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ABSTRACT*

A method of solution to the buckling problem for shallow
viscoelastic shells is presented. The arches are considered
to be pin-ended at rigid supports, of arbitrary initial shape
but of uniform cross section, and made of an arbitrary linear
viscoelastic material. The lateral loading may be an arbitrary
function of both position and time.

Specific solutions are given for several arches to point
out the influence of the material snd of asymmetries in the
initial arch shape on the deformation and buckling time of
the system. Two types of viscoelastic material, the Maxwell
Fluid and the three parameter solid, are included in the exam-
ples.

The viscoelastic property of the material in the analysis
is expressed in integral operator form, which is shown to
lead to simple numerical time integrations in determining the
arch deflection, as well as maintaining the form of the gov-
erning equaticons that determine stability in the same general

form as the equations of an elastic arch. The method of so-

lution takes into account the fact that the arch may buckle
in either a symmetrical or an unsymmetrical mocde.

It is seen that arches composed of a viscoelastic soiild

*The results communicated in thils paper were obtained in
the course of an investigation conducted under Contract
Nonr 225{(69) by Stanford Universifty with the Office of Naval
Research, Washington, D. C. Reproduction in whole or in part
is permitted for any purposes of the United States Government.
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material may, if the load is not too great and constant for

time large, reach a final unbuckled position as the time f
cecomes very large. If this is the case then it is shown
that the time integration that previously required numerical
integration can now be approximated analytically. Several "

examples are given.
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NOTATION

cross-sectional area of the arch

m'% %- , dimensionless coefficients in the
Fourlier expansion orf the initial arch shape

= a

= bm(T) %- T > dimensionless functions of time
in the Fourier expansion of the arch position

constant
elastic modulus
relaxation function of the viscoelastic material
= E(0) , initial modulus
= E(») , final modulus

E('rn -

Tn—lj - Eo

2Eo

, unit step function

O for £t<O
1 for £ 20

arch moment of inertia

span of arch or column length

moment on arch

concentrated load on celumn or arch
critical values of P that cause buckling
arch thrust

dimensionless load parameters in the Fourier
expansion of tne lateral load

eritical values of Rl(r) that cause buckling
psuedo load used to check stability

dimensionless time functions that depend on the
previous history of the arch deflectiocn
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b (t)
£(P,.t)

a(x,t)

G, a(t)

dimensionless coefficients in the Fourier expan-
sion of the initial arch shape

dimensionless time functions in the Fourier ex-
pansion of the arch position

dimensionless time function depending on the
viscoelastic material and the column load

lateral load

QWAE I 7
= —p—/ % , a constant with the same units
L as q(x,t)

time
cartesian coordinates
position of arch centroidal axis

= y(x,0-) , initial position of arch

midpoint deflection of arch or column
initial position of midpoint of arch or column
strain

dlstance of a material point from the centroidal
axils of the arch

viscosity of dashpot in materlal models, units
of PFI/LP

stress

= t/relaxation time of the material, dimension-
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Chapter I Introduction and Summary

Whenever a structure or structural member 1s subject
to compressive loads, the possibility of an instability type
of failure must be considered. Many structures, when loaded
to a critical state, will undergo a marked change in the
magnitude and character of their deformation, which 1s not
the result of any failure or alteration in the mechanical
properties of the material. Such a change generally occurs
because one mode of deformation becomes unstable and the
structure deflects to another, stable mode. This change is
termed buckling, and the loading associated with this critvi-
cal state 1is most generally called the buckling load. How-
ever, there are many structures for which a well defined
buckling load does not exist. For these structures the use-
ful load carrying ability must be based on other factors,
such as maximum allowable stresses or deflections.

Structures that are made of materials which do not ex-
hibit any time effects have a buckling load that is inde-
pendent of time provided the load is applied slowly enough
so that the response can be considered as static. However,
viscoelastic structures, because the material exhibits time
or memory effects in that the strain is a function of the
stress history, may have a buckling load that 1is a function
of time even for a quasi-static analysis of the problem.
Moreover, for structures that exhibit no well derfined buck-

ling action, viscoelastic material properties cen greatly
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influence their load carrying abllity, especially if the de-

formations tend to reduce the stiffness of the structure.
Buckling occurs most often in structures that have at
least one dimension small in comparison to the other two;
for massive structures not falling into this class, material
failure more commonly provides the critical condition on the
magnitude of loading. An explanation of why this is so can
be seen by investigating the relationship between elastic
stabllity theory and linear elasticity theory. In elasticity
theory, the eauations of equilibrium are written for the body
in its undeformed state. If the body is massive it cannot
undergo large deformations without large strains, and since
elastic strains for most englineering materials are very small
it 1s concluded that the deformations must be very small and
can be neglected in writing the equations of equilibrium.
This approach then leads to the linear equations of elasticity
which have a unique solution, and as such cannot describe a
stability problem. By contrast, in stability theory the e-
quations of equilibrium must be written for the boay Iin its
deformed state. <Siender bodies can undergo large deformations
without producing large strains, and consequently the defor-
mations must be accounted for when writing the equilibrium
equations, since they are no longer restricted to being small.
It 1is possible to distingulsh several different kinds
of buckling, depending on the type of structure and the man-

ner of loading. By far the most widely studied type is the
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so-called classical buckling, an example of which is the
centrally loaded straight column. A second type is snap-
through buckling, which occurs in structures whose resistance
to an increase in load decreases as the loading or the de-
formations increase. An example of this is the laterally
loaded shallow arch, the analysis of which, for the visco-
elastic case, forms the body of this dissertation.

The classical buckling problem of the centrally loaded
straight column, as well as the problem of the initially im-
perfect column which has no well defined buckling load, has
been studied in detail for both elastic and viscoelastic
materials (see references [1]T through [9]). Because there
are essential differences in the responses between an elastic
and a viscoelastic column, the results of some of the above
references will be outlined here.

Consider a centrally loaded straight elastic column as
shown in Fig. 1l.la. As the load P increases the column
remains perfectly straight until P = Pcr . I » P = Pcr s
the column may deflect laterally as shown in Fig. 1.lb, and

any value of 6 1is an equilibrium position. P__ 1s then

the critical load at which a change in deformation may occur.

lNumbers in square brackets [] refer to the list of
References.,
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The solid curves, OAB and OAC of Fig. 1.1lc show the
Joad vs. lateral deflection parameter 6

value of the deflection at the midheight of the column.
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the point A there exist two different equilibrium paths of

deformation. Thils condition is referred tc as a bifurcation

of the equililibrium deformations, and is characteristic of the

classical type of buckling, although other kinds of buckling

may exhibit the same phencmenon. P

classical buckling load for this struct

(1] as

where E 41s Young's modulus of the elastic material,

moment of inertia of the cross section (assumed independent

of x ), and L the column length.
.

is defined as the

cr

(1.1)

I ¢the




If 1t is assumed that the column has some initial im-

perfection, which is a much more realistic approach than
assuming a perfect column, then the load vs. lateral deflec-
tion parameter & 1is given by the dashed curve O!A'C' in
Fig. 1l.lc. Let yo(x) be a measure of the initial imper-
fection, then

yo(x) = y(x) when P =0 . (L.2)

As yo(x)-ﬁ-O the load deformation curve OFA'C?! approaches
the curve OAC but never OAB ; thus for a non-perfect
column the load deformation relation always has a unlque
one-to-one correspondence. There is no bifurcation point

and no well defined buckling load. However, as can be seen
from Fig. 1l.1l¢, the classical buckling load Pcr of the
perfect column serves a very userul purpose for the non-
perfect column, in that as P---r,Pcr the ratio Q/éo in-
creases very rapidly. Thus Pcr may be considered as an
upper limit of useful loads that cén be supportec by the non-
perfect column. As will be shown, the same cannot be said
about the critical buckling load of a perfect viscoelastic
colunn, whose analysis follows.

Consider a centrally loaded straight viscoelastic column
loaded as shown in Fig. l.la. If the column does not buckle,
the only deformation is a shortening of the column due to the
uniform axial load. If buckling is to take place, the lateral
motion must be governed by the instantaneous modulus of the

material since tnere is no motion in this direction before

_5...
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bogckling. Based on this the buckling load for a perfect

viscoelastic column is

o
T E(C)I (1.3)

L2

Per ™

where E(0) is the instontuneous elastic mcdulus of the
viscoelastic material, and is defined as the mcdulus govern-
ing the stresz immediately after the material has been sub-
jected to a suddenly applied strain.

If now a non-perfect viscoelastic column is considered,
the lateral deflection is given as a function of time, ini-
tial imperfection, and load. The general features of the
response of a non-perfect cclumn to a load that is suddenly
applied and then held constant can be brought out by a
quasi-static linear analysis of z column whose initial im-
perfection consists of a lateral displacement in the form of
a half sine wave.

For the column as chown in Fig. 1l.2a, let

y (x) = &, sin T= (1.4)

be the displacement before the load is applied, and

o~ +\ -
JANra vy

,'C) sin Tx
\ L

~~
()

1

~

Cn

the total displacement after loading.
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From the solution given in [2] for several different
viscoelastic materlials, it is seen that the displacement

can be expressed as

Y(X,t) = 'l__'?}}'?'—;yo(x) f(P:t) b}
C
or (1.6)

1
6(t) = TF/7_ b5 £(P,8)

where P, . is given by equation {1.3).
The function f(P,t) represents the time response of
the viscoelastic material. If for convenience we assume
the load is zpplied at © = 0 , then
£f(P,0) =1 , (1.7)

and ve have from equation (1.6)

7(x,0) = Tgzp— Yo (x) (1.8)

which is identical to the results for an elastic column anal-
ysis [1], using the same assumptions. It is obvious that as
P--’-Pcr the displacement increases very rapidly, and thus
Pcr is an upper limit on the loads that may be supported for
a very short period of time.

