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ABSTRACT*

A method of solution to the buckling problem for shallow

viscoelastic shells is presented. The arches are considered

to be pin-ended at rigid supports, of arbi.trary initial shape

but of uniform cross section, and made of an arbitrary linear

viscoelastic material. The lateral loading may be an arbitrary

function of both position and time.

Specific solutions are given for several arches to point

out the influence of the material bnd of asymmetries in the

initial arch shape on the deformation and buckling time of

the system. Two types of viscoelastic material, the Maxwell

Fluid and the three parameter solid, are included in the exam-

ples.

The viscoelastic property of the material in the analysis

is expressed in integral operator form, which is shown to

lead to simple numerical time integrations in determining the

arch deflection, as well as maintaining the form of the gov-

erning equations that determine stability in the same general

form as the equations of an elastic arch. The method of so-

lution takes into account the fact that the arch may buckle

in either a symmetrical or an unsymmetrical mode.

It is seen that arches composed of a viscoelastic solid

The results communicated in this paper were obtained in
the course of an investigation conducted under Contract
Nonr 225(69) by Stanford University with the Offi.ce of Naval
Research, Washington, D. C. Reproduction in whole or in part
is permitted for any purposes of the United States Government.
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material may, if the load is not too great and constant for

time large, reach a final unbuckled position as the time

becomes very large. If this is the case then it is shown

that the time integration that previously required numerical

integration can now be approximated analytically. Several

examples are given.
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NOTATION

A cross-sectional area of the arch

A am v/ T- dimensionless coefficients in theAm = m  I

Fourier expansion of the initial arch shape

B=b(T) , dimensionless functions of time

in the Fourier expansion of the arch position

C constant

E elastic modulus

E(t) relaxation function of the viscoelastic material

E = E(O) , initial modulus

EF = E(co) , final modulus

E(-n - 'nl)-E

E*( Tn 1 ) n n-l 0
n- 2E°

H(t) = { for t< 0 ,unit step function1for t >_

I arch moment of inertia

L span of arch or column length

M(x,t) moment on arch

P concentrated load on column or arch

-F
Pcr' rcr critical values of P that cause buckling

(t) arci thrust

R m(t) dimensionless load parameters in the Fourier
expansion of the lateral load

Ru(T),Rs(T ) critical values of R1(T) that cause buckling

ARm psuedo load used to check stability

S(-r),Sm(T) dimensionless time functions that depend on the
previous history of the arch deflection
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a dimensionless coefficients in the Fourier expan-
sion of the initial arch shape

bm(t) dimensionless time functions in the Fourier ex-
pansion of the arch position

f(Prt) dimensionless time function depending on the
viscoelastic material and the column load

q(x,t) lateral load

2vEI -
qo- - , a constant with the same units

L as q(x,t )

t time

x,y cartesian coordinates

y(x,t) position of arch centroidal axis

Yo(x) = y(x,o-) , initial position of arch

6P 6(t) midpoint deflection of arch or column

6o 0initial position of midpoint of arch or column

C, Co E(t) strain

distance of a material point from the centroidal
axis of the arch

Iviscosity of dashpot in material models, units

of FT/L2

a, a(t) stress

= t/relaxation time of the material, dimension-
less time

vi



Chapter I Introduction and Summary

Whenever a structure or structural member is subject

to compressive loads, the possibility of an instability type

of failure must be considered. Many structures, when loaded

to a critical state, will undergo a marked change in the

magnitude and character of their deformation, which is not

the result of any failure or alteration in the mechanical

properties of the material. Such a change generally occurs

because one mode of deformation becomes unstable and the

structure deflects to another, stable mode. This change is

termed buckling, and the loading associated with this criti-

cal state is most generally called the buckling load. How-

ever, there are many structures for which a well defined

buckling load does not exist. For these structures the use-

ful load carrying ability must be based on other factors,

such as maximum allowable stresses or deflections.

Structures that are made of materials which do not ex-

hibit any time effects have a buckling load that is inde-

pendent of time provided the load is applied slowly enough

so that the response can be considered as static. However,

v.LasCoelast ic structures, because the material exhibits time

or memory effects in that the strain is a function of the

stress history, may have a buckling load that is a function

of time even for a quasi-static analysis of the problem.

Moreover, for structures that exhibit no well defined buck-

ling action, viscoelastic material properties can greatly
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influence their load carrying ability, especially if the de-

formations tend to reduce the stiffness of the structure.

Buckling occurs most often in structures that have at

least one dimension small in comparison to the other two;

for massive structures not falling into this class, material

failure more commonly provides the critical condition on the

magnitude of loading. An explanation of why this is so can

be seen by investigating the relationship between elastic

stability theory and linear elasticity theory. In elasticity

theory, the equations of equilibrium are written for the body

in its undeformed state. If the body is massive it cannot

undergo large deformations without large strains, and since

elastic strains for most engineering materials are very small

it is concluded that the deformations must be very small and

can be neglected in writing the equations of equilibrium.

This approach then leads to the linear equations of elasticity

which have a unique solution, and as such cannot describe a

stability problem. By contrast, in stability theory the e-

quations of equilibrium must be written for the body in its

deformed state. Slender bodies can undergo large deformations

without producing large strains, and consequently the defor-

mations must be accounted for when writing the equilibrium

equations, since they are no longer restricted to being small.

It is possible to distinguish several different kinds

of buckling, depending on the type of structure and the man-

ner of loading. By far the most widely studied type is the
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so-called classical buckling, an example of which is the

centrally loaded straight column. A second type is snap-

through buckling, which occurs in structures whose resistance

to an increase in load decreases as the loading or the de-

formations increase. An example of this is the laterally

loaded shallow arch, the analysis of which, for the visco-

elastic case, forms the body of this dissertation.

The classical buckling problem of the centrally loaded

straight column, as well as the problem of the initially im-

perfect column which has no well defined buckling load, has

been studied in detail for both elastic and viscoelastic

materials (see references [1]1 through [9]). Because there

are essential differences in the responses between an elastic

and a viscoelastic column, the results of some of the above

references will be outlined here.

Consider a centrally loaded straight elastic column as

shown in Fig. l.la. As the load P increases the column

remains perfectly straight until P = Pcr * 6 P = Pcr

the column may deflect laterally as shown in Fig. 1.1b, and

any value of 6 is an equilibrium position. P, is then

the critical load at which a change in deformation may occur.

1Numbers in square brackets [] refer to the list of

References.
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P 60

(a) (L) (c)

Fig. 1.1

The solid curves, OAB and OAC of Fig. l.lc show the

load vs. lateral deflection parameter 6 , where 6 is the

value of the deflection at the midheight of the column. At

the point A there exist two different equilibrium paths of

deformation. This condition is referred to as a bifurcation

of the equilibrium deformations, and is characteristic of the

classical type of buckling, although other kinds of buckling

may exhibit the same phenomenon. Pcr is defined as the

classical buckling load for this structsu.e, gL" given by

[1] as

Pcr - ir ' (1.1)
or L2

where E is Young's modulus of the elastic material, I the

moment of inertia of the cross section (assumed independent

of x ), and L the column length.
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If it is assumed that the column has some initial im-

perfection, which is a much more realistic approach than

assuming a perfect column, then the load vs. lateral deflec-

tion parameter 6 is given by the dashed curve OtAICI in

Fig. 1.1c. Let YO(x) be a measure of the initial imper-

fection, then

Yo(X) = y(x) when P = 0 . (1.2)

As y(X) - 0 the load deformation curve OtA'Cr approaches

the curve OAC but never OAB ; thus for a non-perfect

column the load deformation relation always has a unique

one-to-one correspondence. There is no bifurcation point

and no well defined buckling load. However, as can be seen

from Fig. 1.1c, the classical buckling load P of the
cr

perfect column serves a very useful purpose for the non-

perfect column, in that as P -+P cr the ratio 6/8o in-

creases very rapidly. Thus Pcr may be considered as an

upper limit of useful loads that can be supporte hy the non-

perfect column. As will be shown, the same cannot be said

about the critical buckling load of a perfect viscoelastic

column, whose analysis follows.

Consider a centrally loaded straight viscoelastic column

loaded as shown in Fig. 1.1a. If the column does not buckle,

the only deformation is a shortening of the column due to the

uniform axial load. If buckling is to take place, the lateral

motion must be governed by the instantaneous modulus of the

material since there is no motion in this direction before
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bjkling. Based on this the buckling load for a perfect

viscoelastic column is

P v-E(O)1 (1-3)
! P~cr L

' where E(O) is the instantajneous elastic modulus of the

viscoelastic material, and is defined as the modulus govern-

ing the stress immediately af'ter the material has been sub-

jected to a suddenly applied strain.

If now a non-perfect viscoelastic column is considered,

the lateral deflection is given as a function of time, ini-

tial imperfection, and load. The general features of the

response of a non-perfect column to a load that is suddenly

applied and then held constant can be brought out by a

quasi-static linear analysis of a column whose initial im-

perfection consists of a lateral displacement in the form of

a half sine wave.

For the column as shown in Fig. 1.2a, let

I''

yo(x) = 6 sin -1

be the displacement before the load is applied, and

, ,4- ~~ I f1 VJ

the total displacement after loading.

-6-
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From the solution given in [2] for several different

viscoelastic materials, it is seen that the displacement

can be expressed as

1

y(x,t) - 1-P/P yo(x) f(Pt)

or (1.6)

6(t) = 6f(P
1/ cr 0 -t

where Pcr is given by equation (1.3).

