
AFFDL-TR-65-57

00

CeqQ GAUSSIAN APPROXIMATIONS TO THE
DISTRIBUTION OF SAMPLE COHERENCE

L. D. ENOCHSON
N. R. GOODMAN

MEASUREMENT ANALYSIS CORPORA " [------

FOR FA.ii . "ND

TECHNICAL REPORT AFFDDL-TnR ZZQ O-h

JUNE 1965

AIR FORCE FLIGHT DYNAMICS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO



FOREWORD

This report was prepared by Measurement Analysis Cornoration,
Los Angeles, California, for the Aerospace Dynamics Branch, Vehicle
Dynamics Division, AF Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio 45433, under Contract No. AF33(615)-1418. The
research performed is part of a continuing effort to provide advanced
techniques in the application of random process theory and statistics to
vibration problems which is part of the Research and Technology Division,
Air Force Systems Commands exploratory development program. The
contract was initiated under Project No. 1370, "Dynamic Problems in
Flight Vehicles," Task No. 137005, "Prediction and Control of Structural
Vibration. " Mr. R. G. Merkle of the Vehicle Dynamics Division, FDDS,
was the project engineer.

This report covers work conducted from March 1964 to January
1965. The contractor's report number is MAC 403-07. Manuscript
relL.•sedby authors February 1965 for publication as anAir Force Flight
Dynamics Laboratory Technical Report. One of the coauthors of this
report, Dr. N. R. Goodman, is a mathematical-statistical consultant to
the Measurement Analysis Corporation.

This technical report has been reviewed and is approved.

WATER Y
Asst. for esearch & Technology
Vehicle Dynamics Division
AF Flight Dynamics Laboratory

ii



ABSTRACT

This report describes the results of an empirical study
to develop a normalizing transformation for sample multiple
coherence. The "Fisher z-transformation" is employed. The
expected value (including a bias term) and variance of the trans-
formation have been experimentally determined. Numerical

-values of the transformation which is developed (including the
bias term and variance) may be obtained with a reasonable
amount of computation. Tables of the Gaussian distribution
can then be used to obtain confidence limits and perform sta-
tistical tests.

The computational methods and the digital computer
program used for the study are described in detail. Flow
charts of the program are given. Numerical results from
the program results are presented. Examples of the use of
the transformation are given for developing confidence limits
for multiple coherence. A recommendation for a further
theoretical study is presented.
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1. INTRODUCTION

In measuring coherence when moderately long or long records are

available, one often has the "effective degrees-of-freedom" parameter n > 20.

A large set of tables consisting of nine volumes has been developed by the

Rocketdyne Division of North American Aviation. These tables provide the

sampling distribution of coherence when the effective degrees-of-freedom is

roughly less than 20, and when the number of variables involved in the

coherence relation is less than eleven. This set of tables is listed as

Reference 1 in this report.

In regard to many practical applications, it is desirable to have a tract-

able and reasonably accurate approximation to the distribution of sample

coherence for n > 20. Such an approximation is especially needed for the range

20 < n < 150. The degrees-of-freedom parameter in practical spectral analysis

often falls in this range, and hence the degrees-of-freedom for coherence

functions obtained from the spectral analysis also falls in this range.

The object of the study described in this report was that of obtaining a

Gaussian distributed approximation to sample coherence. A reasonable approxi-

mation which has a roughly Gaussian distribution has been empirically obtained by

a digital computer numerical analysis. This approximation appears to be useful

in the range where true coherence varies from roughly 0.4 to 0.95, and the

degrees- G-freedom parameter is larger than 20. A slightly more complicated

version of the transformation involved in the approximation gives corrections

which extend the usefulness of the approximation down to approximately a true

coherence value of 0.1. and to the degrees-of-freedom parameter as low as 10.

The approximation developed is very useful in that the need to have a large set

of tables available for many practical applications is eliminated. One instead

can substitute a table of the Gaussian distribution function which is widely and

conveniently available. A certain amount of computation is necessary in order

to transform the value of sample coherence to the approximately Gaussian distri-

bution variable; however, the amount is not unreasonable. The transformation and

the empirical procedures used in obtaining the final version will now be described.



