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FOREWORD

This report was prepared by Measurement Analysis Cornoration,
Los Angeles, California, for the Aerospace Dynamics Branch, Vehicle
Dynamics Division, AF Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio 45433, under Contract No. AF33(615)-1418. The
research perfcrmed is part of a continuing effort to provide advanced
techniques in the application of random process theory and statistics to
vibration problems whichis part of the Research and Technology Division,
Air Force Systems Commands exploratory development program. The
contract was initiated under Project No. 1370, '"Dynamic Problems in
Flight Vehicles," Task No. 137005, "Prediction and Contro! of Structural
Vibration. ' Mr. R.G. Merkle of the Vehicle Dynamics Division, FDDS,
was the project engineer.

This report covers work conducted from March 1964 to January
1965. The contractor's report number is MAC 403-07. Manuscript
relc .sed by authors February 1965 for publication as anAir Force Flight
Dynamics Laboratory Technical Report. One of the coauthors of this
report, Dr. N.R.Goodman, is a mathematical-statistical consultantto
the Measurement Analysis Corporation.

This technical report has been reviewed and is approved.

WALTER Y ow

Asst., for esearch & Technology
Vehicle Dynamics Division

AF Flight Dynamics Laboratory
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ABSTRACT

This report describes the results of an empirical study
to develop a normalizing transformation for sample multiple
coherence. The "Fisher z-transformation' is employed. The
expected value (includinga biasterm)and variance of the trans-
formation have been experimentally determined. Numerical
“values of the transfermation which is developed (including the
bias term and variance) may be obtained with a reasonable
amount of computation. Tables of the Gaussian distribution
can then be used to obtain confidence limits and perform sta-
tistical tests.

The computational methods and the digital computer
program used for the study are described in detail. Flow
charts of the program are given. Numerical results from
the program results are presented. Examples of the use of
the transformation are given for developing confidence limits
for multiple coherence. A recommendation for a further
theoretical study is presented.
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1. INTRODUCTION

In measuring coherence when moderately long or long records are
available, one often has the "effective degrees-of-freedom'' parameter n > 20.

A large set of tables consisting of nine volumes has been developed by the
Rocketdyne Division of North American Aviation. These tables provide the
sampling distribution of coherence when the effective degrees-of-freedom is
roughly less than 20, and when the number of variables involved in the
coherence relation is less than eleven. This set of tables is listed as
Reference 1 in this report.

In regard to many practical applications, it is desirable to have a tract-
able and reasonably accurate approximation to the distribution of sample
coherence for n > 20. Such an approximation is especially needed for the range
20 <n <150. The degrees-of-freedom parameter in practical spectral analysis
often falls in this range, and hence the degrees-of-freedom for coherence
functions obtained from the spectral analysis also falls in this range.

The object of the study described in this report was that of obtaining a
Gaussian distributed approximation to sample coherence. A reasonable approxi-
mation which has a roughly Gaussian distribution has been empirically obtained by
a digital computer numerical analysis. This approximation appears to be useful
in the range where true coherence varies from roughly 0.4 to 0.95, and the
degrees- adf-freedom parameter is larger than 20. A slightly more complicated
version of the transformation involved in the approximation gives corrections
which extend the usefulness of the approximation down to approximately a true
coherence value of 0.1, and to the degrees-of-freedom parameter as low as 10.
The approximation developed is very useful in that the need to have a large set
of tables available for many practical applications is eliminated. One instead
can substitute a table of the Gaussian distribution function which is widely and
conveniently available, A certain amount of computation is necessary in order
to transform the value of sample coherence to the approximately Gaussian distri-
bution variable; however, the amount is not unreasonable, The transformation and

the empirical procedures used in obtaining the final version will now be described.




