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RADIATION BY A UNIFORMLY ROTATING

LINE CHARGE IN A PLAsMA'

by

Stanley C. Gianzero, Jr.

Polytechnic Institute of Brooklyn

SUMMARY

bt

A theoretical investigation is conducted for the radiation produced
by a linear distribution of electric charge executing circular motion both

inside and outside a cylindrical plasma column. The analysis includes

the effects of compressibility and ani :otropy of the plasma upon the
radiation characteristics of the charge distribution.

In the incompressible isotropic case, a dipole resonance
phenomenon is exhibited for the first harmonic of the angular frequency

of rotation of the charge when the charge mcves at non-relativistic

i e e L

velocities. If the charge moves at extremely small velocities, the
resonance becomes a singularity. The influence of compressibility

upon these radiation characteristics is discussed and is shown to be

negligible. In the case of the presence of a magnetic field, i.e. for
an anisotropic plasma, the dipole resonance is shifted. Moreover, a

multipole resonance is possible for a sufficiently higher order harmonic.

1 This research was initiated under Contract No. Nonr 839(34) and com-
pleted under Contract No. Nonr 839(38) for PROJECT DEFENDER, and
was made possible by the support of the Advanced Research Projects
Agency under Order No. 529 throught the Office of Naval Research.

¢ Formerly at the Polytechnic Institute of Brooklyn; currently with tke
Raytheon Missile Systems Division, Bedford, Massachusetts.




Furthermore, in a frequency range just above this multipole resonance,
Cerenkov radiation contributes to the existent Bremsstahlung radiation
for a single harmonic in the neighborhood of the singularity of the index
of refraction. Thereafter, the radiation contributions of the remaining

harmonics is negligible.
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SECTION I

INTRODUCTION

The currect interest in radio communication wita space vehicles
has stimulatzad the study of wave propagation in a plasma. Such a study
is of importance in providing a knowledge of both the possible wave types
which the plasma admits and their means of excitation. Extensive research
on these topics has produced papers which study the plasma both in the

absence and presence of localized electromagnetic sources.

Studies of the plasma ir the absence of localized electromagnetic
sources are conducted for the sole purpose of obtaining the possible types
of waves which propagate in a plasma. The usual method for n'.taining these
wave types is through a macroscopic hydrodynamic approach, which
couples the linearized Euler equations of motion with the linearized Maxwell
equations of eleétrodynamics. Allis and Papal’ 2 and Stix3, in studying both
compressible and incompressible plasmas with and without a static
magnetic field, classified these wave types in terms of normal wave
surfaces. - Osi:er4 examined the same caces but also from the point of view
of a microscopic gas treatment. using the Boltzmann equation with the
Maxwell equations. The importance of this paper is that it demonstrates

the validity of both the macroscopic and microscopic approaches.

Having thus considered the methods of approach, it is now desirable
to discuss more fully the results of these papers. Firstly, in the case of an
incompressible isotropic pl.sma, the plasma behaves as a dielectric, with
one exception: the phase velocity of the electromagnetic waves is greater
than the velocity of light in free space. This wave type is known as the
ordinary optic mode of propagation. If, on the other hand, the plasma is
compressible, it retains its isotropy but admits an additional wave type, a

longitudinal wave which propagates at the speed f sound.



A niore 'complex situation occurs if a static magnetic field is
applied to an incompressible plasma. In such a situation, the plasma may
be vieved as an anisotropic medium possessing a tensor dielectric
permeability. Its principal - waves are separated into either of two classifi-
cations, depending upon whether they are propagated along or across the
magnetic field direction. The transverse electromagnetic waves (T.E.M,),
which proupagate along the direction of the magnetic field, decompose
naturally into right and left circularly polarized waves. This natural
decomposition is the basis for Faraday rotation which has application in
optics. The iransverse electric (T.E.) and transverse magnetic (T.M.)
waves, those waves which propagate perpendicular to the magnetic field,
comprise the second of the vwvo classifications. The T.E. wave
characteristics are identical to the isotropic plasma waves mentioned
previously. However, the T.M. waves, which are a consequence of the
anisotropy of the plasma, are called the extraordinary waves of propagation
because of their resemblance to the extraordinarv wuves in double refracting

crystals ir optics.

When a static magnetic field is applied to a compressible plasma,
the T.E,. M. waves are modified slightly, these and the longitudinal plasma
wave remaining uncouplz4. However, in the case of propagation perpendicular
to the field, the extraordinary wave is coupled to the plasma wave.
Seshad*is,' exciting this same wave type (the extraordinary wave) did not
expound upon the coupling phenomenon. It is the intention of this paper to
interpret the radiated spectrum of energy more readily, by precisely
clarifying this wave coupling. It may be considered from this brief s »v
of the literature that the source free case has been otherwise sufficiently
explored, and so it shall not be the intent of this paper to investigate this

particular area furth.zx.

It is now fitting to elaborate upon sonmie of the numerous applications

of wave propagaticn properties in plasma diagnostics. For one, plasmas
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may be 1nserted in microwave cavities and wave guides. Here, the
presence of the plasma affects the resonant frequency of the system and
increases its ioss. From the frequency shift, the electron auensity can be
calculated; from the loss, the collision frequency can be calculated. A
more refined technique, involving a dipole resonance phenomenon for
measuring electron density, is used by Crawfordé' 7. Specifically, if

the plasma is a cylindrical column, thereby possessing a finite dimension
in the direction of impinging electromagnetic waves, it experi’ences a
resonance when the excitation frequency of the plasma is w= —”E‘ . The
chief advantage of incorporating a dipole resonance phenome?éé:, as
opposed to studying perturations of the rescnant frequency of a microwave
cavity, is that t:ie dipole resonance is a first-order effect. The author will
also consider resonances of a dipole type in his configuration. ltis
syeculated that such a configuration, applied to the task of detecting electron
densities, will yield a greater range of operating frequencies by merely
adjusting the intensity of the magnetic field external to the plasma. The
dipole resonance phenolmenon is retained regardless of the consequent
variation of velocity of the charge distribution, brought about by altering

the magnetic field intensity.

An understanding of the physical phenomenon occurring in the
configuration considered by the author can only be obtained through a careful
study of the radiation produced by localized electromagnetic sources. Indeed,
studies of the plasma in the presence of localized electromagnetic sources
possess, by far, a great number of interesting physical implications., The
author is particularly concerned with the presence of moving fources, It
is a well known fact that if a uniformly moving charge distribution moves
with a velocity which cxceeds the phase velocity of light in the medium, a
radiative process called Cerenkov radiation, exists. The radiated spectrum
of this process consists of a continuum of frequencies. 8 A possible
application of this radiation process in a plasma is the genecration »r

amplification of electromagnetic waves in the microwave range. The
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radiation characteristics of a uniformly moving charge distribution have

heen the subject of many current papers. Interest in this type of motion,

)

particularly from the aspect of Cerenkov radiation, has been considered
not only by Tuan and Seshadri but is also conta...ed in the papers of

Majumdar and Abele.

Tuan and Seshadri'sg investigations in this area consisted of a
determination of the radiation characteristics of a point charge moving
uniformly along the direction of a static magnetic field of an unbounded
incompresﬁible plasma. Here, for the first time, an author expuiicitly
evaluates the multiple Cerenkov rays (which correspond to different

frequency components) propagating in the same direction.

Majurndarlo, still considering the uniformly moving point charge,
extended their results to include the case of a compressible magnetoplasma.
Tuan and Sesh»:‘mdri5 have alsc analyzed the radiation produced by the
rectilinear motion of a line charge in a compressible magnetoplasma where
the charge moves both along and perpendicular to the direction of an
impressed magnetic field. It is in this investigation that'they experienced
the excitation of the coupled modes which the author will discuss more

fully later.

Abelell examined the spectral distribution of energy produced by
a uniformly moving line charge, not only in the previously studied unbounded
case, but also in a bounded compressible plasma. His conclusion that
radiation is also possib.e for a charge distribution moving outside a plasma

finds application in the cases to be discussed by the author.

The subject of sources executing circular motion hes also received
considerable attention in current literature. In the case of circular motion
of a charge distribution, the radiation may be confined to certain discrete
frequencies within a specific range. In free space, a rotating point charge
radiates a spectrum of lines which correspcnds to the harmonics of the

1 . s
angular frequency of motion Z. For non-relativistic velocities of the charge,




the dominant part of the radiation is confined tc the {irst few lines of
the spectrum. For relativistic velocities, the spectral distribution of the
radiated energy at first increases with the order of harmonics, reaches a

maximum, and decreasées thereafter.

A different behavior is expected if the charge rotates in a magneto-
plasma13. In this case, the medium is highly dispersive and a resonant
condition is expected. Moreover, the significant part of the radiation is
confined precisely to the particular harmonic where the resonant condition
exi *s. Here, the process of Cerenkov radiation contributes to the

14
ordinary Bremsstahlung radiation .

Canobbio15 investigated the radiation produced by a density modu-
lated beam of ions in an infinite plasma for the case where the heam is an
infinite plane parallel to the static mag ietic field, and for the case where
the beam is an infinite cylindrical surface parallel to the magnetic field.
In both situations, he studies resonances in the radiated energy, as will

the author of this paper.