The function f(P,t) represents the time response of

the viscoelastic material. If for convenience we assume

the load is applied at t = 0 , then

f(Po) = 1 (1.7)

and we have from equation (1.6)

y(x,o) y(x) (1.8)

which is identical to the results for an elastic column anal-

ysis [1], using the same assumptions. It is obvious that as

P -+Pcr the displacement increases very rapidly, and thus

"cr is an upper limit on the loads that may be supported for

a very short period of time.

The character of the function f(P,t) depends very
F

strongly on the load P . Let P be defined as the longor
time critical load, which is given by

F 7r 2EFI

cr L2  (1.9)
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where E is the long time or final modulus of the viscoe-

lastic material, and is defined as the modulus governing the

stress for an infinitely long time application of a constant

strain. A viscoelastic fluid is characterized by having

ER = 0 while for a viscoelastic solid 0 < E, < E(O)

These properties are more fully described in Johapter 2.

ForF rPe> r F f(P,t)--+o as t-+ , (1.10)

and for
F I-P/Pc

p < per F f(P,t)-k F as t-. o. (1.11)
ol-P/Pcr

F
Thus it is seen that for loads P > P , the column iscr

essentially unstable as the deflection keeps increasing in-

definitely, while for loads P < PcrW the column is stable

in the sense that the deflection remains finite. Fig. 1.2b

shows a qualitative plot of the column deflection vs. time.
F

The curve for P K Pcr is asymptotic to the dashed line

6(t) = 1 while for P F p < p the dashed line
= l cr < <cr6o l-P/P cr

has no significance whatsoever. It is apparent from Fig. 1.2b
'4

that loads in the range Pcr < P < P can be supoortedcr o Pr cnb u re

for a short time, but for long time loading it is necessary
Fthat P < P

cr

Comparing then the results of the elastic and visco-

elastic analysis, it is seen that the critical buckling load

of a perfect column, Pr serves as an upper limit for

-9-
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the safe load that can be supported by an elastic column,

even if the column is not perfect. However, for the visco-

elastic column, P serves as an upper limit only for theCr

perfect column and for very short duration loadings of the

imperfect column. If the load is to be applied for a long

time to a viscoelastic column, then even for an infinitesi-

mally small imperfection it is necessary to restrict the load
F

to be less than P Fcr

A major problem in describing the behavior of an imper-

fect viscoelastic column occurs because in the analysis there

is no natural criterion with which to associate failure other

than the fact that for some load conditions the displacements

become infinite. However, the displacements approach infin-

ity only as the time also approaches infinity, and so this

does not provide a unique measure of the column response for

different viscoelastic materials. Thus, in t'-ie sense of

some natural criterion, a finite critical buckling or failure

time does not exist for any value of the load below P cr

[4], [8].

The second kind of buckling to be considered is of the

snap-through type as exhibited by a shallow pin ended arch

of uniform cross-section, loaded as shown in Fig. 1.3a.
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P

(Pcr)D
L Pl ''Pcr c

X 6

0

(a) (b)
Fig. .

In discussing the response of such an arch it is convenient

to consider a loading consisting of only a concentrated load

P as shown, although all the remarks carry through for dis-

tributed loads as well. The deflection of the midpoint of

the arch under the load is designated by 6(t) ,thus

6(t) y y0&) - y(Lit) r (1.12)

, , Y(L.t 1 .. 1

00

and 60= L
)y(()) (1.13)

The load-deflection response of an elastic arch [11]

is given in Fig. 1.3b. Curve A corresponds to an arch

whose initial rise-to-span ratio, 6r/L ,is such that its

load deflection curve has a horizontal tangent at the point
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6/60 = 1 , while curve B represents an arch whose ini-

tial rise-to-span ratio is less than that of the arch repre-

sented by A . For these two cases the load deflection re-

lation has a one-to-one correspondence and there is no in-

stability for any magnitude of the load. A physical expla-

nation for this behavior is that because the arches are so

shallow, the resistance to deformation by bending is much

greater than that due to the axial thrust, and so the loss

of the resistance by the axial thrust as the deflection in-

creases is more than offset by the increase due to bending.

Curves C and D represent arches which are perfectly
L

symmetrical with respect to the line x = 1 , and whose

rise-to-span ratios are greater than those of A . In these

cases there is a range of loading where the deflection is

a multivalued function of the load, and so there is more

than one equilibrium position for every value of P . For

these cases then there is a well defined buckling load as

shown by (Pcr)C and (Pcr)D in Fig. 1.3b, for at these

loads the respective arches undergo a finite deformation,

as shown by the dashed arrows, to a new stable equilibrium

position.

Curve C represents an arch whose initial rise-to-span

ratio is such that when the arch buckles, the deformations

in going from the unbuckled to the buckled state are symmet-

rical, as shown in Fig. 1.4a. Curve D then represents an

arch whose rise-to-span ratio is greater than C , and

-12-



which buckles unsymmetrically as shown in Fig. 1.4b.

arcli shape during buckling

orebuckled

post-buckled
position

(a) Symmetrical nuck±lng (b) Unsymnetricai buckling

Fig. 1.4

The term snap-through can readily be seen to be a good

description of this type of behavior, as the structure

under a dead load would physically snap through to the

post-buckled position.

For the case depicted by curve C the equilibrium

deformation path (curve C) is seen to be a continuous

curve with no bifurcation points. However, the equilibrium

deformation path for case D consists of the curve D

plus the dotted portion as shown in Fig. 1.3b. The dotted

portion corresponds to symmetrical deformations, which are

equllbrLum deformations but are unstable. Thus at

P = (P cr)D there is a bifurcation point, just as there was

with the perfect column.

The load deformation curves for imperfect arches, that

is, arches whose loading or initial shape is not symmetrical
L

with respect to the line x 2 , are shown in Fig. 1.5

-13-



with the dotted lines the corresponding curves for the sym-

metrical arches. (For discussion purposes here it is assum-

ed that the non-symmetry is caused by the initial shape, and

that this non-symmetry could be expressed by the second mode

of a Fourier sine expansion of the initial arch shape.)

P

D

(P)

Fig. 1.5

The equilibrium deformation paths as shown are now all

continuous with no bifurcation points, but there still exist

well defined buckling loads (P c )C and (Pr)D . This is

crCccrD

in contrast to the imperfect elastic column which has no

well defined buckling load. Following the terminology in

[17], unsymmetrical buckling at bifurcation points will be

termed transitional buckling, in order to distinguish it from

unsymmetrical buckling where there are no bifurcation points.

Buckling where no bifurcation point is present will be termed

non-transitional.

-14-



In this thesis a solution is given of the viscoelastic

arch problem. It is found that the response of a viscoe-

lastic arch is in many ways s'milar to an elastic arch. If

the arch is very shallow then there is no instability;

higher arches may buckle in either symmetrical or unsymmet-

rical modes, depending on the loading and the initial rise-

to-span ratio. The main effect of the viscoelastic material

is to permit the deformation to increase with t4me, even for

a constant load P . This essentially decreases the stiff-

ness of the arch in resisting additional load increments,

and consequently decreases the buckling load. Thus it is

possible for a constant load P to be stable at one time,

but at some later time unstable.

In contrast to the response of a viscoelastic column,

the viscoelastic arch buckles at a finite time if it buckles

at all. For a sufficiently small load and a viscoelastic

solid material the arch may always be stable, or it may be

so shallow to begin with that instability does not occur.

It is this latter case that most closely resembles the col-

umn response, since the arch deflections may keep on in-

creasing indefinitely without buckling action if the visco-

elastic material is of the fluid type. Another difference

between the viscoelastic arch and column response is that

for an imperfect arch whose non-symmetry is of infinitesimal

magnitude, the buckling load and buckling time is different

from the buckling load and buckling time of the corresponding

-15-



perfect arch only by an infinitesimal amount. It was seen

earlier that for P > P crF , the response of an imperfect

viscoelastic column varied widely from the perfect column

no matter what the magnitude of the imperfection.

The analysis as given in the main text is valid for an

arbitrary initial arch shape (provided the arch is shallow),

arbitrary lateral loading, and any linear viscoelastic mater-

ial. Because numerical methods are required in the solution

of the governing coupled non-linear integral equations, it

is possible to use directly measured material properties in

their numerical form.

The buckling criterion used in the solution is based on

stability with respect to infinitesimal displacements about

an equilibriu posi.ion. At any instant of time the response

to an instantaneous displacement is governed by the initial

modulus of the material, and so the stability can be investi-

gated in the same general manner as the stability of an

elastic arch, provided the time history of the deformation

up to that instant is known. The theory also takes into

account the possibility of buckling by the two different

mechanisms, the transitional or non-transltional modes of

fatlure.

The constitutive relations of the linear viscoelastic

material are expressed in integral operator form (see Chap-

ter 2) by the use of the relaxation modulus E(t)



t

(t) = E(t - t')d- e(t)dt , as opposed to the dif-

ferential operator approach (P(a(t)) = Q(e(t)) , where

P and Q are linear differential operators in t) . For

the arch problem, which is geometrically non-linear, th-

integral operator representation of the material offers

several advantages over the more common differential operator

representation. These advantages do not hold for the visco-

elastic column problem since the column problem has a govern-

ing equation which is linear. The most widely accepted method

of solving linear viscoelastic problems is by the use of

the Laplace transform [13], and in the transform problem

either representation of the material properties gives ex-

actly the same result.

