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Abstract

Motion of a conductor relative to a magnetic field distoris the field. This
paper considers a cylindrical slug moving in a two-dimensional magnetic field,
represented by the vector potential A 9 where 9 Acla 0 = 0. Maxwell's equations
are solved for the distorted potential A 9 in the form of a rapidly converging
series A = 2 A . The An s are given in a form suitable for evaluation by a digital
computer. The nonequivalence of the apparently analogous problem of a stationary
slug in a time-varying field is noted and discussed.
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Distortion of a Magnetic Field By the Motion
of a Cylindrical Conductor

I. INTROBUCTION

I.1 Background

By Faraday's law a change of the magnetic field in a conducting slug induces
currents in that slug. This change may be either time variation of the fieid on a
stationary slug or motion of the slug in a constant field. By Ampere's law these
currents produce an induced magnetic field whicn perturbs the original field. Such
distortions have been use. to measure the conductivity of various moving (Lin,
Resler and Kantrowitz, 1955) and stationary (Chambers and Park, 1961) slugs.
Theoretical analysis has been limited to a rectangular slug in a one-dimensional
field (Oddson, 1963). These devices have been calibrated by measuring slugs of
known conductivity. However, some phenomena, such as skin effect, which were
not a problem in these cases, can be difficult to duplicate in the calibrating slugs.
To exirapolate the calibration to these cases, one must solve the problem for a

cylindrical slug in a {wo-dimensicnal field.

1.2 Problem

Consider an initial field represented by the vector potential AO awith the
condition that @ Ao/a 8 = 0. A cylindrical slug of radius b, length 24, and
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conductivity 0, moves into this field at velocity v. (Figure 1.) The slug's midpoint
is at position z = vt at time t. What perturbation in A will be caused as a result of
this motion? Since this problem involves spatial variations of the field, it will be
referred to as the Space Case or Space. Consider aiso the probJem of an identical
but stationary slug with its midpoint at the point 24 * const. in an initial field
represeniad by the vector potential AO (t) {9\ Again with the condition that

9 AO/B 6 = 0. What perturbatior in A will be caused as a result of this time varia-
tion of the initial field? Since this problem involves temporal variations of the

field, it will be referred to as the Time Case or Time.

Z=nwt

IL® (4o,Zo0)

Ny

Figure 1. Geometryof Problem. Acylindricalslugof Length 2{and radius
b moves along the z axis with velocity v. Attime tthe midpoint of the slugis at
the point where z = vi. A current IO flows in a single turn loop ai Ty Zg= 0

For the purpose of this discussion let AO be created by current IO flowing in
the loop at ror %o " 0. More coemplex fields of this symmetry may be represented

by a number of such loops.




1.3 Method of Solution

The symmetries postulated above allow one to reduce Maxw ll's equations for
moving media {o one scalar differential equation for A, where A is the vector
potential for the total magnetic field, both initial and induced. Let A equal 2 An
where An is the nth order perturbation. Then, by physical reasoning, AO generates
first order eddy <uvrrents I} which create the {irst order perturbing field A,.
Siniilarly potential A, generates currents 12 which create potential A2, and so OL.
This can be carried to as many orders as accuracy requires. Rationalized mks
units will be used initially. Later all quantities will be made dimensionless.

2. SOLUTION

2.1 Mathematical Lxpression of Problem

Consider Maxwell's equations for moving media (Panofsky and Phillips, 1955).

V:-E=0
V-B=0
VXB = pgigtuo® E+ pg0 yXB+pje, @ E/51) (Space)
VYXB = pgig*t BgOE+ pgey @ Efot) (Time)
YXE=-3B/ot (1)

jo is the current density which produces the initial field.
0 is the conductivity of the medium.
v is the velocity of the medium relative to the fields.

Charges, both true and those due to polarization, are assumed to be nenexistent.

The velocity of the medium is much less than the velocity of light. Maxwell's
equations outside of the medium are obtained, if the velocity and conductivity are
set equal to zero.

The fields may be expressed by the vector potential A.