The character of the function f(P,t) depends very
strongly on the load P . ILet Pch be defined as the long

time critical load, which is given by

£ (1.9)




where EF is the long time or final modulus of the viscoe-

lastic material, and is defined as the modulus governing the

stress for an infinitely long time application of a constant

strain. A viscoelastic fluld is characterized by naving

E, = 0 while for a viscoelastic solid C < E5 < E(0) .

-~

These properties are more fully described in Jhapter 2.

For P
P>P 0 f(P,t) +w as t—» , (1.10)
and for /
1-p/P
P<P P, pPt)=— 5 a5 t—w . (1.11)
cr l-P/P B
cY
F

Thus it 1s seen that for loads P Z.Pc the column is

r 2
essentially unstable as the deflection keeps increasing in-

F

definitely, while for loads P < Pcr the column 1s stable

in the sense that the deflection remains finite. Fig. 1.20
shows a qualitative plot of the column deflection vs. time.

The curve for P < Pch is asymptotic to the dashed line

5§Q) = 1 while for Pc F < PP the dashed line

F r - er
o l—P/Pcr

has no significance whatsoever. It is apparent from Fig. 1

. B .
that loads in tne range P < P<P

cr can be supvorted

cr
for a short time, but for long time loading it is necessary

F
that P < Pcr

Comparing then the results of the elastic and visco-

elastic analysis, it is seen that the critical buckling load

of a pertect column, Pcr , Serves as an upper limit for

-G~
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the safe load that can be supported by an elastic column,
even if the column is not perfect. However, for the visco-
elastic column, Pcr serves as an upper limit only for the
perfect column and for very short duration loadings of the
imperfect column. If the load 1s to be applied for a long
time to a viscoelastic column, then even for an infinitesi-
mally small imperfection it is necessary to restrict the load
to be less than Pch

A major problem in describing the behavior of an imper-
fect viscoelastic column occurs because in the analysis there
is no natural criterion with which to associate failure other
than the fact that for some load conditions th2 displacements
beccme infinite. However, the displacements approach infin-
ity only as the time also approaches infinity, and so this
does not provide a unique measure of the column response for
different viscoelastlc materials. Thus, in the sense of
some natural criterion, a finite critical buckling or failure
time does not exist for any value of the load below PCr
(4], [8].

The second kind of buckling to be considered is of the
snap-through type as exhibited by a shallow pin ended arch

of uniform cross-section, loaded as shown in Fig. 1l.3a.

-10-
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In discussing the response of such an arch it is convenient
to conslder a loading consisting of only a concentrated load
P as shown; although all the remarks carry through for dis-
tributed loads as well. The deflection of the midpoint of

the arch under the load is designated by 6(t) , thus

L
5(t) = v (3) - y(Z.t) 1
(1.12)
= 60 - y(_L':t) ) {
/
where yo(x) defines the initial unloaded shape of the arch,

and L

The load-deflection response of an elastic arch [11]
is given in Fig. 1.3b. Curve A corresponds to an arch
whose initlal rise-to-span ratio, &O/L » 1s such that its

load deflection curve has a horizontal tangent at the point

-11-




6/6O =1 , while curve B represents an arch whose ini-
tial rise-to-span ratio is less than that of the arch repre-
sented "y A . For these two case<s the load deflection re-
lation has a one-to-one correspondence and there is no in-
stahility for any magnitude of the load. A physical expla-
nation for this behavior is that because the arches are so
shallow, the resistance to deformation by bending is much
greater than that due to the axial thrust, and so the loss
of the resistance by the axial thrust as the deflection in-
creases 1is more than offset by the increase due to bending.

Curves C and D represent arches which are perfectly
symmetrical with respect to the line x = % , and whose
rise-to-span ratios are greater than those of A . In these
cases there is a range of loading where the deflection is
a multivalued function of the load, and so there is more
than one equilibrium position for every value of P . For
these cases then there is a well defined buckling load as
shown by (Pcr)C and (Pcr)D in Fig. 1.3b, for at these
loads the respective arches undergo a finite deformation,
as shown by the dashed arrows, to a new stible equilibrium
position.

Curve C represents an arch whose initial rise-to-span
ratio is such that when the arch buckles, the deformations
in goling from the unbuckled to the buckled state are symmet-
rical, as shown in Fig. l.4a. Curve D then represents an

arch whose rise-to-span ratio is greater than € , and

-12-




which buckles unsymmetrically as shown in Fig. 1.4b.

arch shape during buckling

// nrebhuckled
positicn

post-buckled
position

{a) Symmetrical rucklling (b) Unsymmetricai buckling
Fig. 1.4

The term snap-through can readily be seen t£o be a good
description of this type of behavior, as the structure
under a dead load would physically snap through to the
post-buckled position.

For the case depicted by curve C the equilibrium
deformation path (curve C) is seen to be a continuous
curve with no bifurcation polnts. However, the equilibrium
deformation path for case D consists of the curve D
plus the dotted portion as shown in Fig. 1.3b. The dotted
portion corresponds to symmetrical defcrmations, which are

equilitrium deformations but are unstable. Thus at

av)

= (P there 1s a bifurcation point, Jjust as there was

cr)D
with the perfect column.

The load deformation curves for imperfect arches, that
is, arches whose loading or initial shape is not symmetrical

with respect to the line x ='% , are shown in Fig. 1.5

-13-




with the dotted lines the corresponding curves for the sym-

metrical arches. (For discussion purposes here it is assum-
ed that the non-symmetry is caused by the initial shape, and
that this non-symmetry could be expressed by the second mode

of a Fourier sine expansion of the initial arch shape.)

Fig. 1.5

The equilibrium deformation paths as shown are now ali
continuous with no bifurcation points, but there still exist
well defined buckling loads (Pcr)c and (Pcr)D . This is
in contrast to the imperfect elastic column which has no
well defined buckling load. Following the terminology in
[17], unsymmetrical buckling at bifurcation points will be
termed transitional buckling, in order to distinguish 1t from
unsymmetrical buckling where there are no bifurcation roints.
Buckling where no bifurcation point 1is present will he termed

non-transitional.

-1k-




In this thesis a solution is given of the viscoelastic
arch problem. It 1is found that the response of a viscoe-
lastic arch is in many ways s*milar to an elastic arch. If
the arch is very shallow then there 1s no instability;
higher arches may buckle in either symmetrical or unsymmet-
rical modes, depending on the loading and the initial rise-
to-span ratio. The main effect of the viscoelastic material
1s to permit the deformation to increase with time, even for
a constant load P . This essentially decreases the stiff-
ness of the arch in resisting additional load increments,
and consequently decreases the buckling load. Thus 1t is
possible for a constant load P to be stable at one time,
but at some latef time unstable.

In contrast to the response of a viscoelastic column,
the viscoelastic arch buckles at a finite time 1if 1t buckles
at all. For a sufficlently small load and a viscoelastic
solid material the arch may always be stable, or it may be
so shallow to begin with that instability does not occur.

It is this latter case that most closely resembles the col-
umn response, since the arch deflections may keep on in-
c¢reasing indefinitely without buckling action if the visco-
elastic material is of the fluild type. Another difference
between the viscoelastic arch and column response is that
for an imperfect arch whose non-symmetry is of infinitesimal
magnitude, the buckling load and buckling time is different

from the buckling load and buckling time of the corresponding

-15-




perfect arch only by an infinitesimal amount. It was seen
earlier that for P > Pch » the response of an imperfect
viscoelastic column varied widely from the perfect column
no matter what the magnitude of the imperfection.

The analysis as gilven in the main text is valid for an
arbitrary initial arch shape (provided the arch is shallow),
arbitrary lateral loading, and any linear viscoelastic mater-
ial. BEBecause numerical methods are required in the solution
of the governing coupled non-linear integral equations, it
is poussible to use directly measured material properties in
their numerical form.

The buckling criterion used in the solution is based on
stability with respect to infinitesimal displacements about
an equiiibriu posicion. At any instant of time the response
to an instantaneous displacement is governed by the initial
modulus of the material, and so the stability can be investi-
gated 1n the same general manner as the stability of an
elastic arch, provided the time history of the deformation
up to that instant 1is known. The theory also takes into
account the possibility of buckling by the two different
mechanisms, the transitional or non-trans:tional modes of
fatlure.

The constitutive relations of the linear viscoelastie
material are expressed in integral operator form (see Chap-

ter 2) by the use of the relaxation modulus E(t)

-16-




t
a(t) =\/\E(t - t')a%T-e(t')dt’ , as opposed to the dif-
-0
ferential operator approach (P[o(t)} = Q(e(t)) , where
P and Q are linear differential operators in t;) . For
the arch problem, which 1s geometrically non-linear, the
integral operator representation of the material offers
several advantages over the more common differential operator
representation. These advantages do not hold for the visco-
elastic column problem since the cclumn probklem has a govern-
ing equation which 1s linear. The most widely accepted method
of solving linear viscoelastic problems is by the use of
the Laplace transform [13], and in the transform problem
either representation of the material properties gives ex-
actly the same result.

Some of the advantages of the use of integral operator
relations in the arch problem and in general are:

(a) the relaxation modulus can be measured directly
by experiment.

(b) the general form of the governing equations remains
the same as for the elastic arch problem. This allows the
same type of stability analysis and affords a gocd physical
understanding of the viscoelastic effects.

(c) the numerical integration is simplified. This is

especially true if the material is quite complex, and would




require the use of high order differential operators 1f this
approach were used,

Curves showing deformation vs. time for various load
levels and buckling time vs. load are presented for two dif-
ferent materials, No attempt was made to glve results for a
wide number of situstions; the examples were chosen so as to
show the effect of some asymmetry in the structure or its
loading, and to illustrate the basic difference in response
between visceoelastic solid and fluld materials.