2. THE NORMALIZING TRANSFORMATION

The probability density function for sample coherence is given by the

following general formula:
CZ)np~~ : (n) _Z~n2

C(xI n p, y 2 "(p-1) r(n-p+l) (1 nx P-2 ((1 -x)nPF(n, n;p-1;y 2x) (1)

(0<x<_x)

where

n = effective number of degrees-of-freedom (d. f.)

p = effective number of records
22 = true coherence

x = y = sample coherence

F(n, n;p-I ;,y x) = hypergeometric function

A closed form expression for the cumulative distribution function corresponding

to Eq. (1) is known. The closed form expression is, however, intractable for

n in the range desired. That is, the computational requirements to obtain a

numerical value for a specific n requires more than a reasonable amount of

computation. Recursion relations on n have also been developed. The tables

described in Reference 1 were computed using these relations. These recursion

formulas are suitable for obtaining results for n+ 1 in terms of the results for

n. However, they are not suitable for directly computing a numerical value for

any arbitrary value of n.

The asymptotic (n approaching infinity) distribution corresponding to

Eq. (1) has been investigated. However. comparisons with the existing tables

of Reference 1 indicated that approximations based on such asymptotic theory

would be far from reasonably accurate for 20 < n < 150. Other preliminary

studies have indicated that simplicity and reasonable accuracy may be achieved

by a "normalizing" (Gaussian producing) transformation of the form described

below.
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Let

Z=-1 -1

1 = n =tanh- MV (3)

In Eqs. (2) and (3), x = V= "sample coherence and y = /true coherence.

The random variable z is, to a close approximation, normally (Gaussian)

distributed N(R, a- 2). The mean R is given by an expression of the form

n - p + k = +b(y) (4)

and the variance by
2 1 (5)

2(n - p + k)

In Eqs. (4) and (5), the constant k and the function f(y) are not yet specified.

The choice of the form of the transformation given by Eq. (2) is motivated

by a comparison of multiple coherence with the multiple correlation coefficient

of classical statistics. When this transformation (termed the 'F-sher z-

transformation") is applied to the ordinary correlation coefficient, one obtains

a variable which is normally distributed to a very high degree of accuracy.

Biases do exist in the transformation of the ordinary correlation coefficient, but

they are usually negligible for practical purposes. However, for the case of

multiple coherence, the transformation by itself is not quite so suitable. The

bias term denoted by b(y) can be significant. One of the major objects of the

study described in this report was to determine the numerical behavior of this

function b(y) and to determine if it could be represented by a reasonably simple

form.
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The asymptotic (n approaching infinity) distribution of the random variable

z is normal with a mean of C and a vax 3ance of 1/2n, provided y 1 0. Initial

comparisons which were made with tabulated results indicated, however, that

for n near 20, the asymptotic distribution is still a far from acceptable

approximation. One may view Eqs. (4) and (5) as giving finite corrections to

the asymptotic distribution of the random variable z. For various hand calcu-

lated examples, correctiuns of the form indicated by Eqs. (4) and (5) were intro-

duced and acceptable approximations to the distribution of sample coherence were

obtained. These hand calculations motivated the performance of a more compre-

hensive examination by meana of a digital computer program.

The object of this program was to determine if z is a useful transformation

for coherence when suitable bias and variance terms were introduced. Thus,

determining the form of the bias b(y) and the value of k which would fit in the

expressions for the mean and variance were to be determined by the digital

computer program. The next section of the report describes the computer

program which was written, and the section after that presents the results which

were obtained.
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3. COMPUTATIONAL PROCEDURES

The basic method of determining the accuracy of the normalizing

transformation was to compute results using the transformation and compare

them with the existing tables of sample coherence. Theas tables are avail-

able for n up to roughly 20. It is assumed that if an acceptable transformation

is determined for this small n, then the transformation will also be accept-

able for larger n. It was decided to determine the bias of the transfornation

by comparing the deviation corresponding to the 50% point (median) of the

sample coherence table from that corresponding to the true value of

coherence. It was also decided to establish tae variance for the trallbfor-

mation by comparing the 95%0 point of the distribution. That is, for a

Gaussian distribution the 95th percentile should be 1. 645 standard deviations

away from the mean. Therefore, the difference between the 50th and 95th

percentiles was set equal to 1. 645 standard deviations. This allowed the

determination of the variance.