Twiss and Robertsn, investigating the radiation produced by an
electron moving in a circle in an incompressible anisotropic unbounded
plasma, showed that of the two modes that are excited (ordinary and
extraordinary) the radiation is emitted predominantly in the extraordinary
mode. Although the corresponding problem of a line charge excites only
the extraordinary mode, it is now clear that this is the only mode of
importance in this type of investigation. The author, therefore, finds
justification in considering the two-dimensional problem in preference to

the three-dimensional one.

Finally, extensive research is found in the Russian literature. Here,
considerable attention has been paid to the case where the radiation is pro-
duced by a point charge executing circular motion, but now in a compressible

unbounded plasma. It has been found that an appreciable amount of the




radiated energy can be associated with the longitudinal plasma

16,17, 18
waves 35

Having thus considered the contribution of Cerenkov radiation to
the ordinary Bremsstahlung radiation in the unbounded cases, it is prudent
to once again mention the fact that if the charge is moving in the vicinity of

a plasma column, a dipole resonance is anticipated.

It is clear, irom the above synopsis, that a systematic study of
the problem of radiation from a rotating line charge in both an unbounded
compressible plasma and a bounded compressible plasma remains to be
determined. This paper, therefore, proposes to fully investigate the
radiation characteristics of a line charge in the presence of a plasma
column,

The author is indebted to Dr. Manlio Abele for his innumerable

suggestions, his erudite opinions, and his constant guidanc-,




SECTION II

BASIC EQUATICONS

The present investigation is conducted for thz case of a uniform
linear distribution of electric charge, oriented parallel to the z axis of
a cylindrical coordinate system. The charge distribution rotates about
the z axis (which is parallel to an impressed static magnetic field) with
a constant angular velocity w e 4 and oy denote the charge per unit length
and the radius of the orbit respectively.” A cylindrical plasma column of
radius p, is located within the orbit of the charge distribution, oriented
parallel to its axis of rotation. The boundary of the plasma is assumed to
be perfectly rigia; the plasma medium is assumed to be compressible wud
lossiess. It is further assumed that the angular frequency of motion of
the charge distribution is sufficiently large so that the ion motion may be
neglected. Finally, the intensity of the electromagnetic field is assumed
small enough so that the equations of motion may be linearized. The charge
distribution produces a current density which may be described as a
continuoﬁs current distribution in the following manner:

1 =1 =0 = - a te- -
iy =, G , I, -uoqé(o oo)bhot o) (2-*)

where b(p-po) and 6(wot—cp) are Dirac -delta functions. The ¢ component

*The fact that the angular fre juency of rotation of the charge distribution
is not synchronized with the cyclotron frequency is not inconsistent,
since a physical situation can always be realized wherein the intensity
of the magnetic field outside the plasma differs from the intensity
inside.




can be written as,

woq = -imw,.T
3 = eemm— - o
j . 6(p Do) 5‘ e

(2-2)
¢ L
m=-00
where T is related to the time t and the angular position ¢, as
T=Et-9/w (2-3)

The current density induces in the plasma a density fluctuation, 7;
an electron motion with velocity components up, uq‘; and an electromagnetic
field with components 50, 5@, of the electric field, and the component #z

of the magnetic field.

The chosen method of solution for the above field quantities requires
first, a separation of the solution into cylindrical regions about Py and p; .
Then, a particular solution of the linearized Maxwell equations and the
linearized hydrodynamic equations for j#z and 1 (which is consistent with
the current density jcp) is used to find the remaining field components in all
regions. Finally, the field components are matched at po and p; with the

aid of specified boundary conditions.

Thus, the governing equations inside the plasma medium are,

o U -
St ta V-2 =0 (2-4)

2

WU, Lo, a’ m

at +m Q*QXQC +n vA =0 (2-5)

o
vxd tu ég:o (2-6)

~ o ot
14 _

Y x# - €3¢ + noqu =0 (2-7)

where m and q are the electron mass and electric charge, respectively;

i
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n_ is the equilibrium value of the electron density ); a is the speed of

sound of the electron gas of equilibrium temperature, To’ given by,

3
= 2~
a=(y kTo/me) (2-8)
Also, k is the Boltzmann constant; and v is related to the number of
degrees of freedom, {, of the electron adiabatic motion through the
equation,

Yy = (4+2)/2 (2-9)

eo’“o are the dielectric and magnetic permeabilities of free space,
respectively; Q , {f- are the intensities of the electric and magnetic fields;
and Q is the electron macroscopic velocity. Finally, the magnitude of the
cyclotron frequency w, is given by,

nq J

W OO NO! (2-10)
C me

A particular solution of the governing equations for the field

components, which is consistent with the current density, is,

m= oo i
Ao, 0,t) = Z Am(o)e1 Yo' (2-11)

m=-Q

By virtue of Eq. (2-11), the governing equations (2-4), (2-5),(2-6),

and (2-7) may be written .n the following component form,

! dipU m) im
-imy N +n |- ey =0 (2-12)
om olp do g m
1, a® de
-imy U + —E +w U 4——=0 (2-13)
o pm me pm C Om n dp
q c 2
-imuw U +2E ., U +2& N =9 (2-14)

m m, om c pm np m




li ll’_n_ -1 = 2.
; (bE__ ) - E. xmmouoH 0 (2-15)

Imy fimgeE +nqU =0 (2-16)
o} zm o 0 pm o0 pm

dem
" Tdp + 1mwoe°E +noqu =0 (2-17)

Solving Eqs. (2-13) and (2-14) for the velocity components,

gives
i de ix'nmc v
= r 32T : - ar. +
noqcU;.)rx‘x m"’w:o-mz{ eo(‘”p [lmonpm+chcpm] 1,2 [unwo dp P Nm]J
(2-18)
i mamo de
= ————a 2[-j + +q a® + }
noqum m"wo-wc {eowp[ 1monwm chpm] 9,2 L 0 Nm Ye dp ]
(2-19)
where the plasma frequency is defined as,
2
nq
o2 == (2-20)
P € me

Substituting Eqs. (2-18) and (*~ "9) into (2-16) and (2-17), and solving for
the transverse field components E‘:‘m and Ecpm in terms of the longitudinal

field components H m and the electron density term Nm’ yields,
z

rq m3w w dN m?y k* w u® dH
_ 1 o 9 ¢N q K2 m o _am c zm
= ? 2 2 = 2 = Y
pm eoksm tml| pc m ‘o om dp pc zm a“c’ dp
(2-21)
: (mq k2 q mg w dN_ mw o mw k° dH
E . i oom, ,© 0¢C m_ _CcP . o am ___zm
gm eokim kaLm | e m c® dp pa’c® zm c? dp
(2-22)

10
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where ¢ = l/./uoeo is the speed of light in free space. The propagation

constants k , k are givenintermsof k , k as follows:
sm m om am
k:mﬂéam 1 / 4070’
2 = a 3 3 2 p c
T —— = k? -k + -
ksm 2 2 ( om am) a®¢? (2-23a)
kimﬂ(;m 1 / 4w3wc
k2 = _ 3 _Le 2 4+ -
im 2 2 (k om kam) —;%r (2-23b)
where kam' kom are given by,
m? w“’o-wa
k2 = _T_E 2-24
om c { )
A
2 ' 2-25
kam ad ( )

The propagation constant kom is the ordinary optic mode of an
isotropic plasma, and kam is the corresponding acoustic mode which is

modified somewhat due to the presence of the magnetic field.

Because of their complexity, the propagation constants defined by
Eqgs. (2-23) warrant explanation and, therefore, a slight degression from
the present discussion is desirable. It must be recalled from Section I
that in a compressible, anisotropic plasma, the extl;aordinary electro-
magnetic mode of propagation is coupled to the acoustic mode of propagation.
Equation (2-23) is a statement of this physical phenomenon. A clear under-
standing of this mode coupling can be obtained from a study of the
corresponding indices of refraction. In such a consideration, the excitation
frequency my is assumed to be equal to @, a continuous variable, and
therefore the subscript m will be omitted in all the defining relations. If
it is further assumed that the speed of sound in the electron gas is much
smaller than the speed of light, the propagation constants ks and kL .

il




corresponding tv Eq. (2-23), may be approximated as follovss:

o u? K
2 _ 1.3 p_c o
ks ka+a3cak2 4k§
(2-26)
k4
k? - k? . =2
L e 4k;

3
€ . q
where k:: e ELe—al is the extraordinary mode of propagation for an
1

incompressible, anisotropic plasma described by a tensor dielectric

permeability. The tensor dielectric permeability being defined as,

€ ieg. 0
e=| -iez & 0 (2-27)
3
0 0 €y’
where
wa
& =1- “E-Jl'f?r
W - Y
C
2 (2-28)
w oW
e, = —PB_
2 (wa _wa)w
C
eg = l e wa

It is important to note that the previous approximations in

Eq. (2-26) are valid for all frequencies except those frequencies which
satisfy the following relation:

(2-29)

12




Figure lisa plot of the indices of refraction, corresponding to Eqs. (2-23)
and their approximate forms [Eqs. (2-26)] for arbitrary values of non-
dimensionalized frequency w/wc. Tha2se results show that a reasonably
good approximation to the coupled propagation constants may be obtained

by merely retaining the first terms in the expansions in Eq. (2-26).