Arches made of viscoelastic solid materials may, if the
load is small enough and constant as t — « , approach a final
stable equllibrlium position. The equations governing the
equilibrium posltion in thls case reduce to the elastic
equations with 8 modulus of elasticity of EF ; these are
algebrale equations and can be solved to find the final e-
quilibrium position. The value of the final equilibrium
position can then be used to evaluate the integrals in the
equations that govern the buckling actlon, and this reduces
these equations to algebrale equations. It 1is then possible
to determine the additional load that weuld cause buckling
at this time. Unfortunately the algebraic equations may be
of aquite high order and even for the simplest case the ad-
ditional load cannot be expressed in explicit form. However,
this method can be used to determine the instantaneous buck-
ling load of an arch which has reached a final position with-

out needing to know the entire relaxation function E(t) of

-18-




the material or the time history of deformation. All that

is required is the instantaneous modulus E(0) and the final
modulus EF , which could actually be determined from the
final position of the arch if this were known.

Results for this liong time problem for several values
of the final modulus and various loading conditions are given
to compare the long time buckling load to the instantaneous
or elastic buckling load.

Considerable work has been done on the so-called creep
buckling of columns. Creep buckling is usually concerned with
materials whose constitutive relations are non-linear, as
opposed to the linear constitutive equations used in linear
viscoelasticity. Most existing creep laws do not represent
instantaneous and retarded elasticity as well as viscous f{low
which are 3ll properties of linear viscoelasticity; however,
for metals it 1s generally agreed that the non-linear creep
laws give 2 better representation of the material behavior.
Hort [16] gives 3 survey of the theories of creep buckling
up to 19%8.

Pian [10] has given an 3nalysis for the creep buckling
of a uniformly loaded arch using a 2-element non-linear Kel-
vin model to represent the material. By linearizing the model
his problem reduces to the linear viscoelastic case. The
Kelvin modei 1s not a particularly good representation of
materisl behavior,; but because of its simplicity Plan is abie

to get a numerical solution for both the linear and non-linear

-19-




cases. However, his solution does not take into account the
possibility of transitional buckling, and for cases where tne
transitional mode gives the critical bucklling load or buck-

ling time, Pian's results predict larger values.

-20-




Chuspter IT Line s Vigccoelastle Ma‘erinic

Viscoelastic moterials are char-ce riveod oy th v prop-
erty to deform with time under the ~ction of -~ given lLozdlng.
Ioi 5 linear viscoelastic material, in prrticulsr, the con-
stitutive relation 1s such that fhe ratio of stresc to ubruin
2t any iuctert fs ¢ constant {ndependent of the megnitude of
the stress and strain.

In general two independenft material functions ure m:-
quired to dctine compleiely a homogeneous, isotreplce visco-
elagtic meteprial Iin the same mann2r that two independent
mateviosl const-nts are required to deflne a correcponding
elestic materizl.  However, in the work Lhrt foliows only
one material function need be considered hecause of the one-
dimensional nature of the problem. For more general visco-
elastic onzlyslis see Bland [12] or Lee [15].

For this problem the most convenient formulation of the
stress-strain relation is by the use of the relaxation mod-

ulus E(%) , which is derined by the relation

E(t) = &)l (+.1)
O

Wwhere o(t) 1is the stress resulting from an applied strain

e(t) = e H(t) L (2.2)

3 0, £t Q0
H(t) 1is the unit step function H(t) =




e ——— e

Since the material is considered linear this relation must
hold for any value of e . E(t) =0 for t < 0O since
the material is assumed to be undisturbed for t < O .

The general form of E(t) 1s the same for all materials.
There is an initial discontinulty at t = 0 , and the func-
tion then decreases monotonically to some final value, as

shown in Fig. 2.1.

w | F
~o ' N
1 i ———————

. -
' 3

Mg. 2.1

The "initial modulus" of the material is defined as E,

;
where E_ = E(0T) *. Similarly the "final modulus" is de-

fined as Ep where Ep = lim E(t)
t =
Linear viscoelastic materials fall into two general

classifications, fluids and solids. For a fluid EF =0 ,

whereas for a solid EF >0 . A simple model representation

lA variable written as t+ refers to the value of this
variable at t +e¢ , and t~ =t - € , where € 1is a
positive infinitesimal quantity.

-20.




of a fluid is the Maxwell model, Fig. 2.2, in which a lin-

ear dashpot 1is connected in serles to a linear spring.

X n
o]
a(t) *—-—-—-————/\/\/\ ~ g(t)
1+ eflt)
Fig. 2.2 Maxwell Fluid Model

Let t represent real time, then for the Maxwell
£
fluid __E_Q .
E(t) = E_e N . (2.3)
Define a dimensionless time parameter Tt as
Eo
T =n—- t ) (2.4)

and redefine the relaxation modilus as

E(t) =E_e % . (2.5)

E
) is termed the relaxation time of the Maxwell material.

The simplest model representation of a solid material

that exhibits an initial modulus is the three parameter solid
of Fig. 2.3.
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Fig. 2.> Three Parameter 50lid Model

For this mcdel

(G (B2 B
— ———————O -
E(t) = E e tgET e |l - e (2.6)
1 o)
E1 + E
Thie characteristic relaxation time is and so
let E + E
T =4 ot . (2.7)
yi
The firal modulus is clearly
E1Eo
E, = 1im E(t) = =2 (2.8)
F £ — o El + Eo

In its most convenient form the relaxation modulus is
then written as

E(t) = Ej e~ T4 Ep(l ~ e’ . (2.9)

The essential difference in the model for a fluid or
solid is that for a fluid there 1is at least one dashpot con-

nected in series, whereas the dashpots in a solid material

ol




are always connected in parallel with a spring.

In the work that follows the time parameter T 1is al-
ways used. For real materials with measured relaxation prop-
erties, it is necessary to choose a characteristic relaxation
time in order to define a dimensionless time parameter, but
this can always be done. Lee and Rogers [14] discuss the
use of measured material functions in stress analysis prob-
lems.

Since the stress-strain relations are linear the prin-
ciple of superposition is valid and the stress for a smooth-

ly varying strain can be represented by the integral

T
o(v) = [E(x - &) & e(e)ag . (2.10)
- 0O
Such an integral is known as a Duhamel integral, and the
kernel E(t) is related to the Green's function of the dif-
ferential operators that can alternately be used to express

the stress-strain relations.
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Chapter III General Analysis

Consider a shallow pin-ended arch of uniform cross-
section loaded as shown in Fig. 3.1. The lateral load
a(x,t) always remains lirected parallel to the y axis.
Bef'ore the application of the lateral load the arch is con-
3idered to be unstrained and the location of its centroidal
axis is given by yo(x) . Under the action of the lateral
load the centroidal axis will be displaced to a new position,
and let this be denoted by y(x,t) . Without loss of gen-

erality we can assume q(x,7) =0 for < 0 , and so
y(x,0-) =y _(x) (3-1)

becomes the initial condition for y(x,t) . P(t) is the
axial force induced in the arch by the end reactions and
is directed as shown.

Assuming that [y, | and [y| are much smaller than

L , that the curvature remains small at all times so that

N2
(3Xé§,rg) is rnegligible in comparison to 1, and that the

thickness of the arch 1s much smaller than its radius of

curvature; then the usual beam theory gives

82 , 2
e(x,8,7) = ¢ () - C< y(z i - ° yOQX)> , (3.2)

ox dx

where e(x,{,t) 1is the strain of a longitudinal fibre of
the arch located the distance (¢ from the centroidal axis
as shown in Fig. 3.2, and eo(r) is the strain of the cen-

troidal axis which is assumed constant along the length of
-06-




¥ centroidal axis of arch

Fig. 3.1

P(T)-—("—- -jr;:t—-‘/j_)__ >

centroidal axis

—_—
' {t)
Moz, 1 "m{x,7)
V(K:T)
R ke
Fig. 3.2




the arch. This assumption relies on the fact that we are
considering a shallow arch and that we also assume the axial
force in the arch to be independent of x . The moment

M(x,t) as shown in Fig. 2.2 is given by

= M(X)T) = [/PC G(X:C:T)dA s (3'3)
A

where the negative sign 1is introduced to set up tne sign
convention that positive moment causes compressive stresses
on the positive ¢ side of the arch.

Now introduce the constitutive relation based on equation

(2.10) .

o(x,0,m) = [E(r - ) Srelxtit)ae ,  (3.4)

o~

and substitute this into equation (3.3), which gives

T
(x,7) = [[ ¢ [B(r-6) Fe(te)agan . (3.5)
A o°

Interchanging the order of integration and using equation

(3.2) results in the moment-curvature relation

+ M(x,1) = {/ E(T - £) gg(% ylx,8) cj>di : (3.6)

where I=ﬂ§2dA , and f £ an =
A A

The moment-load relationship, using simple arch theory,

is
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Qﬁﬁﬁ_l BLG(T J(TD - q{x,T1) (3.7)
3x°

for the loads as directed in Fig. 3.1.
3ince the arch supports are assumed rigid the projected

length L of the arch must remain constant, thus

o= e o [ - gD o oo

where the integral in the above expressicn is to a first ap-
proximation the change in projected length caused by the de-
flection.

The axial force P(x) 1s given by

P(t) = -ff o{x,¢,T)dA
A

and by using equation (3.4) this becomes

T
p(e) = - [[ [Rlx - &) $ e(x,8,8)a¢ an
A o

1f the crder of integration is interchanged and equation (3.2)

is substituted into the resuiting equation, it then yilelds

_£E(¢ - t) a%‘/z {eo(g) - g(ﬁ‘g'i%zﬁl)]dﬂx dg

P(1)

T
= - a [E(x -8) Fegledat (3-9)
)
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since A =‘[7PdA . Now by using equation (3.8) we can ex-
A

press P(1) 1in terms of the position of the arch; thus
T L
2
__ A . o [{oy(x,€)
P(r) = - & [B(x - ¢) b‘éf(\lé—x > ax d¢ . (3.10)
o~ o]
If equation (3.6) is differentiated twice with respect

to x and substituted into equation (3.7), we have

T
b
I_[_E(T - 8) %(-a—%%’—ﬁl)ae - - P(1) -53‘81;(—25—1 - a(x,7)

By using equation (3.10), P(t) in the above equation can

be eliminated which results in
3%y d > 715 e
_ A 9%yix,t ) -Xéﬁz_ﬂ
ot SEF [ 5e - 0) 5z JORH) axae
- o~ 0

J b
+1 [E(x - ¢) %(ibai%ﬁ)dg = -a(x,7) ,  (3.21)
o~ X

the governing Integro-differential equation for the arch.