After the bias and the variance were determined, comparisons for

several probability points were then made of the hypothesized normally

distributed transformed values with the exact tabulated distribution values.

To be more specific. the computational steps proceed as follows.

(1) Select a value y2 of true coherence.

(2) Search the appropriate table of sample coherence for the 50th
A 2.percentile of the distribution of y given Y This procedure

actually requires interpolation in the existing table. This inter-

polation was performed using 3 point quadratic interpolation

defined by the equation

A2 ____________3 A2 ___________ A2 _____________) A2 6

.50o (p1 _pZ)(P 1 _P p2p pZp3 ) Y2 YZ 3p H P2 6

5
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In Eq. (6),

p = .50

P1 , P 2 ' P3 are the three distribution function values

which bracket p = . 50

A2 A? A 2

NI P Y2 0 Y3 ar- the arguments corresponding to the

distribution function values p1 ' P., and p.,

(3) The bias at the 500r point is then determined by transformiag

tp .50% point of sample coherence and comparing that with the

transformed value of the true coherence. That is, b is

defined by the equation:

z = tanh I A t = tanh y

(7)

bia s = b = z0.50 -

(•) After the bias is determined, then the variance is determined
A 2

by a similar procedurc. First, the 95th percentile, Y.95 is
Y.9 5

obLained by interpolation with a formula the same as Eq. (6),

but with the following quantities replacing those in Eq. (6).

p = .95

P4' P59 P 6 are the three distribution function values which

bracket p=.95 (these replace p., i= 1,2,3 in

Eq. (6).
A2 42 A2
V4 5 15 Y6 are the arguments corresponding to p4, p5 0 P6

A2

and replace Yi , i= 1,2,3.
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(5) The variance for the transformed variable is then determined

from the following relation

2 z. 9 5  z. 5 0
"A = 1.645 (8)

Pzints on the normal distribution function with a mean

" "A +b= z (9)
V

and a variance determined ýy Eq. (8) are next computed for

values of yA2 in the range 0. 05 to 0. 95 in steps of 0. 05.

(6) Since the asymptotic form of the variance of the sampling

distribution of the transformed coherence is of the form
2

a- = 1/2n, it was decided to obtain an "effective" number of

degrees-of-freedom n e from the relation

e

n e (10)e 202

(7) Finally, the probability values which have been computed, the

bias, and the effective degrees-of-freedom are printed out.

For a given degrees-of-freedom parameter n and a given number of

variables p, the above procedure was repeated for values of true coherence

ranging from 0.00 to 0.90 in steps of 0. 10, and from 0.91 to 0.99 in steps

of 0. 01. It was also suspected that the results would vary roughly as a

function of the square root of n . Hence, 24 cases were run with _n
e e

running from roughly 2. 0 to 4. 5 in steps of about 0. 5. The cases w"ich

were actually run are given in Table 1 below. In Table 1, n -n-p+ 1.
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TABLE 1

Values of n and p for Which Computer Computations Were Performed

-n 1.7 2.4 3.0 3.5 4.0 4.4,4.4,4.3

e

ne 3 6 9 12 16 19,19,18

n, p 4, 2 7, 2 10, 2 13, 2 17, 2

5, 3 8, 3 11, 3 14, 3 18, 3 21, 3

6, 4 9, 4 12, 4 15, 4 19, 4 22, 4

7, 5 10, 5 13, 5 16, 5 20, 5 22, 5

This selection of values of n and p provide a coverage of the existing tables

for 2 < p < 5 and allowed for the investigation of the behavior of the

approximation under a reasonably wide range of values of n.