Some of the advantages of the use of integral operator

relations in the arch problem and in general are:

(a) the relaxation modulus can be measured directly

by experiment.

(b) the general form of the governing equations remains

the same as for the elastic arch problem. This allows the

same type of stability analysis and affords a gocd physioal

understanding of the viscoelastic effects.

(c) the numerical integration is simplified. This is

especially true if the material is quite complex, and would

-17-
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require the use of high order differential operators if this

approach were used.

Curves showing deformation vs. time for various load

levels and buckling time vs. load are presented for two dif-

ferent materials. No attempt was made to give results for a

wide number of situations; the examples were chosen so as to

show the effect of some asymmetry in the structure or its

loading, and to illustrate the basic difference in response

between viscoelastic solid and fluid materials.

Arches made of viscoelastic solid materials may, if the

load is small enough and constant as t-* o , approach a final

stable equilibrium position. The equations governing the

equilibrium position in this case reduce to the elastic

equations with a modulus of elasticity of EF ; these are

algebraic equations and can be solved to find the final e-

quilibrium position. The value of the final equilibrium

position can then be used to evaluate the integrals in the

equations that govern the buckling action, and this reduces

these equations to algebraic equations. It is then possible

to determine the additional load 1,a , cl c z hase bcling

at this time. Unfortunately the algebraic equations may be

of quite high order and even for the simplest case the ad-

ditional load cannot be expressed in explicit form. However,

this method can be used to determine the instantaneous buck-

ling load of an arch which has reached a final position with-

out needing to know the entire relaxation function E(t) of

-18-



the material or the time history of deformation. All that

is required is the instantaneous modulus E(O) and the final

modulus EF , which could actually be determined from the

final position of the arch if this were known.

Results for this long time problem for several valuee

of' the final modulus and various loading conditions are given

to compare the long time buckling load to the instantaneous

or elastic buckling load.

Considerable work has been done on the so-called creep

buckling of columns. Creep buckling is usually concerned with

materials whose constitutive relations are non-linear, as

opposed to the linear constitutive equations used in linear

viscoelasticity. Most existing creep laws do not represent

instantaneous and retarded elasticity as well as viscous flow

which are all properties of linear viscoelasticity; however,

for metals it is generally agreed that the non-linear creep

laws give a better representation of the material behavior.

Hoff [16] gives a survey of the theories of creep buckling

up to l958.

Pian [10] has given an analysis for the creep buckling

of a uniformly loaded arch using a 2-element non-linear Kel-

vin model to represent the material. By linearizing the model

his problem reduces to the linear viscoelastic case. The

Kelvin model is not a particularly good representation of

material behavior, but because of its simplicity Pian is able

to get a numerical solution for both the linear and non-linear

-19-



cases. However, his solution does not take into account the

possibility of transitional buckling, and for cases where tne

transitional mode gives the critical buckling load or buck-

ling time, Pian's results predict larger values.

-20-



Ch:puer IT LIi.t- ' Vi co'utlcst c Ma'e-,l:1 L;

Viscoelastic mter!'ils are ch1-r r_ , ,*; tii,1., prop-

erty to deform with time under the nction of - given loadr..

In linear viscoelastic material, in prrticull'r, the con-

s;titutive relation is such that the ratio of stres.to tr:,i1

,it amy i1'> -, S contant 1ndI p d;rJPnt of the m,.giJitu'i- o1'

the stress and strain.

In general two independent material functions j r,, -

quired to dcflhc" coinpleteiy a homogeneous, isotroplc visco-

etaOstic rxlterIil in the same manner th;t two indeptider t

matet,itu] ro. tnts are required to deflne a correspondilig

e lp s t ic m~u' i . However, i tht. work tr t L(foLlou , onr 1

one material function need be consicered because of the one-

dimensional nature of the problem. For more general visco-

elastic an:lysis see Bland [12] or Lee [151.

For this problem the most convenient formulation of the

stress-strain relation is by the use of the relaxation mod-

ulus E(t) , which is defined by the relat~on

E(t) = t (,, I)

where o(t) is the stress resulting from an anlied stra:in

6(t) = oH(t) . (22)

0, t K 0

IH(t) is the unit step tunctlon H(t)
1, t > 0



Since the material is considered linear this relation must

hold for any value of c . E(t) _ 0 for t < 0 since

the material is assumed to be undisturbed for t < 0 .

The general form of E(t) is the same for all materials.

There is an initial discontinuity at t = 0 , and the func-

tion then decreases monotonically to some final value, as

shown in Fig. 2.1.

E(t)

Fig. 2.).

The "initial modulus" of the material is defined as E
1o

where E0 = E(O + ) l. Similarly the "final modulus" is de-

fined as EF where E = lim E(t)
tt -F F

Linear viscoelastic materials fall into two general

classifications, fluids and solids. For a fluid EF = 0

whereas for a solid EF > 0 . A simple model representation

IA variable written as t + refers to the value of thisvariable at t + c , and t- = t - ,where e is a

positive infinitesimal quantity.

-22-



of' a fluid is the Maxwell model, Fig. 2.2, in which a lin-

ear dashpot is c'onneoted in series to a linear spring.

E 0

1 + E(t)

Fig. 2.2 Maxwell Fluid Model

Let t represent real time, then for the Maxwell

fluid E _

E(t) = E e ' . (2.3)

Define a dimensionleLss time parameter T as

E
- t (2.4)

Tii

and redefine the relaxation modjlus as

E e -  
. (2.5)

E
0 is termed the relaxation time of the Maxwell material.

The simplest model representation of a solid material

that exhibits an initial modulus is the three parameter solid

of Fig. 2.3.
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C+Ft t. rI

(E1 ~ 1_+ EE0  ( e l

t EEE+E

Thte characteristic relaxation time is 1 0 and so
T1

let E + E
Ir = . (2.7)

The fir~al modulus is clearly

EF lim E(t)E 1+0 (2.8)
t _*10 0

In its most convenient form the relaxation modulus is

then written as

E()= E0 e- + E (1 - e-T) .(2.9,)

The essential difference in the model for a fluid or

4 solid is that for a fluid there is at least one dashpot con-

nected in series, whereas the dashpots in a solid material



are always connected in parallel with a spring.

In the work that follows the time parameter T is al-

ways used. For real materials with measured relaxation prop-

erties, it is necessary to choose a characteristic relaxation

time in order to define a dimensionless time parameter, but

this can always be done. Lee and Rogers [14] discuss the

use of measured material functions in stress analysis prob-

lems.

Since the stress-strain relations are linear the prin-

ciple of superposition is valid and the stress for a smooth-

ly varying strain can be represented by the integral

a(-) E - ) de()de (2.10)

Such an integral is known as a Duhamel integral, and the

kernel E(r) is related to the Green's function of the dif-

ferential operators that can alternately be iosed to express

the stress-strain relations.
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Chapter III General Analysis

Consider a shallow pin-ended arch of uniform cross-

section loaded as shown in Fig. 3.1. The lateral load

q(x,r) always remains lirected parallel to the y axis.

Before the application of the lateral load the arch is con-

3idered to be unstrained and the location of its centroidal

axis is given by yo(x) . Under the action of the lateral

load the centroidal axis will be displaced to a new position,

and let this be denoted by y(xt) . Without loss of gen-

erality we can assume q(x,T) =0 for T < 0 , and so

y(x,o-) = yo(x) (3.1)

becomes the initial condition for y(x,) . P(T) is the

axial force induced in the arch by the end reactions and

is directed as shown.

Assuming that Iyol and jyf are much smaller than

L , that the curvature remains small at all times so that

Xis negligible in comparison to 1, and that the

thickness of the arch is much smaller than its radius of

curvature; then the usual beam theory gives

= T°(-) - (Y( 2 , 
) , (3.2)

where c(x,C,T) is the strain of a longitudinal fibre of

the arch located the distance ( from the centroidal axis

as shown in Fig. 3.2, and eo (T) is the strain of the cen-

troidal axis which is assumed constant along the length of
-26-



y erntroidal axis of arch

qi'('r)

y ,z

-T

F.L. 3.2
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the arch. This assumption relies on the fact that we are

considering a shallow arch and that we also assume the axial

force in the arch to be independent of x The moment

M(x,) as shown in Fig. 3.2 is given by

- M(x,) - .fj a(x,",-)dA ,ff (33)

A

where the negative sign is introduced to set up tne sign

convention that positive moment causes compressive stresses

on the positive C side of the arch.

Now introduce the constitutive relation based on equation

(2.10)

-= fE(( - (x,C, ) f (3.4)
0-

and substitute this into equation (3.3), which gives
T

-M(x,) ffE( - ) (x,,)d dA (3.5)
A o-

Interchanging the order of integration and using equation

(3.2) results in the moment-curvature relation

T

+ M(x,'r) = JE (T d (3.6)

where I=fj 2dA ,and ff CdAo

A A

The moment-load relationship, using simple arch theory,

is

-28-



2  
- .-.)--...'(rAT~x,-.. - q(x, r) (3.7)x 2  x 2 ',•

for the loads as directed in Fig. 3.1.

Since the arch supports are assumed rigid the projected

length L of the arch must remain constant, thus

L 2 2

0 = - d(x) + - C dx)} dx ,(3.8)
0

where the integral in the above expression is Lo a first ap-

proximation the change in projected length caused by the de-

flection.