The boundary conditions are

y(o,7) = y(L,t) =0
2 (3.12)
O%y(L,t) =0

ny(o,fl
8x2

bx2

PRSI ¥

and the initial condition is
y(x,07) =y (x) . (3.13)
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If yo(x) and y(x,t) are expressed in a Fourier sine

series, thilis will satisfy the boundary equations (3.12), and

allow the space derivatives in equation {3.11) to be removed.
Thus 1let
Yo(x) 2 a L sin Q%E N (3.14)
m=1
and
o
y(x,7) = % b _(t)L sin == , (3.15)
m=1 T

where am is a dimensionless constant and bm(r) is a di-
mensionless function of time.
It is convenient also to express the lateral load

a(x,t) in a Fourier sine series; thus

a(x,t) = ag 31 R (t) sin 5= (3.16)

where Rm(r) is a dimensionless function of time and 9
is a constant having the same dimensions as q{x,Tt)

Substituting equations (3.1%), (3.15) and (3.16) into
equation (3.11) gives

2 \ t 2 =)
A [ d Jm'L
ariT- S m b -(7) sin “?E}/\E(T - E)zrls = K b, (5)}
\* m=1 A e =]

= R () sin =, (3.17)




B e

e —
e iad 3 s~ =

where
L/B X e v hoi mwx\2
Jr(—zﬁ-iﬁl dx = [l = mmb_(7) cos WX} ax
X J \n=1 il 1 /
o 0
2,
_TL 2, 2
= 5= kf kb, (1)

because of the orthogonality property of the cosine functions.
Interchanging the order of integration and summation in

the second term of equation (3.17), and rearranging resuits in

>

5 sin —= mwx { —E_ m b T)\/ﬂE(T - ﬁ)‘“z { E K2 b, (g)}

m=

_—
+—-£3-m Jh(r—ﬁ)—gbmxﬁ)d€+q (T)}=0

Because the sine functions are orthogonal over the interval

0o to L each coefficient of sin 2%5 in the series must
vanish, and so
4 T
e A d ® 2. 2 .
L bm(f)f_E(f - £) a—g{kil ke, (i)}ai
o
.
P T d
*m == [ E(r - &) g b,(€) d€ = - qR (1) (3.18)
L -
c
m=1, 2, 3 ....

It is now convenient to introduce new notation to sim-

plify the above equations. Let




Substituting these inteo equations (3.18) results in

T T
e fE_(T_'_ﬁl d B (£)dt + B (7) E(x - ) & ¢ ,2p 2(¢)ae
E d€ “m m E dg , = k
- - o} k=1
o o o)
R (7) .
= - ——5 m=1, 2, 3 (2.19)
m
with the initial conditions
Bm(O-) = Am s m=1, 2, 3 (3'20)

Here E{1) |, Rm(r) and A are known in the problem
and it remains to find Bm(r) and determine the stability
of the arch.

The loading function Rm(r} will normally be discon-
.inuous at 1 = 0 (since Rm(T) =C for 1< 0 ), and
since we are assuming quasi-static response Bm(r) will alsoc

be discontinuous at T = 0 as long as E_ #« . It is con-
venient to remcve this discontinuity at 1 = 0 by performing

the integration in two steps, from O~ tc¢ Ot and Ot to

7 . Thus equations (3.19) become




E
o
+ Bm('r) EET b k2Bk2(0+) - 3 szke(o_)>
0 ‘=1 k=1
R (7)
=-——§—— m=l,2,3...
m

Integrating the above integrals by parts, and by using

the initial conditions as given by equations (3.20), yields

© ) o\
B () { n? + i EE,200 - a0
+fE:(§ - &) = ke@kg(g) ) Ak2>d€j(
ot o k=1
R (1) v
_ m 2, _ .2 [Et - ¢)f _ )
= - +mA - m [Jr o \Bm(g) A )Jag

m=1, 2,3 .... (3.21)

where the prime denotes differentiation with respect to the

argument, 1.e. E'(t - £) = gg%%?E*%%

At 1 = Ot , equations (3.21) reduce to




T e TS .

— - _ - —_ . —— JECNEIER

R (3.22)

which correspond exactly to the equations of the purely e-
lastic arch of modulus E_ [11].

Equations (=.21) are an infinite system of coupled non-
linear integral equations, and as such give very little en-
couragement for finding a closed-form solution. However, it
is possible to iutegrate these equations numerically, since
it will be shown that as long as the arch is stable any mode
that is not excited, i.e. A_ = Rm(r) = . , will have only
the trivial solution Bm(r) =0 . Thus, as long as only a
finite number of modes are excited, our system can be reducec
to considering only tnis finite number plus one more.

To integrate equations (3.21) numerically, replace the
time integrals with a step-by-step sun..ation. Therefore,
let Tt =7 (TO = 0t) where n = the number of time steps

required for the time to progress from OF to T

Then

o Y
T i=0 T i

f' n n-1 fi+1 n-2 ~1+1 lsn
J =] = = | = = f *t . (3.23)
ot -

0 i n-

By using a simple trapezoidsl approximation, the convolution
type integrals we are concerned with can be expressed in

the following form:




e em——— s ————————

-
N [E(Tn-Ti) - E(Tn—mi+l)} [f(ri) + f\‘i+1{} (3.28)
5 .

Applying equations {3.23) and (3.24) to the first inte-

gral in equations (3.21), one gets
Tn
3 - ; ~
E k=1 k k
ot © -

of . 2 2 2

{ - - 0 -

_E{t, 1) - Eg (2 k (Bk (t,.1) + By (rn) 2A, )>
k=1
N\

2

o)

n-2 E(t - 1) - E(1.- T..) K‘?(B 2( )+I§,‘?("r ) - EAf)
+ s n 1 n 141 § k i C 14
i=0 EO k=1 2
=E¥ (v, t. .) T 2(T ) + s(z.) (3.25)
Th? Th-i kel k n n ’
where (
E(r. - 1. -.) - E
. ¥ — n n—L O
B (Tn; Tn_l) - s (3.26)
2E
o)
and




Similarly the second integral in equations (3.21) gilves

T

n E! - N\ _

* B8 (0) - aJae = BNy B (5,) ¥ sp(n)
J

(3.28)

where

R )
Sm(Tn) =B (Tn’ Tn—l)(ém(1n~l) 2%n>

E - - K
, nze (- 7,) (7,- 1+1)<Bm(11) + Bm("ful)"QA@’

1=1 2
(3.29)

Thus, by substituiing equations (5.25) and (-.29) into equa-

tions {-.21), onc obtains

T {6+B(T, E1]>< éh ?(x D ~21~A +S(ﬁﬂ}

- -

%
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For n=0 (1t =0t), equations (3.30) reduce to equations
(3.22).

Assuming that the arch has been stable up to and in-
cluding 1 = bl 2 then at the next time step, T = T,
Sm(Tn) and S(Tn) are known, since they contain only the
previously determined values of Bm(Tn) . Thus Bm(rn)
can be determined from the system of equations (3.30), and
a check can be made of the stability of the arch at this
time.

For demonstrative purposes, two different loading cases
will be considered. The first 1is a sinusoidal arch with a
sinusoidal load, i.e., A = Rm(r) =0 for m>1 , so
that only the first mode is excited; the second case will
have an additional mode excited, i.e., one A or Rm(r)lﬁ 0

for m > 1 , in addition to A, and Rl(r) # 0 . The sec-

1
ond case can then be generallzed to include any number of

excited modes.




Chapter IV Sinusoidal Arch under Sinusoidal Loading

Consider the simple case of a lcw sinusoidal arch sub-

jectved to a sinusoidal load distribution, then

Y = x I X
yo(x) = a;L sin 5= = A; %//;wsin T

(4.1)
4
_ X _ €T 26 I TX
q(x,t) = qul(T) sin 3= = Rl(r) ~—£ﬂ—— % sin 4=

Ecuations (5.30), the general equations of equilibrium,

then reduce to

\
Bl(Tn)[(l * E*(Tn’Tn-l)><l + ? kQBkg(Tn))
- 0% ()] = - Ry + g - 8 ()
B,a('rn)[(l + E*('.rn,'rn_l))(4 + % kEBke(Tn)> |
- Al2 + S(Tni] = - 482(Tn) ? (4-2)
Bm(rn)[(l + E*(*rn,'rn_l)>6nz + izc' kQBkz('rn))
" * J

2 2 _
- 05+ s(rn)J = - m°s (1) wherem =2, 3, 4.

and for n = G these then become
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)
Bh(o+)[4 + 3 k2Bkd(o+) - Ale] =0

) (4.3)
Bm(0+)[m2 + 1.5 k23k2(0+) - Alz} =0 . /

Equations (4.3) correspond exactly to the elastic arch buck-
line problem and are discussed at length in [11]. One so-

lutio~ of the system would have
B2(O+) = 33(o+) =B,(0+) = ... =0
(4. 1)

P ; i~
+ Yo+) - A ¢ = - +
Bl(O )[1 + B, (o) A ] Rl(O ) + Ay

The relation between B. 0t) and R1(0+) as given by
equations (4.4) is plotted in Fig. %4.1.

Depending on the value of A there are several pos-

1
sibilities. If A1 <1 , tne curve has a monotoric slope and
£o there exists a unique one-to-one relation between Bl(0+)
and Rl(0+) . Thus for any give 1loading there is only one
egquilibrium position and the system is stable. If Al > 1,
then fc¢r R1(0+) between the points b an¢ ¢ there exist
three possible equilibrium positions. Assuming that

Bl(O') = A the stable equilibrium position of the arch is giv-

1
en by the portion ab of the curve, provided Rl(0+) < RS(O+) .
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If R1(0+) > RS(O+) the only eauilibrium position is along
de . Thus it is apparent that, if the load is 1ncreased be-
yond RS(O+) the arch snaps through from b to d and fel-
lows the de portion of the curve.