-0 AfBt
YXA. (2)

= =
1
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Combining Eq. (2) and Eq. (1), one finds that

9
IX(IX A = g g - 10 @ AD) + py 0 ¥ X (TX A)-pye, 024/01%) (Space)

F_r this problem, the vectors have the following forms:

A

do=dg 0 (4a)
A

v=vk (4b)

B=B.r+B,k (4c)

E:=E0 (4d)

due to the symmetries postulated above.
From Egs. (2), (4c) and (4d), it follows that

A=A (5)
since it has been assumed that

3Ef60=0B/0g=0 (6}
then

dAfe0=0. (7)

A
From these considerations it can be shown that only the 8 component of Eq. (3) is
important.

@/or) et (8/or) (ra)] + (82a/822) = - Mo ig* Ho O v @A[2)

+ u'c o (0Af0t) + Lo €g (62A/8f2) {Space}

@/or) [ et /o) (ra)] + @2as02) - “pg dg * o O @A[01)
g€ 02a/0t2) (Time) (8)




Note that u,€, = c-z, where c is the velocity of light. The term (32A/322) is
of the same order as v 2 (82A/3t2) (Space) or wQ'2 -2 (82A/8t2) (Time). The
{requency W is some fundarnental frequency of the Time Case so chosen that

Wg 0 (Txme) is on the order of v (Space). Thus the term p.o 0 @ A/at )~
-2 r()

(V/C) v (8 A/at ) (Space) = («w, ro/c) W (6 A/at ) (Time) may be

omitted.

This makes KEq. (8) a diffusion equation. Since physically this is a diffusion
problem, the approximation is valid.

All quaniities will now be made dimensionless as follows: Choose a charac-
tenstxc current I, and a characteristic length ry. Multiply each term in Eq. (8)
by Ty (u ) 1. Substitute dimensionless terms for the resulting ratios as indi-
cated in ’I‘able 1. For the remainder of this paper only these dimensionless terms

will be used. The dimensionless equivalent of Eq. (8) is

@/or) [t @) A)] + @2A/027)

-jgta [@Ajaz) + (0A/31)] (Space)

-jg ta [9A/at]. (Time) (9)

Table 1. Relationship Belween the Ratics of Quantities in mks Units and the
New Dimensionless Quantities

Ratios Dimensionless Quantities

r/ro r
z/ro z
vt/r0 (Space}

t
wy t (Time)
A, 1)t A

Ho ‘o

. 2 .
3o ro /IQ Ie
b/r0 b
,Q/I'O ﬂ
ro/ro 1

-




Table 1, Relationship Between the Ratios of Quantities in mks Units and the
New Dimensionless Quantities (Cont)

Ratios Dimensionless Quantities

2o/ 7 20

Bo O v rg (Space) .

2
Lo 0wy ry (Time)

2.2 Functions to be Used

Consider first the potential a. due to a current In in a loop T 2 The

current density jn is given by

ip=1,0(z-2)0(-r). (10)

The Dirac delta, 0 (y - ym), is defined by Eq. (11).

[

y, 0 ypldy=l v <y, Sy,

otherwise

L]
(=]

y
S gwmoy-y day=gl) ¥, <y <y,

Yy
=0 otherwise. (11)

The potential is given by (Stratton, 1941)
- (o)1 /2 ..
a =27 "L (rn/r) fx). (12)

The following definitions are required:

x =4r 1 [(rn+r)2+(2-zn)2]-l
_ . Y2
£0x) = x, / [2-x)K -2E]

7/ 2 L2 -1f2
Kn=fo"/ [1-x sin®g] 24

7 L2
E_ = j;'/z[l-xnsm 617%a¢ (13)




Kn and En are the complete elliptic integrals of the first and second kinds (Jahnke
and Emde, 1945). The function i (xn) is shown in Figure 2; a, (ro, zo) is mapped
in Figure 3.

Azimuthal currents in a solid may be regarded as a continuous distribution
of such rings. To obtain the potential due to such currents, one must integrate

over all such rings and divide by an appropriate normalizing factor. Thus,

b t+f
A (r,2) = fO ft-f: a, dz dr,

. (Space)
7z +§
= fO fO a_dz _ dr
2 ‘ﬁ n n n
0 - . (Time) (14)
z b

It should be noted that

= i
In In (rn, zn). (15)

Since the normalizing factor will later cancel, large values of £ present no problem.
b4

Note that n refers to the a'-order perturbation. The rings are not discrete and

therefore are not numbered

One more function is needed. We define A n to be the function A, with

» n-1i |3
Th, %n substituted for r, z. Similar definitions may be formed for *n, n-1’ K n, n-1’
and Ln, n-1° 2, n-118 the potential at r » %, due tc a current L ., inthe loop at
r z ..
n-1 “n-1

Since a, is the potential of a current loop, it must satisfy an equation similar
to Eq. (9) except o = 0.