The axial force p(T) is given by

P(T) = -ffa(x,C r)dA

A

and by using equation (3.l) this becomes

P(-r) = - dA- ) d

A -

lf the order of integration is interchanged and equation (3.2)

is substttuted into the resulting equation, it then yields

"E(T f(f [ w - X'-)dA de

O A

IrIA- (39)

0-

-29-



since A =ffdA Now by using equation (3.8) we can ex-

A

press P(T) in terms of the position of the arch; thus
TL 2

p - E AT -y x( d . (3.10)

0 0

If equation (3.6) is differentiated twice with respect

to x and substituted into equation (3.7), we have

I- ) d ax 2= () - q(x,T)

IfE( 4( (xr 2

By using equation (3.10), P(T) in the above equation can

be eliminated which results in

A~ ) 2E 0(T
2L f X( dx d

00

+ I E(- t) YX )d - q(x,-) (3.11)

0-

the governing integro-differential equation for the arch.

The boundary conditions are

y(o,)" y(L,) = 0

2 (3.12)}2y(° '-r) - 2y(L, ) = 0

x2 x2

and the initial condition is

y(x,o-) = yo(X) (3.13)
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If y0 (x) and y(x,T) are expressed in a Fourier sine

series, this will satisfy the boundary equations (3.12), and

allow the space derivatives in equation (3 .' t be removed.

Thus let
yo(x) Z a L sin m ,m=l m L

and

y(x,t) = Z b (-r)L sin m-x (3.15)
m=l m L

where a is a dimensionless constant and bm (T) is a di-mm

mensionless function of time.

It is convenient also to express the lateral load

q(x,T) in a Fourier sine series; thus

q(x,T) = qo0 Z R m (T) sin mr (3.16)

m=lL

where Rm() is a dimensionless function of time and qo

is a constant having the same dimensions as q(x,t) .

Substituting equations (3.14), (3.15) and (3.16) into

equation (3.11) gives

7m2 b.,(T) sin T E(- )d_ L Z kb( de
2.-' V" m=l A, - - V k

z d 2 mbm (e) sin } de+ 0(- - L3 m=l

O-O

=- qo Z Rm(T) sin-- , (3.17)0M=l L

-31-
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whereL x 7

ax- dx =T 7 mb (-C) Cos -- j dxJ , : "M M"
0 0

v2 L 2 2
2 Z k (, )k=!

because of the orthogonality property of the cosine functions.

Interchanging the order of integration and summation in

the second term of equation (3.17), and rearranging results in

Z sin L mw bnMb(t) fE ( -d7 1 k b2(
M~l k=l

0

4 d ~+ R( ) =L--_E( 7)d bm(e) de + qoRm(T) 0

0

Because the sine functions are orthogonal over the interval

o to L each coefficient of sin mvx in the series must
L

vanish, and so

.2 7- .. (- J_." -4 d[ f 2 2:'
0

+m 4z E(T - d bm(e) d - qoR

Co

m = 1, 2, 3

It is now convenient to introduce new notation to sim-

plify the above equations. Let

-t



A B LT A~ b andM 2V m m2 /1 Tbm(T)
4A

2v4E I

0

Substituting these into equations (3.18) results in

't" T

E2 ( a- d Bm( )dE + Bm(t) E 0 - d k2B B 2 ()de

0- 0 O_ 0 k=l

R(T

2 m = 1, 2, 3 .... (.19)
m

with the initial conditions

B i(o-) Am  ; m = 1, 2, 3 .... (3.20)

Here E(r) , R m() and Am  are known in the problem

and it remains to find B(T) and determine the stability

of the arch.

The loading function R () will normally be discon-

Anuous at T = 0 (since Rm (T) =-C for T < 0 ), and

since we are assuming quasi-static response B (T) will alsomI

be discontinuous at T = 0 as long as E 0 . It is con-0

venient to remove this discontinuity at T - 0 by performing

the integration in two steps, from 0- to 0+ and 0+ to

. Thus equations (3.19) become

-33 -



m2 E(r T - d 0

E d Bm ()d + B) ( f) -)Z k ()dJ+  0 0+  0 d k=l

+ m2 E(-T) (Bi(o+) - B (o-)

22

in k (o+) - k2Bk2(o-)
+Bn )Eo \k=l k=l

m2 m=li, 2, 3...

m

Integrating the above integrals by parts, and by using

the initial conditions as given by equations (3.20), yields

Bm(T) { m2 + Z k2( 2(B )- Ak)k=l k

in 0+

+ f El(-r-3k - e A2d

0+  Eo k=l k

m 2o + Eo Md

m --" i, 2, 3 .... (3.21)

where the prime denotes differentiation with respect to the

argument, i e. E'(T - ) dE(-c
• • = d (, "

At T = 0+ ,equations (4.21) reduce to



B(0 0 ) -2 =2 + m 2

m2+ k k2(B 2(O+) - A 2~) F*M(0+)+ 2A
k=1

m 1, 2, ... (3.22)

which correspond exactly to the equations of the purely e-

lastic arch of modulus E0  [11].

Equations (3.21) are an infinite system of coupled non-

linear integral equations, and as such give very little en-

couragement for finding a closed-form solution. However, it

is possible to integrate these equations numerically, since

it will be shown that as long as the arch is stable any mode

that is not excited, i.e. A = R (,r) = _u , will have only
m

the trivial solutioni Bm('r) = 0 . Thus, as long as only a

finite number of modes are excited, our system can be reduced

to considering only tnis finite number plus one more.

To integrate equations (3.21) numerically, replace the

time integrals with a step-by-step sun,..ation. Therefore,

let 'in = -r (-° = 0+) where n = the number of time steps

required for the time to progress from 0+ to T

Then
n =l =i+l n-2 i+l n (3.23)fn- = f +

0d+ IO irO Tii Cn-1

By using a simple trapezoidal approximation, the convolution

type integrals we are concerned with can be expressed in

the following form:
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E Eo

E('rn- ri) - E(n- if r(Ti) + f
F

i + l  (324

E o  2

Applying equations (3.23) and (3.24) to the first inte-

gral in equations (3.21), one gets

f Elcck2(B2() 
-,)d

O 0 2~
E(' .O~l) Eo '(B2Bk (  1 +1 2)Eo2 /

n-2 E(-r - - E(-- +l k + 2
+ z n o n( .__I + k -

i=O E 0 k12

2
SE* (' n ,  "Trn~) Z k Bk 2('-n)+ S(T ) (3.25)

k=l n

where E( r - tn 1 ) -

n , Tn-1) = (3. 26)
0

and



n- k (k(n - 2 A k)

n-2 E(-r ',) Pn -i+)( B ))

,, z k ( i + Bk ('rl)2Akk "'"
i=0 2E oC I 2 r-k-~

0

(3.27)

Similarly the second integral in equations (3.21) gives

n (- . (€E) - A)d = E*(Tn , nml)B(Tn) + Sm(Tn)
O+ 0

(3.28)

where

Sm( n) = E*(T n  Tnl)(Bm(Lnl) - 2AM)

n-2 E(T - Ti) - E(Tn- )(Bin m
+ i+l(B() +

i~l 2E
0

(3.29)

Thus, by substituting equations (.25) and (j.29) into equa-

tions (2.), one obtrsins

)4n +E*( n , Tn_ ( B, 2(' - + S(n

Bn rk=l n k=l

Rm ( n) 2 2S
- 7- + M2A - m (rn m = , ... (330)

-: 7-
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flow

For n = 0 (T =0+), equations (3.30) reduce to equations
(3.22).

Assuming that the arch has been stable up to and in-

cluding T Ln- , then at the next time step, T = n

Sm ('1n) and S( n) are known, since they contain only the

previously determined values of B(-n) . Thus B (Tn)
m n m nl

can be determined from the system of equations (3.30), and

a check can be made of the stability of the arch at this

time.

For demonstrative purposes, two different loading cases

will be considered. The first is a sinusoidal arch with a

sinusoidal load, i.e., Am = Rm (-) = 0 for m > 1 , so

that only the first mode is excited; the second case will

have an additional mode excited, i.e., one Am or R m() / 0

for m > 1 , in addition to A1 and RI() / 0 . The sec-

ond case can then be generalized to include any number of

excited modes.
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Chapter IV Sinusoidal Arch under Sinusoidal Loading

Consider the simple case of a low sinusoidal arch sub-

jecrced to a sinusoidal load distribution, then

Yo(x) = alL sin =A 2W sin-0L 1 AI  Li

(4.1)

q(x~t) = qRl(T) sin -r- R R ( r)  0L / i

o L 4 A L

then reduce to

B1(-n)[(1 + E*(tnIn_1))(I + k2Bk2((-rn))
1

- A 2 + S( n)] = - (Tn + A1 - Sl(n)

B2 (r4n) l + E*(, nn- 1 ))( 4 + k 2Bk2(rn))

- A1 2 + S(n)] = 4S2 (n) (42)

B n)[( + E*(r ,Tn1 ))(m2 + Z k2Bk2(Tn))

-A + S (,n)J= - m2Sm ( Tn) where m = 2, 3, 4 ...

and for n = 0 these then become
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00 '; 2 - 2

(0 1+ 1 k2Bk(0+) - A, = - R!(O+) + A11

B L k2Bk2 2]

B_(O+) 4 + Z k Bk(0+) - A1 0 0

1 l

• (4.3)

2 0 2 21 =
Bm (0+)2 + 7-k (0+) - A1  =

Equations (4.3) correspond exactly to the elastic arch buck-

line problem and are discussed at length in [11]. One so-

lutio- of the system would have

B2(O+) = B3(0+) = B4 (O+) = ... =0

-1 (4.4)B(O+) + B(O+) - A1] =- Rl(O+) + A1  .