Specifically,
k ~ k
8 e )
k’_. - ka,
" and (2-30)
k - k «‘ Y o
y a ; / 1 +(-P' < L‘U—_<_ @
k ~ k Ye Ye

It is evident that in this approximation the region defined by
strong coupling actually comprises only a narrow r« nge of frequencies
which separate the eniire frequency spectrum into two ranges, wherein
the modes are effectively uncoupled. Moreover, the coupled propagation
constants assume alternate roles in these ranges of frequency. Specifically,
for low frequencies, ks behaves as the extraordinary mode of propagation
of an incompressible, anisotropic plasma, where as kl. behaves as a
modified acoustic mode of propagation of a compressible plasma. For
high frequencies, a reversal is evidenced. ks now behaves as the
modified acoustic mode and k, behaves as the ordinary optic mode of
propagation. It is interesting >to note that this switching of modes occurs
precisely in the frequency range where a singularity of the index of
refraction would exist if the plasma were incompressible. The results
of this interesting phenomenon will t.e applied to one of the cases to be

discussed later.

Returning to the previous discussion, the velocity components

13




Un"n and me, corresponding to i£qs. (2-21) and (2-22), are found by
subst *ing'Eqs. (2-21) and (2-22) intc Eqs. (2-18) and (2-19). Then,

simplily:ng them yields,

. m? ¢ w my k® dN_ my?"?
B -i ocC 0 om m ‘P_om
Upm 'k &2 Ty D dp 7 Hm”
pmM ncp m n p nqgap 2m
srn Im o o oo

my p w° dH
Lo 2 o4

zm
(2-31)
n1,2¢ de

: miy k2 m?®y?y dN_ mPw w o
T o om . 02c m oacap i
m ksmk{m n_p m nc dp noqoa c°p zm
W2 k3_ dH
‘D om zm
noqoa2 dp (2-32)

The equations which the longitudinal field ¢ mponents satisfy are found
by substituting Eqs. (2-21), (2-22), (2-31), and (2-3C) into Eqs. (2-12)

and (2-15). AThen, after some simplificatior,

k2 dH m?® 2k R dN 2
am}l d zm ) © _p om m°l., 1 d . mi| m- . |,
1. A~ \f 2 - 2.8 - 2 il U A v Rt =
q v, (P de dp ct akl P zm pdp\” dp g m
(2-33)
1 A% K8 dN 207 K2 s
e oml}l d m) . o am _p m” |, }
W UJ: ¢ 0 p dp C2 ka a2 ci m
cp om
dH
1 d ( “m m* ?
-—\p - H =0 2-34
pdp \" dp c* zm ‘ (2-34)

The above equations can be uncoupled by first assuming the

solutions to b linear combinations of N‘_n and Hzm with arbitrary coefficients.

H

14



These coefficients are then adjusted to yield tw> separatc Bessel equations

in the assumed sclutions. * The result is

1 s o
—_—r -K%,_ b, k -
(k* -k% ) [(kom 1!(‘f,m)bxm']m( me)

sm Im
N = (k¥ -k® j)a. J (k p)] i p<pmp (2-35a)
m om Sm imm sm
0 i P <p< oo (2-35b)
- J ; -30a4a
(k2 -k ) [aimjm( smo) bim m(kl,mb)] b <0 (
sm Im
= ¢ +a’ ’ =
H a; J (k _plta Y (k o) p 01 <p<opo (2-36b)
(1) k c - -
aem}-{m( mp) ; 0o <o <@ (2-36¢c)

)
m
respectively; and a b

where .Im, Ym' and H ' are the Bessel, Neumann, and Hankel functions’

. ,a’' ,a’ ,anda are the constants of

im° im  im em

integration which are to be determined from the boundary conditions at
o, and p;. Note that the magnetic field components in the regions outside
the plasma column have becn obtained from the solutions of Eq. (2-33)

in the limit of wp =0. Also, the propagation constant km in these regions

is defined as

k= (2-37)

It is important to mention that the Hankel function of the first kind

has been chosen in order to insure outgoing waves for positive and

See Appendix for explicit calculation,

15



negative m for the specified tim~ dependence. The transverse field

components in all regions can now be obtained by substituting Eq. (2-35a)

and Eq.

(2-36a) into Eqs. (2-21) and (2-22), and then by substituting the

remaining equations in (2-3f) and (2-36) into Eqs. (2-21) and (2-22) in

the limit of wpz 0.

r

-q m3y w (k¥ -k® )
o L ©C 5 (4 )4—Om __SM_ o :
€ ( 2 -k? ) |%im|pc® m' sm” k m' smP
sm 4im sm sm
"m w W (ka
O C ‘ ’ .
lmch kL k{’ o)+— Jm ’mo) ‘ 0 <P
m Lm v
(2-38a)
-m’wouo[ , ]
— +a” ; -
pkin imm k p)tal mY¥mlE P 5 P <o<p (2-38b)
-m?y u
)
%7 %em :n(k p) o, <p <@ (2-38c)
°*m
imq r( Z " 2 m) w W,
= 2 C 1k
0 sm im sm sm

(kzm ke{,m) ] W
7
- 2 SO A k .
bim Ttk P)"’Ca k Jm( l.,mp) » p<01

F]
pklm m- {m Im
(2-39a)
imuy ,Llo
- ' ' ‘.‘; + ” ' . -
m [ime( mo) aimYm(kmo)] i P <p<op (2-39b)
mmy %*
—20 ., g% ) ;s <pcw (2-39¢)
Km em m m (o]

*
Note that all derivatives of the Bessel functions are taken with respect
to the entire argument.

16




The necessary boundary conditions which a2re to be used for the
evalvation of the constants of integration when expressed in terms of the

total field components arc

H -4 ] =0
24 ? L 2 4
i i
.5%1: i ;6C9.i =0 P =0t (2-40)
U =0
5 =
. - [ J p +6
_J"u i J"z i1 -lim jwdp
¢ 60 -8
o = B (2-41)
- 1 O
6 -18,) -0
b @-e w l'

where the subscript i represents the region defined by p <p; the primed
subscript if represents the region defined by p; <p <po; and the subscript

e represents the region defined by P, <0 <cO.

The previous conditions can also be expressed in terms of the

harmonic field con.ponents as

T
"
o

L. MJ. . L. ZMmua,

o)
1
1

0 P =P (2-42)

E
| Pmj., + OmJ,

% o .
This dynamical boundary condition, which is a consequence of a rigid
wall, is used only in the compressible plasma cases,

17




r 9 r woq
H - {H S R
|z | L zm) . 2n
e i
r - r b } Q = po .(2'43)
E - =0
. mae b .pma '

Conditions (2-42) and (2-43) lead to the following system of equations:

q w

? k ” k - 0O C
[aime( m°1)+aimym( mm):l (k® -k5 )
sm 4{m

la, J (k _p)-b. J (k, m)]l=0 ' (2-44)
imm sm imm im’

’ ’ " ’ o m
+ Y (k -
[aime(kmm) a m( mox)] (K2 -k2
sm 1im
[c?(k® -k°
c om_ sm) wc

k + ' (k
im| w _p; k° Jm( smP? ) k Jm( stx)
L Yo sm sm

)

[0 .
+ k +
bim wop; k2 Jm‘ A le )

b

(] ’

J (k, _pm)j{=0
k
im i{m m 4im

(2-45)

Pl

[ "

ime( kmmHaimYm( kmm’:| T(k® -k )
sm 4im

fa

W o1 Ce(kzm-kzm)
k + !
im kim Jm( smm) mgwo ksm Jm(ksmpl)

2¢13
W prc? (k3 -k )
om Im ’
k 4+ — k =
J {mOx) 7, K, J ( Lmo:) ,
o lm

o

m

im|k®

(2-46)
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w q
H(l) - / + " A\ o __9__
aem m(kmpo) 1:aime(kmpo) aLimYm(kmpo'" 2n (2-47)
a HY (e 5)-la’ J'(k p)4a" Y' (k p)]=0 (2-48)
em m m O imm m O im m m O

Normally, the above equations would be solved for the constant of
integration, a_ since the field quantities [sece Egs. (2-36c) and (2-39¢)],
where the radiation is to be evaluated, involve only this constant. However,

an explicit evaluation of a_ will be temporarily pestponed.

In order to obtain W, the power radiated by the ~harge distribution
per unit length, the flux of the Poynting vector upon a cylinder of unit

height at an arbitrary radius p > po’ coaxial with the z axis, will be

evaluated from Egs. (2-36c) and (2-39c). Rewriting the necessary

field components

mz=oo
_ (1) -imu T -
| [#z]e Z aLemHm(kmp)e ° (2-49
| m=-00
l
n=coo
[GCP] i -iwo“u Z -1?_ aenH:)l(knO)e-lf‘wOT (2-50)
€ n=-Q
Then,
|
| 2n
BEAIIES
o
2T ms-o nzo , .
'imo“oo r Z Z kl-aenaemﬁxfl) (knD)H(l)(kmO)e-l(n+m)wOT e
C mz-0 nz-co (2-51)

It is apparent that the integration over the angle & is non-vanishing
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only for m = -n. Thus, the aouble sum reduces to the following single
sum:
m=co

) m (1)}, . )
\N S o — -k H k 2-52
21"“‘)0“0‘> Z. k de-maemH-m( mp) m( mp) ( )

Z-Q0

m
where use was made of the fact thatk =-k .
-m m
Y the sum is now divided into two sums for positive and negative m
respectively, and the negative sum is converted into a positive sum by

replacing +m by -m wherever it occurs, the result is,

m=Qo
s g m (1) (1)
Wezme e ) ata a  [HD(-k oJH(k o)+
m=1 (1) )
H ' (k p)H! (-k p)] {2-53)
Finally,
m=Qo
_ . m_ (1) ()’ (2) (1) _
W= -meouoo Z k ae-maem[Hm(kmo)Hm (kmo)-Hmn{mp)Hm (kmo)]-
m=1 m
8 Y m 2-54
i} Luo“o Z. K2 ae—maem (2-54)
m=1
since,
(1) (2)/ (=) (1) 4
X _ -4
Hm(kmp)ﬂm (kmo)-Hm (kmD)Hm (kmp) - 'r'rkmD

