than 1. Henece
we are able to establish a critical density, such that if the density of the gas
is less than the eritical density it is extremely important to take the selection
rules into accvunt 7).

%. — Classical and quanium deseription of particles,

The present Section is inten’ed to give the background to the analytieal
and numerieal caleulations which follow.

Classically, a relativistic particle of mass x is specified by the set of
dynamical variables which consists of the co-ordinstes and momenta {#, p7}
(i =1, 2, 3), the relativistic Hamiltonian H =e¢[3 (p*)*+p?¢*]' and the eom-

£

{*) 1t seems= possible that one eould have obtained such estimatex as the abeve by
a clever use of the uncertainly principle. These estimates are made fo- the case that
the translational temperature is (strielly speaking) zero. However, they are still valid
for any temperature, since if the atoms move with respeet to each other, the « broad-
ening » of the angular momentu B is even more severe,

§




[792] H. E. MOSES aml % €. waxg 5
ponents of the angular momentum J'=z%p— 3, J? =aipl—gips, J2=
=a'p*—r'pl. {We are anticipating relativistic notation in using superscripts
rather than subsecripts for eomponents.)

Then, as is well-known, we ecan write a space-time 4-vector #* and a mo-
mentam 4-veetor p* where 2—=0,1, 2, 3, on defining «*=¢f and p*— H/e.

However, in order to write the components of the angular momentum in
& relativistic notation, it is necessary to introduce a 4 <4 dimensional angular
momentum tensor

(2.1) JP = ampf — Py,
Then
(2.2 J1=J23’ JZTJal’ JQEJi3.

The remaining components of tho angular momentum tensor have vector trans-
formation properties which ean be exhibited by introducing new dynamieal
variables #° defined by

Fi=—J% i—1,2,3),

12.3) o H . .
5 =-—elpt -t et {H=—etpi].

We can now return to nonrelativistic notation and say that relativistically
a partiele is completely specified by the following dynamical variables: «, 7',
J', #' and H.

Since we shall be interested in how the angular momentum changes under
translation, let us consider a particularly simple translation, namely & trans-
lation along the z* axis. (It is clear that by a suitable rotation any translation
can be converted to such a translation.)

Then in tarms of the new frame of reference

i??l, = 1
4) m!' — x‘
2. ;
( M =g*—a
pi' — pi .
Hence, from (z.1} and (2.2
JY = J* 1 ap?
(2.5) J? = J1—apt
JY =J%,
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6 THE KINEMATIO® OF THE ANGULAR MOMEATUM OF A PARTICLE - 1 {793]

Also denoting the square of the angular mementum by J* where

(2.6) J=3

[

we have in the new frame ol reference
(2.7) J¥ = J2 4 2a(J'p? — J*pY) + e¥(p*— (p™) ,

where p* is the square of the momentum: p* =} (p')%

]

To quantize the classical theory of the free relativistic particle we use the
canonieal approach. Namely, we calculate the Poisson brackets of all of the
dynamical variables and replace the Poisson brackets by commutators of the
operators which correspend to the dynamical variables.

As an example let us evaluate the Poisson bracket of # and p'. Be de-
finition of the Poisson bracket:

oy -3 [ er
But

(@p'fep’) = by,  (cpYfea’) =0,
and from (2.3)

(af‘lel") =I_GI fj“ .

H
{FY 91} = e’
On replacing the variables #!, p!, and H by operators and on using the fact
that the quantum Poisson bracket of any two operators 4 and B is rolated
to the commutator [A4, B]=AB—BA by
{Aa B} = (th)-'{A, B],
we obtain the commutation relation
L7 )= ien
By replacing the classical dynamical variables by operators and Poisson

brackets by commutators, we obtain quantum conditions on the dynamical
variables in the form of a commutator algebra.

£
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{n relativistie quantum mechanics, however, the ¢o-ordinate operators &
have serions difficulties associated with them. For example, from ihe com-
mutation rules which are derived in the above manner, it eau be shown that
the « »-ordinate operators do not commute with the sign of the energy and
hence particles with positive energy cannet be localized. Because of this and
similar difficulties, it iz customary to ivnov'e the co-ordinate operators #*. One
thus regards the momentum operatorz »°, the Hamiltonian H, the angular
momentum operators J°, and the 2 space-time » operators _#* as constituting the
entire set of dynamiecal varizhlcs whien describe o free relativistic particle in
quantum: mechanies. The commutation relations which they satisfy are de-
rived from the Poisson bracket approach described above. The commutators
of interest also formm a commutator algebra. We shall write the set of comn-
mutation rules. Since we shall have no further oceasion to use relativistic
notation, we shall replace superseripts by subacripts.