The relation between B- :O) and RI(O+) as given by

equations (4.4) is plotted in Fig. 4.1.

Depending on the value of A1 there are several pos-

sibilities. If A1 < 1 , the curve has a monotoric slope and

so there exists a unique one-to-one relation between B1 (O+)

and R1 (0+) . Thus for any giv loading there is only one

equilibrium position and the system is stable. If A1 > I

then for R,(0+) between the points b anO c there exist

three possible equilibrium positions. Assuming that

Bl() = A1 the stable equilibrium position of the arch is giv-
en oy the portion ab of the curve, provided RI(0+) < Rs(0+)
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R1 (0+)

A I

/A 1  71
B 1

Bi (o(1) (h)

Fig. 4. 1

R- l' -1+ ) -

R- \ s (0+ ) - - - /le
,., \ . Ru( + ) f

BI B -._ (0+)

v- 0)0( )

Fig. :.
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If R1(0+ ) > Rs(0+) the only equilibrium position is along

de . Thus it is apparent that, if the load is increased be-

yond RS(0+) the arch snaps thrcugh from b to d and fel-

lows the de portion of the curve.

The portion bc of the curve represents unstable equi-

librium positions, while along cd the positions are again

stable; however since the arch starts at a the portion ab

represents the stable unbuckled equilibrium positions, and

hence the point b is the critical point at which buckling

occurs.

R (0+) , which is termed the non-transitional bucklingS

load, can be determined by setting
dR (0+) d2Rl(O+)

dB(,0+) 0 < 0 (4.5)

ahich results in

(+) = A (A! - )3  A > 1 . (4.6)

Now a second solution of fne system of equations (4.3)

could exist. If one 3m(0+) in addition to Bl(O+) is dif-

ferent from zero, then the only two equations of the set (4.3)

not identically satisfied are

B1 (0+) 1 + B1 2 (0+) + m2Bm2 (0+ ) - A1 2] = - RI(O+ ) + A,

(4.71B o) + B1 (+ +-0+ A



This solution leads to the transitional buckling load if

Bm(0+) / 0 is found to be a valid solution. If it is not

a valid solution, then the arch will buckle in a symmetrical

mode and Rs(0+) will be the buckling load.

Since it is assumed that Bm(0+) 7 0 the second of

equations (4.7) gives

m2 + B1 (0+) + m2 B (0) - A1 = 0 (4.8)m1

At this point it is seen that only one BM(0+) in ad-

dition to Bl(O+) can be non-zero. If it is also assumed

that B (0+) / 0 , n / l,m then it is necessary thatn

m2 + BI2 (0+) + m2Bm2 (0+) + n2Bn2 (0+) - A12 = 0

and

n2 + B12 (0+) + m2B 2 (0+) + n2B 2(0+) - A12 = 01 m n 1

This clearly is a contradiction since n / m and so the

assumption that Bn(O+) / 0 is incorrect.

Substituting equation (4.8) into the first equation of

(4.7) results in

Rl ( O+) + A1
i~~~I M \jk1

m -l1

and then by using this result in equation (4.8), one obtains
2 2) 2% 2 (RI1(0+) A AI 2

m 2m (0+) - m' + A (4.10)
m 1 1
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Equatio. (4.9) is plotted in Fig. 4.2a as the full line, where

the dotted line is the same curve as that of Fig. 4.1. Equa-

tion (4.10) is plotted in Fig. 4.2b.

From Fig. 4.2b or equation (4.10) it is seen that

B (C+) has a real, non-zero solution only in a definite range

of 11(0+) , and for this solution to exist B1 (O+) must lie

on the straight line segment btc' of Fig. 4.2a. For

B (Cj = ) the solution for B1 (0+) lies on the dotted curve

of Fig. 4.2a. Thus for R1 (0+) < R u(0+) , B1 (0+) is given

by the curve ab1 , and Bm (0+) = 0 . For R,(0+) = Ru(0+)

the arch will snap through to the point d' , with B1 (0+)

following the path btctdt and B (0+) following either of
m

the closed paths fghkf of Fig. 4.2b. When B1 (0+ ) is on

the path b'c , B m(0+) is non-zero and the arch deflection

is unsymmetrical.

Thus we conclude that R1 (0+) = Ru (0+) the critical

transitio al buckling load. The lowest possible value of

R (0+) will occur when m = 2 is substituted into equationu

(4.9), and so the second mode will be the other non-zero mode

during the unsymmetrical snapping-through action.

In order for the arch to buckle unsymmetrically or as we

have defined it, transitional buciling, the point bt mu'1.

lie on the portion ab of the dotted curve of Fig. L.2a, o'h i;'-

wise b w1ill be the critical point and the arch will buckle

symmetrically. It is possible for bl to lie on that porr cnr

of the dotted curve thpt gocs from b to the R!(C+) axis.
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If this is the case then Rs(0+) is the critical load but

the deformation in going from b to d will be symmetrical

from b to b , unsymmetrical from bl to c' anc sym-

metrical again along c'cd . Since the critical load is not

changed from the symmetrical, non-transitional buckling load,

and since the buckling is initiated in the manner of symmetri-

cal buckling, it will be considered as non-transitional in

the remainder of this dissertation.

From equations (4.1k) and (4.9) it is seen that if

A1 > /5.5 , b' will fall on the portion ab and the

critical load will be R1 (0+) = R (0+) . Ru(0+) is deter-

mined by setting B (0+) = 0 in equation (4.10) which gives,

-or m = 2

R(0+) = A1 + 3 A 2 _. (4.11)

Thus The critical value of The loading is:

[Ro(0+c R /O+) A1 + (A 1  - )-

for 1 < A1 :_ /5.5

(4.12)

[Rl(O+)] = ii(O +) :A 1 + 3'A -4

for A, f .5

Now assuming that R1 (0+) < [Rl(0+ )lcr , i.e. the arch

is stable at c = 0+ , B1 (0 ) is givEn by the second of

equations (4.4) and B (O+) = 0 , m = 2, 3, 4 .... Thus
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the important conclusion is reached that, if the arch is

stable, the sinusoidal configuration is maintained.

Proceeding on to the next time step T = T1 , it is now

possible to calculate 3(TI) and Sm(TI) since the values

of B (0+) are known. Hence from equations (3.27) andm

(3.29) it is seen that S(t1) and S1(-r) are non-zero,

but that Sm('rI) = 0 , m = 2, 3, 4 ... , since B1 (0+) / 0 ,

B m(0+) = 0 for m = 2, 3, 4

Inserting these results in equations (4.2) gives, for

Tn = T1

+ E*((l 1,I+))Q+ O2B2(t1r) - A 2 + s(tI)

+ A -S (4.13)

Bm( [ + E*( ,0+)m2 + Z k2Bk2 rl) A12 + S(tl = 0k=1 T)- + S T

m = 2, 3, 4

Equations (4.13) can only be used to determine the sta-

ble equilibrium values of B(' I  under. the assumption that

the arch does not buckle unsymmetrically in a transi;ional

mode, and provided tnat an unbuckled equilibrium position

exists. Using the same argument as was zised for -r = 0+

this requires that

K / 4- l+- A 2 - SJ1( ) - "*(+,o+)]
'

1 + E*(TI,0+)

(4.14)
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If RI(-rl ) does not satisfy this inequality, then the

arch has become unstable sometime between i = 0+ and

= T , and has snapped through to a buckled equilibrium

position. However, if equation (4.14) is satisfied, the un-

buckled equilibrium ialue of B1 (-r1 ) is the largest root of

equations (4.13) when B (T = 0 , m = 2, , 4

Instantaneous changes in deformation are governed by

the initial modulus E ; equations (4.13) are not applicable

to this type of response since they are valid only for a

small step in a smoothly varying continuous change, and there-

fore they cannot be used to predict the stability of the arch

with respect to the transitional buckling mode. They are va)-

id in the non-transitional case since, to the accuracy of the

numerical work, they give the equilibrium position and if nc

nearby equilibrium position exists, then the arch must have

snapped through to its buckled position.

To determine if the arcn is stable at - = , it is

then necessary to look at the instantaneous response of the

arch at this time. This car be done by applying an additional

load, say I , at T = T, and then investigating the sta-

bility at T 1+ by considering the B (ri+) vs.

(R (-r!) + ) relations. In order that this additional

load not affect conditions at a later time it must be applied

for an infinitesimal time only, and in this respect it can be

considered as on imaginary or pseudo load used exclusively

for the determination o! stability.
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Thus under the assumptions that the arch does not buckle

unsymme~rically and that an unbuckled equilibrium position

exists, B1(-ri) is found from equatLons (4.13). It is then

possible to calculate S( 1 +) and Sm(-r1 + ) to be used in

investigating the stability at T = T1+ • By definition,

see equation (3.28)
1+ E'+

S (T +) + E*(T].+ 71)B( l+) f (E- (m) - A)dM E 06 - M)d

0+

however
1 E(Tl+ - Tl ) Eo .'E(0+) - EO

(71+1 = 2E 2E
0 0

and +

0 J

for the integrands considered here. Thus

s (T +) = -_((,r

ml 1 E r)m(E) - AM)dE

0+

and by using equation (3.28) again this can be written as

N

Sm (-t 1
+ ) S Si(- I ) + E*(T1,0+) B M( 1 ) .