2. THE NORMALIZING TRANSFORMATION

The probability density function for sample coherence is given by the

following general formula:

I'(n)
'(p-1) I'(n-p+1)

-2
Z)n <

C(x|n, py2) = (1 - (1-3"PF(n, nip-1:y°x) (1)

(0 £ x<1)

where
r = effective number of degrees-of-freedom (d.f.)
p = effective number of records
2 _
Y = true coherence

02

X =Y sample coherence

F(n, n;p-l;yzx) = hypergeometric function

A closed form expression for the cumulative distribution function corresponding
to Eq. (1) is known. The closed form expression is, however, intractable for
n in the range desired. That is, the computational requirements to obtain a
numerical value for a specific n requires more than a reasonable amount of
computation. Recursion relations on n have also been developed. The tables
described in Reference 1 were computed using these relations. These recursion
formulas are suitable for obtaining results for n+1 in terms of the results for
n. However, they are not suitable for directly computing a numerical value for
any arbitrary value of n.

The asymptotic (n approaching infinity) distribution corresponding to
Eq. (1) has been investigated, However, comparisons with the existing tablcs
of Reference | indicated that approximations based on such asymptotic theory
would be far from reasonably accurate for 20 € n < 150. Other preliminary
studies have indicated that simplicity and reasonable accuracy may be achieved
by a ''mormalizing" (Gaussian producing) transformation of the form described

below.




Let

z=-;-ln lf : - tanh™' Vx (2)
L1, (lty ), -1
L= 5 zn(l : Y)- tanh”" (y) (3)

In Eqs. (2) and (3), x = /y\ = '\/ sample coherence and y = '\/ true coherence.
The random variable z is, to a close approximation, normally (Gaussian)

distributed N(, 0-2). The mean u is given by an expression of the form

S a—)
n—L+n_p+k = { + b(y) (4)
and the variance by
2 1
7 " 2n-p+k) (5)

In Eqs. (4) and (5), the constant k and the function f(y) are not yet specified.
The choice of the form of the transformation given by Eq. (2) is motivated
by a comparison of multiple coherence with the multiple correlation coefficient
of classical statistics. When this transformation (termed the 'Fisher z-
transformation'') is applied to the ordinary correlation coefficient, one obtains
a variable which is normally distributed to a very high degree of accuracy.
Biases do exist in the transformation of the ordinary correlation coefficient, but
they are usually negligible for practical purposes. However, for the case of
multiple coherence, the transformation by itself is not quite so suitable. The
bias term denoted by b(y) can be significant. One of the major objects of the
study described in this report was to determine the numerical behavior of this
function b(y) and to determine if it could be represented by a reasonably simple

form.




The asymptotic (n approaching infinity) distribution of the random variable
z is normal with a mean of { and a var .ance of 1/2n, provided y # 0. Initial
comparisons which were made with tabulated results indicated, however, that
for n near 20, the asymptotic distribution is still a far from acceptable
approximation. One may view Eqs. (4) and (5) as giving finite corrections to
the asymptotic distribution of the random variable z. For various hand calcu-
lated examples, correctiuns of the form indicated by Eqs. (4) and (5) were intro-
duced and acceptable approximations to the distribution of sample coherence were
obtained. These hand calculations motivated the performance of a more compre-
hensive examination by means of a digital computer program.

The object of this program was to determine if z is a useful transformation
for coherence when suitable bias and variance terms were introduced. Thus,
determining the form of the bias b(y) and the value of k which would {it in the
expressions for the mean and variance were to be determined by the digital
computer program. The next section of the report describes the computer
program which was written, and the section after that presents the results which

were obtained.




3. COMPUTATIONAL PROCEDURES

The basic method of determining the accuracy of the normalizing
transformation was to compute results using the transformation and compare
them with the existing tables of sample coherence. Thesc tables are avail-
able for n up to roughly 20. It is assumed that if an acceptable transformation
is determined for this small n, then the transformation will also be accept-
able for larger n. It was decided to determine the bias of the transformation
by comparing the deviation corresponding to the 50% point (m=dian) of the
sample coherence table from that corresponding to the true value of
coherence. It was also decided to establish t.ie variance for the transfor-
mation by comparing the 95% point of the distribution. That is, for a
Gaussian distribution the 95th percentile should be 1. 645 standard deviations
away from the mean. Therefore, the difference between the 50th and 95th
percentiles was set equal to 1. 645 standard deviations. This allowed the
determination of the variance.