P Pl = 0_9_

(H, ?’i]'!:x() ,1

[, 3] = thd,,

[, Js] =1§ﬁJ1 !

[y, Ji] = ihdy,
[(Jopl=0,

[dhs pa] = iﬁp, =[P, &,
[ Pa] = #hp = [pas i),
[hs ] = ilp, =[p, ],
(2.8) { [ H] =0,

(Jis Fl=0,

[ fs} = iﬁ.fs = [ju AN
[Jo; £l = ik J, =1A, h],
[Js, };] == ‘?ij: = [ju J,],
[ Ay p,) = i&[)Hb,,

(A S = ihds,

[F£ H} = thep,,

[fa 5] = — iR,

(5. ] =—ild,.

L

Tn most discussions of the commutation rules (2.3) X and ¢ are set equal
to unity to simplify the discnssion. Since we are interested in cbtaining nu-

i
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THE KIREMATION OF TOF ASGULAR LOMENTUM OF A PARTICLE - 1 195}

merienl vahues, we shall instead introduee the « redueed » operators §i,— p./h,
H = Hlke, J, =dJ,jk, & = #ih. These reduced operators satisfy the commuta-
tion rules (2.8) but with A=ec—=1,

It iz a remarkable fact that the reduced operators ean be interpreted as
the infinitesimal generators of the ray representations of the rproper ortho-
chronous inhomeogeneous Loreutz group (refereuees {*) and ('*“')). They have
been studied in this coutext and all irreducible representations have been found.
Representations exist which can be interpreted as corresponding to particles
of any mass and spin. Various forms for the infinitesinal generators or, equi-
valent, dynamical variables are given in references (7).

In references (*7) the dynamiesl varinbles are given in represeutations where
the momentam operators p, are diagonal (*).

However, for the purpose of studying the transformation properties of the
angular momentum, it is mueh more desirable to have au angalar momentum
basis. The angular momentum basis is described in detail in reference (1).
In the present paper we shal'! deveribe ouly so mueh of the form of the ope-
rators in terms of this basis as is needed for the calculations of this paper.

In addition *o the dynamical variables p,, J,, #, and H introduced above,
it will be convenient to introduce the helicity or circular polarization oper-
ator w defined by

z P,
(2.9} T S—
H:—

For the case of particles of unonvanishing mass u and spin s we introduce
a Hilbert spaee of functionz ¢/F, j, m, 2) where the rauge of ¥ is p< E < oo,
the values tuken ou by x are ¢ =—5%,—s+1,...,5—1,5 and for a fixed
value of « the range of j is given by § =|«l, |2+ 1, iz]+2, ... For & fixed

valae of j, m takes on the valves m = —§, —j+1,..,j—1,4.
The inner product of two states if given by

3

de i 2 s Y 1 Y 2
> f ;}—qﬁ“”(E, Js my &) @(Ey jy my2), (pf;\’/ﬁ'g* #"-')-
F1]

&, hm

(?} E. P. Wiuxen: dnn. Math.,, 40, 149 {1939},

3} ¥V, Baravasy and E. P, Wiaxer: Proe. Nl dead. Sei, U, 8., 34, 211 (1948).

(Y L. L, FoLpy: Phys. Ree.,, 102, 568 (1036),

(®)) Iz, M. S8migogov: Now, Phys, J.E.T.P., &, 919 (1958),

(*) V. 1. Ritus: Sovw., Phys, J.E.T.P., 8, 990 (1959).

{") J. 8. Lomoxt and H. E. Mosgs: Journ. Math, Phys., 3, 405 {1062).

{*) In rof. {4} the operators are given in terms of an r-representation which is
essentially the Fourier transform of the momertum representation.

2074
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In terms of this basis we have

{:2.149)

JiglE, §, my 20 = k2 - Vg (E, §, m, 1),

JoplE, §o mo2) = hmg(E, 3, m, 2,

Hg(E, j, m, 2) = Eq(K, j, m, 2},

wy (E, j, m, a) = hag(E, j, m, a} ,

O+ WYg(Ey om0 = WV (G- m) G+ m+ VB, j,m+1,2),
(s — t By jymya) = AV G- m)(j—m+ V(B j,m 1, 2).

mx 1

p:’,f‘(E,)',ilL,;z)_'p[_ gl Ky, m, ) .‘ TSk

i+ 1)

‘]/(1‘ G N—a s D as1)

: s e (K, j+1,m 2] +
(2j + 1)(2j 4 3) VA TS I )}

G—m)G+ m)G—a)(+a)
+3)

(K, f— 1, m,
2]__ (‘)) ) q’-( ) b * )]?