The portion ¢ of the curve represents unstable equi-
librium positions, while along c¢d the positions are again
stable; however since the arch starts at a the portion ab
represents the stable unbuckled equilibrium positions, and
herce the point b 1is the critical point at which buckling
oceurs.

RS(O+) , which is termed the non-transitional buckling

load, can be determined by seftfing

aR, (0+) a°r, (0+) o)
=0 , for —%5—— < O .5)
dBl Z o+ ) d312 (O+)

vhich results in

_ y .. 2 3 .
Ry (0F) = A; +y// 55(8,° - 1) A, > 1 . (4.6)

Now a second so.ution of che system of equations (4.3)
could exist. If one Bm(0+) in addition to B1(0+) is 4if-
ferent from zero, then the only two equations of the set (4.3)

not identically satisfied are

- +
Rl(o ) + Ay

(4.7]

Bl(0+)[} + B 2(04) + m23m2(0+) - Alg]

. 2 z 2.2 2
+ “(ot +) - =
Bm(o )&n + By (¢t) +m B, (0+) Ay ] = 0

Vo,
-~

D N o #emmomgem e s - = R R e e e




This solution leads to the transitional buckling load if
Bm(0+) #Z 0 1is found to be a valid solution. If it is not
a valld solution, then the arch will buckle in a symmetrical
mode and RS(O+) will be the buckling load.

Since it is assumed that Bm(0+) # 0 the second of
equations (4.7) gives

m® + B 2(0F) + m23m2(0+) -8 =0 . (4.8)

At this point it is seen that only one Bm(o+) in ad-
dition to B1(0+) can be non-zero. If it is also assumed

that Bn(0+) #0, n#1l,m then it is necessary that

2 2/ nt 2, 2 2. 2. 2 _
m® + By (0F) + m B (0+) + n B, (o+) - AT =0

2

and

2

n® + B12(0+) + m°B_°

2_ 2, 2
- =
(0+) + n°B_“(0*) - A 0

1
This clearly is a c-ritradiction since n ¥ m and so the
assumption that Bn(0+)‘% 0 is incorrect.

Substituting equation (4.8) into the first equation of
(4.7) resultsz in

Ry (0F) + A

Co
fd
—~~
Q
+
~—
|
L
no
-
~~
B
e
~

m -1

and then by using this resuit in equation (4.8), one obtains

2
m23m2(0+) = - m° + Alz -<: 1 — {) . (4.10)

o
m- -1
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Equation (4.9) is plotted in Fig. 4.2a as the full llne, where
the dotted line is the same curve as that ol Fig. 4.1. Equa-
tion (4.10) is plotted in Fig. 4.2b.

From Fig. %.2b or equation (4.10) it is seen that
Bm(b+) has a real, non-zero solution only in & definite range
cf Rl(o+) , and for this solution to exist B1(0+) must lie
on the stra‘yht linec segment Db'e! of Fig. 4.2a. For
Bm(C*} = 9 the solution for Bl(O+) lies on the dotted curve
of Fig. 4.2a. Thus for R1(0+) < RU(O+) ] Bl(o+) is given
by the curve 3ab! , and Bm(O+) =0 . For R1(0+) = RU(O+)
the arch will snap througn to the noint df , with B, (0+)
foliowing the path bfe!d! and Bm(0+) following either of
the closed paths fghkf of Fig. 4%.2b. When Bl(O+) is on
the path ble? , Bm(0+) is non-zero and the arch deflection
is unsymmetrical.

Thus we cecnclude that R1(0+) = RU(O+) ", the ecritical
transitionzl buckling load. The lowest possible value cf
RU(O+) will occur when m = 2 13 substituted into equation
(4.9), and so the second mode will be the other non-zero mode
during the unsymmetrical srapping-through acticn.

In order for the arch to buckle unsymmetrically or zs we
have defined it, transitional buckling, the point b? muct
lie on the portion ab of the dotted curve of Fig. L.2a, o't -
wise © will be thne c¢critical point and the arch will buckle
symmetrically. t 3s possinle for b'? to lie on that porcicn

f the dotted curve thot goes from b to the R, (Ct+) axis.
& 1

4o
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If this is the case then R_(0F) 1is the critical load out
the deformation In goling from b to d will be symmetrical
from b to b' , unsymmetrical from b' to ¢! and sym-
metrical again along clcd . Since the critical load is not
changed from the symmetrical, non-transitional buckling load,
and since the buckling is initiated in the manner of symmetri-
cal buckling, i1t will be considered as non-transitional in
the remainder of this dissertation.

From equations (4.4) and (4.9) it is seen that if
Al_z V/??i% s b' will fall on the portion ab and the
critical load will be Rl(0+) = RU(O+) . RU(O+) is deter-

mined by setting Bm(0+) = 0 1in equation (4.1C) which gives,

L ;3 A12 - b4 (4.11)

Thus che critical value of che loading is:

for m = 2

N2
[Rl(0+)]cr - R {0}) = & +/—-2-7(A1 1)z
for 1< A <y 5.5
(4.12)
2
[Rl(o+)]cr SR, (0%) =&, + 3,/ 82 -

for A, 2\/F5.5

Now assuming that R1(0+) < {é1(0+)]cr , 1.e. the arch
iz stable at ¢ = 0t , Bl(of) is given by the second of

equations (4.4) and BW(O+) =0 ,m=2,3 4 ... . Thus
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the important conclusion 1s resched that, if the arch is
stable, the sinuscidal configuration is maintained.
Proceeding on to the next timz step T = Ty it 1is now

possible to ecalculate S(Tl) and Sm(rl) since the values

ry

0 Bm(0+) are known. Hence from equations (3.27) and

(3.29) it is seen that S(Tl) and Sl(rl) are non-zero,

but that Sm(Tl) =0 , m=2, 3, 4 ..., since B1(0+) £0,
Bm(0+) =0 for m=2, 3, 4 ..

Inserting these resultc in equations (4.2) gives, for

r 1
Bl('rl)"<1 + E*(1 ,O"'))( 3,:0 ('cl)> - Al2 + S('rl)]
= - Rylry) + 8 - 8, (%) (4.13)
B (Tl,{<} + E*(Tl,0+i><% + z K2 B, (T i) + s(rl%:= 0
m=2, 3, 4

Equations (4.13) car only be used to determine the sta-
hle equilibrium valiues of B (T ) unde.  the assumption that
the arch does not buckle unsymmetrically in a transicional
mode, and provided tnat an unbuckled equilibrium posifion
exists. Using the same argument as was nsed for =t = OF ,

this requlires that

_4_[‘*12 - 8,(ry) - (1 + EX(xp,0%))
7 1+ E*(1,,0%)

Rl(rl) < Ay - 31(‘1

n

(4.14)




If Rl(rl) does not satisfy this inequality, then the
arch has become unstable sometime between 1 = O+ and
T =Ty &nd has snapped through to a buckled equilibrium
position. However, if equation (4.14) is satisfied, the un-
buckled equilibrium value of Bl(Tl) is the largest root of
equations (4.13) when Bm(Tl) =0, m=2, 3, 4 ..
Irnstantaneous changes in deformation are governed by
the initial modulus EO ; equations (4.13) are not applicable
to this type of response sgince they are valid cnly for a
small step in a smoothly varying continuous change, and there-
fore they cannot be used to predict the stability of the arch
with respect to the transttional buckling mode. They are val-
id in the non-transitional case since, to the accuracy of the
numerical work, they give the equilibrium position and if nc
nearby equilibrium position exists, then the arch must have
snapped through to its buckled position.

To determine if %the arcn is stab.e at 1 =7 it is

1 3
then necessary to look at the instantaneous response of the
arch at this time. This car be done by applying an additional

load, say ARl , at T = T and then investigating the sta-

bility at T = 7,7 by considering the Bm(rl+) vs.
<31(T1) + ARI:) relations. In order that this additional
load not affect conditions at a later time it must be applied
for an infinitesimal time only, and in this respect 1t can be
considered as an imaginary or pseudo load usz2d exclusively

ror the determination of stability.

~4°7 =
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Tnus under the assumptions that the arch does not buckle
unsymme.rically and that an unbuckled equilibrium position
exists, Bl(Tl) is found from equations (4.13). It is then
possible to calculate S(T1+) and Sm(rl+) tc be used in
investigating the stability at 1 = T1+ . By definition,

see equation (3.28)
.+

oot s e v i o e

E,(T1+ - g)
+1 * + +y = = / -
5,1y ) + B (x Fr )R (1) = [ (@ (8) - A,
ot ©
however
+ - - E +) -
(et ) - E(Ty ™) - B =.,E(o ) - B o
1771 ek 2E ’
C o
g
ana .t -
[ coy=foon
ot o*

for the integrands considered here. Thus

and by using equation (3.28) again this can be written as

A}

sm(rl+) = Sm(rl) + E*(Tl,0+) Bm(rl)

A similar argument follows for S(11+) and S0




\
S(t;*) = S(1;) + E*(x,,0+) B " (1)
s,(1y*) = 8,(7y) + E*¥(vy.0%) B (1) » (4.15) '
S (t,%) =0 m=2, 3, 4 .
/

Substituting equations (4.15) directly into equations

(4.2), and noting the load at 1 = 1.+ is R1<Tl) + AR

1 1

gives

. -
Bl(r )[1 +&Zlk Bk2(11+) Al2 + s(rl+)J \

- - @l(fcl) + AR1>+ Ay -8y (%t) ?(4-16)

B, (T +)[m + S K°B 2(1 t) - A12 + S(Tl+ﬂ =0 /
k=1

m = 2, 3:4"'

Equations (3.30) would give the same result 1f it were

considered that T, = Tl+ s Ty =T They have not been
used since it ig .esired that 1 - 7, 4 be a finite time
step, ard it is conveiilent tc write Tn+ - T, 2s an infini-

tesimal step.