After the bias and the variance were determined, comparisons for
several probability points were then made of the hypothesized normally
distributed transformed values with the exact tabulated distribution values.

To be more specific, the computational steps proceed as follows.

(1) Select a valus YZ of true coherence.

(2) Search the appropriate table of sample coherence for the 50th
percentile of the distribution of Ql given yz. This procedure
actually requires interpolation in the existing table. This inter-
polation was performed using 3 point quadratic interpolation

defined by the equation

(p-pl)(p-p3) A2 (p-p,)(p-pz) A2
v ! Ya

+

50 Y 6
. (pl -pz)lp, *93)

(Pz‘Pl)(PZ°P3)




In Eq. (6),

p = .50
P » P, Py are the three distribution function values

which bracket p = .50

arc the arguments corresponding to the

distribution function values P 2 Py and p..

{3) The bias at the 50% point is then determined by transformiag
tke 50% point of sample coherence and comparing that with the
transformed value of the true coherence. That is, b 1is
defined by the equation:

20,50 ~ tanh” Vo.50 B
(7)
bias =z b = =z -

() After the bias is determined, then the variance is determined

N2 .
Y95 '8
obiained by interpolation with a formula the same as Eq. (5),

by a similar procedurc. First, the 95th percentile,

but with the following quantities replacing those in Eq. (6).

p=.95

Py: Pgs Py are the three distribution function values which
bracket p=.95 (these replace pi, i=1,2,3 in
Eq. (6).

N2 2 A2 .

y4 ’ QS , Y6 are the arguments corresponding to Pys Py p6

2
and replace Iy\i , i=1,2,3.




{5 The variance for the transformed variable is then determined

from the following relation

2 | %95 %50
°A T 1. 645
Y

(8)
Points on the normal distribution function with a mean

= L +b= (9)

z
Po 7 ° 0.50
and a variance determined Sy Eq. (8) are next computed for

values of QZ in the range 0. 05 to 0.95 in steps of 0.05.

(6) Since the asymptotic form of the variance of the sampling
distribution of the transformed coherence is of the form
2 .
o = 1/2n, it was decided to obtain an "effective' number of

degrees-of-freedom n, from the relation

n = (10)

(7)  Finally, the probability values which have been computed, the

bias, and the effective degrees-of-freedom are printed out.

For a given degrees-of-freedom parameter n and a given number of
variables p, the above procedure was repeated for values of true coherence
ranging from 0, 00 to 0.90 in steps of 0.10, and from 0.91 to 0.99 in steps
of 0.01. It was also suspected that the results would vary roughly as a
function of the square root of n, . Hence, 24 cases were run with '\/-;x;
running from roughly 2.0 to 4.5 in steps of about 0.5. The cases w'.ich

were actually run are given in Table 1 below. In Table I, ne =n-p+tl.




TABLE 1

Values of n and p for Which Computer Computations Were Performed

Vn, 1.7 2.4 3.0 3.5 4.0 4.4,4.4,4.3
n, 3 6 9 12 16 19,19, 18
n, p 4, 2 7, 2 10, 2 13, 2 17, 2

5, 3 8, 3 11, 3 14, 3 18, 3 21, 3
6, 4 9, 4 12, 4 15, 4 19, 4 22, 4
7, 5 10, 5 13, 5 16, 5 20, 5 22, 5

This selection of values of n and p provide a coverage of the existing tables
for 2 < p <5 and allowed for the investigation of the behavior of the
approximation under a reasonably wide range of values of n.

A flow chart which outiines the computational procedure used is given
in Figures 1 and 2. The polynomial approximations given in these figures
for the Gaussian distribution function were obtained from Reference 2. These
approximations were checked with existing table values, and agreement was

found out to at least five decimal places in all cases.