A flow chart which outiines the computational procedure used is given

in Figures 1 and 2. The polynomial approximations given in these figures

for the Gaussian distribution function were obtained from Reference 2. These

approximations were checked with existing table values, and agreement was

found out to at least five decimal places in all cases.
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2
y = 0.00

Interpolate y table Interpolation
Z- subroutine

to find Y0. 50 p = 0.50,i=I

[ Z z 0-5 0 = tan h NiO.50J

=tan h 'Y

-,

1.65,

Ib z-o., -50
SInterpoate y tabe ti

A2 . 0deit subroutine

Prin outd yes ___i_

G e

u . tal Ct

2o T2 z 0o. 95 " -z . 50o

2 T C o p t G a u s s ia n d s r b t o

no~~~~ Gaussian dsrbto

0.05---w

Pitout yes > 0. 95 no X = xZ0.50

PG(z), b, n
Ge 0

Figure 1. Over-all Computation Procedure
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Interpolation
subroutine

AZ (P- Pi+I ) (p- Pi+Z) A2
Yp - ¥

:(i" Pi+ l ) (Pi- Pi+2 1

a 0  = .797884561 (p-p.) (p-p + A 2

a, = .531923007 + (Pi I-Pi )(Pi -+ 2 ) yi+1

a 2  = 319152933

a3 = 151968751 (P-pi) (p-pi+) A 2

a 4  = 0590540356 + (Pi+2-Pi)(Pi+2-Pi+) •i2.

a 5  = 0191982820

a6 = 00519877502

a 7  = 00107520405

a 8  = .000124818987 Gaussian
distribution

b3 = . 999936658 subroutine

b = .0005 35 310849 I/I

b = .00214125874
b = 0C535357911 x 3- yes (Z)

b4 .00977945334 no

b = 0116304473x>ye

b - 0105576250 M

b xb006549791211

b8 .00203425487 1 i

b9= . 000794620820 8axz<0 e

b 0 00139060284 PG (Z) i=0 2 i E

b 000676904986 [1 I- P r(z)J/Z

b 12 000019538132 11+ P G z))I/2 - P G(Z)

b = 00015259290 P rG(z)

b 1 .000045255659 L - Return14-

Figure 2. Interpolation and Gaussipn Distribution S,,broutines
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4. NUMERICAL RESULTS

As a general statement, the comparison of the probabilities obtained

with the Gaussian approximation (transformation) with the bias and variance

adjustments incorporated, agreed with the existing multiple coherence tables

to two or three places for fairly large degrees-of-freedom. For smaller

degrees-of-freedom, the probabilities were still often quite close except at

times toward the tails of the distribution. Even here the errors were seldom

worse in magnitude than 0. 01 or 0. 02. The act,ial computer output of all the

probability values computed is very extensive, and the coinplete results are

not included in this report in the interest of economy of space. However, the

bias values obtained for all the cases are plotted in Figure 3 through Figure 8

(located at the end of this section) along with two approximations to the bias

correction described below. Also, an example of the agreement in probabilities

is given later in this section.

An analysis of the numerical values obtained for the effective degrees-

of-freedom n obtained via the variance fitting computations indicates thate

a reasonable value to use for n is given by

n e = 0I1)

n p +•, p>)

and the variance is

or = I/2n (12)

This value becomes less accurate as coherence and degrees-of-freedom

become smaller and as p becomes larger. However, it is a quite satis-

factory approximation in tne range of roughly true coherence between 0. 4

and 0. 95.
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A very simple straightforward constant bias correction, that is, one

which is not a function of the true coherence is given by the formula

b = p - 1 (13)2(n - p + 1)

This value is plotted in Figures 3 through 8 as the constant line. From this

it can be seen that for fairly large degrees-of-freedom this value of b is a

quite satisfactory approximation for the bias for true coherence values of

roughly 0. 4 through 0. 95.

One comment should be made about the plots of the bias correction

at this time. From the general theory of the approximations, one would

expect the singularity which appears to occur near true coherence equal to

zero. However, there is no immediate explanation for the apparent singu-

larity which occurs at true coherence equal to one. This leads one to

believe that the erratic results obtained as true coherence approaches

closely to one may actually be due to computational noise. That is,

certain computational instabilities could possibly be occurring in this area

which would result in the unexpected results obtained here. This problem

has not yet been resolved. Further theoretical studies will tend to shed

more light on this question. A modified bias correction gives somewhat

better results for lower values of true coherence and lower degrees-of-

freedom. The correction is given by the formula

b (Y
2(n-p+) [p (+ (++. 1))

(14)

4(n-p+ 1) Y+.