%
See reference 19.
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SECTION II1
THE CHARGE DISTRIBUTION OU1SIDE THE PLASMA COLUMN

The first case to be examined is that of an incompressible, isotropic
plasma column. Here, it is assumed that the thermal velocity of the elec-
trons and the intensity of the magnetic field in the plasma are vanishingly
small. Thus, Eqs. (2-44) through (2-48), which are a result of the

bound:rv conditions, reduce to the folicwing,

Lo Tl ) Haf Y (ko) -a, T (k ;) = 0 (3-1)
! ] km ]

la, 3 (k pi)+al Y' (k_p1)] " timlmifomf) =0 (3-2)

(1) k . 1] " R - -woq *

2 em m( . ) La im m"kmpo)+aimYm(kmpﬁ)] T =h (3-3)

(l) ’l k - ’ ! ” ] Kk
& emHm mp O) [a lme( kmp O) + alem( mp O)J

L]
(=)
o~
w
]
*-S
~

A simultaneous solution of the above equations for the constant of

integration 2, the only constant of importance, results in,

_ “YPo kmq IzeA m m( kmpo) Jmﬂom m( kmpo) :

a = (5-5)
em 4 A
om
where 0’ )

=1 1 : -

bom = T Tl KomPIHE (ko) -=— 37 (ko 0)H(Kk 1) (3-6)
m Om

;EEquations (3-3) and (3-4) are repeated for sake of completeness.
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Direct substitution of these results into Eq. (2-54) gives the expres-

sion for the electromagnetic radiation outside the plasma column.

m=00 ’ ?
0 @82 TP mlA Y (m8)-S(a I (mB )]

= o .
W B 2¢€ 2. B3 (3-7)
o m<] A
om om
¢ o
where Bc= = 2 is a measiure of the ratio of the charge velocity to the

velocity of light in free space, and the asterisk denotes the complex con-
jugate of a quantity.

If now it is assumed that the charge moves with extremely non-
relaiivistic velocities, 3C<< 1, the plasma column sees effectively a uni-
form static electric field when the dimensions of the orbit of the charge are
much greater than the plasma column. Th~refore, the physi_al situation
approaches the conditions neeessary for the platsma to exhibit a dipole
resonance.

Now for Bc<< 1, the Bessel functions may be approximated for
small arguments,

In particular,

3 mi) ety gy clmebi2™ (3-8)"

Applying the approximations of Eqs. (3-8) to Eq. (3-7! gives,

”E 2
2 mzdmm(ms )2m , (OI/DO)zm(m\Uo) (3 9)**
—_— {1+ -
€o m™1 ZMm!) ’ v 1'
[""(Tn‘%"j

%
See reference (19).
* . . .

* The appearance of the factor p;/:o in Eq. (3-9) is explicable in terms of

a scattering cross section,
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It is evident from an inspection of the above equation that a resonant con-
dition in the electromagnetic radiation exists for those frequencies which

satisfy the following relation,

e iz (3-10)

mw

The significancle of this result is realized when comparing it to the
corresponding free space problem for non-relativistic velocities. the solu-
tion of which can be deduced directly from Eq. (3-9) by setting LN equal to
zero,

The result is,

q° mim SC)Q L)

w ‘ﬁ
= 2 } —_— (3-11)
o m=i 2°mM(m!)?

A comparison of Eq. (3-9) with (3-11 ) shows that tl.e energy Wm
radiated at the mth harmonic compared to the energy wmo radiated in

free space at the same harmonic is

(ﬂl/oo)
{

m/wmo= 1+ - 2 ) (3-12)
-ty

mwo

Result {3-12) has been obtained for BC" 0. The singularity which is
found at wp = ﬁm Ly disappears when the effect of a small but finite
value of BC is included in the analycis of (3.7). For th: sake of sim-
plicity, the subsequent discussion is confined to the fundamental fre-
quency (m=1),

If then, Eq. (3-7) is maximized with respect to the independent

w
variable, £

w
o
cendental equation exactly,

, the condition for maximum reduces to the following trans-
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I IN 201+ YIB )Y Sor = 0 (3-13)

It is important to note that the above result is also mairntained in a
compressible, isotropic plasma as well as in an incompressible, aniso-
tropic plasma.

An insertion of higher order corrections to the Bessel functions into

Eq. (3-13) yields the following frequency condition,

w B3(o1fp P inyB (/)
_}_2: J_z_ ! - < 4/0 cﬁz/ 0_ (3‘14)

Thus, the maximum is seen to occur at a frequency shifted from the dipole
sing .larity in the c:rection of increasing plasma frequency.
Substituting Eq. (3-13), in total, into Eq. (3-7) yields,

4%
_ - c 12 ‘“ e
LWl = 37 [ree+vice ) (3-15)
which reduces to
Z&quz}
(w,] S (3-16)
max e nZBQ
o ‘¢

The results of a numerical calculation which extends the previous
case to include relativistic velocities of the charge distribution, are
found in Fig. 4. An inspection of the figure reveals that, for extremely
low freqﬁencies. there are fluctuations in the electromagnetic radiation.
These fluctuations are attributed to electromagnei‘:ic interference phe-

w
nomena. Thus, when the plasma is overdense. ]-E - 1, the plasma
o
acts as a retlector of electromagnetic waves and resonnit conditions are

found for certain values of the ratio 02, po .
More significant is the fact that even for almost relativistic veloc-

ities of the charge, the radiation experiences a large maximum. In par-
ticular, for Sc=. 9 in Fig. 4, the maximum radiation is of the order of

ten times that of free spice. Furthermore, the maximum occurs for

%

;-13 - hifted slightly from the value {2. [This result is consistent with
o

24




“_“

Eq. (3-14)]. Thus, itis apparent that the dipole resonance has to be
expected even at large velocities of the charge distribution,

The «ffecy of compressibility upon the radiation characteristics
of the charge distribution will now be examined. In this case, Egs. (2-44)

through (2-48) reduce to,

4 H . .
I:aime(km)‘Ha’imym(kmpl)] - aime(kompl) _0 (3-17)
c %k
P P " 1] (o] m
_ oy k
l:"”'ime(km‘ol)"'aimym(kmm” ¥ v p k2 b mIml “amP?)
o' am
km P 5k
T aime(komp‘) =0 (3-18)
om
4 ” qoplczkin ¢
La T (k_pi)4a? Y (k_py)] #|2—Dpb, I (k_p,)
imm' m im ' m' m w2 k im m am
0 am
K2
o m = P
= aime(kapl) 0 (2-19)
om
2 H% o3 -Tal 7 (k onta’ ¥ (k o )le- 0 (3-20)
em m m o im"m' m imm m o 2T
a H(l)ik o) - ra' J' (k p)+a. Y (k »p )]= 0 (3.21)
"em m' m'o im"m' m'o imm' m o ‘
Simultaneous solution of the above, for aem' leads to,
. ’ \ '
_ -wopokmq UZéAa.n')Ym(km”o) -"n"uarrpm(kmpo)]
a = : (3-22)
em 4 Aam

o m> wg- 8
In a compressible, isotropic plasma, knam = - _
2
a’

Although the same symbol kam has been used in Eq. (2-25), no ambi-

guity arises since they never appear together.
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wheraza
w? (1) 3Py k7 !
b, =—2L 7 (ko p1)_(k__p)H (k_@m)+—>—2T48 J'(k_ o)
am ., m m m' am m' m o2 om m am
am
(3-23)
If Eq. (3-22) is substituted into equation 2-54), the result is,
282 n=Q0 g ’ -9 [ 2
W=+ Yol % ¢ ml"‘,ze(Aam)Ym(ch) "m‘aan}]m(msc)] (3-24)
= 7e Z = -
m=1 am am
Although it is not explicitly shown in Eq. (3-24), there are terms
wp
which are written :n terms of the quantity Ba= g 2, which is a measure

of the ratio of the speed of the pharge to the speed of sound in the plasma
medium. A physically plausible situation exists when the charge dis-
tribution moves with highly supersonic and non-relativistic velocities

(i. e. Ba>> U, Bc<< i). In this case, the terms with arguments propor-
tional to Ba may be replaced by their asymptotic forms, and the terms
with arguments proportional to Bc may be approximated according to
Eq. (3-8).

The asymptotic form is,

3 _(m8 ) %2 cos (m8 - /4 - m™/2) (3-25)

If the approximations of Eqs. (3-8) and (3-25) are now applied to
Eq. (3-24), the results reduce to Eq. (3-9) exactly. Thus, it is con-
cluded, that the influence of compressiﬁility upon the plasma is to leave
the radiation characteristics effectively unchanged.