Interpolate ? 2 table Interpolation
.4 AL subroutine
to find ¥, 59 p=0.50,i=1

v

-1
z = tanh

A
0. 50 ¥0. 50

{=tanh vy
b=25 595

Interpolate {(\2 table Interpolatior\
. A2 subroutine
to find Yy, 95 p=0.95,i=4,
L J
2, 95 = t3BR Yy o5
2 2 2 {%0.95" %0.50 ¢
Yy +0. 10—y o = .1645.
1
2+ 0. 0lmay® e 2
20
Compute / .
f } G ) Gaussian
aussian e et s
no . distribution
x = 0,00 deviate ]
P (5 subroutine
Gz
x + 0. 05— 'J[
] X-2
pplilz!;t ;)u; yes % >0.95 7)0° = - 0. 50
G " -
Figure 1. Over-all Computation Procedure
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Interpolation
subroutine

|

(P-Piy ) (P-Pyyy
(P.-P; ) (P, -P;,5)

(p-p;) (p-P,,,)

(P;41 7Py (Py41"Piy)

(p-pi) (p-piH)

(Piyp-P Py ooPiy )

Return

Gaussian
distribution
subroutine

Iz/2|= X

(_ X 2 ;3/’ —

!

yes

Ll. OﬂPG(z)

X = & ———a X

|

14
PG(Z) =

b,
i=0 !

X

i

[1+PG(z)]/2

[1- PG(z)]/z

—_— P (z)

G

PG(Z)

1 N

Figure 2. Interpolation and Gaussian Distribution Subroutines
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4. NUMERICAL RESULTS

As a general statement, the comparison of the probabilities obtained
with the Gaussian approximation (transformation) with the bias and variance
adjustments incorporated, agreed with the existing multiple coherence tables
to two or three places for fairly large degrees-of-freedom. For smaller
degrees-of-freedom, the probabilities were still often quite close except at
times toward the tails of the distribution. Even here the errcrs were seldom
worse in magnitude than 0.0! or 0. 02. The actaal computer output of all the
probability values computed is very ext=nsive, and the cowaplete results are
not included in this report in the interest of economy of space. Howeuever, the
bias values obtained for all the cases are plotted in Figure 3 through Figure 8
{located at the end of this section) along with two approximations to the bias
correction described below. Also, an example of the agreement in probabilities
is given later in this section.

An analysis of the numerical values obtained for the effective degrees-
of-freedom n, obtained via the variance fitting computations indicates that

a reasonable value to use for n_ is given by

n-1 » p=2&
n, = (11)
n-p+é , p>2
and the variance is
a'2 = l/Zne (12)

This value becomes less accurate as coherence and degrees-of-freedom
become smaller and as p becomes larger. However, it is a quite satis-
factory approximation in tne range of roughly true coherence between 0. 4
and 0. 95.

11




A very simple straightforward constant bias correction, that is, one

which is not a function of the true coherence is given by the formula

- p-1
b= Smopr 1) (13)

This value is plotted in Figures 3 through 8 as the constant line. From this
it can be seen that for fairly large degrees-of-freedom this value of b is a
quite satisfactory approximation for the bias for true coherence values of

roughly 0. 4 through 0. 95.

One comment should be made about the plots of the bias correction
at this time. From the general theory of the approximations, one would
expect the singularity which appears to occur near true coherence equal to
zero. However, there is no immediate explanation for the apparent singu-
larity which occurs at true coherence equal to one. This leads one to
believe that the erratic results obtained as true coherence approaches
closely to one may actually be due to computational noise. That is,
certain computational instabilities could possibly be occurring in this area
which would result in the unexpected results obtained here. This problem
has not yet been resolved. Further theoretical studies will tend to shed
more light on this question. A modified bias correction gives somewhat
better results for lower values of true coherence and lower degrees-of-

freedom. The correction is given by the formula

-1 1 1
by {v) = ezt e D
(14)
-1 1
YT BT

This equation is plotted as the dotted lines on Figures 3 through 8. Note

that this bias correction has the disadvantage of having true coherence

12




appear in the formula. The true coherence will, in general, not be known
and hence one would have to use either an estimated value or a value of the
sample coherence. The use of this formula would still be more likely to
provide a slightly better bias correction term than that given by Eq. (13).
Again, further theoretical studies concerning normalizing transformations
for coherence would tend to resolve this question.