The investigation of equations (4.1€) follows the gen-
eral procedure used in looking at equations (4.3). Again
two possible solutions exist and the load deflection relations

are plotted in Figs. 4.3a and &4.3b.
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Rl(rl) + AR

L A I
’-lv.\
\\ I/ \
E - B s |
l ‘Rl ('fl) e \\ _//
— l f > h
F i 3 F
By (1,1 By (7)) 3 (7))
(@) (&)
Fieg, 4.3
The critical loads are given by
- = +
{Rl( tl) + AR:L] - RS (Tl ) \

er
= Al - Sl('rl+) +/§7<A,12 - S(T1+) - )3
2

for 1< A% - 58(7yF) < 5.5

and N4'17)
fm(r,) + AR | =R (1.+)
L+ 4 'LCP u 1
- - ) /2_ +) -
= A Sl(T+1 + 34 s(r1 )y - &
for AQ-S(T+)>55 /
1 1 )
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If Ru(rl+) < Rl(Tl) S.RS(Tl+) then the assumption that
the arch does not buckle unsymmetrically is 1ncorrect, and the
arch has become unstable sometime between < =0t and T = Ty |

Thus if Rl(rl) < [%l(Tl) + ARl:]Cr, the assumption made
earlier regarding the existence of an unbuckled stable equi-
librium positioa is valid, and the arch is stable under the
load Rl(T> up to and including T =7, , for Rl(T) monctoni-
cally increasing. If Rl(r) is a decreasing function of time,
there is a possibility of the arch becoming unstable bhetween
T =0+ and T = Ty even if the analysis shows it to be sta-

ble a* the two end times Ot and 1 Thus special care

1
must be taken in the choice of time steps to insure that this
dces not occur. Of course if the arch were stable at the time

+ for a loading Rl(rl) + LR, = Rl(0+) , then this would

B! 1
insure stability during tne interval O+ to Ty

Once stability is insured at 1 = Ty it is possible to
compute S(Te) j Sm(12) and proceed on to the second time
step, where once again fthe same analysls can be made to deter-
mine the conditions at that time. This proccess can be repeated
until the arch becomes unstable.

Fig. 4.4 shows the load defliection relation for a partic-
ular arch at severa. instants of time, and illustrates very

clearly the effect of the creep on the response and buckling

load of the arch as the time increases.




Rl(T) + 4R,

".—-
8

+ 12

ALY }

Fig. &.4 Maxwell Fluid Material
- Sinusoidal Arch Al = b

Sinusoidal Load Rl(r) =8
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Chapter V Non-sinusoidal Arch

(V.I) Two modes excited

In the preceding chanter only the first mode Bl(r) was
excited, and it was shown that if the arch was stable, all
other modes remained zero. Now consider an arch which has
one additional mode excited, say, the rth mode. This re-
quires that A, or Rr(T) or both be non-zero.

Equations (3.30) then become

Bl(rn)[(l + B(r v 1))(1 +k21k2Bk2( n))

2 2 2 N
- AT - AT s(rn)] = - Rl(rn) + Ay - Sl(Tn)

Br(fn)[(} + E*(Tn,Tn 1))(r + 3 K° B 2(7 ))

k=1

_ A12 - r2Ar2 + S(-rn):‘ = - i%é:rlz + re(Ar - SI‘(Tn))
and $(5 1)
B (< )[(1 + E¥ (v, 1))(m2 +k§ keBke( ))

-2 - 2% % e s(r)] = - nf(n) ]

For n = 0 these reduce to
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¢
(1

B, (0F)]1 + ¥ k°B 2(0*) - A.2 - v®n 2| = - R, (0F) + A
1l k 1 r 1 1
L k=1
\
R, (0F)
2 2 2 2. 2 1 2
4 +) . - = e e
Br(O)Lr +Z‘.kBk(O) Ay rAr} N + A,
(5.2)
Bm(O“')[m ~ K°B 2(o+) - A12 - v2A 2} =0 . )

In Chapter IV it was shown that as long as the arch is
stable Sm(T) =0 , where m is an unexcited mode. Assuming
that the same will hold true in this case and then proving
that the assumption is correct allows equations (5.2) to be
treated as a special case of equations (5.1) and so only one
analysis is required. Thus setting Sm(Tn) = 0 1in equations

(5.1) gives

Bl('rn)[(l + EX( 7, q))(1 + z,lk B 2(z))

\
- A12 - r2Ar2 + S(Tn)] f - Rl(Tn) + A - Sl(Tn)

Br('rn)[(l + E*('rn,'rn_l))(rg - z k° B, (T ))

2 2. 2 R.(7,) 2 g A
- Al - T AP + S(Tni] = - —“;é*— +r (Fr - SP(TH)) (5'4)
* 2 ® .22 A

Bm('rn)[(l + E (Tn,rn_l))(m + 2 1B, (<))

- A12 - reAr2 + S(Tni] =0 m#Zi,r . /

,5h_

|
It

I EoeEaggemmmmeres v T - oo o = - = e = e = ——r— —
= SR = = <= T T T -




As before, these equations should only be used to deter-
mine the unbuckled equilibrium values of Bl(Tn) and
Br(Tn) If they exist, under the assumption that Bm(Tn) = 0.
The system can then be checked at 1 = T to determine
whether Bm(rn) = 0 1is a valid assumption under the loading
Rl(Tn) and Rr(Tn)

ine firc- two of equations (5.3) then become

Bl(rn)((l + E*(Tn,Tn_l))<l + ElQ(Tn) + rgBrg(Tn))

2 2, 2 .
- - =2 - 2 - !
Al r Ar + S{Tn)} Rl(Tn) + Al Sl(Tn) (5.4a)

Br(rn)[Kl + E*(Tn,rn_l))CPz + Blg(fn) + PEBPQ(TH)>

R (7 ) \
- Alg — rgAr2 + S(a_—n)] = - __r_;gn_ + I’Q(Ar - Sr('rn)> . (S’hb)

By maintaining the terms common to the two equations on the
the left, equations (5.%a) and (5.4b) yield

. 2 2.2, 1\ _ 42 .2, 2
(l + E (Tn’Tn—lz)(Bl (Tn) +r Br (Tn)> Ay rA S + S(Tn)

= - Rl(Tn) A Sl(Tn) - (1 + E (Tn,Tn_l))

Bl(Tn)
R (T,,,) 2/ . \
L+ pIA - 8 (T ) .
2 rE-
= - L4 B‘\r) 2"y’ - (1+E('rn,'cn~l))r2 ]
r(Tn

Thus Br(rn) can be expressed in terms of Rl(Tn) ,
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- R, (1)

2 a
2 tr (Ar - ’r(Tn))

- R, (t.) + A, -8, (¢.)
L2 Bl(Ti7 4 (rz-l)(l + E*(Tn’Tn-l))

(5.5)
Substituting this result back into equation (5.%a) to remove

Br(Tn) =

Br(Tn) gives

Bl(Tn){Kl + E*(Tn,rn_l)){l + Ble(rn)

R, (7))
, [— ———-—-—————rrgn + I’Q(Ar - Sr(Tn))]Bl(Tn) 2}
. . _
TSR () Ay -8y (n) + (2P-1)(1 4 Bx(xy.m, 1))By (%)
- Ale - rEAr2 + S(Tn{} = - Rl(rn) + A1 - Sl(Tn) P (5.6)

a fifth-order polynomial of Bl(Tn) .
Equation (5.6) is plotted in Fig. 5.1 as a function of

Rl(rn) , wnich assumes some functional dependence of R_(~<

)

n
on Rl(rn) . If Rl(Tn> < [#l(fn)}cr then an unbuckled
equilibrium value exists under the assumptions made so far,

and the stable Bl(Tn) vs. Rl(rn) relation would be

given by the curve ab of Fig. 5.1, which represents the

}. B {1 ) can tn

1¢n1 be deter-

ra

mined by substituting this value of Bl(Tn) into equation
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R.(
R, (7.)

1.

T 2m vy maacatihloe £ na'lnn'lai-a af~ +) q (r +\
LG LD (IUW pMUDOLIVAIT VW vQaviuaa v \ ] T ;

n
Sr(Tn’) ; and it follows that Sm(rn+) = 0 since ic was

assumed that Bm(Tn) =0 Thus following an argument

similar to that used to derive equations (4.15) one gets




S(r, ") =8(v)) + E*(Tn,rn_l)<B12('rn) + reBrE(Tn)> \
8, (7 t) =8y (,) + E¥(v ,7 108, (%)
y (5.7)
Sr(Tn+) =8 (r ) + EX{(< n? T l)B (T )
sm(rn’f) =0 m#£ 1l,r /

Substituting these results into equations (3.12), as was

done before, and by noting that at 71 = Tn+ it is desired to

apply an additional load AR and ARr . it follows that

1
+ 2 + _ 2 - 2 2 +
131(1rn )[1 +k§lk213k (Tn ) Ay rA S + S('cn )
{ +
- (Rl(Tn) + ARl) Ay - Sl(Tn )

n 2 a2 2,2 +
BI:( )[r +k21kB (T +) Ay r°A, +s(¢n )]

) '(Rr(TnI).; ARr)+ ra@ - s (v +)>

?(5.8)

It is convenient to consider ARr as a function of AR1

so that stability may be discussed with AR, the lone inde-

1
pendent loading parameter. While this may nct always be

jol

t

tv

an




desirable, it seems a reasonable assumption to make at tnis -
point.
In the investigation of the system of equations (5.8)
there are again two possible solutions to consider. The
first will be to assume Bm(Tn+) = 0 , which allows the firs%t

two of equations (5.8) to be rewritten so:

Bl(rn+)[l + B12(Tn+) +

2
R (T ) + AR 2
- _(r nr2 r>+ - @r _ SI'(Tn+)>Bl(Tn+>
. <%1(Tn) + ARL> +hy = S (5, )+ (2% - 1)By (n,Y)
- A12 - I'2Ar2 + S(Tn+):} = - <R1(TD) + AR1> + Al - Sl(Tn+) )
and (5.9) )
) @r(rn)2+ ARI->+ r2<Ar _ Sr(Tn+)>
- Y = r
B.(7,%) = — - : . (5.10)
_(Bl(rn) + AR1> + A - Sl('rn ) . (r2 1)
B, (%)

Equations (5.9) and (5.10) are plotted as the fuli iines on

"
al

(&)

.2b

n
ro
]
0

[ =4
J

The broken line cr in Fig. 5.2a is given by

- {R [
B (1,") = (s 5 =, (5.11)
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which is found by setting the denominator of equation {5.10)
equal to zero. It can be seen from equation (5.9) that no
solutions of Bl(Tn+) will fall on this line except at the
singular point ¢ , and thus 211 possible stable equilibrium
values fall below this line on the curve ab . Thus it 1s
concluded that Rl(rn) + AR, = RS(Tn+) is the non-transi-

tional buckling load. [Rl( as shown on Fig. 5.1 and

Tn)]cr

+ . _ /
R (7 +) on Fig. 5.2a are equal only if Rl(Tn) [Rl‘Tn)]c

P
If the system is to have an unbuckled equilibrium value at

T =1 then it is necessary that

il

+
r < Rs('rn )

\
R (7)) < [Ry( )],
The other possible solution to the system of equations
(5.8) has one value of Bm(Tn+) Z0, m#1l, » . Thus the

third of equations (5.8) gives

m~ +B, (Tn ) + r B, (Tn ) +mB_ (Tn) A r A, 4—S(Tn ) =0.