(p. + ip)glE, §, m, 2) =

=p[)} U m .-{ ”‘+l)q( ?)’ m 'L"] a) (;——':——1-)‘
l/(;— m+1)(j—s—m "')(}—x+1)‘} s_a ! )
2j+ 1) (2j + 3)
l (j—m -l)(]--m)(]ma){g—} o)
j Zj—1{2j+ 1)

@B, j+1,m+1,2)+

(B, j—1,m+4 1, a)] .
(pa— ipdplE, j, my a) =

x G Vel B G ‘-1__
:p[i'(i-% YV mG—mt DB m—1, 2+ oo

1Y ~m—-%——l—(_T m-+2) —1+1)( NEP | L.
] J 1Y) G )(F(b”_; Lm1,a)

(2) + 1) (2j + 3)

—.iy”(f+-m—ﬂ_<:"+ m G+ )

2j—1)i2j+ 1) olE, j—1, m--1, a)} .

If we take a state function which is normalized to unity, i.e.

4.,

> ff‘lf B jom, @)= 1, then J‘%Fi‘ lE(E, j, my ) [

3

'}
# s
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ig THE KINEMATICOR ©F THE ANGULAR MOMENTUM OF A PAUTICLE - I {797}

gives the probability that a measurement of J* will give a value of A%j(j -1},
Jy will give a value of Zm, and «» will give a value of Axz. Tt will be useful to
introduce states which are simultaneens cigenstates of J4, .7, and # such taat
the particle will have its energy within a narrow range. Accordingly we intro-
diuve normalized states

{(2.12) FolE, j my 2) — g(E)4,, 8,

M." momy %8y !

where g{F) is a function of K svch that |g{Z)] has a sharp maximum for
E=E, and

B
I?ggib}; =1.
"

Thus these states are in a scnsc eigenstates of H with the eigenvalue E,.

For the massless case we set 4 =0 in the above expressions. But, in ad-
dition, « is a scalar and x takes on one value only. The number x is either
-+2& or —s where 5 is the spin as before. In the definition of inner product
the summation over x is nmitted. The eigenfunctions which correspond teo
those i (2.12) have the factor 6__ replaced by 1.

e 3

3. - Transformation properties of the angular momentum operator. The Heltenberg
and Schridinger pictures of invaricnce,

In the present Section we shall consider a translation of frames of reference
along the z-axis, namely the translation which would lead classieally te the
resaitz (2.4) and (2.3 ior the new values of the co-ordinates, components of
momentum, and components of angnlar momentum. We want to deseribe
gnantum-mechanically how the dynamieal variables and states in the new
frame of reference are related to those in the old.

It is customary to use one of two pictures for describing the change. These
two pictures are generalizations of the Heisenberg and Schridinger pictures
for the equations of motion describing the time-development of a guantum-
mechanical system. We shall eall the corresponding generauzations also Heisen-
berg and Schridinger pictures of invariance.

In the Heisenberg picture of invariance, the states in the two frames of
re’ucence are the same but the dynumiecal variables change. In fact, the re-
wation of the dynamical variables in the two frames of reference are the same
as in classical theory, Hence the momentum and angular momentum operators
in the new frame of reference are related to the old by (2.4) and (2.5).

&
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From the general requireicents of Invarisnce it ean be shown that the
primed operators must be related to the unprimed variablez by means of a
unitary transformation. If 4 is any dynamical variable in the original frame
of reference and A’ is the dynamical variable in the new frame then

(3.1) A'=U-4T,

For the translation along the z-axis it ean be shown that

{3.2) U= exp (t % -p,) .

In the Schrodinger pictare of invariance, on the other hand, the operators
remain unchanged but the states change. Let us denote by ¢' a state in th
new frame when the state in the original frame was given by y. The Bchro-
dinger state v’ is required to satizfy

{3.3) v dy') =y, 4'y) .
One takes
(3.4) v'=Uyp.

4. — The expectation value of the square of the angular momentum,

In the present Section we shall give eract expressions for the expectation
value of the square of the angular momentum operator in the zecond frame
of reference when in the original frame of reference the particle had a definite
value for J3, J,, and =.