This equation is plotted as the dotted lines on Figures 3 through 8. Note

that this bias correction has the disadvantage of having true coherence

12



appear in the formula. The true coherence will, in general, not be known

and hence one would have to use either an estimated value or a value of the

sample coherence. The use of this formula would still be more likely to

provide a slightly better bias correction term than that given by Eq. (13).

Again, further theoretical studies concerning normalizing transformations

for coherence would tend to resolve this question.

The plots given in Figures 3 through 8 depict empirically the behavior

of the bias term b(y) defined by Eq. (4). Two approximating forms for b(y)

have been given by Eqs. (13) and (14). It is this empirical behavior whose

analytical form should be determined. The computer output for n = (n-p+k)e

as defined by the variance formula, Eq. (5) is not presented. Equation (11)

summarizes the values of k which were determined as suitable approximations

from the computer study.

A typical example is illustrated in Table 2 of the agreement between

the sampling distribution probabilities obtained in three ways: (a) the approxi-

mation using the bias correction of Eq. (13) and the variance of Eq. (12),

(b) the digital computer fitted approximation using the median bias (see

Figure 6) and the variance determined from the 95th percent.le, and (c) the

exact probabilities obtained from the tables of Reference 1. The case chosen
2

is for 0 =O.70, n= 15, and p 4.

13



TABLE 2

Comparison of Approximate and Exact Sampe Coherence Probabilities

^2 A Anh
y y arc tanhy z (a) P(z) (b) P(z) (c) P(z)

.50 .707 .881 -2.321 .010 .008 .008

.55 .74Z .955 -1.944 .026 .022 .022

.60 .775 1.043 -1.495 .068 .054 .054

.65 .806 1.117 -1.117 .132 .123 .123

.70 .837 1.211 - .628 .261 .251 .252

.75 .866 1.317 - .097 .461 .456 .456

.80 .895 1.447 .566 .714 .710 .707

.85 .923 1.603 1.362 .913 .916 .910

.90 .950 1.832 2.531 .994 .995 .992

2 = 0.70, n= 15, p = 4

(a) Gaussian Probabilities Obtained Using Eqs. (12) and (13)
for Variance and Bias. Bias = b = 3/24 . 125,
Standard Deviation = a- = 12 = .196

(b) Gaussian Probabilities Obtained Using Digital Computer
Fitted Median Bias and 95th Percentile Variance

(c) Exact Probabilities Obtained Using Tables of Reference I

14
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5. CONFIDENCE BOUND EXAMPLES

The transformation which is a reasonably accurate normal approxi-
2

mation for moderate values of true coherence (0.4 < y < 0.95) and also

useful for more extreme values is given by Eq. (2).

-1 A 1 +A
z =tanh y = -in A2 A1 -Y

where A is the positive square root of sample coherence. In Section 4,

it has been empirically determined that z is approximately normal with an

approximate mean value

1= In + L + (15)
z -Y + 2(n-p+l)

where y is the square root of true coherence. The variance of z is

approximately

2 kk= I for p = 2

z 2(n-p+k) k= 2 for p>2

From the above equations, if one selects a confidence level (I -a)

and is given a value of -y , then

+• . Z. I - a (17)

where Zl a/z is the (1 - a/2) percentile of the normal distribution.

Let ti be broken into two parts

2 l-y

b= p-
Z(n-p+ 1)

21



Then, Eq. (17) can be rearranged to give (1 - a) confidence bounds on y

which are defined by the inequality

tanh (z - b - ZI -a/2 rz) < <_ tanh (z - b + Zl1 a1 2 ') (18)

To employ the foregoing equations in developing confidence bounds for

the various types of coherence, certain adjustments must be made in the

parameters n and p. The adjustments are discussed in Reference 3, and

will be reviewed here. First, define p' = the total number of variables being

considered, n' = BT as the number of degrees-of-freedom in the associated

spectral analysis. (In many documents, the number of degrees-of-fr,,edom is

defined as n = 2BT exactly double the value used here. One must use care in

comparing degree-of-freedom parameters from such documents with this

report. )

(1) For general multiple coherence between one output variable

and p' - 1 input variables, set n = n' and p= p'.