(5.12)
With the use of equation (5.12) the first two of equations

( 5.8 become

B (c +) - - (ﬁl(Tn) + ARl) + A, - Sl(rn+) (5.13)
1'n 1 - me
and
CR (Tn; i + rg(é 5,.(t, ")
Br(7n+) = r o . (5.14)
_61-
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Substituting these two back into equation (5.12) results in

2B (T )

\
R\T + OR. j+A, - S, (1))
2 2 2 -S('r+) <(1 1/ " 21Ty

/ﬂ? (t,) +4Nz) r . D 1-m

(5.15)

If r=2 ,m>2 and so the line given by equation
(5. 13) wculd not intersect the cuved segment ab of Fig.
5.2a, since its slope is greater than that of the line cr .
Thus it can be concluded that, if r = 2, Bm(rn+) A0 is
not a pessible solution and the mode of buckling will be non-
transitional (i.e. no unexcited mode will be present in the
collapse configuration).

If » >3, then m may take on a value less than r
and it may be possible to get a solution where Bm(rn+) £ 0
is valid. Equations (5.13), (5.1%) and (5.15) are plotted
as the dashed lines on Figs. 5.2a, 5.2b, and 5.2c respective~
ly, on the pasis of r >3 and m< r

As was the case for the sinusoidal arch with sinusoidal
load, if b' falls on the arc ab then the critical loading
is Ru(Tn+) , and by inspection of equation {5.13) it is seen
that m = 2 would give the lowest value of Ru(1n+) . Un-
like the sinusoiaazl case though, it is not convenient to

give Rs(Tn+) and Ru(Tn+) in explicit form, since this

-0
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involves the solution of a fourth order polynomial rather
than a second.

The conclusions to be drawn are:

1. If Rl(rn) < Rs(rn+) or Ru(1n+) , whichever is
smaller, then the arch is stable at © =1, . Thus Bl(rn)
and Br(rn) found from equations (5.4a) and (5.4b), with
Bm(Tn) = 0 , are the stable equilibrium values.

2. Since Bm(rn) = O as long as the arch is stable,
Sm(rn) = 0 , and the assumption made at the beginning of the
chapter that this is so is then proven to be valid.

3. If the second mode is excitz=d, then any higher mode
not excited remains zero for all time, stable or unstable.

It is infteresting to note the influence of an excited
nonsinusoidal mode upon the buckling load. If the second
mode is the one that is excited, then 2 very small amount
of asymmetry in the arch considerably lowers the critical
load. Fig. 5.3 shows a typilcal load deflection relation at
two different times, the dotted curve represents a sinusoidal
arch while the full lines correspond to the same arch except
that the second mode has been excited. It can be seen that
there 1s considerable difference in the critical load for
the two cases, and that the influence of this nonsinusoidal
excltation increases with time.

Fig. 5.4 shows the response of the same basic arch as
in Fig. 5.3 except that this case nas the third mode excited

instead of the second.
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From Figs. 5.3 and 5.4 it can be seen that the effect
of exciting the second mode on the buckling load of the arch
is much greater than exciting the third mode. It can also
be shown that exciting higher modes, either odd or even, does

not have as much effect as exciting the second mode.

As the magnitude of the nonsinusoidal excitation decreases,

the load deflection curves approach the dotted curve of the
sinusoidal arch and the c¢r 1line. Thus in the limit as the
excitation goes to zeroc, the critical load for the nonsinu-
soidal arch approaches the critical load for the sinusoidal
arch, as would be expected.

Figs. 5.3 and 5.4 correspond to arches that have an

initial rise-to-span ratio such that the mode of buckling is
2 +
1 - Sl(Tcr) > 5’5 b

where Tom is the time at which the arch bhuckles. If
2

Al - Sl(Té;) < 5.5 , the sinusoidal arch will buckle in a

nontransitional manner. Fig. 5.5 shows the response of

transitional, which requires that A

such an arch with higher modes excited.
It can be seen from Fig. 5.5 that, for A2 = A3 , the
effect of the second mode being ercited is again larger than

the effect due to the third mode.

Comparison of Pigs. 5.3 and 5.4 with 5.5 show that for
A2 A3
oty constant , the influence of the nonsinusoidal mode
1 1

on the buckling load decreases as A1 decreases. For the

elastic case [11] shows plots of critical load vs. Ay for
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various ratios of Kg and Ki , and these show the abhove

1 1
mentioned trend very clearly.

(V.II) Several modes excited

The solution of the problem is which many modes are ex-
cited, through either the initial arch shape or the loading,
is a simple extension of the case of two modes excited.

Equaticns (5.1) through (5.5) remain valid except that
r now stands for any excited mode except the first mode.

Equations (5.6) can then be written as
B. (1) (} + E*¥(t_,7 )"{l + B 2(1 )
1''n 'n’ n-1 1 V'n

-_5__29—--}- VE(A S ('r ))]B ('c ) \*

o [
+ 3k s }
(=7p \—Rl('rn)+Al~—Sl(Tn)+(k - l)(l+E T2 Tp e 1)81('1' )

+8(7 )| = - Ry(7) + Ay -8,(5)) , (5.16)

a polynomial of B () of order (2nh + 1) , where h 1s the
total number of excited modes.

Equation (5.16) is plotted in Fig. 5.5. The dashed curve

in Fig. 5.6 is given by

By () [(1 + B (rm 1) (1 B " (7,))

= - Rl(Tn) + A, - S!.(Tn) P)

1

-(:}6—
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R S S/ SEEEEE L L e o - = = e T - -







and it can be seen by comparing this to equation (5.16) that
all real solutions of equation (5.16) must fall within the
dashed curve as shown.
If R,(t ) < fR (t.) then an unbuckled equilibrium
1''n L'l nJer

position exists and is represented by a point on the arc ab .
Bl(Tn) can be calculated from equation (5.16) and the other
modes then calculated from equation (5.5). Following the
same procedure as was used when only two modes were excited

+ + + +) = -
S('rn ), Sl(Tn ), Sr('rn ) and Sm(rn ) = 0 can be calcu
lated, and equations (5.8) then give the governing system of
equations for the time T = T Tt .

n

Again two possible solutions exist, the first with

t) =

Bm(T O which gives

+ 2 +
Bl(Tn i1 + B, (Tn )

2
'r )+ARK> ( _ Sk(Tn+)>>B (T +)
2 (R (T ) + ARl) A+ S (7 M)+ (k -1)3 (c,*
- A12 —k=rk2Ak2 + S(Tn'*')‘! = -~ (Rl('rn) + AR1> - A+ Sl('tn) s
J
(5.17)

and Br(rn+) as given by equation (5.10).
The second solution with one Bm(Tn+) # 0 has

Bl(rn) and Br(rn+) as given by equations (5.13) and (5.14)
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respectively, and Bm(Tn+) is geverned by

? - e, @
kAT - S(Tn)

(5.18)

where m # 1,r

If the second mode is excited, then as before Bm(Tn+)
will always remain zero, but if the second mode is not ex-
cited, Bm(Tn+)‘% O where m = 2 may be a possible solution.

Fig. 5.7 shows equations (5.13) and (5.17) for the case
m =2, i.e. the second mode is not excited. Thus if b'
falls along the portion ab as shown, Ru(Tn+) is the cribi-
cal loading, but if b' falls along bec or does not exist
then RS(Tn+) is critical.

It can be seen that the only difference in the solution
of the case where many modes are excited, as compared to the
case of two excited modes, is that the order of the poly-
nomial that determines Bl(r) , equations (5.16) or (5.17),
is raised by two for every additional excited mode. While
this raises the possibility of having more equilibrium posi-

- m e o

unbuckled stable equilibrium posiftions, and so in the actual

evaluation of the critical buckling load they are not a factor.

The fact that the polynomial is of higher order causes some
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increase in the work requlred to calculate the unbuckled
equilibrium position, but this 1s the essential difference
between the two cases.

Figs. 5.8 and 5.9 show the ordinate Bl(T) plotted
against T , the dimensionless time parameter, for a fluid
and a solid material respectively. Aside from the fundamental
difference in the two figures, caused by the fact that for
loads below a certain value the arch made of a solid material
reaches a stable equilibrium value as 1 = o , the response
of the two cases 1s qualitatively the same. 1t 1s to be

) A
noted that for small values of asymmetry Kg < 0.001
y

the ordinate is nearly identical with that of the sinusoidal
case until the critical condition is approached, at which
time it starts to diverge rather rapidly with subsequent
failure.