Having found that the cffect of compressibiiity is nezligible, it is

now desirable to study the incompressible plasma under the influence of a
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magnetic field. That is, the intensity of the magnetic field in the plasma
is now appreciable. The description of the plasma, in terms of a tensor
dielectric permeability, is now applicable. Conditions (2-44) through

(2-48) simplify to the following system of equations,

[ l's - -
[aime(kmp1)+ a; Y { kmo1)] -a, J (v p1) =0 (3-26)
[ , , rmklﬂeg
¢ L4 | H
"aime(kmpl)+airx1Ym(kmDI)J-[ka N aime(kernpl)
€
em
km
+ I aime(kemm) =0 (3-27)
em
H(‘)ur la! J (k Y+at Y (k V1 = ot (3-28)
em m "mpo)° 2 mm' m o " 2im m( mPo’” = "M -

n
o

)' 1 '] - " ?
aemH?n(kmp o) - [a ime(km" )+ aimYm(kmp o)]

o (3-29)

where kem’ €;, and €2 are the definitions applied to the case of a
rctating chargs distribution . (See page 12). Solving the system of Egs.

(3-26) through (3-29) for the constant of integration a . gives,

ooy, LAYl -0, M o )]

- - o -
qem - 4 A (3-30)
em
where
_ 2 1 (), | / (1)
A 2 -] k H'W {k - k
em km m( emol) m' mpl). kem Jm( emp;)Hm(kmpl)
m €3 ()
- < oc Jm(kempl)Hm(kmpl) (3-31)
em' ! !
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In the same manner as before, the radiation in this case is,

¢ g®82 ™3 [R(a Y (mB )-2 B )I (mB)])2
o] C m eem m C mem m C (3_32)
2¢ ) x
o &
m=1 em em

W =4

Because of the complexity of an anisotropic medium as opposed
to the previously studied case of an isotropir medium, a closer study of
the dependence of the radiated energy upon the dispersive properties of

the plasma is necessary. The Jispersive properties of the plasma are

: ,e? : : .
determined by oS le'fg the index of refraction for the propagation of a
plane electromagnetic wave perpendirular to the direction of the magnetic

field. The index of refraction for the medium can be written more explicitly

as follows: 2 2 2
W w - w
2 = 1.2 P (3-33)
e 2 2 2 2
woow o -w o-w
p c

The accompanying Fig. 2, is a plot of uz versus w/wc (where w is now
assumed) for a particular value of w /wc . A study of this figure reveals

that the singularities occur at,

m
w W Py -
T'Q'w = 1+(w) (3-34)
c [ c
and Ke vanishes for,
w 1 v 1
2ol Byey o -
o, 4+(wc) t2 (3-35)

Furthermore, *y is larger than unity for,
w . W
P L1+ (2) (3-36)
w g w
c c c
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and is imaginary in the regions,

p< < (1 fP_ -1 /1+(-B)2<—<,1+&’-)2*1 (3-37)
v 4 w 2’ 4 2 L

Again, it may be said that Eq. (3-33) and the above mentioned
properties of the disﬁersion relation may be applied to the problem of
a rotating charge distribution for w =mu . Further, assume that the
angular frequency of the charge is equal to the cyclotron frequency,
woEw (i. e. the intensity of the magnetic field is the same both inside

o

and outside the plasma). In this case, the range of frequency given by

T W
1‘1’- <m< 'l+ (EE)E (3-38)
o o

Eq. (3-36) becomes,

Due to the fact that

1+ - B <] (3-39)

it is possible to iind only one value of m where uech is greater than
unity, that is, when the velocity of the charge distribution ie greater than
the phase velocity of the electromagnetic field in the medium. When this
condition is fulfilled, a process of Cerenkov radiation contributes to the
already existent Bremsstahlung radiation for this harmonic. It is to be
noted that in the previously considered cases dealing with an isotropic
plasma, Cerenkov radiation was not possible since the index of refraction
"o corresponding to the ordinary opt'c mode of propagation, was always
less tharn unity.

The discussion will first be confined to those frequencies which do
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not lie in the neighborhood of the particular frequency for which Cerenkov
radiation is possible. Furthermore, the charge distribution will again be
considered to be moving with non-relativisiic velocities. Therefore,

nem8c<< 1 and Eq. (3-32) becomes in this approximation.

W mZ=oo m(mB )2 m

o N [1- (€ -¢€3] 7
v eo 2_’ )am(m')z o (pl/po)zm T+ (e -€3] (3-40)

In order to see how the dipole resonance in the isotropic plasma
case is generated from the anisotropic plasma, it is necessary to assume

i~. Eq. (3-40) that the intensity of the magnetic field in the plasma is
small. Therefore, the assumption that the charge distribution moves in
synchronization with the cyclotron frequency will be dropped for the

present. Under this new assumption, Equation (3-40) becomes,

Y[ )] |
+ ——
® ¢ mz=o m(mg )™ (o3 700\ 0™ | |\ |
W = =2 < {1+ 9 (3-41)
260 22m(m ! )2 w v )
m=1 2 - B 1+ c
my my
o/ L o
w
where _w_c_ is assumed much smaller than unity in the above equation.
o

Equation (3-41) indicates that a resonance may occur for the m

harmonic when the following condition is satisfied

(3-42)
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Thus, the effect of the magnetic field, as far as the resonant frequency

shift is concerned, decreases with the order of the harmonics.

The assumption of synchronized motion of the charge distribution
with the cyclotron frequency will now be resumed in the subsequent dis-
cussion., The radiation will be analyzed for two spzcific ranges of the

ratio of the plasma frequency to the cyclotron frequency.

First, it will be assumed that ucp/wo << l(underdense plasma)Then,

the index of refraction may be apgroximated as follows:

|

x - 5 (3-43)

OE }UE

which is effectively unity for all orders of the harmonics except the

fundamental., Thus, for extremely non-relativistic velocities of the
charge distribution, the radiation is confined entirely to the fundamental
frequency and Eq. (3-40) reduces to:
o g2 &t
Loq =

w ~ T3¢ (3-44)
o

which is identical to free space.

In physical terms, if the index of refraction is effectively unity,

then the electromagnetic radiation passes through the plasma undisturbed.

The region of most interest is the frequency range where

w /wo>> l. In this region, the index of refraction m:y be approximated

as,
2
L (p
e L] -— -
em m2 1 (3 45)
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It is evident from Equation (3-45), or equivalently through an
inspection of Fig. (2), that the index of refraction possesses a singu-
larity. Obviously, the conditions necessary for Cerenkov radiation to
occur are satisfied for the particular harmonic in the neighborhood of
the singularity. However, it must be recalled from the previous dis-
cussion, that a multipole resonance may also occur for a harmonic in
the same frequency range. It is therefore essential to demonstrate
that the Cerenkov effect does not mask the multipole resonance.
Clearly, if the multipole resonance occurs, it must occur for the

harmonic satisfying the relationship,

m = — P (3-46)

w
Equation (3-36) indicates that lzn-] = 1 when m = TUE . Fur-
o
thermore, if Equation (3-33) is solved for the harmonic which makes

2
em

1 = - 1, the result is approximately equal to Equation (3-46}. Hence,
the harmonic satisfying Equation (3-46) never occurs in the frequency

range where Cerenkov radiation is possible.

Resuming the investigation of the radiation in terms of the
index of refractior, Equation (3-45), it is apparent that Equation (3-32)
permits a large number of harmonics {ur which nem is large in magni-

tude but imaginary. Hence, the necessary approximations upon the
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Bessel functions here are,

i7™T mBa )=1 (-imBwr ) . qj_f———é———- a1 B M (3-47)
m cC em m c em -imB n

cC em

where it is understood that L is now purcly imaginary and Im is the

modified Bessel function of the first kind.

An expression for Wm, a typical harmonic in this frequency
range, is obtained by substituting the approximation of Equation (3-47)

into Equation (3-32), which gives,

mwoq2 (mBC)em 04
wm N 2¢€ L-
o 2m{m! ) )

(3-48)

A comparison of Equation (3-48) with the corresponding free
space case, Equation (3-11) is relevant. It is seen from this comparison
thzt the radiation pattern of free space is modified by the factor
{1 -(0./ po)am]2 , for the case at hand. This result complies with
the physical situation. Thus, in the low frequency range, the plasma
is overdense and acts as a reflector of the electromagnetic radiation
emitted by the charge distribution. The niodification factor is propor-
tional to the scattering cross-section. As the order of the harmonics
increases, the plasma appcars less dense; the modification factor

goes to unity; and the radiation pattern approaches that of free space.
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Finally, attention must be directed to the radiation produced
by the single higher order harmonic in the vicinity of the singularity
of M m Because this frequency may lie anywhere in the neighborhood
of the singularity, the plasma density and the magnetic field intensity
may be adjusted to yield any particular frequency within this range.
It must be noted, that this is an extremely critical solution sinc:
Fuation (3-39) indicates that the index of refraction has a very sha-p
resonant condition. Also, it is seen from Equation (3-45) that nem is
extremely smail for the subsequent harmonics beyond the singularity
and, hence, the radiation contribution of these harmonics is negligible.
Furthermore, for large values ot m, it is apparent that a small change
in nem leads to a large change in the argument chnem of the Bessel
functions. Thus, the radiated energy at the mth harmonic becomes an
extremely sensitive function of Kem' If the average value of Wm for
the range ”'em >>1 is taken for Fjuaticn (3-32), the result is identical
in form to Equation (3-48), and will therefore not be repeated. This
result is not surprising since the only difference between the asymptotic
forms of the Bessel functions, for real or imaginary arguments, is an

oscillating part in time. This distinction no longer exists after an

averaging process is carried out.