It will be convenient to use the Heisenberg picture. Hence the compo-
nents of angular momentum transform aecording to (2.3). Thus

2 q . LfHF .
I R e A O M AR C e

Let us assume that we are in the state given by (2.12). Then on using
{2.10) and (2.11) we find for the expectation values for J*

2a’p} 3agmy |
12 T =hglje+ 11+ o S G 1) 1 mi Al oo
4.2y J® el 1) o 11 2ok 3}[?5{}:;, } e+ X i ’"l)i

In (4.2) p, is given by p, —{(E¥e?) —p*e’'] and is the absolute value of the
momentum of the particle in both the original and t:anslated frames. In de-

§




12 THE KINEMATICR OF THE ANGULAR MOMENTUM OF A PARTIULE - | {789}

_ riving the expression /4.2) we have used very heavily the peaking property
of g(E} in getting the dependenca on Ps. For the massless case, one should
replace 2 by the spin s.

If in the original frame of reference vne did not know the ~alue of g, 1t
would be natural to average over all values of this quantum number. 1le-
noting the result of this average by <J*> we find an extraordinarilly simple
formula

(4.3) T = Wlia+ 1) + §arp? .

This formula is valid for partieles of any mass, any spin, and anhy circalar
polarization.

It is intercsting to compare thiz formula with the classical formula for J°,
The classical eow -terpart of averaging over m, is to average over all directions
of the vector p. From (2.7) we find this process vields

(+.1) J?=J*+ jatpe.

Thus in quantum mechanics the square of the angular momentum changes
faster than in classical mechanies under the translation of the frame.
In obtaining {4.3) we used the well-known expression for the average of
my, namely,
N N
(1.5) m= S w1
2o+ 1

..j'

5. — Probabilities of various angular momenta. Analytie calculations,

In the present Section we shall calenlate to the fourth order the proba-
bilities that the square of the angular momentum has a certain value when
in the original frame of referenee it is in an eigenstate of the square of the
angular momentum, That is, in the original frame of reference, the state is
given by {2.12). In the new frame of reference, the state is given by

{(5.1) ‘}".{Es jma) = U qlE, j, m, a)

in the Schrédinger pieture of invariance, where I7 is the unitary operator of
{3.3), which depends on a. Let us define Wala) to se the probability that in
the new frame of reference J* has the eigenvalue A*(j,+n){j,--n-+1), J, has
the eigenvalue %m, and « has the eigenvalue %z,. (The probability that oy
and » have eigenvalues other than vhose given above is zero. Also the range
of energies is unehanged in a translation of {rames of reference so that the
particle continues to have energies near E, )

&

ey,
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Then

(3.2) Wl

5 igalE, ja + B, He, %) °

where & is either a positive or negative integer or zero. We have acted as though
we are discussing the nonzero mass ecase only, but a slight modification of
notation includes the massless case also.

In order to obtain analytic expressions, we expand U in terms of a power
geries in a and evaluate W,[e) using (5.2). We have carried out thiz program
to the fourth order in a. Since the state ¢, has a sharp peak at E=—F,,

W.is) is actually expanded in a power series in ap,/k in which only even
powers appear.

Let us write
(5.3) Wola)= W2 L (ap, AP WP L {ap, JRIWD + ...,
Then

(WO =5,

W' =0 for all # except n=1 or —1, or =10

wo_ Bom a1 (Gt 1P me) (U 1l 1
P (2, — 1L ’}g-g—l}}. {2j0 - 1)2jo + 3) TR T

we (Ga+ 1P — g} {1 }sT 1y ——:Ia) 1
! (25 + 1) (25, + 3) o+ 12’

o (?o ms) (},-— x3) 1
- (25, —
?9 1)(“?3_1} ?g

W2 —0 for all » except for n =0, 1, —1, 2, —2,

5 W l.{ Ame (o + 1 w,)((}a-»l) .wa,}
e RO+ 100+ 2 @lo+ 1S+ 3o +10°
imaze (e —ma) (fa— )

1¢(19 + 1P (s — {a-— 17 (27— 1{2fa+ f;;ie
T8 s ms}(Ia 25} {(1&*‘1}’ 7"0){(79'”1) "16)4_
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For the massless case one should substitute the spin gmantum number s for
a4, in (5.4). The expressions (5.3} and (5.4) give acenrac - to at least two signi-
ficant figures for lap,/h!<1 when one compares these results with the nu-
merical results dizcussed in the next Section.

6. — Numerical results.