The plots given in Figures 3 through 8 depict empirically the behavior
of the bias term b(y) defined by Eq. (4). Two approximating forms for b(y)
have been given by Eqs. (13) and (14). It is this empirical behavior whose
analytical form should be determined. The ccmputer output for n, = (n-p+k)
as defined by the variance formula, Eq. (5) ie not presented. Equation (11)
summarizes the values of k which were determined as suitable approximations
from the computer study.

A typical example is illustrated in Table 2 of the agreement between
the sampling distribution probabilities obtained in three ways: (a) the approxi-
mation using the bias correction of Eq. (13) and the variance of Eq. (12),

(b) the digital computer fitted approximation using the median bias (see
Figure 6) and the variance determined from the 95th percentile, and (c) the
exact probabilities obtained from the tables of Reference 1. The case chosen

is for yz =0.70, n=15, and p = 4.

13
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TABLE 2

Comparison of Approximate and Exact Sampe Coherence Probabilities

e £ |arctanh? z (a) P(z) | {b) P(z) | (c) P(z)
.50 | .707 .881 | -2.321 .010 . 008 . 008
.55 | .742 .955 | -1.944 . 026 . 022 . 022
60 | .775 | 1.043 | -1.495 . 068 . 054 . 054
65 | .806 | 1.117 |-1.117 132 .123 123
.70 | .837 | 1.211 |- .628 .261 . 251 . 252
.75 | .866 | 1.317 |- .097 . 461 . 456 . 456
.80 | .895 | 1.447 . 566 .714 .710 .707
.85 | .923 | 1.603 1.362 .913 916 .910
.90 | .950 | 1.832 2.531 . 994 .995 .992

2
y =0.70, n=15, p=4

(a) Gaussian Probabilities Obtained Using Eqs. (12) and (13)
for Variance and Bias. Bias = b = 3/24 =.125,
Standard Deviation = o = 1§26 = .196

(b) Gaussian Probabilities Obtained Using Digital Computer
Fitted Median Bias and 95th Percentile Variance

(c) Exact Probabilities Obtained Using Tables of Reference 1

14
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5. CONFIDENCE BOUND EXAMPLES

The transformation which is a reasonably accurate normal approxi-
mation for moderate values of true coherence (0.4 < YZ < 0.95) and also
useful for more extreme values is given by Eq. (2).

z = tanh-l(y\

where ’y\ is the positive square root of sample coherence. In Section 4,
it has been empirically determined that z is approximately normal with an

approximate mean value

l+y+ p-1

1 -y 2(n-p+1l) (13)

1
= 2 In
where y is the square root of true coherence. The variance of z is

approximately

2 ! k=1 for p=2

z 2(n-pt+tk) (16)

k=2 for p>2

From the above equations, if one selects a confidence level (1 - a)

and is given a value of yz , then

P[pz - Uzzl-a/Z < z < “x+czzl-a/2]= l - (17)

where 2 is the (1 - a/2) percentile of the normal distribution.

l-a/2
Let o be broken into two parts

Ll 1ty

L=z T
-1

b_Z(n-p+l)
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Then, Eq. (17) can be rearranged to give (1 - a) confidence bounds on y
which are defined by the inequality
tanh (z - b - 2

Y < tanh(z-b+ Z (18)

l-a/ZGz) < l-a/ZO-z)

To employ the foregoing equations in developing confidence bounds for
the various types of coherence, certain adjustments must be made in the
parameters n and p. The adjustments are discussed in Reference 3, and
will be reviewed here. First, define p'= the total number of variables being
considered, n' = BT as the number of degrees-of-freedom in the associated
spectral analysis. (In many documents, the number of degrees-of-fr.edom is
defined as n = 2BT exactly double the value used here. One must use care in
comparing degree-of-freedom parameters from such documents with this
report. )

(1) For general multiple coherence between one output variable

and p' -1 input variables, setn=n' and p = p'.

(2) For marginal multiple coherence between one output variable
and p'-1-gq input variables (q variables being neglected in
the relation), setn=n' andp=p' - q.

(3) For conditional (partial) multiple coherence between one
""conditioned'' output variable and p' -1 -1 "conditioned" input
variables (the linear effect of £ variables has been subtracted
out), set n=n'-4 andp=p'-{.