In summary, let it be recalled that in the case of a simple

plasma (isotropic and incompressible), a multipole resonance is ex-
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hibited 1or the harmonic satisfying m = wD/ ﬁwo when the charge
moves at non-relativistic velocities. If the charge velocity is greatly
reduced, the resonance becomes a singularity and the harmonic satisfies
exactly the relationm = 1/ {2 wp/wo. The influence of compressibility
upon these radiation chaiacteristics is negligible. However, even a
weakly anisotropic plasma is sufficient to shift the multipole resonance.
As the order of the harmonics increases, this shift decreases. Thus,
the multipole resonarce is effectively unchanged for a sufficiently
higher order harmonic. Moreover, this resonance is not masked by the
Cerenkov effect which occurs for a singular harmonic of an even higher
order in a neighboring frequency range. Thereafter, the radiation con-

tribution of the remaining harmonics is negligible.
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SECTION IV

THE CHARGE DISTRIBUTION INSIDE THE PLASMA COLUMN

It is now desirable to consider the effect of moving the charge
distribution onto the plasma colun.:ii. That is, to set the radius of the
orbit o, of the charge distribution equal to the radius p; of the plasma
column. It is seen in Eq. (3-32) that, in this limit, the form of the
radiation expression remains unchanged. Consequently, it is concluded
that a dipole resonance also occurs for the charge «istribution when it is
located on the periphery of the column. Moreover, this resonance may
still be possible if the charge distribution is moved inside the plasma
column., The physical implications cof this speculation can be better
understood through a complete solution for the radiation field of a
rotating line charge imme:sed in a plasma column. Thus the method
as adopted in the previous chapter, of investigating independently the
influence cf both compressibility and anisotropy upon the radiation
characteristics of the rotating charge distribution will be repeated. The
question of the physical mechanism of the rotation of the charge distribu-
tion then arises in the isotropic plasma case. A new physical configuration
must be introduced to answer this question. Consider the charge distribu-
tion to be located within a thin vacuum gap, bounded by two concentric
cylindrical regions of plasma. A magnetic field intensity, different from
that in the plasma, can be maintained in this gap. The radiation field,
computed in the ideal situation (that is, the charge distribution immersed
in a uniform isotropic plasma column) is then valid for wavelengths of

the electromagnetic radiation much greater than the thickness of the gap.

Since the effects of compresaibility and anisotropy will be considered,
it is expedient to formulate the problern in the most g:. neral case of a

compressible anisotropic column. This necessitates an inspection of
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Egs. (2-33) and (2-34), which may be uncoupled in the same manner as
that technique employed in the previous problem of the charge distribution
located outside the plasma. In this case, the solution for the longitudinal

field compomnents is,

1 2 2 2 2 .
-(Ir -k ) {(kom kl,m)bime(kl,mD)-(kom.ksm aim"lm(kﬂm‘:’)} "M %o
sm 4im
_—l— 2 2 ’ ”
N ={(* -k ) {(kom-kl,m)[bimjm(kl,moHbimYm(kme)] )
m sm 4{m

K -x® ' k +a] ' } ;
( om Ksm)[aimjm( smo) aimYm(ksmp,] ’ Do<O<Dl

0 ; P, <c<®
(4-1)
U 3
- k - .
(k* -k )taimjm( smp) bime(kLmo)} P PSR,
sm {im
q w
e {lal 3k _o)val Y (k o)]-
H = (k* -k° ) im m sm im m sm
zm sm Im
4 /“
k, o)t ;
[b/ J_(k, o)bl Y (k, o)]} ; p <p<p,
H(l)(k c) » b, <p<0OO
em m m 3
(4-2)
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The transverse field components, obtained in the same manner as

in Section Two, are

r "9, m" Yol (kzm-kasm)
[
I ‘ & m 7 J _(k_pl)t J (ksmo)

- P2
¢ (‘sm {,m) P smc m- sm ksm m
m Lol (kzm-kzm)
A S —— l .
Bim| ekt T m®! Tk ImEmP [ 7 e <o,
{m im
2 K2
- w .
Bo o/ 17 %oy (ko) + om™*em! ! (k, )
- m c ke cg m sm
o''sm 4 8 s
, [mie (- ]
, +almp—93;—‘1 (k mo)+—k— Y! (ko)
me.{ ¥ J
impk‘{ ¢ "m {im E m Lm
, ’m‘? wowc “—om kim) ; | l
'bim——-gpl@ < Ym(kme) —_— Ym(kme) L P <P<p
L {im im )
meu M
00 (1) . )
L : -—E?n_,— a mHm( m) i A <p <o (4-3)

38



( —imqo (kzm-kgsm) U"‘owc /
€ (k* -k° ) %im oK Jm(ks p)+k c* J (ksmp)
o sm 4im sm sm
(Eom Lm) u}owc /
-bim Pk m(k‘tmp)*k{lmc‘ J (kLmo) s P<p
-imq ‘ (kzm-kasm) U~]owc ¢
€ (kﬁ - im b kK : (ks O)+k c? I smp)
sm 1 sm sm
” ( eom- ) UJ LL -
+a‘im p P Y sr ka c? Ym(k mp)
| / (kaom-kim) v L /
gL L‘—F_“J (ky ka_ ? I mEem?)
-
v om K m) Lo -
_blmL—-—P_Y (k D)+1-(—__Czy (k mp) )} po<p<pl
o :m_xgi) a (1) (k p) y P €<p< (4-4)
L km em m P

The appropriate boundary conditions in terms of the total field compcnents
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The above conditions, when written in terms of the harmonic com-~

ponents, become,

.
o) [Fom) %8
| Zmfyr - mly ° 27
Nm].i - [Nm] = 0
- 1 i
i P=p (4-7)
Pmi. - Pm |, = 0
- i i
v ) [U ] - o
| pPmM il Pm 3 =
Hzm] - [ zm|. = 0
e i
[ECOm]e = [Lfﬁmjia = 0 , P=EPh (4-8)
Upm = 0

The above equations result in the following system of equations,

4 "
t [alme(ksmooH “1 Ym( p ) -Lb me( meo)Yb K (k{,mpo)
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- aime( m’ ) =g m( meo) 2Tw q_
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With this in mind, the analysis will begin with a study of the
radiation pattern for the case of an isotropic, incompressible plasma,

Eqs. (4-9) through (4-15) reduce to,

‘ & o . ~) = -2 -
im m( om”o“ aimYm(kom" o) a‘ime(kom“o 2n (4-16)
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If Eqs. (4-16) through (4-19) are solved for the constant of integration

applicable outside the plasma, the result is,

= = Ll"Opoq Jm(kompo) (4 20)
em 2k ;1 A B
om om

Direct substitution of this result into Eq. (2-54), gives,

Zwoqa p; iOO 1 Jr;xa ( chom)
W = tcms ¥ 2. meK= & 25
o ~ om A A
m=1 om om

2
w
where #2 =1 -(—P-) is the index of refraction for the ordinary
om muw

electromagnetic mode of propagation in an isotropic plasma.
Again, interest is confined to the case of extremely non-relativistic
velocities of the charge distribution since a multipole resonance is possible

here. Using the approximations of Eq. (3-8) in Eq. (4-21), gives,

4y .3
2 woq

m=Q0
W=—7 Z

2 m 1\2
° m=l & M(m!) [2-

m(m?B c)z m
(4-22)

Thus, the multipole resonance is clearly evidenced in Eq. (4-22). A cal-
culation analagous to the one conducted in Section Three, for higher
velocities of the charge distribution, results in the same conclusions.
Precisely, the dipole singularity is replaced by a maximum in the
radiation for the same frequency given by Eq. (3-14). The radiation

expression for the fundamental frequency now is,

2w_q? 1 . . AnYB(oyfo )
W, TAEET eonzszclpl’/p?‘ l+BC(px/p°~ 5 (4-23)

Furthermore, a numerical calculation extending these results to include
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relativistic velocities of the charge distribution is depicted in Fig. 3.

A huge maximum is evidenced for frequencies shifted slightly from the

dipole resonance condition.

Hence, the conclusion that the dipole

resonance phenomenon is maintained for all velocities of the charge

distribution is applicable also to the case of the charge moving inside a

plasma column.

For completeness, the effects of compressibility, if any,will be

studied. Here, the conditions [Eqs. (4-9) through (4-15)] resulting from

the boundary conditions simplify to,

p-

a

G c*

3
wpkam_

o 0

- J p
im m om o

b’ J

b’ J (k|
im m am O

[
2

) (k
imm am o

)+a

p )+b

14

im

"
im

p )+b?

im

Y (k ¢
m om o

Y (k

e
m am O

(k

.
m am o

0

45

(4-20)

(4-28)



h

(1)’ qocakm
a  HYk o)+ —2—T1p’ 5 ) +b” K o)
em m' mpl) w _py k? bimjm(kam” )+bimYm(‘{amp‘)
o' am
km
’ 7 " I _ .
k aime(komol ) aimYm(kompl )J -V (4-29)
om
zka T
(1) R 1
a k . / + # [
em m( mpl)* m3y k l_ ime(kampl) bimYm(kamO‘)J
0o am
K?
- 'm L4 i L. - 7 -
k‘:)m {aim“m(komCl ) Tdimym"(omp1 )} = O (4-30)

Simultaneous solutica of Eqs. (4-24) through (4-30;, for a , gives,
em

Yok orfo g
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= 2 am
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By virtue of Eqs. (2-54) and (4-31), the radiation is,

wf‘
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w q® mzo momn & m(m chnom) m(m Saxm‘npl/po)
w = 4 \ et
€ 2 m ¢
Il IS
m=1] am am
% .
- o2 J B J .
acra? o I “n(m Qa"’om) m(mBC Kompl/oo)
aom [0 |
ﬁ
“am‘am

It sufficies to say: if it 1, assumed that the charge distribution

moves with supersonic, non-relativistic velocities (that is, Ba >> 1, and
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and BC << 1) and the approximations of Eqs. (3-8) and (3-25) are employed,
Eq. (4-32) reduces to Eq. (4-22) identically. Thus, the influence of com-
pressibility upon the radiation characteristics is to have them effectively
unchanged.