In order to obtain the probabilities W,(a) for larger values of a, we have
resorted to numerical computation using a large computer. The objective of
the computarion was to avoid expansions of the type indicated in the previous
Section. This objective was accomplished by replacing the operator p, which,
according to (2.11), is an infinite-dimensional matrix in the quantum number j
by a truneated finite-dimensional matrix. The finite-dimensional matrix ean
then be diagonalized using standard computer technmigques. Then ¢, can be
obtained in this representation for all a2 by simple exporentiation. Finally,
one transforms back to tihe original representation. One can check the ac-
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curacy of a given computation by inereasing the size of the finite-dime..sional
matrix which replaces p; and seeing whether the results are sensitive to this
increase in size.

In Fig. 1 through 4 typical results are given graphically. The dimension
of the matrices was 2525 in Fig. 1 through 3 and 10 <10 in Fig. 4. Bince
the amount of data which one can obfain by means of tnis tvchnique is enor-
moug, we have averaged over m, and, in the case of nonvanishing mass, over a,.

10— ) g_ev

\

0.8+ 0.8:
0.6+
9.4

0.2

0 2 . & 8 10
apc,!ﬁ

Fig. 1. - Eleetron of neutrino, 2= 1, j;=4.

These averaged guantities are the interesting ones from a statistical point
of view and in the examples of applications given in the Introduetion.

In Fig. 1 we have given graphically W, as a function of ap,/k for various
values of = for particles for spin } and for j, =§. In Fig. 2 results are given
for particles of spin } and for j, =3. In both of these cases it does not mat-
ter whether the particle has zero or nonzero mass in taking the average
ov- m,. No average has to be taken over z, since these quantities are sym-
metric in z, and sinee 2z, —s —}. The particle being considered iz an elec-
tron in ti.. ease that the mass is not zero and is a neutrino if the mass is zero.
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In Fig. 3 we have given W, for massless particles of spin 1 and j, =1.
The eases which we have given above are of interest in the applications
diseussed in the Introduection.

LOT—7~~~-—W' — 1.0
0.8 0.8+
0.6r
E S w,
g.4¢ w,
wz
w;‘
0.2}
/
f
0 2 PR 8 10
ap,/h
Fig. 3. - Photon, mass—0, =1, §,- 1. Fig. 4. — Mass £0, s- ¢, j,— L.

In Fig. 4 we have considered the easge for which the mass does not vanish
and for which s=% and j,=%. Such a particle might be a complex particle
ejected from a nucleus. We have given this example to show what happens
for particles of higher spin and angalar momentum.

In all of these calculations there is quantum ¢ noise» for values of ap,/k
such that W, is amall (less than 0.4). That is, small maxima and minimsa
are superposed on the general curve. These effects are especially pronouneced
in the carves of W, before averaging.

The calculations were taken for values of (ap,/8) =0, 1, 2,..., 10 and some
of the s noise » may have been missed because small intervals in this variable
were not taken (*).

{*} The program calenlates ¥, for particles of any spin, j, and apy/A. It ix thus
poasible to produce data for other cases in the form of tables or of graphs, if neaded,
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RIASSUNTO (%

11 modv in cui una particella cambia il suo memento angolare in seguito a trasfor-
mazioni di Lorentz inomogenee & classicamente ben noto, 1.'oggetto del presents lavore,
e di uno snceessivo, & di considerare il problema dal punte di vista della meccanica
quantistica per particelle di massa e spin qualsiasi, Nel presente lavoro esamineremo
in dettaglio il caso in cui una particella ha an momento angolare definito in un sistema
di riferimento e caleoleremo la probabilita di distribuzicue del momeato angolare in
un sistema di riferimento traslato rispetto al sistema originale. In un suecessive lavero
tratteremo il caso in cui i due sistemi di riferimento si mueveno 'uno rispetto all'altre.
Lo strumento matematico fondamentale & la forma dei generatori infinitesimali del
gruppo inomogenec di Lorentz ideati ua Lomont e Moses, in eui I'hamiltoniana, il
quadrato del momento angolare, la compouente : del momento angolare, e I'elicita
sono diagonali. Il presente lavero e quello progettato sono importanti nei problemi
di scattering multiplo, in quanto & possibile, utilizzandone i 1isultati, di tener conta,
almeno fino & un eerto limite, dell'effeito delle regole di seleziove. Nei problemi di
seattering multiplo tali regele sono guasi sempre iguorate, Si dime: wa, ad esempio,
che quande la densitd di uu gas ¢ sufficientemente bassa, il rafireddamento radiative
procede molto pid rapidemente ze #i tien conto delle regole di selezione di quanio nea
avvenga se si frascurano,

{*) Tradusione a cura dclla Redagione.,