@/or) [r™t @/or)(ra )] + @%a [0z = -1 6 (r-x )6 (z - z). (16)

Since a differential with respect to r is unaffected by integration over ro
Egs. {14) and (16) show that

bt
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Figure 2. A Plot of the Function f(x ) = ./.s.., f2 {2 - x.) K, -2 GL vS. X,.. The complete elliptic integrals K,
/e
and E_ are defined: K_ = \oim [1-x,sin® 9] 24y E_- %os : [1-x, sin® g)t/% g
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Figure 3. Curves which Map the § Component of the Vector Potential ag Qov Due to Unit Current Flowing in a

Loop of Unit Radius. The potential is mapped as a function of distance r from the axis at various points z along
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@/or) (vt @/or) (r A )] + (02 A_fo3%)

t+f

[

b
2ot [T

o Yie In (1'n, zn)é {r - x‘n) 6 {z - zn) dzn drn (Space)

b z.+§ .
o -1 0 . - i
~{Zbf) f f y In (rn, Zn) o (r xn) 0 (2 zn) d 2, drn(’hme) {17)
“Jsing the definition of § {y - ym) in Eq. (11), one may show that

@for)[r™! @/or) c A )] + 02 4_foz2)

=-@bO™' L (r,2) r<b, t-f<z<ta (Space)
zo-£§z§zo+£ (Time)
=0 otherwise. (18)

2.3 Solution

Let the so_ution to Eq. (9) be

A =}:An. (19)

The An's will now be evaluated.
Outside of the slug, Eq. {9) becomes

@/3r) [x™ @/or) (v A)] + (224702 - -4y - (20)

If Eqa. (19) is used to substitute for A on the left-hand side of Eq. (20), the A
term will contribute - jo to the right-hand side and the other An's will contribute
nothing to the right-hand side and the solution is obviously valid. Inside the slug
Eq. (9) can be satisfied i the same manner if

0

s

@ [@Afaz)+ BAJO)] = -12bs) "L I (r, 2). (21)

1]
—

n




If Eq. (19) is now used to replace A on the left-hand side of Eq. (21)

(-2p0°t Z 1 (r,2) -

o«

o Z)l [©A,_/a2)+@ A _ [o1)] (Space)
n=

@ :_31 [04, _,/0t]. (Time) (22)

Replacing r, z by re 2, and equating these two series term by term

L (rn, zn) -2abf[ (G A 1/6 z )+ 3 An n- 1/8t)_| (Space)

"

-2abf[d A n-1/2tl- (Time) (23)

When this is substituted into Eq. (12) and the result substituted into Eq. (14)

>
!

b _t+€
- -1 i/2
=20 a fo ft-ﬁ (/Y 5 [@A, | /o7 )+ @A [00)]

{Space)
f(xn) dz dr/

-(27) 1y f f %" (r /r)‘/z[a A n-1/9t] f(x )dz dr .(Time) (24)

An important difference in the two cases may now be noted. In the Time Case

only A n-1 is time dependent. Equation (24) may be simplified by taking the time
demvanve outside the integral.

,(

Zg* .
=@/t (-2 e f I 2t A, oop fx)dz dr . {Time) (25t)

frena. g




e

B

12

An iteration process will ~ow yield

+£
_ yaflya.n -n._n Zot
A =@t (-2m " a f f f f
z -
0
(Time)
f(k )f(x f(\ )dz +..dz dr,dr,. . dr . (26t)
Usually the time dependence of the initial field can be separated Al
A'1 o (r.2) gl,O(t) to yield
-n o 0 0
= @7 gt (-2m) f ff f
{Time)
Al . e D
Al,o f().l). . 'f()‘n) dzl. . .dzn drl. . .drn. (27t)
If g, o 1t) = et then
ok z +{
A= izt o e f g f L
0 zo-L
(Time)
‘ ”
1 0 f(x ). i{x )dzl. -.dz dr;...dr . (28t)

Thus each A is cos t or sin i times an amplitude.