Figs. 5.10 and 5.11 are plots of the critical buckling
time vs. the applied load for various amount of asymmetry in
the second mode. Of particular interest is the large decrease
in the critical time for very small amounts of thils asymmetry.
As pointed out previously the effect of exciting the third
or higher mode i not as great as exciting the second mode,
but the character of the response is the same as that shown

in Figs. 5.8 to 5.11.
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Chapter VI Long-time Solution for a Viscoelastic Sclid
Material

If the srch 1is made of a viscoelastic solid material,
and the loading approaches a constant as Tt becomes large,
then there is a possibility of the deflection reaching some
final stable value as 1 — « ,

Letting =~

F denote 1t as it becomes very large, equa~

tions (3.21) can be written as

Bm(TF)
(m + z:k (B 2) +fTF (Ti 2 (Bkz(i)— Q)dé}
ot
- _%i,i‘l v s, - f:F E—(-%Q(Bmm- n)at} (6.1)
(o}
m=1,2,3,..

In the evaluation of the integrals it is to be noted that
Bm(é) is essentially constant and equal to Bm(TF) for
€~ 1y . For € small Bm(&) varies but E’(TF-g)-» 0
since (TF-é) becomes very large. Therefore in the range
of £ where E'(TF—g) is different from zero Bh(é) is
nearly constant and so can be taken out from under the in-
tegral sign. Thus to a good approximation

l( -
fF S (B (€) - a_)ag =E‘F—E;9<Bm“?) i Am)

o+t
where E, = E(w) . (6.2)
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Similarly,

T -
fF _E.:_(_;:_F__g..)_ kcélke(Bkg(&) - Ake)dﬁ

ot °

E, - E

= F O 2(B _ Ak2) . (
o k»l -

(o)
(WY
~r

Substituting equations (6.2) and (6.3) into equations
(6.1) gives
ER(T

@ ) 2
B (TF) m® +klek ) - Ak Z} mdF + moA ,(6.4)

= 1,2,
Equations (6.4) are identical with the equations of an
elastic anch of modulus EF under the same loading; but
] in the viscoelastic case they can only be used to determine
the unbuckled equilibrium position denoted by the ordinates
Bm(TF) , since in their derivation it was assumed the arch

was stable under the loading Rm(TF) and had reached a

final configuration.

To check the stability at 1 = Tp subject the arch

to an additional load at T = t.t 1in the same manner as

3
was done previously in Chapters IV and V. Bm(TF) can be

quations (6.4}, considering any unexcited

calculated from
modes to remain zero. If an unbuckled solution of equations
(6.%4) does not exist, this indicates the arch has buckled

at some previous finite time. On the assumption that

. + -
Bm(rF) exists, the integrals S(t;*) and Sm(TF‘) (see
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equations (4.15) or (5.7) ) can be evaluated, thus

S (gt =‘/;F E'(1p-£) 2 2(? £) - Ake)dg
0
‘"‘E\ m
(‘*‘) (B () - 7) (6-5)

EF - EO
+) = em—={ -
S(tpt) = 5 Balp) - 8,)

The governing equations for Bm(TF+) then become, from

equations (3.30)

B (T T) me + ke(B (T +) - A, } + S(7 +}}

_(Rm(TF; + AR£>+ me(Am . Sm(TFﬂ) , (6.6)

m

m=1,2,3,...

The solution for this set of equations and the method
of determining stability are given in Chapter IV or Chapter
V, depending on the number of excited medes. If it is found
that (AR_.L)Cr < 0, this indicates that the arch has buckled
at some previous finite time.

It is to be noted that the critical lcad found from
equations (6.6) differs from the critical load of a purely
elastic arch of modulus EO that has the sams deflected
shape as the long-time sclutlion of the visccelastic arch

under the same loading Rm(T This 1is due to the fact

7
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that, although the two arches support the same load with the
same deflected shape, the axial thrust and moment distribu-
tion are not the same in both cases. This arises because the
moment 1s directly proportional to the deflection while the
thrust 1is proportionai to the square of the displacement.

In [11] it was shown that, for a uniform load on a sinv-
soidal arch, the effect of the higher modes, i.e. 3, 5, T,
vas to reduce the critical load by no more than .5% cf the
critical sinusoidal load. That this is not valid for the
visccocelastic case can be expected from the results of Chapter
V, where it 1s seen that near the critical buckling time the
displacement of the non-sinusoidal arch differed considerably
from the displacement of the sinusoidal arch (see Fig. 5.9).
The reason: for this can be seen from an examination of equa-
tions (5.17) and (5.18). 1In each of these expressions there
is a series of the form

/" (Rk(Tn) + ARK) N k2 2

5 A, -8 (t_+)
K2 k S 2( ) (6.7)

k=r kW - m

where 1r includes any excited mode other than the first.
In order to illustrate the effect of the viscoelastic materi-

al, consider the case of a uniform load on a sinusoidal arch

which has Rl(r)
RI’(T) = T 3 r =2, 5, 7,
=0 , r=2,4, 6, ... |,
and A, =0 , r#£1
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Substituting these into the series (6.7) results in

o —@(r)+&) 2
k 1'Y'n 1 2
s —— - M =~ - k™S ('c +) (68)
k=3,5,T. .. (k2-m2)2 1 k'

In the elastic case Sk(r) = 0 and the series (6.8) is re-

dueed to

R (t ) + OR, )°
k=:,é,7... ( i4zz2__m2>%) (6.9)

which is a very rapidly converging series. For m = 2

5 1 - 4.977 x 107¢

k=3 5,7 kk(_e 3 u>2

and so the effect of the higher modes oun the elastic criticsl
load is seen to be negligible. However, for the viscoelastic
case SP(Tn+) £ 0 , and so the second term of the series (6.8)
leads to an expression of the form

6 2

k 2
3 Sy (t

+) (6.10)
k=3,5,7 (k° - n°)? .

which could be divergent, depending on the values of Sr(1n+)

While it is not possible to express explicitly SP(TP+) 5S

- TR A NP,
L

~ r
urnniC 1ot G1 T it 1= seen tha

ot

a s in the long-time solation

Sr(rn+) varies directly as Br(TF) (see equation (6.5) ),

and that
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E_ Rl(TF)
- = 3
@ r -
Br(TF) - Rl(TF) + Ay 5 (6.11)
+ (r° - 1)
By (g)
r=23,57-:...

Equations (6.11) are derived from equations (6.4) for a
uniform load on a sinusoidal arch. Thus it is seen that

3 1
for large r , Br(TF) varies as — and so the conver-

P2

gence of the series (6.10) is assured. The fact remains
however, that the series (6.8) may not be negligible since
some of the lower terms may have appreciable magnitude, and
cannot be neglected in the calculations. Added to this is
the fact that the terms S(TF+) and Sr(TF+) appear in
other ways in equations (5.17) and (5.18) and must be ac-
counted for.

Figs. 6.1 to 6.4 show the effect of Ep and Rl(TF)
on the buckling load of an arch with Iinitial rise A, =4 .

ade

Compared to Fig. 6.1, which is the purely sinusoidal case,

the cother f cs show a very rapid decrease in the critical
ioad as Rl(TF) increases. This can be attributed to the
fact that the amplitude of the nigher modes in the unbuckled
configuration increases very rapidly as the load approaches

the critical load (see Fig. 5.2).
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Fig. 6.1 Three Parameter Solid Material
Sinusoidal Arch Al = )4 , Sinusoidal Load
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Rl(TF)
Fig. 6.2 Three Parameter Solid Material

Sinusoidal Arcn Al = 4 , Uniform Load
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Fig. 6.3
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Chapter VII General Features of the Numerical Solution

The numerical integration and solution of the roots of
the algebraic equations were performed on the B-5000 digital
computer at Stanford University.

In the numerical integration of integrals of the type

T
[ 2L eieyae (7.1)
ot °©

it 1is advantageous to use a variable time step if the form
of the functions E(t) and f(tr) are of the requisite type.
E'(t) varies quite rapidly for T small but as T becomes
large E'(t) approaches zero. In this problem, where f()
represents functions of the type (Bm(r) - A ) , it 1is
possible to draw several conclusions regarding the behavior
of f(t) 4if the loading functions Rm(T) are sufficiently
smooth. For 1 small f(t) will vary quite rapidly, re-
gardless of the type of viscoelastic material, but for =
large the material property makes a considerable difference.
For a fluid material it is expected that f(t) would con-
tinue to vary quite rapidly until failure takes place, es-
pecially if the time at failure is quite small. On the other

A e AR e i T T S

hand if the material 1is a viscoelastic solid the variation
at large times will be quite small, except near the critical

time.

In order to take advantage of these facts and reduce

]
the computing time, a logarithmic time step increment was %
{
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used (see [15]) until the critical time was found, at which
time the program reverted back to the last known stable time
and a smaller time step introduced. In this manner small time
steps were used for < small and <t near the critical time,
while larger steps were used where E!'(r) and f(z) varied
more slowly.

Among the roots Bl(r) , only the largest root of Bl(r)
is required in the analysis and so a simple iterative type
solution was used. Convergence was very rapid for solutions
near the point a of Fig. 4.1 but became slower as the egui-
librium value approached b , at which point the program would
not converge.

If the progrmm would not converge a check was made to in-
sure that no unbuckled egquilibrium solutions existed, as this
constitutes one possible mocde of failure. The second possible
type of failure, that of an unexcited mode becoming non-zero,
is easily checked by calculating Bl(T) on the basis of
Bm(r) # 0 (see for example equation (4.9) ), then if the
Bl(T) found in this manner is greater than the Bl(T) found
from the iterative solution, the arch is unstable.

The time step increments and the allowable tolerance in
the iterative solution were adjusted so that the solution for
Bl(T) wasg accurate to at least four significant digits in
all the test cases considered. The maximum computer time
needed was less than one minute for any one problem including

a case where ten modes were excited and the maximum time taken
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to be 1000.

In Chapter VI there are no time integrations to be per-
formed, but in order to find the critical lcad for egquations
(6.6) it was necessary to use a double iterative procedure.
One iterative procedure is required to determine the un-
buckled equilibrium position, and a second is then required
to find the critical buckling load. Thus, although the
programming 1is quite simple, considerable machine time is

required in its execution.
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