A similar argument follows for S(- 1+) and so



= S(r I ) + E*(T 1,0+) BI2(-r)

S ( I
+ ) = S I ( - I ) + E*(T1,.0+) BI (T I ) (4.15)

S m(Tl+) = 0 m = 2, 3, 4

Substituting equations (4.15) directly into equations

(4.2), and noting the load at T = + is RI('I) +AR 1

gives

BI(tI+) +k 2k Bk (TI -A +2 STI

- (R~ 1 ) t~ 1)+ 1 -(4.i6)

B + Z k2 Bk2 ( l+) - AI 2 + S )
k=

m = 2, 3, 4.

Equations (3.30) would give the same result if it were

considered that Tn = 1+ Tnl = T . They have not been

used since it is ,esired that Tn - n-l be a finite time

step, ard It is convenient to write Tri+ - Tn as an infini-

tesimal step.

The investigation of equations (4.16) follows the gen-

eral procedure used in looking at equations (4.3). Again

two possible solutions exist and the load deflection relations

are plotted in Figs. 4.3a and 4.3b.
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T ~ + AR1 R + LR1

b / Rs  i

BI(-rl B, (rl) M"- " (l

The critical loads are given by

[R I ( I  + AR il cr =Rs (-l1+)

a- 1

A SI(T+I) b+ ) S(T1+) - 4

for A A12  -S(t+) > 5.5
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If R((TI+) < Rs (TI+) then the assumption that

the arch does not buckle unsymmetrically is incorrect, and the

arch has become unstable sometime between T = 0+ and T = Tl

Thus if r(I) < [R() + 1 , the assumption made
earlier regarding the existence of an unbuckled stable equi-

librium position is valid, and the arch is stable under the

load R1((T) up to and including T = T1 , for R1 (T) monotoni-

cally increasing. If R1((T) is a decreasing function of time,

there is a possibility of the arch becoming unstable between

T = 0+ and T = T 1 even if the analysis shows it to be sta-

ble at the two end times 0+ and T1  * Thus special care

must be taken in the choice of time steps to insure that this

does not occur. Of course if the arch were stable at the time

Tl + for a loading R1 (l) + n, = Rl(O+) , then this would

insure stability during tne interval 0+ to T1 .

Once stability is insured at T = T 1 it is possible to

compute S(r 2 ) , Sm(-r2 ) and proceed on to the second time

step, where once again the same analysis can be made to deter-

mine the conditions at that time. This process can be repeated

until the arch becomes unstable.

Fig. 4.4 shows the load deflection relation for par _

ular arch at severai instants of time, and illustrates very

clearly the effect of the creep on the response and buckling

load of the arch as the time increases.
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Chapter V Non-sinusoldal Arch

(V.I) Two modes excited

In the preceding chapter only the first mode BI (T) was

excited, and it was shown that if the arch was stable, all

other modes remained zero. Now consider an arch which has
th

one additional mode excited, say, the r mode. This re-

quires that Ar  or R r(T) or both be non-zero.

Equations (3.30) then become

Bl(n) [( 1 + E*(nT, n-))(1 + kVB k(T n) )
k=l

- A12_r 2 Ar2 + S(-C n)=R, (tn) +Ai S (T n)2 n

B rA rn)A[( + E*(Scnr; n-(r ) + n k B k n)
k=1

-AI 2  r 2 + R.n  = -r + r 2

and (5.1)

Bm(Tn) (1 + E*( n  m  + Z k 2 B (Tn)
m k=1 k n

2 22 2-A 1  rA r + S-(n m n

where m I !,r

For n = 0 these reduce to
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)R(O+) 
+ A 1

Br(0+) r2 + Z k2Bk2(0+) -A2 _ r2A - R + r2A
r k 1 rj r r

(5.2)

B (0+)2 -IM  2 k2Bk2(0+) - A 2 - r 2Ar2 =0

In Chapter IV it was shown that as long as the arch is

stable S (T) = 0 , where m is an unexcited mode. Assuming

that the same will hold true in this case and then proving

that the assumption is correct allows equations (5.2) to be

treated as a special case of equations (5.1) and so only one

analysis is required. Thus setting Sm(tn) = 0 in equations

(5.1) gives

Br( [)1l+ E* 1, 2l))(l + Z kcBk 2(Tn))

k=

)(ARr(rn) n) 3

A12 _r 2 A 2 + S(r)]n R( r A - S(n) I53

B-rn) + (Z k Bk

iii nk=l

- AI 2 - r2 A 2+ S( n)] = o m ,r
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As before, these equations should only be used to deter-

mine the unbuckled equilibrium values of B1 ('n) and

Br(Tn) if they exist, under the assumption that Bm (T) 0.

The system can then be checked at -r = r "' to determine

whether Bm (,n n 0 is a valid assumption under the loading

R 1 n ) and Rr(Tn)

Tne firs- two of equations (5.3) then become

- A12 _ r 2Ar2 + S( n )] = - R,(n + A1 _ S(-r) (5.4a)

Br (n) [(1 + E (Tn, nl))( r  2 + B + r2Br2(n ) )

12 22 Rr(-rn) 2 (

- A2 - r 2Ar 2 + S(n = r + (Ar - Sr(rn) ) . (5.4b)

By maintaining the terms common to the two equations on the

the left, equations (5.4a) and (5.4b) yield

(1 + E ,(n,-r n1))(Bl 2 ( T n) + r2B 2(n))- A1 2 - r2Ar2 + S(n)

- R1 (r) + A1 - SI(n)- (1 + E (n, 'tnl))
B1 ( n )

R,,Rr (
+ -(Tn ~r-) 1 + E (tn , 'ini))r2

Thus Br(-C) can be expressed in terms of RI(C n )
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r ( ) + r 2 (Ar - r(Tn))

r 2

Br (T -)  
(

R1 R(Tn + A1 - SI(rn) + (r2 - + E*(
B1 ('Tn)

(5.5)
Substituting this result back into equation (5.4a) to remove

Br(Tn) gives

BI(Tn) + E*((Tn,n-l)){l + BI 2 ( ,n )

+ r + (Ar S r ( n ]Bl(Tn)

( R1 ( n ) + A 1 -S1 (Tn) + (r2 -_)(1 + El(tni ,-_n)) Bl(n)2

-A 1 2  r 2 A 2 + S(,n)] = _ Rl(n) + A1 - S!(Tn) (5.6)

a fifth-order polynomial of B (-n )

Equation (5.6) is plotted in Fig. 5.1 as a function of

R1(n) , wnich assumes some functional dependence of Rr (Tn )

on R1 (-r) . If R)(Tn) < LRl(m) then an unbuckled

equilibrium value exists under the assumptions made so far,

and the stable BI( n ) vs. R1 (rn) relation would be

given by the curve ab of Fig. 5.1, which represents the

largest rLoot of equatLon (.6). B3f) can ten be deter-

mined by substituting this value of BI(t n) into equation

(5.5).
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R1

11
Bn)] n )

Fig. 5.1

-rj . .. .. .Z( , o ,i o { + 1 q (,r n

S,(-r ) ; and it. follows that Sm (T n 0 since ic was

assumed that B m(n) = 0 . Thus following an argument

similar to that used to derive equations (4.15) one gets
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S('r ) = S(Tn) + E*(Tnl_ ) (2 n ) + r 2 Br pd

Sl (1 n
+ ) = S! (-n) + E*(T n-i ) B1(' n )

(5.7)
Sr(n + ) = S r(r ) + E*(T nTn- )B r ( 'n ) f(

Sm(-rn+) -0 m / 1,r tv

Substituting these results into equations (3.12), as was

done before, and by noting that at T = Tn+  it is desired to

apply an additional load AR and ARr . it follows that

BIn +)[I + Z k 2Bk 2 (Tn+) A 1 2 - r 2 Ar 2 + S(Tn+)1

= 1 ( I Tn ) + AR1 ) + A1 -S l(Tn+ )

an
( () 2  o 2 2 S A 2 r 2a 2  3+(r r+, k nIr1 r + .(-r+)

(R(T) + r2(Ar - (5.8)

Eq,n) k22 - A 2  2 A 2 + ) = 0 E

B(r m2 + ZkBk (Tn+) - A, - r + S(- n

m/ r

It is convenient to consider as a function of 6R1

so that stability may be discussed with AR1  the lone inde-

pendent loading parameter. While this may not always be
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desirable, it seems a reasonable assumption to make at tnis

point.