It is now desirable to consider the influence of an impressed static
magnetic field upon the radiation produced by the charge distribution moving
in an incompressible plasma. This necessitates that Eqs. (4-9) through

(4-15) be rewritten as,
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The radiation for this case is then,
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For non-relativistic velocities of the charge, this equation reduces to,

2w @ T m(ms3_)*m :

[l+(€1 'Ca)]?

(4-39)

o 22m(m!)?

=
"

It may be assumed that even a weak magnetic field is sufficient to shift
the multipole resonance for the lower order harmonics, since this is
what occurs when the charge distribution moves cutside the plasma column.

)
A necessary approximation, that, &,-c << 1, in Eq. (4-39) results in the
o
following simplification.

2x0q9 m-® m(mBC)pm ]
W e ' = (4-40)
€o Tooo22m(m! )R wg 1 Ye
= ) 2 - 1+
mw m

Inspection of Eq. (4-40) affirms the above mentioned assumption.
Adjusting the intensity of the magnetic field to be uniform through-
out all space implies that the charge moves in synchronization with the

il
cyclotron frequency (wo =wc). If it is then assumed that ;E « 1, the index
o

of refraction may be approximated according to Eq. (3-43), and the resulting
radiation is equivalent to iree space, Eq. (3-11), as in the case of the
charge distribution moving outsidv the plasma. Thus, when the influence

of the plasma upon the radiation characteristics is small, it matters little
whether the charge moves inside or outside the placma because the radiation
characteristics are identical to frce space.

*gain, the region of most interest occurs when the index of retfraction
B g
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of the medium may be approximated according to Eq. (3-45). Of course,
the Cerenkov effect, here too, does not mask the multipole rasonance

that exists for the higher order harmonic. Moreover, the radiation for a
typical lower order harmonic, W'n, may be obtained using the approxi-

i

mation of Eq. (3-47). The result is,

Zmuw @82 (M8 ¢, p )2m
w - [o] [ (& /O (4_41)
m € 2°M(m!)2,2
(s} €

Finally, the average radiation of the single harmonic in the
neighborhood of the singularity of the index of refraction is identical in
form to this equation.

An interpretation of these resnlts can be obtained through a study
of the radiation characteristics for the charge distribution moving in an
infinite plasma medium.

It is now expedient in this section to consider all the previous cases
in the limit of p; ~o. That is, the plasma medium permeates throughout
all space. Mathematically, then, the boundary conditions at p, are
eliminated; the boundary conditions at £, are retained intact. Since
the present discussion of an unbounded plasma will be used merely as a
means of comparison with the bounded plasma cases, only the more
pertinent equations will be stated.

In the case of a simple plasma (incompressible and isotropic),

the radiation expression reduces to,

woq‘? 82 y
I e——— 2 -
k! 2 eo L me (mscnom) (4-42)

m

where the sum is extended over those values of m for which om is real.
If the charge distribution is assumed to move at very small veloc-
ities; then Eq. {4-42) converges to Eq. (3-11). Thus, the radiated energy

converges geometrically from: the fundamental frequency.
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When it is assumed that the charge distribution moves at
relativistic velocities, Bc ~ 1, the energy does not converge rapidly
around a single harmonic but is distributed over a wide range of fre-
quencies.

In order to analyze the radiated spectrum now, those Berssel
functions whose arguments and orders are both large and comparable
must be retained in the energy exprescion. For this purpose, the fol-

lowing relation is employed,

P ST 3

2%(1-8 ) 22m(1-8 )
* (m8g )~ = — 7 || — (4-43)
m C n 3 Bc . 3Bc

Equation (4-43) indicates that the argument of K; may be large or
. 3
small depending upon the relative size of m. Therefore, Eq. (4-43) mus*

be approximated for two ranges of m.
l €« m<< m, , m >> m_ (4-44)
where

a
m_= 3/2(1-82)
o c

In the first range of approximation, the energy expression reduces

to,

w

w q2 i
ol 3° r’-(z/s)‘ m¥ (4-45)

m 2 €o 2% 12
for the mth harmonic. The energy is seen to decrease very slowly with
respect to incrcasing harmonics.

th . e s
In the second range of m the m  harmonic of the radiation is

given by, -m/m
o]
w oo~ S—— (4-46)

m Im

The radiation for extremely high order of harmonics decays rapidiy.

Consider now the radiation from the line charge in a compressible
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isotropic plasma.
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(s} mzl om

'Jm(chxomp/po) Yrxfx(mBa"'omp/ﬁo)] (4-47)

and again it is understood that the first sum is for real vaiues of ®om only.
The appearance of a radially dependent term in this result is not
surprising since part of the radiated energy is converted into mechanical

energy of the medium. In order to determine the total powe: passing through

" a cylinder of unit h~igh¢ at an arbitrary radius p > Py the mechanical

work done by the pressure must be included along with the radiated energy.
Adapting the procedure for calculating the rad’ated energy to cal-

culating P, the mechanical energy results in, -

<
b - oW unp z J’;}n(maaxom
- 283 m &=
om
m
m=oo
.,..T_"E wzaz —-l—J (m8 N/ (mgx )J (mBx )Y )
€ popq nommm axom m com| m a om /p c p/po
o m=1 s _
-J (ma X o/p )Y (mB_n p/p ] (4-48)

A superposition of Eqs. (4-47) and (4-48) results in an expression for

Wt » which is just the work done by the electric field on the charge.

wqea quw’p" J2 (mB_ x )

ZmJ'«’-(mBn )42 __P.O 252 z m a°m.(4-49)

Wtz
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the unspecified sums having the same meaning as before.

This result is a specific example of a more generalized Poynting
theorem (see reference 20) which is,
- L oflav = - | 202 474 2 smo o -
f . B4 % f al2 & T4 X p]dv+fi §av (4-50)
k4 Vv
* That the stored energy is time invarient for the case at hand is due
to the fact that the fields created by the moving charge distribution are
carried along with the charge. Therefore, the total flux of energy passing
per second through a cylinder of unit height enclosing the charge cannot
change with time.

Returning to the expression for the radiated energy, Eq. (4-47), a
detailed analysis for superaonig:, non-relativistic velocities (that is Ba >> 1,
Bc << 1) reveals that the energy is primarily electromagnetic in nature.
Therefore, the previous analysis for the incompressible plasma rnay be
carried over completely.

. It is desirable to calculate the total electric charge induced in'the
plasma per unit length ig the z direction. The density profiles in the two

cylindrical regions located about p are;
. ] o

m=oo .
-1m® T

q

p | (1) o .

" ¥ i4q°a3 Z. Hm(kampo)Jn'x(kamp)e PP <P,
m=-00

n= (4-51)

-imw T

. \ B o'
[ 4q°a.2 }, m(kampo)nm(kamp)e el
, m=

The electric charge density is given by,
- - -52
P q: (n_-n) (4 )

Therefore, the total electric charge induced in the region p < po is,
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- Itis seen from Eq. (4-53) that the only non-vanishing term in the sum is

m=0. Then,

D
w mqQw P wp oW
5, - —E-P-H“’(x o [o3 (1R orap B2, pulli R )
© (4-54)

Similarly, the total electric charge induced in the region p > Pq is,

nqw p w
7= 227 (iR i R ) (4-55)

The total electric chargc induced in the plasma is,

nqw_p w w
7 = ——5}5’[10(1 o MY ’(1 p)-Ty(i o ) H “’1-2 3]
R T R T S ALY
= 2 Jo(1 a po)Ho (la po)-Joha po)Ho la pJ

(4-56)
Conaequéntly; the total system of plasma and moving electric charge
remains electrically neutral.

Consider now the radiated energy from the line charge in an

incompressibie, anisotropic plasma.

w q°82
ol “c € 3 7
7 e | 2 :
Z¢ M e Imi™8cke pI’(mB x ) (4-57)
o c"em®
m
and the sum is extended to only real values of e
For simplicity, it will again be assumed that w =W . Then, if

it is further stipulated that wp/(no << 1, the index of refraction may be

approximated by Eq. (3-43). The equivalent Kemec for the plasma
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medium can be greater than unity for the fundamental frequency only.

The energy radiated from the first line of the spectrum is,

s woqa 2 woq2
= ! = = -
w, = Ze 18 B.xg ) T8 n )*3i(8 ) ?.eoBch(Sc"m) (4-58)
L

The index of refraction is,

(4-59)

and converges to E in this approximation. Obviously, the condition for
Cerenkov radiation % ey Bc > 1 exists only if the charge distribution moves
at relativistic velocities. Therefore, if it assumed that the charge dis-
tribution moves with an extremely low velocity Bc << 1, the plasma behaves
essentially as does free space. The energy radiated is then confined
entirely to the fundamental harmonic and agrees with Eq. (3-44).