(4) For marginal conditional multiple coherence between one con-
ditioned output variable and p'-1-1-q conditioned input
variables (the linear effect of £ variables has been subtracted

out and q variables are being neglected), set n=n'-2 and

p=p'-2-q.

For example, for ordinary coherence between one input and one
output, set p=2 and n=n'. For partial coherence between one input
and one output where the effects of a second input are subtracted out, set

p=2 and n=n' -1,

22




Note that the effect of the adjustment in the derrees-of-freedom will
be small for small p' and large for n' , say n' > 30. Tle bias correction
is also minor for many practical purposes for smail p' and large n'. For

example, for y = 0.9 (Yzz 0.95), p=2, and n = 25, the relative bias is

% - ?:-2?-: 0.014 = 1.4%

The bias increases at least linearly with p. Hence, for larger p, the
percentagewise effect becomes significant.

The use of Eq. (18) is illustrated in Figure 9 and Table 3. The
99% confidence limits for n= BT = 50 and p = 2 are plotted and tabulated
there. The dashed lines for the confidence limits where /Y\Z is less than
0.3 is to indicate that the apprcximation is becoming unreliable in this area.
In order that the general shape of the approximate and true confidence limit
curves may be compared, frue values are presented in Figure 10 for
n =21 and p=2. The values for these curves are obtained from the

tables of Reference 1.
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1.0 <
L] 9 -l
-8 1 Upper confidence
limit of YZ
.
.6 1
.5 1
.4 -
.3 ¢
Lower confidence limit of Y,
.2 4
e 4—a——Confidence limits become unreliable
," in this area
[ 4
0
.2 .3 . 4 .5 .6 .7 .8 .9
A2
Y —-—-—-’
Figure 9. 99% Coniidence Limits for Ordinary and Partial Coherence;
n =50, p=2. Obtained by Using Equation (18)
TABLE 3
Confidence Limits for Ordinary and Partial Coherence
a2 2 1.3 .4 .5 .6 .7 .8 .9
U‘l’f’".”i 31| 49| .s8| 66| .74] .81 | .87 | .94
imit
Lower 9% o4 | .11 | .19 29| .| .sa| 67| .83
Limit
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Upper confidence
limit of y&

Lower confidence limit of yz

Figure 10. Exact 99% Confidence Limits for Ordinary and Partial Coherence;
n =21, p = 2 Obtained from Tabulated Distribrtion Function of
Reference 1
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6. CONCLUSIONS AND RECOMMENDA TIONS

A useful normalizing transformation for sample multiple coherence
has been empirically developed. The computational effort required to
perform the transformation is reasonable and allows the use of Gaussian
probability distribution tables.

Several aspects of the transformation are not completely resolved
by this empirical approach. The transformed variable is biased. The
numerical behavior of this bias has to a certain extent been determined as
a function of degrees -of-freedom n and number of variables p. This
behavior can be approxima ted in a manner which is satisfactory for multiple
coherence roughly between 0.40 and 0.95. However, unexplained numerical
behavior of this bias occurs when multiple coherence is close to 1. 0. Also,
as mu'tiple coherence approaches zero, the bias seems to exhibit singular
behavior which is more or less expected from theoretical considerations.

The variance of the transformed variable was empirically developed
as a result of this nuinerical study. This experimentally determined variance
is useful for about the same ranges of the parameter values as for the bias.

A theoretical study to attempt to determine precise analytical
behavior of various transformations of sample multiple coherence would be
a fruitful undertaking. A study of this sort would allow more confidence to
be placed in the reliability of transformed values. The functional forms of
the bias and variance could be determined to extend the usefulness of trans-
formations to a wider range of parameter values.

The multiple coherence function is closely related to the multiple
correlation coefficient of classical statistics. Hence, it is expected that a
detailed theoretical study would parallel that performed by Hotelling for the
correlation coefficient (Reference 4). There seem to be many complications
which enter into an examination of coherence that do not occur for the
correlation coefficient. However, the results of such a study for coherence

would provide useful information.
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