In the investigation of the system of equations (5.8)

there are again two possible solutions to consider. The

first will be to assume Bm (Tn +) = 0 , which allows the first

two of equations (5.8) to be rewritten so:

B ( n +) 11 + B12 (Cn+ ) +

R (n ) + Rr) +2(A r - Sr(tn+ )B(rn+)
r2  r2

ri

- (Tn) + AR1) +A - S(n+) + (r 2 -l)B l(T )

-A1 2 -_ r 2A 2 + S~t) ~(- ) AR1) + A1  S1(
1r 1(' +A S(rn + )

and (5.9)

_) cr(n) 2+ ARr + r2 (Ar  Sr (n+))r2

-(R) 1 (T) + AR + A - Sl('rn+) 2
+ (r - 1)Bl1 (-Vn+)

Equations (5.9) and (5.10) are plotted as the fuil lines on
j r-.0a an c: 2b ...... 4 4 -.-,1--

_" ~ .&- &&A _ V- ,

The broken line cr in Fig. 5.2a is given by

B( n+) = ( -RTn) +__AR + A1 - S1 (-rn) (5.11)
i - r2
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which is found by setting the denominator of equation (5.10)

equal to zero. It can be seen from equation (5.9) that no

solutions of B1 ('rn+ ) will fall on this line except at the

singular point c , and thus all possible stable equilibrium

values fall below this line on the curve ab . Thus it is

concluded that Rl(Tn) + AR = Rs (Tn+) is the non-transi-

tional buckling load. [R!(rn)]cr as shown on Fig. 5.1 and

Rs(IL n+) on Fig. 5.2a are equal only if R1 (- n ) = [Rl(Tn)]cr

If the system is to have an unbuckled equilibrium value at

= n then it is necessary that

RI('rn) < [R 1 (n)]Cr < Rs(-rn+)

The other possible solution to the system of equations

(5.8) has one value of B( n+) / 0 , m 1, 2 . Thus the

third of equations (5.8) gives

m22 +B 2 (-r )) +rn 2B 2 (r+) AI2 _ r2A 2+ S(T+) 0m2+B2(n +  + r Tn m nr n

(5.12)

With the use of equation (5.12) the first two of equations

(5-8) become

- (R, + M,) + A, -

B ( + m2 (5.13)

and
(Rr (Tn) + r)+r2(A S(R( + + r2(A - S(-n+))

r 2mB r(-rn + ) = 2 _2 ' (5.14)
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Substituting these two back into equation (5.12) results in

m2 Bm2 ( )n ) )A 1 t
= m2 +A 2 +r A-S( )-((R l (() + 2-

2  
-

+ 2
r2  2 2 j r2A -1 (n + .A

r 2r 2 25r2 _m 2 •15)

If r = 2 , m > 2 and so the line given by equation

(5.13) would not intersect the cu.-ved segment ab of Fig.

5.2a, since its slope is greater than that of the line cr

Thus it can be concluded that, if r = 2, Bm(n+) / 0 is

not a possible solution and the mode of buckling will be non-

transitional (i.e. no unexcited mode will be present in the

collapse configuration).

If r > 3 , then m may take on a value less than r

and it may be possible to get a solution where Bm(-Tn+) / 0

is valid. Equations (5.13), (5.14) and (5.15) are plotted

as the dashed lines on Figs. 5.2a, 5.2b, and 5.2c respective-

ly, on the basis of r > 3 and m < r

As was the case for the sinusoidal arch with sinusoidal

load, if b' falls on the arc ab then the critical loading

is Ru(Tn+) , and by inspection of equation (5.13) it is seen

that m = 2 would give the lowest value of Ru (-r n+) . Un-

like the sinusoiaal case though, it is not convenient to

give R s(Tn +) and Ru (Tn+ ) in explicit form, since thisgniue
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involves the solution of a fourth order polynomial rather

than a second.

The conclusions to be drawn are:

1. If R(r n ) < Rs(Tn+) or Ru (T n+) , whichever is

smaller, then the arch is stable at T = Tn * Thus Bl('rn)

and Br(rn ) found from equations (5.4a) and (5.4b), with

Bm(-n) = 0 , are the stable equilibrium values.

2. Since Bm(T n ) = 0 as long as the arch is stable,

Sm(T n ) = 0 , and the assumption made at the beginning of the

chapter that this is so is then proven to be valid.

3. If the second mode is excitad, then any higher mode

not excited remains zero for all time, stable or unstable.

It is interesting to note the influence of an excited

nonsinusoidal mode upon the buckling load. If the second

mode is the one that is excited, then a very small amount

of asymmetry in the arch considerably lowers the critical

load. Fig. 5.3 shows a typical load deflection relation at

two different times, the dotted curve represents a sinusoidal

arch while the full lines correspond to the same arch except

that the second mode has been excited. It can be seen that

there is considerable difference in the critical load for

the two cases, and that the influence of this nonsinusoidal

excitation increases with time.

Fig. 5.4 shows the response of the same basic arch as

in Fig. 5.3 except that this case has the third mode excited

instead of the second.
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From Figs. 5.3 and 5.4 it can be seen that the effect

of exciting the second mode on the buckling load of the arch

is much greater than exciting the third mode. It can also

be shown that exciting higher modes, either odd or even, does

not have as much effect as exciting the second mode.

As the magnitude of the nonsinusoidal excitation decreases,

the load deflection curves approach the dotted curve of the

sinusoidal arch and the cr line. Thus in the limit as the

excitation goes to zero, the critical load for the nonsinu-

soidal arch approaches the critical load for the sinusoidal

arch, as would be expected.

Figs. 5.3 and 5.4 correspond to arches that have an

initial rise-to-span ratio such that the mode of buckling is

transitional, which requires that A12 - Sl(-r ) > 5.5

where T cr is the time at which the arch buckles. If

A1 2 - Sl( +) < 5.5 , the sinusoidal arch will buckle in a

nontransitional manner. Fig. 5.5 shows the response of

such an arch with higher modes excited.

It can be seen from Fig. 5,5 that, for A2 = A3 , the

effect of the second mode being excited is again larger than

the effect due to the third mode.
Comparisonof Figs. a . d 5.4 ""t 5-5 LU I

... .. ".. %ALL 5. E =Lu -hat ^or

A2 A
S= 3 = constant . the influence of the nonsinusoidal mode

A1 A1

on the buckling load decreases as A decreases. For the

elastic case [11] shows plots of critical load vs. A1  for
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A2  A3
various ratios of 2 and 3 and these show the above

1 A1

mentioned trend very clearly.

(V.II) Several modes excited

The solution of the problem is which many modes are ex-

cited, through either the initial arch shape or the loading,

is a simple extension of the case of two modes excited.

Equations (5.1) through (5.5) remain valid except that

r now stands for any excited mode except the first mode.

Equations (5.6) can then be written as

2B!(-r) (1 + En, nl).l + B1 (,n)

nkn ('n)

+ +k 2 2(Ak -Sk(')) Bl( r2
k=r RI1 ('rn) + A!1- S, (-cr) + (k- 1 ) (1 n E(n, nl ) i(

- A22 -k2Ak 2 + S(T] = - R1 (' nr) + A1 - S1 ('Ln) , (5.16)

a polynomial of B1(Tn) of order (2h + 1) , where h is the

total number of excited modes.

Equation (5.16) is plotted in Fig. 5.6. The dashed curve

in Fig. 5.6 is given by

2 2 12A2 + S(,) 1
BI(-n n + E*(T )(l -+ B- A kA

n ( n-1)(1+Bl+ AI ) 1 (j

R R nTr + A 1 - S,(t1 ) ,



R,4

RI

b er

Ila

F'g.- 5. 6

R,~~n + AR1

R (t)VU r 1

Fig. 5.7
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and it can be seen by comparing this to equation (5.16) that

all real solutions of equation (5.16) must fall within the

dashed curve as shown.

if Ri1 ( n) < [R1(Tn)] then an unbuckled equilibriumIfRITn <RL T cr

position exists and is represented by a point on the arc ab

B 1 n) can be calculated from equation (5.16) and the other

modes then calculated from equation (5.5). Following the

same procedure as was used when only two modes were excited

S(Tn+ ) , S1 (tn+) , S(-rn+) and Sm(Tn+) = 0 can be calcu-

lated, and equations (5.8) then give the governing system of

equations for the time T = Tn+ .

Again two possible solutions exist, the first with

Bm (Tn +) = 0 which gives

B1 ( n+ ) [l + B12 (r n + )

+7k ((k(2)+AR+ k2(A k  Sk(ne B (Tn+)

- A12- Z k2Ak2 + S(-n+ = - (R1 (rn) + "1)- A1 + Sl(tn)

(5.17)

and Br(c n+) as given by equation (5.10).

The second solution with one Bm(Tn+) / 0 has

B1('n) and Br(-n+) as given by equations (5.13) and (5.14)
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respectively, and B%(-,n+) is eoverned by

1 2 2 Akr&Bm (n) n m' + k S(r )

(R -n+ A~~k) +2
k 1  k 2 + k -(A Sk(Tn+ ))

- > KIC(5.18)I
k=l,r k2  m2

where m l.,r

If the second mode is excited, then as before Bm(-n+)

will always remain zero, but if the second mode is not ex-

cited, Bm('n+) / 0 where m = 2 may be a possible solution.

Fig. 5.7 shows equations (5.13) and (5.17) for the case

m = 2, i.e. the second mode is not excited, Thus if bi

falls along the portion ab as shown, Ru(Tn+) is the criti-

cal loading, but if b' falls along bc or does not exist

then R (T +) is critical... n

It can be seen that the only difference in the solution

of the case where many modes are excited, as compared to the

case of two excited modes, is that the order of the poly-

nomial that determines BI() , equations (5.16) or (5.17),

is raised by two for every additional excited mode. While

this raises the possibility of having more equilibrium posi-

tions, it is noted that these additional positions are not

unbuckled stable equilibrium positions, and so in the actual

evaluation of the critical buckling load they are not a factor.

The fact that the polynomial is of higher order causes some
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increase in the work required to calculate the unbuckled

equilibrium position, but this is the essential difference

between the two cases.

Figs. 5.8 and 5.9 show the ordinate B1((T) plotted

against T , the dimensionless time parameter, for a fluid

and a solid material respectively. Aside from the fundamental

difference in the two figures, caused by the fact that for

loads below a certain value the arch made of a solid material

reaches a stable equilibrium value as T - c , the response

of the two cases is qualitatively the same. It is to be

A2
noted that for small values of asymmetry Al < 0.001

the ordinate is nearly identical with that of the sinusoidal

case until the critical condition is approached, at which

time it starts to diverge rather rapidly with subsequent

failure.