It is now desirable to consider the frequency range where
wp/‘”o >> 1, In this region, the index of refraction may be approximated as
Eq. (3-45). It is apparent from this equation that nu radiation is possible
for small orders of harmonics, and radiation only begins to become pos-
sible for those higher order harmonics in the neighborhood of the singularity
of the index of refraction. Note that, in the finite plasma case, the radiation
was not restricted to frequencies near the singularity. The first frequency
where radiation is possible may lie anywhere in the neighborhood of the
singularity, and both the plasma density and magnetic field intensity may be
adjusted to yield any particular frequency within this range. It must be
recalled that this is an extremely critical solution since, as stated before,
Eq. (3-39) indicates that the index of refraction has a very sharp resonant
condition., Also, once again, Eq. (3-45) states that % is extremely
small for the subsequent harmeonics beyond the singularity. The radiation
contribution of these harmonics is then vanishingly small, Directing at-
tention to the radiatioa produced by the single harmonic in the vicinity of
the singularity of P em’ and using the asymptotic approximations for the

Bessel functions in the expression for the radiated encrgy, gives,
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0 em

where it is understood that the above equation is the average value of the
“energy for the mth harmonic. A resemblance of this equation with
Eq. (4-41) is attributed to the fact that, in this approximation when the
plasma is extremely overdense, it is immaterial whether the plasma is
finite or infinite in extent.

In summary, it may be said that, if the plasma frequency is much
larger than the cyclotron frequency, the radiation field is confined entirely

to a single harmonic which resides in the vicinity of the singularity of the

index of refraction. The magnitude of the velocity of the charge distribution

is immaterial since it is always possiblé to select the order of the harmonic

such that the index of refraction is much greater than unity.

The radiation produced by the rotating charge for the more general
case of a compressible, anisotropic plasma will now be studied. In this
case, the coupled Eqs. (2-33) and (2-34) are uncoupled as in Sections Two
and Three. In this case, the solution for the longitudinal field components

becomes,

q
oc¢ .
(kasm-k’;‘;n) [aime(ksmp) B bime(k{mp)] P < po

H = | (4-61)

q
o c¢ (1) (1) .
ek [aem*‘ m“em?) “Pem"'m “um"’] PP,
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Application of the boundary conditions results in,

iq -wopokam(k:m-k:m) 1,32
Y ry -3k )-=FT (k. p )  (4-63)
i _k3
. iq wopok@(ka{m kam) 5
N - - J ( p ) J (kg p )
gm 4qo | wc n mo =? ™ o

For the sake of simplicity, an investigation of only the expression for the
total power will be conducted. This has been shown to be equr! to the work

done on the charge by the electric field. See Eq. (4-50).

8w a%a? ma a (k3 -k2 -k?

W = o Z em(e-m sm om+2’ me-n's%n){&)‘ . (4-64)

o"
t < ‘"; k:m kim {m sm im
m
where the fu'st sum is extended to values of m ior which k = is real
and the second sum is extended to values of m for which k.(m is real.

The virtue of the technique indicated in Section Two can now be realized,

since a difaect substitution of Eq. (2-30) into (4-64) results in,

moqawaE ® mJ:n( am O)
We = 2¢ a® K3 (4-65)
’———w am
m> 11 +(-2)a
O
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Now, Eq. (4-65) may be compared with Eq. (4-49). It is then cvident that

the effect of the couplin of the modes of propagation is to prohibit pro-
Pagation of the electromagnetic mode, and to introduce a lower limit in
frequercy in the propagating acoustic mode. These results are entirely
consistent with Tuan and Seshadri's paper 5 where the same mode of pro-
pagation is excited. ‘
It suffices to say, that for supersonic velocities (Ba >> 1) of the
charge distribution, the radiated spectrum decreases with increasing

order of the harmonics.
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SECTIONN V

CONCLUSIONS

The spectral distribution of the radiated energy of a line charge
rotating both inside and outside a plasma column has been analyzed.
The analysis was conducted to include the effects of compressibility and
anisotropy of the plasma upcn the radiation characteristics of the charge
distribution,

If, in the incompressible isotropic plasma case, the charge raoves
at non~relativistic velocities, the plasma exhibits a resonance of a multi-
pole type for harmonics cf the angular frequency of rotation of the charge
which satisfy the condition m = J—%_‘ == .As the charge velocity approaches
zero, the resonance becomes a aingula:it} for those harmonics which satisfy
exactly the relation m = 1 2 . The effect of compressibility is to

2 %

leave the radiation field essentially unchanged.

A plasma which is slightly anisotropic is sufficient t« shift this
multipole resonance for the lower order harmonrics. These harmonics
correspond to reflected radiation when the charge moves outside the plasrma;
the charge moving inside the plasma sees an impervious infinite plasma
medium,

In contrast, the plasma can still experience this multipole resonance
for a sufficiently higher order harmonic. Furthermore, in the frequency
range just above this multipole resonance, Cerenkov radiation contributes
to the Bremsstahlung radiation for a single harmonic in the neighborhood
of the singularity of the index of refraction.

If the plasma becomes highly anisotropic, the radiated energy of
the charge is identical to free space for non-relativistic velncities of the

charge.

Finally, the radiation characteristics are examined in the limit of
an unbounded plasma. In the incompressible isotropic plasma, the radiation

characieristics are similar in nature to the free space characteristics.
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Moreover, compressibility is of no influence on these characteristiics

which are not unlike the radiation characteristics of the uniaxial plasma
case. In the weakly anisotropic plasma, the radiation was confined to
the singular harmonic near the resonance of the index of ref-action.

In the more complex situation of a compressible anisotropic
plasma, the affect of coupling is to prohibit the electromagnetic mode
from propagating, and to introduce a lower limit in frequency of the

propagating acoustic mode.
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APPENDIX

An explicit evaluation of the uncoupling of equations (2-33) and
(2-34) will now be conducted. First, the following abbreviated notation
will be introduced. Thus, |

k:n'n k:m m? w; w'k:m
A1 = . Bl = — - _grs—
WY - %% ¢ & Kam
(A-1)
2,912 2,82 2.3 18 2
- 92 € k<>m B. = 92 € kom moe, kam - _""g_
cp cp om
and the differential operator, J, is defined as,
1 d d m?
= ——e - -2
b s 3; (p 3;) o (A-2)
Consequently, equations (2-33) and (2~34) can be written as,
(A D +B;)Hzm - .DNm =0 | (A-3)
(A; £ + By) N -PHH =0 (A-4)

Since the above equations are linear, a solution which is a linear combina-

tion of Hzm and N_ nmay be assumed. Specifically,

$ = Nm+a'Hzm

(A-5)
Yy = Nm + szm
or equivalently,
N = Dblh-ave
m b-a
(A-6)

Hp = 5
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Direct substitution of equation (A-5) into equations (A-3) and (A-4)
yields,

RIHTHEN
i

[(b+A1) D+B, Jdn - [(a+A1) H+B1] Yy = O (A-T7)

il

[(bAz +1) H+bB2] 4 - [(aAz +1).D +aBz) ¢ = 0 (A-8)

iy

Multiplying equation (A-7) by (aAz+l), and equation (A-8) by (a+A,),
and adding the results gives,

|2+ {555 ]f - o

where the following condition has been assumed,

(aha #1)B, - (at+A,)aB, = 0 (A-10)
a similar manipulation results in,
b+A,; )B - _
3.B+ A Ao~ fq:.,, = 0 | (A-11)

wherc the following condition has been assumed,

T e e e e e e T

(bA;+1)B, - (b+A;)bB, = 0 (A-12)

It is clear from a comparison of equations (A-10) and (A-12) that the assumed

T

constant a and bt have been made to satisfy the same equation. 1n particu-
lar, '

i

. AB ~A B o (A B;-AB; ) +4B By | ]
a, b &-ﬁzﬁ (A-13)
Substitution of equations {A-1) into equation (A-13) gives,
k? -k?2 ' <
= (A-14) £
9% E
k2 - k? §
b = om im (A-IS) fg
U %;

Finally, substitution of equations (A-14) and (A-1) into equation (A-9); and
equations (A-15) and (A-7) into equation (A-ll) yields the following Bessel

s

equations,
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iy, W50 it

it

I IR a8

3 |
S B =0 (A-16)

L ey, - S = o0 (A-17)

The specific solutions of equations (A-16) and (A-17), applicable to the case |
of the charge distribution rotating outside the plasma column, are,

o= bime(klm P)

P P<m (A-1])
Y = airn'rrn(ksmp)
since the Neumann function must be rejectzad because it becomer infinite
at p= 0. Moreover, the specific solution of equations (A-16) and (A-17),
for the case of the charge distribution moving inside the plasma column

in the specified regions, are,

b, I Kem? ; P< Po
% = ] &
bime(klmp) + bimYm(klmp) ’ Po<Pr <P
(A-19)
a‘im‘rm(ksm") 0 P<Po
% = R f &
3 T KemP 3 Y FemP! Po<p< P

The longitudinal field components, corresponding to the cases of (A-18) and
(A-19), are found from equation (A-6), and the results are in the body of
this paper. [Equations (2-35), (2-36), (4-1), and (4-2)].
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FIGURE 2
INDEX OF REFRACTION VERSUS FREQUENCY
FOR A PART.CULAR VALUE OF 3t

66




FIGURE 3

RADIATION BY LINE CHARGE INSIDE PLASMA COLUMN
(WHERE A, P, = 1/2, w 20)
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FIGURE 4

RADIATION BY LINE CHARGE OUTSIDE PLASMA COLUMN
(WHERE p /p =1/2, w. =0)
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