In the Space Case such a simplification is not possible. There are z and t
dependent terms in the integral and in the limits which are not to be differentiated.
As will be seen below, the successive An differ by more than simple phase shifts.
However, the differential equation(Eq. (9)) hasbeen changed to an infinite number of
integral equations (Egs. (19) and (24)). The nth equation corresponrds to the nth

perturbation. AO is the initial field; A1 is the induced field; A2 is the first order
skin effect; and so on.

Ag = em e Mgy

b t+f (Space)
= -en « [ [ (rllr)l/g [0 A, of37,] f0x,) a2 dr; (255)

>
1

>
'

b t+
5 = 2m e fo f . (rz/r)l/z[(a;s.2 J329) + @A, (/31)] f(x,) dzydr,
t_: » 2

I B
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A Fortran program for the IEM 7090 has been written to evaluate AL
(2 11/0:)n (n=1,2,3)atr =1, z=¢, Slug length and radius are variable inputs for
this program. Typical results are shown in Figure 4, As long as ¢ < 2 7 the
approximation
A= AO T A

Ayt Ag (Space) (26s)

1 2

seems valid.

3. CONCLUSIONS

The solution as presented in Eq. (25) allows one to calculate the perturbed
field around a cylindrical slug moving in a magnetic field. While Eq. (25) is based
on the assumption of the Ay given there, it is easily extended to certain other
cases. Any other initial field which has azimuthal independence and has no
azimuthal component may be accommodated by suitably changing AO. In practice
this would be a solenoid or some approximation thereof. If the initial field, hence
A0 is time dependent, a time derivative must be included in the equation for Al'

-1 b t+f 1/2 )
A, = (27) afo j;ﬂ(rl/r) [@a; o/32))+ BA o/81)]
B (Space)

f(xl)dzl drl. (27s)

It is possible now to look back and study the difference between the Space Case
and the Time Case. The difference first occurs in Eq. (1) where a v X B term is
added to the electric field in the Space Case. While it appears that one could
easily modify the electric field to accommodate this term, in Eq. (8) this term
givesrisetoa z derivative of the potential. In Eq. (14) the difference in these two
cases by the inclusion of the variable t in the limits of the integral is the Space
Case. Comparing the Space solution in Figure 4 with the Time solution in Eq. (27t)
shows that two cases, which were apparently analogous in Eq. {1), actually have
little or nothing in common. The Time Case solution is the sum of a number of
sinusoidal waves of phase 0, +7/2, and 7. The Space Case solution is the sum of
some definitely nonsinusoidal functions of no simple phase relation.
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Appendix A

Singularitizs

Before a computer can be used to solve Eq. (25), the singular points must be
considered. Otherwise the computer may try to evaluate infinity. In Eq. (12), it
will be noted that a, depends on \r xn)_l/2 and K - The first of these grows

without bound when rx > 0, while Kn grows without bound when xn->1. The first

of these is easily handled. Near r =0, X, «r, Thus (r xn)lll2 o« X An expansion
l of the functions in powers of X, near x = 0, shows that
!

2
@ - xn) Kn -2 En xx, . (Al)

Thus, at these points a, approaches zero. Although this is obvious from physical
considerations, the computer must be given mathematical reasons. When x, = 1,

a true singularity is found.
1/2,-1
K, eln[4(1-x /57, (A2)

This is the point at which r = r.z=2,. In Fq. (10) the current cross section was

assumed infinitesimal. This introduces a singularity into the current density. In
the case of Ao one could introduce the wire cross section but the easiest solution

is to avoid the singular point. The slug will never run through the current-carrying
element so the true value of A0 at that point is unimportant. In the other a, this




A2

singularity occurs in a function which s to be integrated. Since Kn is proportional
to the logarithm, it is to be expected that the integral of K‘n will remain finite.
Physically this is expected to be true since infinite fields are not found in the slug.
It appears to be true mathematically. While the integrals of Eq. (25s) have not been
solved analytically, the following integrals can be solved and are all found to be
finite:

1
fo K dx
1
f K x dx (A3)
0 n n n
0

1
f K xzdx
o b'n

In each case the approximation

1 1-¢
fo Kng(xn}dxn=f0 K, " (x)dx +e[K gx)]

4
x=1-€ (A4)

2

gives excellent results. Withe < 10 “ the error is less than 1 percent.
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