(2) For marginal multiple coherence between one output variable

and p' - 1 - q input variables (q variables being neglected in

the relation). set n = n' and p = p' - q.

(3) For conditional (partial) multiple coherence between one

"conditioned" output variable and p' - 1 - I "conditioned" input

variables (the linear effect of I variables has been subtracted

out), set n= n'-i andp= p'-l.

(4) For marginal conditional multiple coherence between one con-

ditioned output variable and p' - I - I - q conditioned input

variables (the linear effect of I variables has been subtracted

out and q variables are being neglected), set n = n' - I and

p = p' - I - q.

For example, for ordinary coherence between one input and one

output, set p = 2 and n = n'. For partial coherence between one input

and one output where the effects of a second input are subtracted out, set

p 2 and n=n'- 1.

22



Note that the effect of the adjustment in the decrees-of-freedom will

be small for small p' and large for n' , say n' > 30. TLe bias correction

is also minor for many practical purposes for small p' and large n'. For

example, for y = 0. 9 (y 2 0. 95), p = 2, and n 25, the relative bias is

b 0.02
t0.014 = 1.4%

The bias increases at least linearly with p. Hence, for larger p, the

percentagewise effect becomes significant.

The use of Eq. (18) is illustrated in Figure 9 and Table 3. The

99% confidence limits for n = BT = 50 and p = 2 are plotted and tabulated

A2there. The dashed lines for the confidence limits where y is less than

0. 3 is to indicate that the approximation is becoming unreliable in this area.

In order that the general shape of the approximate and true confidence limit

curves may be compared, true values are presented in Figure 10 for

n = 21 and p = 2. The values for these curves are obtained from the

tables of Reference 1.
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S8 Upper confidence
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.4-

3

Lower confidence limit ofy2

* 1 ~ .....- onfidence limits become unreliable
in this area

0

.z .3 .4 .5 .6 .7 .8 .9
A

Figure 9. 99% Conlidence Limits for Ordinary and Partial Coherence;
n = 50, p = 2. Obtained by Using Equation (18)

TABLE 3

Confidence Limits for Ordinary and Partial Coherence

. 2  .3 .4 .5 .6 .7 .8 .9

Upper 99% .31 .49 .58 .66 .74 .81 .87 .94
LimitLower 99%

Limit .04 .11 .19 .29 .41 .54 .67 .83
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Figure 10. Exact 99% Confidence Limits for Ordinary and Partial Coherence;
n = 21, p = 2 Obtained from Tabulated Distribvtion Function of

Reference I
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6. CONCLUSIONS AND RECOMMENDATIONS

A useful normalizing transformation for sample multiple coherence

has been empirically developed. The computational effort required to

perform the transformation is reasonable and allows the use of Gaussian

probability distribution tables.

Several aspects of the transformation are not completely resolved

by this empirical approach. The transformed variable is biased. The

numerical behavior of this bias has to a certain extent been determined as

a function of degrees -of-freedom n and number of variables p. This

behavior can be approxirna ted in a manner which is satisfactory for multiple

coherence roughly between 0, 40 and 0. 95. However, unexplained numerical

behavior of this bias occurs when multiple coherence is close to 1. 0. Also,

as multiple coherence approaches zero, the bias seems to exhibit singular

behavior which is more or less expected from theoretical considerations.

The variance of the transformed variable was empirically developed

as a result of this numerical study. This experimentally determined variance

is useful for about the same ranges of the parameter values as for the bias.

A theoretical study to attempt to determine precise analytical

behavior of various transformations of sample multiple coherence would be

a fruitful undertaking. A study of this sort would allow more confidencc to

be placed in the reliability of transformed values. The functional forms of

the bias and variance could be determined to extend the usefulness of trans-

formations to a wider range of parameter values.

The multiple coherence function is closely related to the multiple

correlation coefficient of classical statistics. Hence, it is expected that a

detailed theoretical study would parallel that performed by Hotelling for the

correlation coefficient (Reference 4). There seem to be many complications

which enter into an examination of coherence that do not occur for the

correlation coefficient. However, the results of such a study for coherence

would provide useful information.
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