Figs. 5.10 and 5.11 are plots of the critical buckling

time vs. the applied load for various amount of asymmetry in

the second mode. Of particular interest is the large decrease

in the critical time for very small amounts of this asymmetry.

As pointed out previously the effect of exciting the third

or higher mode ib not as great as exciting the second mode,

but the character of the response is the same as that shown

in Figs. 5.8 to 5.11.
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Chapter VI Long-time Solution for a Viscoelastic Solid

Material

If the arch is made of a viscoelastic solid material,

and the loading approaches a constant as T becomes large,

then there is a possibility of the deflection reaching some

final stable value as T - c .

Letting TP denote T as it becomes very large, equa-

tions (3.21) can be written as

Bm(,"F)

+ Z k F-Ak+) Z k 2 ( 2k=l (Bk or) k + 0 k=l k

00
= 2 + m m- fE (- Am d(6.1)

m om

m = 1,2,3, ....

In the evaluation of the integrals it is to be noted that

Bm( ) is essentially constant and equal to Bm(-F) for

e-+ F * For e small B() varies but E ( F - e) -- 0

since (TF-e) becomes very large. Therefore in the range
of e where Ei(TF-) is different from zero B (e) is

nearly constant and so can be taken out from under the in-

tegral sign. Thus to a good approximation

F El(-0 ( ( ) - Am)d = EF -m

~E 0(Bm(TF)
0+ 0 A

where EF = (0) . (6.2)
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Similarly,

P Et-F0
Sz k2 (B ) - Ak 2)d+ E0 k=l

E Z k2(B 2 () - A 2 ) . (6.3)

E0  k=l .

Substituting equations (6.2) and (6.3) into equations

(6.1) gives

2m Bo 2, Ak2 C\L E R m (TF) m2A (

Bm(F){2 + ( kiTF) -k o mF m-I- I-+m , (6.4)
k=l1 Y F m

m = 1,2, ... .

Equations (6.4) are identical with the equations of an

elastic arch of modulus EF under the same loading; but

in the viscoelastic case they can only be used to determine

the unbuckled equilibrium position denoted by the ordinates

Bm(TF) , since in their derivation it was assumed the arch

was stable under the loading Rm(F) and had reached a

final configuration.

To check the stability at T = T F ' subject the arch

to an additional load at T = TF+  in the same manner as

was done previously in Chapters IV and V. Bm(TF) can be

calculated frm. equat-ions (6.), considering any unexcited

modes to remain zero. If an unbuckled solution of equations

(6.4) does not exist, this indicates the arch has buckled

at some previous finite time. On the assumption that

Bm(-F) exists, the integrals S(TF+ ) and Sm('rF) (see

-76-



equations (4.15) or (5.7) ) can be evaluated, thus

Et(r F- E) W2 2

S ()k=+) ( E )

Sm(rF+ )  E ( m(TF) - Am)

The governing equations for Bm (r F+) then become, from

equations (3.30)

Bm (F+){m2 + z k2(Bk2 (TF+)- Ak2 ) S ( F
k=1

- R ~R(rF) + + .2 (A.-sl(LF) (6.6)

m = 1,2,3,....

The solution for this set of equations and the method

of determining stability are given in Chapter IV or Chapter

V, depending on the number of excited modes. If it is found

that (AR.) < 0 , this indicates that the arch has buckled

at some previous finite time.

It is to be noted that the critical load found from

equations (6.6) differs from the critical load of a purely

elastic arch of modulus E0 that has the same deflected

shape as the long-time solution of the viscoelastic arch

under the same loading Rm(tF) . This is due to the fact

-77-



that, although the two arches support the same load with the

same deflected shape, the axial thrust and moment distribu-

tion are not the same in both cases. This arises because the

moment is directly proportional to the deflection while the

thrust is proportional to the square of the displacement.

In [11] it was shown that, for a uniform load on a sinu-

soidal arch, the effect of the higher modes, i.e. 3, 5, 7, ... ,

was to reduce the critical load by no more than .5% of the

critical sinusoidal load. That this is not valid for the

viscoelastic case can be expected from the results of Chapter

V, where it is seen that near the critical buckling time the

displacement of the non-sinusoidal arch differed considerably

from the displacement of the sinusoidal arch (see Fig. 5.9).

The reason for this can be seen from an examination of equa-

tions (5.17) and (5.18). In each of these expressions there

is a series of the form

(*(Rk ("n + M k + k 2(Ak Sk (-r)) 2

Z k_2  k 2  2 (6.7)
k=r k m

where r includes any excited mode other than the first.

in order to illustrate the effect of the viscoelastic materi-

al, consider the case of a uniform load on a sinusoidal arch

which has R
Rr(t) r Y r = 3, 5, 7,

0 , r = 2, 4, 6, .9

and A =0 r / 1

r
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I
Substituting these into the series (6.7) results in

k 2  2 ( 6 .)

k=3,5,7... (k2 _ m 2 )2 k n

In the elastic case S k(T) 0 and the series (6.8) is re-

dluced to

(RI( n ) + R) 2  (6.9)

k=-5,7.. • m

w:hIch is a very rapidly converging series. For m 2

T/ 2 4) 4.977 x 10- 4

k= 5,7 k.7 (k

and so the effect of the higher modes oi, the elastic critical

load is seen to be negligible. However, for the viscoelastic

case S r(-Cn +) / 0 , and so the second term of the series (6.8)

leads to an expression of the form

k 57 (2k 6  S 2(Th +) (6.10)
k=3,5,7 \k 2 _ m2) k

which could be divergent, depending on the values of S (t +)
r n

While it is not possible to express explicitly S (- + ) -,s

a function of r It is ae.- that in the long-time solitlon

Sr(tn+) varies directly as Br(,rF) (see equation (6.5)),

and that

I
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F R,(-cF)

E° r 3  
(6.11)

r(F = Rl(cF) + A1  2BI('tF) + (r 2 - )

r = 3, 5, 7 ..

Equations (6.11) are derived from equations (6.4) for a

uniform load on a sinusoidal arch. Thus it is seen that

for large r , Br(- F ) varies as - and so the conver-r5

gence of the series (6.10) is assured. The fact remains

however, that the series (6.8) may not be negligible since

some of the lower terms may have appreciable magnitude, and

cannot be neglected in the calculations. Added to this is

I the fact that the terms S(-rF+ ) and Sr(TF+) appear in

other ways in equations (5.17) and (5.18) and must be ac-

counted for.

Figs. 6.1 to 6.4 show the effect of EF and Rl(rF)

on the buckling load of an arch with initial rise A, = 4

Compared to Fig. 6.1, which is the purely sinusoidal case,

he otl her f.g.... show a very rapid decrease in the critical

load as R!(- F ) increases. This can be attributed to the

fact that the amplitude of the higher modes in the unbuckled

configuration increases very rapidly as the load approaches

the critical load (see Fig. 5.2).
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Chapter VII General Features of the Numerical Solution

The numerical integration and solution of the roots of

the algebraic equations were performed on the B-5000 digital

computer at Stanford University.

In the numerical integration of integrals of the type

E( ) (7.1)
o+ 0

it is advantageous to use a variable time step if the form

of the functions E(T) and f(T) are of the requisite type.

E'(-) varies quite rapidly for T small but as T becomes

large EQ(T) approaches zero. In this problem, where f(-r)

represents functions of the type (Bm(-r) - Am ) , it is

possible to draw several conclusions regarding the behavior

of f(-) if the loading functions Rm (T) are sufficiently

smooth. For T small f(T) will vary quite rapidly, re-

gardless of the type of viscoelastic material, but for T

large the material property makes a considerable difference.

For a fluid material it is expected that f(T) would con-

tinue to vary quite rapidly until failure takes place, es-

pecially if the time at failure is quite small. On the other

hn% If thel mats1 a vscoela solid the variation

at large times will be quite small, except near the critical

time.

In order to take advantage of these facts and reduce

the computing time, a logarithmic time step increment was
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used (see [151) until the critical time was found, at which

time the program reverted back to the last known stable time

and a smaller time step introduced. In this manner small time

steps were used for -r small and r near the critical time,

while larger steps were used where E'(T) and f(-) varied

more slowly.

Among the roots B1((T) , only the largest root of Bl( )

is required in the analysis and so a simple iterative type

solution was used. Convergence was very rapid for solutions

near the point a of Fig. 4.1 but became slower as the equi-

librium value approached b , at which point the program would

not converge.

If the progrmm would not converge a check was made to in-

sure that no unbuckled equilibrium solutions existed, as this

constitutes one possible mode of failure. The second possible

type of failure, that of an unexcited mode becoming non-zero,

is easily checked by calculating B (T) on the basis of

B(T) / 0 (see for example equation (4.9) ), then if the

B1 (T) found in this manner is greater than the B1 (T) found

from the iterative solution, the arch is unstable.

The time step increments and the allowable tolerance in

the iterative solution were adjusted so that the solution for

B1 (T) was accurate to at least four significant digits in

all the test cases considered. The maximum computer time

needed was less than one minute for any one problem including

a case where ten modes were excited and the maximum time taken



to be 1000.

In Chapter VI there are no time integrations to be per-

formed, but in order to find the critical load for equations

(6.6) it was necessary to use a double iterative procedure.

One iterative procedure is required to determine the un-

buckled equilibrium position, and a second is then required

to find the critical buckling load. Thus, although the

programming is quite simple, considerable machine time is

required in its execution.
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